
Brazilian Journal of Probability and Statistics
2020, Vol. 34, No. 4, 821–843
https://doi.org/10.1214/19-BJPS454
© Brazilian Statistical Association, 2020

Discrete line integral on uniform grids:
Probabilistic interpretation and applications

Nikolai Koleva

aUniversidade de São Paulo

Abstract. Following the methodology developed by (Comput. Math. Appl.
33 (1997) 81–104), we define a discrete version of gradient vector and as-
sociated line integral along arbitrary path connecting two nodes of uniform
grid. An exponential representation of joint survival function of bivariate dis-
crete non-negative integer-valued random variables in terms of discrete line
integral is established. We apply it to generate a discrete analogue of the
Sibuya-type aging property, incorporating many classical and new bivariate
discrete models. Several characterizations and closure properties of this class
of bivariate discrete distributions are presented.

1 Introduction

Let us recall the notion of line integral in the continuous case and show briefly its role when
studying continuous distributions. Suppose F is a conservative continuous vector field on the
plane R2; that is, F is equal to the gradient of some scalar differentiable function f on a open
connected region D ⊂ R2. In other words,

F(x, y) = ∇f (x, y) =
(

∂

∂x
f (x, y),

∂

∂y
f (x, y)

)
for all (x, y) ∈ D ⊂ R2.

A conservative vector field satisfies the fundamental theorem of calculus, which says that if
two points are connected by a sufficiently smooth continuous path C, lying entirely in D,
parametrized by a differentiable function r(t) for a ≤ t ≤ b, then the line integral∫

C
Fdr =

∫
C
∇f (r) dr = f

(
r(b)

) − f
(
r(a)

)
, (1.1)

consult Apostol (1969).
A consequence of the fundamental theorem of calculus for line integrals is that if F is a

conservative vector field on D, then F is path independent on D, meaning that the value of
line integral of F along the path C only depends on the start and end points of C, and not on
the path in between. Another conclusion from (1.1) is that the line integral of conservative
vector field F along any closed path in D is always equal to 0. It turns out that the property of
a vector field F being conservative on D is actually equivalent to path-independence on D.
A probability interpretation of line integral relation (1.1) is provided by Marshall (1975),
who established an exponential representation of the joint survival function of a non-negative
continuous random vector. We will discuss briefly this characterization and its importance for
survival analysis in Section 2.2.1. A similar tool in the discrete multivariate case is missing
in literature and our goal is to develop it and to suggest applications.

When dealing with discrete data, the vector field G, that is, the gradient ∇g of a scalar
function g, is not available in analytical form. It is defined at discrete locations. For instance,
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if we consider the bivariate case and the set of discrete locations is composed by points (x, y)

for x = 1,2, . . . ,M and y = 1,2, . . . ,N , then the discrete gradient vector G is determined by
MN pairs of values of associated scalar function g. For this reason, many authors define the
domain of scalar function as the nodes of some grid. The space of discrete scalar functions
consists of all discrete scalar functions with the same domain. On the other side, a discrete
vector function is a discrete analog of continuous vector function. It has two components
associated to each node, and can be viewed as discrete scalar function.

An important contribution to the theory of vector fields discretization and its applications
is developed by Hyman and Shashkov (1997). The authors created discrete versions of vector
fields for 2-D logically rectangular grids introducing both cell-valued and nodal discretization
for scalar functions. In particular, the natural discrete gradient operator has been defined.
Hyman and Shashkov (1997) introduced a discrete surface integrals of scalar functions and a
discrete analogue of the line integral of gradient vector along an arbitrary path connecting two
nodes and proved discrete versions of the main theorems relating these objects. For example,
a discrete counterpart of the fundamental theorem of calculus for line integrals has been
provided.

The theory developed by Hyman and Shashkov (1997) fits perfectly for our needs: to estab-
lish an exponential representation of the joint survival function of non-negative integer-valued
random variables through the discrete line integral. We adapt the corresponding definitions
and statements to the case of uniform grids. As a result, the important conclusion is that the
components of discrete gradient vector G uniquely determine the joint distribution. We are
convinced that the methodology proposed in this paper is a new and powerful tool to generate
discrete probability models given the knowledge of the underlying vector field.

The article is organized as follows. To make the exposition self-containing, we outline in
Section 2 basic reliability relations for univariate continuous and discrete distributions. After
that we consider the bivariate case. We briefly discuss main properties of the line integral
in continuous case and consider several typical examples. Following Hyman and Shashkov
(1997), we introduce a discrete version of the line integral of gradient vector along a path con-
necting two nodes of uniform grid in Section 3 and we establish in Section 4 its exponential
relation to the joint survival function of non-negative integer-valued random variables. In Sec-
tion 5, we apply the discrete line integral to construct a discrete analogue of the Sibuya-type
aging property introduced by Pinto and Kolev (2016). We present several characterizations
of this class of bivariate discrete distributions which incorporates several classical models,
see, for example, examples in Section 5.3. In Section 5.4, we present closure properties of
the class and show how to use them as a tool to generate new bivariate discrete distribu-
tions. Finally, we conclude by suggesting a weaker version of the discrete Sibuya-type aging
property.

2 Exponential representation of survival function

We begin with necessary notations and facts involving the failure rate and its connection with
the corresponding survival functions for univariate continuous and discrete models. Then, we
will consider the bivariate case.

2.1 Univariate case

To proceed, consider first a non-negative continuous random variable X defined by its sur-
vival function SX(x) = P(X > x), or equivalently, by its failure (hazard) rate

rX(x) = d

dx

[− lnSX(x)
] = fX(x)

SX(x)
> 0 for all x ≥ 0,
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where fX(x) is the corresponding density. The survival function SX(x) and the cumulative
hazard function RX(x) = ∫ x

0 rX(u)du are connected by the exponential representation

SX(x) = exp
{−RX(x)

} = exp
{
−

∫ x

0
rX(u)du

}
for all x ≥ 0, (2.1)

see Barlow and Proschan (1965).
Now, let X be an integer-valued random variable taking values 0,1,2, . . . with survival

function SX(x) = P(X ≥ x). By analogy with the continuous case, define the discrete failure
(hazard) rate by

hX(x) = P(X = x)

SX(x)
= 1 − SX(x + 1)

SX(x)
∈ [0,1] for all x = 0,1,2, . . . .

Iterating the equation 1 − hX(x) = SX(x+1)
SX(x)

for decreasing values of x yields

SX(x) =
x∏

k=1

[
1 − hX(x − k)

]
for all x = 0,1,2, . . . ,

assuming that
∏0

k=1[·] = 1. To get an exponential representation of the survival function
SX(x) (similar to the continuous case relation (2.1)), one can substitute gX(x) = − ln[1 −
hX(x)] in the last equation, resulting in

SX(x) = exp
{−GX(x)

} = exp

{
−

x∑
k=1

gX(x − k)

}
for all x = 0,1,2, . . . , (2.2)

where GX(x) = ∑x
k=1 gX(x−k) is the discrete cumulative hazard rate. Roy and Gupta (1992)

called GX(x) cumulative pseudo-hazard rate, consult Cox and Oakes (1984) for an alternative
definition.

Thus, (2.2) is a discrete analogue of the continuous case exponential relation (2.1).

2.2 Bivariate case

Here we will review exponential representations of joint survival function for bivariate non-
negative continuous and discrete distributions.

2.2.1 Continuous models. Let us consider a non-negative bivariate continuous random vec-
tor (X,Y ) defined by its joint survival function S(x, y) = P(X > x,Y > y) where x, y ≥ 0.
If the first partial derivatives of S(x, y) exist, the quantities

r1(x, y) = ∂

∂x

[− lnS(x, y)
]

and r2(x, y) = ∂

∂y

[− lnS(x, y)
]
,

can be interpreted as the univariate failure rates of conditional distributions of each vari-
ate, given certain inequality of the remainder, see Johnson and Kotz (1975). Observe that
r1(x,0) = rX(x) and r2(0, y) = rY (y) where rX(x) and rY (y) are the marginal failure rates.

When the joint survival function S(x, y) has continuous second order partial derivatives at
all points (x, y) in the first quadrant, the vector-valued function

R(x, y) = (
r1(x, y), r2(x, y)

)
is called a hazard gradient of the random vector (X,Y ). The components r1(x, y) and
r2(x, y) can not be arbitrary, but must be related by equation

∂

∂y
r1(x, y) = ∂

∂x
r2(x, y) for all x, y ≥ 0. (2.3)



824 N. Kolev

The hazard gradient vector R(x, y) uniquely determines the bivariate distribution by means
of a line integral through exponential representation

S(x, y) = exp
{
−

∫
C

R(z) dz
}
, (2.4)

where C is any sufficiently smooth continuous path beginning at (0,0) and terminating at
(x, y). We use dz in (2.4) to acknowledge the fact that we are moving along the curve C,
instead of coordinate axes. The relation (2.4) holds provided that along the path of integra-
tion S(x, y) is absolutely continuous, see Marshall (1975). Note that the equation (2.4) is a
bivariate version of the exponential representation of univariate survival function in (2.1). As
a consequence of the fundamental theorem of calculus for line integrals, it turns out that the
line integral in the right-hand side of (2.4) is independent on the path C if the integrand is an
exact differential of a function, a condition that always holds for the hazard gradient vector
R(x, y).

Since the line integral of gradient vector in (2.4) does not depend on the path, one can
arbitrarily choose particular interesting smooth continuous connecting paths C1 from (0,0)

to (x0, y0) and C2 from (x0, y0) to (x, y) such that∫
C

R(z) dz =
∫
C1

R(z) dz +
∫
C2

R(z) dz. (2.5)

The relation (2.5) may be generalized to any number n ≥ 2 of sub-paths Ci , such that the
terminal point of Ci is the initial point of Ci+1, i = 1,2, . . . , n − 1.

The additive property (2.5) can be applied to get a useful computational form of the line
integral in order to obtain a specific desired formula of the joint survival function S(x, y) un-
der the knowledge of analytical form of the components r1(x, y) and r2(x, y) of the gradient
vector R(x, y).

Line integrals of the type appearing in (2.4) can be evaluated by expressing a path C in a
parametric form. For example, one might parametrize the path (curve) C from (0,0) to (x, y)

by x = ψ1(t) and y = ψ2(t) for t ∈ [a, b] with 0 ≤ a < b, where ψi(t) are differentiable
functions such that ψi(a) = 0, i = 1,2, ψ1(b) = x and ψ2(b) = y. Hence,∫

C
R(z) dz =

∫ b

a

[
r1

(
ψ1(t),ψ2(t)

)
ψ ′

1(t) + r2
(
ψ1(t),ψ2(t)

)
ψ ′

2(t)
]
dt, (2.6)

where ψ ′
1(t) and ψ ′

2(t) mean the corresponding first derivatives. Observe that the parametriza-
tion x = ψ1(t) and y = ψ2(t) determines an orientation for the curve C where the positive
direction is the direction that is traced out as t increases.

Consider a path C from the point (0,0) to an arbitrary point (x, y) in the first quadrant. We
give below three equivalent representations of S(x, y) by using three different paths connect-
ing these points.

• A way of choosing a path C is to move along the x-axis from (0,0) to the point (x,0) and
let this path be C1. After that, move along the vertical line l1 = x from the point (x,0) to
the point (x, y). Denote this second path by C2 and observe that C = C1 + C2. Applying
(2.6), we obtain

S(x, y) = exp
{
−

∫ x

0
r1(t,0) dt −

∫ y

0
r2(x, t) dt

}
for all x, y ≥ 0.

A multivariate version of this expression is given by Marshall (1975).
• If one selects an alternative path moving along the y-axis from (0,0) to (0, y) and keeping

the horizontal line l2 = y from (0, y) to (x, y), then

S(x, y) = exp
{
−

∫ y

0
r2(0, t) dt −

∫ x

0
r1(t, y) dt

}
for all x, y ≥ 0. (2.7)
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Note that the last relation is useful to obtain formulas for conditional survival functions.
Indeed, since r2(0, t) = rY (t) and SY (y) = exp{− ∫ y

0 rY (u) du}, we get

P(X > x | Y > y) = exp
{
−

∫ x

0
r1(t, y) dt

}
.

• Let x ≥ y and consider a path C as a union of two line segments C1 and C2 linking the
points (0,0) and (x − y,0) and the point (x − y,0) with (x, y), correspondingly. Using
(2.6) leads to

S(x, y) = SX(x − y) exp
{
−

∫ y

0

[
r1(x − y + t, t) + r2(x − y + t, t)

]
dt

}
,

where SX is the marginal survival function of the random variable X. By analogy, we can
compute S(x, y) when x ≤ y. We link both expressions as follows

S(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

SX(x − y) exp
{
−

∫ y

0

[
r1(x − y + t, t) + r2(x − y + t, t)

]
dt

}
,

if x ≥ y ≥ 0,

SY (y − x) exp
{
−

∫ x

0

[
r1(t, y − x + t) + r2(t, y − x + t)

]
dt

}
,

if y ≥ x ≥ 0.

(2.8)

Remark 2.1. There is another known exponential representation of the joint survival func-
tion S(x, y) which involves the function D(x,y) introduced by Sibuya (1960) as follows

D(x,y) = ln
[

S(x, y)

SX(x)SY (y)

]
, (2.9)

to be referred “Sibuya’s dependence function”, where SX(x) and SY (y) are the marginal
survival functions. The function D(x,y) can be considered as a measure of local dependence
and describes the amount of the association between variables X and Y for all x, y ≥ 0, free
of the marginal contributions, see Pinto and Kolev (2016) for more details and properties.

The importance of Sibuya’s dependence function D(x,y) defined by (2.9) is also justified
by the exponential representation of the joint survival function written as

S(x, y) = exp
{−RX(x) − RY (y) + D(x,y)

}
, x, y ≥ 0,

where RX(x) and RY (y) are cumulative hazard rates of X and Y , correspondingly.

Remark 2.2. It can be seen that for all u, v ≥ 0, the integrands in (2.8) are given by the sum
r(u, v) = r1(u, v) + r2(u, v) which has a natural interpretation as a directional derivative of
the function − ln[S(u, v)] in direction the unit vectors (0,1) and (1,0). Depending on the real
problem at hand, one might impose appropriate functional representations of the sum r(u, v).
For example, Pinto and Kolev (2016) postulated a linear form for the sum of elements of the
hazard vector R(x, y), assuming that

r1(x, y) + r2(x, y) = a0 + a1x + a2y for all x, y ≥ 0, (2.10)

where a0, a1 and a2 are non-negative parameters. As a result, (2.8) transforms into

S(x, y) =
{
SX(x − y) exp

{−a0y − a1xy − 0.5(a2 − a1)y
2}

, if x ≥ y ≥ 0,

SY (y − x) exp
{−a0x − a2xy − 0.5(a1 − a2)x

2}
, if y ≥ x ≥ 0.

(2.11)

It turns out that relations (2.10) and (2.11) are equivalent. Moreover, the joint survival
function specified by (2.11) characterizes the Sibuya-type bivariate aging property launched
by Pinto and Kolev (2016) as follows.
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Definition 2.1. Denote by (Xt , Yt ) = [(X − t, Y − t) | X > t,Y > t] for t ≥ 0 the residual
lifetime vector corresponding to the non-negative continuous random vector (X,Y ). We say
that the vector (X,Y ) possesses Sibuya-type aging property, if and only if

SXt ,Yt (x, y)

SXt (x)SYt (y)
= S(x, y)

SX(x)SY (y)
for all x, y, t ≥ 0,

where SXt ,Yt (x, y) is the joint survival function of the residual lifetime vector (Xt , Yt ) with
marginal survival functions fixed by the equations

SXt (x) = SX(x) exp{−a1xt} and SYt (y) = SY (y) exp{−a2yt},
where a1 and a2 are non-negative constants.

In fact, Definition 2.1 introduces a class of bivariate continuous distributions which are
tail invariant with respect to Sibuya’s dependence function of (X,Y ) given by (2.9). In other
words, the dependence between the variables X and Y may vary in time, but their Sibuya’s
dependence function remain the same. A discrete version of Sibuya-type aging property will
be defined in Section 5.2.

The class of bivariate distributions introduced in Definition 2.1 is huge. We list below only
three its important members with exponential marginals.

1. Set a0 = λ1 +λ2 and a1 = a2 = 0 in (2.11) to get S(x, y) = exp{−λ1x −λ2y} for λ1, λ2 >

0, that is, X and Y are independent and exponentially distributed.
2. Put in (2.11) a1 = a2 = 0 and a0 = const �= λ1 +λ2 (depending on relation between x and

y), to obtain the Marshall–Olkin’s (MO) bivariate exponential distribution with survival
function

S(x, y) = exp
{−λ1x − λ2y − λ3 max(x, y)

}
, x, y ≥ 0, λ1, λ2, λ3 > 0, (2.12)

see Marshall and Olkin (1967). Due to P(X = Y) = λ3
λ1+λ2+λ3

> 0, the bivariate MO expo-
nential distribution (2.12) exhibits singularity along the main diagonal in the first quadrant,
that is, it is not absolutely continuous. Also, (2.12) is positive quadrant dependent since
S(x, y) ≥ SX(x)SY (y) for all x, y ≥ 0.

The MO distribution (2.12) is the only bivariate distribution with exponential marginals
solving the functional equation S(x + t, y + t) = S(x, y)S(t, t) for all x, y, t ≥ 0, char-
acterizing the bivariate lack of memory property. It is well known that there exist many
bivariate continuous distributions satisfying the last equation. The reader might consult
Kulkarni (2006) for examples of distributions with non-exponential marginals.

A discrete version of MO distribution (2.12) will be discussed in Example 5.1.
3. If substitute a0 = λ1 + λ2 and a1 = a2 = θλ1λ2 for θ ∈ [0,1] and λ1, λ2 > 0 in (2.11),

then we obtain the local bivariate lack of memory property introduced by Johnson and
Kotz (1975) in continuous case. It preserves the univariate lack of memory property of the
conditional distributions of X | Y > y and Y | X > x, which should be exponential, there-
fore. The only absolutely continuous distribution with such a property is the Gumbel’s
type I bivariate exponential distribution given by

S(x, y) = exp{−λ1x − λ2y − θλ1λ2xy}, x, y ≥ 0, (2.13)

see Gumbel (1960). Gumbel’s distribution (2.13) is negative quadrant dependent since
S(x, y) ≤ SX(x)SY (y) for all x, y ≥ 0.

For a discrete analog of the Gumbel’s distribution (2.13), see Example 5.2.
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2.2.2 Discrete models. We will assume hereafter that X and Y are two non-negative integer
valued random variables and the vector (X,Y ) is defined by the set of masses f (x, y) and/or
the joint survival function S(x, y) for all x, y = 0,1,2, . . . , where

f (x, y) = P(X = x,Y = y) and S(x, y) = P(X ≥ x,Y ≥ y).

Similarly to the definition in the continuous case, Nair and Nair (1990) define the bi-
variate hazard rate as a two component vector H(x, y) = (h1(x, y), h2(x, y)) for all x, y =
0,1,2, . . . , where

h1(x, y) =
∑

v≥y f (x, v)

S(x, y)
= P(X = x | Y ≥ y)

P (X ≥ x | Y ≥ y)

and

h2(x, y) =
∑

u≥x f (u, y)

S(x, y)
= P(Y = y | X ≥ x)

P (Y ≥ y | X ≥ x)
.

Considering a two-component system, one can interpret h1(x, y) as the conditional proba-
bility that component 1 fails at age x, given that components 1 and 2 survive age x and y,
respectively. Similar interpretation can be given to h2(x, y).

The marginal failure rates hX(x) and hY (y) can be obtained from the components of the
hazard vector H(x, y) as hX(x) = h1(x,0) and hY (y) = h2(0, y).

Observe that

1 − h1(x, y) = S(x + 1, y)

S(x, y)
and 1 − h2(x, y) = S(x, y + 1)

S(x, y)

for all x, y = 0,1,2, . . . . Iterating the relation

S(x + 1, y) = [
1 − h1(x, y)

]
S(x, y)

for decreasing values of x yields

S(x, y) = SY (y)

x∏
k=1

[
1 − h1(x − k, y)

]
.

Taking into account that SY (y) = ∏y
k=1[1 − h2(0, y − k)], we conclude that the components

of the discrete bivariate hazard rate vector H(x, y) determine uniquely the joint distribution
of (X,Y ) through the formula

S(x, y) =
y∏

k=1

[
1 − h2(0, y − k)

] x∏
k=1

[
1 − h1(x − k, y)

]
for all x, y = 0,1,2, . . . . (2.14)

A multivariate version of this relation can be found in Nair and Asha (1997). Consult Sec-
tion 6.2.3 in the excellent recent monograph of Nair, Sankaran and Balakrishnan (2018) as
well.

It is direct to check that[
1 − h1(x, y + 1)

][
1 − h2(x, y)

] = [
1 − h1(x, y)

][
1 − h2(x + 1, y)

]
= S(x + 1, y + 1)

S(x, y)
. (2.15)

Therefore, one can not choose the components h1(x, y) and h2(x, y) arbitrary as they should
satisfy (2.15). The relation (2.15) is discussed in Remark 6.3 in Nair, Sankaran and Balakr-
ishnan (2018) and it represents a discrete counterpart of (2.3).
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Our aim is to get an exponential representation of S(x, y). This can be achieved by substi-
tution gi(x, y) = − ln[1 − hi(x, y)] in (2.14) for i = 1,2. So, we obtain

S(x, y) = exp

{
−

y∑
k=1

g2(0, y − k) −
x∑

k=1

g1(x − k, y)

}
(2.16)

for all x, y = 0,1,2, . . . . This expression for the joint survival function is a discrete analogue
of the continuous case exponential representation (2.7).

Thus, instead of the gradient vector H(x, y), one can equivalently use the vector G(x, y) =
(g1(x, y), g2(x, y)) in order to identify the joint distribution of (X,Y ).

In terms of the components g1(x, y) and g2(x, y), relation (2.15) can be rewritten as

g1(x, y + 1) + g2(x, y) = g1(x, y) + g2(x + 1, y) = ln
[

S(x, y)

S(x + 1, y + 1)

]
(2.17)

for all x, y = 0,1,2, . . . . Finally, notice that the components of the gradient vector G(x, y)

satisfy the relations

g1(x, y) = ln
[

S(x, y)

S(x + 1, y)

]
and g2(x, y) = ln

[
S(x, y)

S(x, y + 1)

]
. (2.18)

3 Discrete line integral on uniform grids

Hyman and Shashkov (1997) introduced discrete versions of vector fields for 2-D logically
rectangular grids considering both cell-valued and nodal discretizations for scalar functions.
In particular, the authors defined a discrete analog of the line integral of gradient vector
along arbitrary path connecting two nodes of the grid and proved a discrete counterpart of the
fundamental theorem of calculus for line integrals.

First, we will adapt the corresponding definitions for uniform grids. By an uniform grid,
we mean a collection of nodes and cells arranged on a regular quadratic lattice in the first
quadrant. The edges of the lattice are parallel to the axes of the global coordinate system and
the spacing between grid points in each direction is equal to 1. The nodes of uniform grid are
indexed by (x, y), where the pairs (x, y) belong to the set I 2+ = {(x, y) | x, y = 0,1,2, . . .}.
The quadrilateral (square) defined by the nodes (x, y), (x+1, y), (x, y+1) and (x +1, y +1)

is called the (x, y)-cell.
The two components of the vector Gx,y = (GXx,y,GYx,y) associated to each node

(x, y) ∈ I 2+ are specified by

GXx,y = gx+1,y − gx,y and GYx,y = gx,y+1 − gx,y,

where the scalar function gx,y is given by its values at the nodes (x, y) of uniform grid.
Finally, the discrete gradient vector G is defined by a collection of all pairs (GXx,y,GYx,y),
that is,

G = {
Gx,y, (x, y) ∈ I 2+

}
.

Our main goal is to introduce a discrete analog of the line integral of gradient vector G
along arbitrary path L connecting the nodes (x1, y1) and (x2, y2) of an uniform grid. First,
we will define the discrete line integral of G over one edge as a difference of function values
at the ends of this edge as follows. The one-step right-edge (x, y) → (x + 1, y) line integral
(to be denoted by Ix+,y for a fixed y), is determined by

Ix+,y = gx+1,y − gx,y for all (x, y) ∈ I 2+,
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being identical with equation (4.22) in Hyman and Shashkov (1997). By analogy, we define
the one-step left-edge (x + 1, y) → (x, y) line integral by Ix−,y = gx,y − gx+1,y . Note that
Ix+,y + Ix−,y = 0.

Similarly, the one-step up-edge (x, y) → (x, y + 1) line integral Ix,y+ and one-step down-
edge (x, y + 1) → (x, y) line integral Ix,y− are given, for fixed x, by

Ix,y+ = gx,y+1 − gx,y and Ix,y− = gx,y − gx,y+1.

The complete line integral of gradient vector IL(G) along the path L : (x1, y1) → (x2, y2)

can be expressed as the sum of the one-step integrals, that is,

IL(G) = ∑
right-edges

Ix+,y + ∑
left-edges

Ix−,y + ∑
up-edges

Ix,y+ + ∑
down-edges

Ix,y−,

where the summation is provided for the set of edges that determine the discrete path L. Since
the end of one edge is the beginning of next edge in the path L, all the function values in the
sum of these pieces cancel, except for the first and last node. Thus,

IL(G) = gx2,y2 − gx1,y1 . (3.1)

In fact, we proved the following statement.

Lemma 3.1. The discrete line integral IL(G) of gradient vector G over an arbitrary con-
nected path L : (x1, y1) → (x2, y2) on an uniform grid is given by (3.1).

Therefore, the value of discrete line integral IL(G) specified by (3.1) does not depend on
the path. In particular, IL(G) is zero over the closed paths on an uniform grid. Really, suppose
that L = L1 + L2, where L1 : (x1, y1) → (x2, y2) and L2 : (x2, y2) → (x1, y1), i.e., the path
L2 has an inverse direction with respect to the path L1. Apply relation (3.1) to summands in
IL(G) = IL1(G) + IL2(G) to conclude that IL(G) = 0. Hence, when we change the direction
of the line integral, the sign changes. Thus, the discrete line integral preserves the properties
of the line integral of gradient vector in continuous case.

4 Probability meaning of the discrete line integral

Since the value of the discrete line integral is zero over the closed paths on an uniform grid,
without loss of generality, we will consider hereafter increasing paths along the edges of
the grid (consisting of moving up or right but not down or left) that start at node (0,0) and
end at node (x, y) for (x, y) ∈ I 2+. In this case, we will denote the line integral IL(G) by
I(0,0)→(x,y)(G).

In the following statement we give a probability interpretation of the discrete line integral
formula (3.1) for uniform grids in the case of bivariate discrete distributions in the support of
I 2+ in terms of their joint survival function S(x, y).

Theorem 4.1. The joint survival function S(x, y) of a bivariate discrete distribution defined
in the set I 2+ can be specified by

S(x, y) = exp
{−I(0,0)→(x,y)(G)

}
, (4.1)

where I(0,0)→(x,y)(G) is the line integral over an increasing connected path starting at (0,0)

and terminating at (x, y), where the components of the hazard vector G are defined by (2.18).
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Proof. Really, set (x1, y1) = (0,0), (x2, y2) = (x, y) and substitute gx,y = − ln[S(x, y)] for
x, y = 0,1,2, . . . in (3.1) to conclude that the discrete line integral along the increasing path
L : (0,0) → (x, y) can be represented as

IL(G) = I(0,0)→(x,y)(G) = − ln
[
S(x, y)

]
since S(0,0) = 1. �

Therefore, we got the exponential representation (4.1) of the joint survival function in
discrete setting, similar to the continuous case relation (2.4). We will apply formula (4.1) in
examples below to find counterparts of the corresponding expressions for the joint survival
function in continuous case.

At first, we will obtain useful formulas for the line integral along the zigzag path (x, y) →
(x + 1, y + 1) for x, y ∈ I 2+.

Example 4.1. Consider a path (x, y) → (x + 1, y + 1) for arbitrary x, y = 0,1,2, . . . . It can
be realized in two alternative ways using the “down” path LD or the “up” path LU written in
symbolic form as follows

LD = (x, y) → (x + 1, y) → (x + 1, y + 1)

and

LU = (x, y) → (x, y + 1) → (x + 1, y + 1).

The one-step right-edge (x, y) → (x + 1, y) line integral is given by

I(x,y)→(x+1,y) = − ln
[
S(x + 1, y)

] + ln
[
S(x, y)

] = ln
[

S(x, y)

S(x + 1, y)

]
,

which is exactly the first component g1(x, y) of the gradient vector G, see (2.18).
By analogy, the one-step up-edge (x, y) → (x, y + 1) line integral can be computed as

I(x,y)→(x,y+1) = ln
[

S(x, y)

S(x, y + 1)

]
= g2(x, y).

Thus, the line integral along the path LD is determined by

ILD
= I(x,y)→(x+1,y) + I(x+1,y)→(x+1,y+1).

Using the above relations, we get

ILD
= g1(x, y) + g2(x + 1, y).

Similarly, the line integral along the path LU is given by

ILU
= g1(x, y + 1) + g2(x, y).

But ILU
= ILD

because of the path independence of the line integral, hence we arrive at
equation (2.17), which is equivalent to (2.15).

Therefore, the components of the hazard gradient vector G specified by (2.18) represent
just the one-step right-edge and up-edge line integrals contributing to the computation of
the complete integral in (4.1). Thus, the pair (g1(x, y), g2(x, y)), or equivalently, the pair
(− ln[1 − h1(x, y)],− ln[1 − h2(x, y)]), uniquely determines the joint distribution of (X,Y )

in the support of I 2+ by formula (4.1).
The number of the shortest paths along the edges of uniform grid (consisting of moving up

or right but not down or left) that start at (0,0) and end at (x, y) is equal to (x+y)!
x!y! and each

one of them generates equivalent expressions for the joint survival function S(x, y) according
to Theorem 4.1. In the next example we will consider four particularly simple paths.
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Example 4.2. Consider an increasing path L from (0,0) to (x, y) for x, y ∈ I 2+.
A. A simple way to calculate the line integral I(0,0)→(x,y)(G) is to follow vertical and

horizontal sub-paths:

V1 = (0,0) → (0,1) → ·· · → (0, y − 1) → (0, y)

and

H1 = (0, y) → (1, y) → ·· · → (x − 1, y) → (x, y).

Using iteratively the one-step up-edge and right-edge line integral representations via the
components g1(x, y) and g2(x, y) from Example 4.1, we obtain

IV1 =
y∑

r=1

g2(0, y − r) and IH1 =
x∑

r=1

g1(x − r, y).

Inserting I(0,0)→(x,y)(G) = IV1 + IH1 in (4.1) yields the exponential representation (2.16) for
the joint survival function S(x, y).

B. If one decides to use an alternative path from (0,0) to (x, y), first moving horizontally

H2 = (0,0) → (1,0) → ·· · → (x − 1,0) → (x,0)

and then following the vertical sub-path

V2 = (x,0) → (x,1) → ·· · → (x, y − 1) → (x, y),

yields

IH2 =
x∑

r=1

g1(x − r,0) and IV2 =
y∑

k=1

g2(x, y − r).

Thus, the exponential representation (4.1) generates the following joint survival function

S(x, y) = exp

{
−

x∑
r=1

g1(x − r,0) −
y∑

k=1

g2(x, y − k)

}

= SX(x) exp

{
−

y∑
k=1

g2(x, y − k)

}
.

C. Assume that x ≥ y. Let us examine a particular path L being a union of a horizontal
part

H = (0,0) → (1,0) → ·· · → (x − y − 1,0) → (x − y,0)

and a zigzag section

Z = (x − y,0) → (x − y + 1,1) → ·· · → (x − y − 1, y − 1) → (x, y).

Applying the formula for the line integral along the horizontal path H2 obtained in B, we
have

I(0,0)→(x−y,0)(G) = IH =
y∑

r=1

g1(x − r,0) = SX(x − y).

Observe that the path Z is composed by y consecutive “down” sub-paths of the form

(u, v) → (u + 1, v) → (u + 1, v + 1) starting with u = x − y and v = 0.
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Iterating the expression for ILD
from Example 4.1, we obtain

IZ =
y∑

r=1

[
g1(x − r, y − r) + g2(x − r + 1, y − r)

]
.

Since IL = IH + IZ , from (4.1), we arrive at the expression

S(x, y) = SX(x − y) exp

{
−

y∑
r=1

[
g1(x − r, y − r) + g2(x − r + 1, y − r)

]}
.

By analogy, for x ≤ y we get

S(x, y) = SY (y − x) exp

{
−

x∑
r=1

[
g1(y − r, x − r) + g2(y − r, x − r + 1)

]}
.

Joining the last two relations yields

S(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SX(x − y) exp

{
−

y∑
r=1

[
g1(x − r, y − r) + g2(x − r + 1, y − r)

]}
,

if x ≥ y ≥ 0,

SY (y − x) exp

{
−

x∑
r=1

[
g1(y − r, x − r) + g2(y − r, x − r + 1)

]}
,

if y ≥ x ≥ 0.

(4.2)

Formula (4.2) is a discrete counterpart of the joint survival function given by (2.8). It will
serve as a base of our investigations in Section 5.

Using relations gi(x, y) = − ln[1−hi(x, y)] in (4.2) for i = 1,2, one will get the following
equivalent representation:

S(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SX(x − y)

y∏
r=1

[
1 − h1(x − r, y − r)

][
1 − h2(x − r + 1, y − r)

]
,

if x ≥ y ≥ 0,

SY (y − x)

x∏
r=1

[
1 − h1(y − r, x − r)

][
1 − h2(y − r, x − r + 1)

]
,

if y ≥ x ≥ 0.

D. Similarly, if one prefers to follow the vertical path

V = (0,0) → (0,1) → ·· · → (0, x − y − 1) → (0, x − y)

and the zigzag path containing y consecutive “up” sub-paths (u, v) → (u, v + 1) →
(u + 1, v + 1), an application of the exponential representation (4.1) would imply alterna-
tive expression

S(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SX(x − y) exp

{
−

y∑
r=1

[
g1(x − r, y − r + 1) + g2(x − r, y − r)

]}
,

if x ≥ y ≥ 0,

SY (y − x) exp

{
−

x∑
r=1

[
g1(y − r + 1, x − r) + g2(y − r, x − r)

]}
,

if y ≥ x ≥ 0

for all (x, y) ∈ I 2+. Another way to obtain the last relation is to substitute (2.17) in (4.2).

To mention only, that Konstantopoulos and Yuan (2017) presented a probability interpre-
tation of the area of the region under the path from (0,0) and (x, y) in I 2+.
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5 Discrete Sibuya-type bivariate aging property

Let us consider the joint survival function specified by (4.2). One can observe that the sum
of the components of the gradient vector G have similar arguments. This fact motivates us to
introduce a class of discrete bivariate distributions such that

g1(x, y) + g2(x + 1, y) = a0 + a1x + a2y for all x, y = 0,1,2, . . . , (5.1)

where a0, a1 and a2 are non-negative parameters. Let us denote by DS(x, y;a) the class spec-
ified by (5.1), where a = (a0, a1, a2) is a parameter vector. Note that (5.1) can be considered
as a discrete version of relation (2.10).

First, we will characterize the class DS(x, y;a) and obtain its parameter space. In Sec-
tion 5.2, we will determine and investigate a discrete version of bivariate distributions pos-
sessing Sibuya-type bivariate aging property. The reader will recognize that it is an equivalent
representation of the class DS(x, y;a) specified by (5.1). We will exhibit some typical mem-
bers of DS(x, y;a) and its closure properties, being a powerful tool to generate new bivariate
models belonging to the same class

5.1 Distributions with linear sum of gradient components

We begin with the following theorem characterizing the class DS(x, y;a).

Theorem 5.1. The relation (5.1) is satisfied if and only if the joint survival function of non-
negative discrete random vector (X,Y ) can be represented by

S(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SX(x − y) exp
{−0.5(2a0 − a1 − a2)y − a1xy − 0.5(a2 − a1)y

2}
,

if x > y ≥ 0,

exp
{−0.5(2a0 − a1 − a2)x − 0.5(a1 + a2)x

2}
,

if x = y ≥ 0,

SY (y − x) exp
{−0.5(2a0 − a1 − a2)x − a2xy − 0.5(a1 − a2)x

2}
,

if y > x ≥ 0

(5.2)

for all x, y = 0,1,2, . . . , where 2a0 − a1 − a2 ≥ 0.

Proof. Apply iteratively relation (5.1) in (4.2) and perform the corresponding summation to
get formula (5.2).

Conversely, let relation (5.2) be true. After some algebra we obtain

S(x + 1, y + 1)

S(x, y)
= exp{−a0 − a1x − a2y} for all x, y = 0,1,2, . . . . (5.3)

Taking logarithm of both sides of (5.2) and using the equality

ln
[

S(x, y)

S(x + 1, y + 1)

]
= g1(x, y) + g2(x + 1, y)

(see relation (2.17)), we confirm the linear representation (5.1). �

Note that the joint survival function determined by (5.2) is a discrete analogue of relation
(2.11).

The non-negative parameters a0, a1 and a2 in (5.1) can be calculated using the first several
values of S(x, y) specified by (5.2), as the following statement shows.
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Corollary 5.1. The parameters a0, a1 and a2 in (5.2) can be computed as

a0 = − ln
[
S(1,1)

]
, a1 = − ln

[
S(2,1)

S(1,0)S(1,1)

]
and

a2 = − ln
[

S(1,2)

S(0,1)S(1,1)

]
.

(5.4)

Proof. Exercise relation (5.3) for the pairs (0,0), (1,0) and (0,1) to get the expressions

S(1,1) = exp(−a0), S(2,1) = S(1,0) exp(−a0 − a1)

and

S(1,2) = S(0,1) exp(−a0 − a2),

correspondingly, which lead to (5.4). �

Remark 5.1. In fact, we suggest the following simple practical rule to check if some bi-
variate discrete distribution defined on I 2+ belongs to the class DS(x, y;a): if the analytical
expression of the joint survival function S(x, y) is known, one can verify the validity of the
linear representation (5.1) by applying relation (5.3). The parameters a0, a1 and a2 can be
calculated alternatively via formulas (5.4).

In order S(x, y) given by (5.2) to be a proper joint survival function, it must satisfy the
following conditions:

• S(0,0) = 1;
• S(x, y) is monotone non-increasing in each argument;
• limx→∞ S(x, y) = 0, limy→∞ S(x, y) = 0 and

S(x + 1, y + 1) − S(x + 1, y) − S(x, y + 1) + S(x, y) ≥ 0, (x, y) ∈ I 2+. (5.5)

Note that inequality (5.5) is a discrete analog of the restriction ∂2

∂x ∂y
S(x, y) ≥ 0, being a

necessary condition for S(x, y) to be a valid joint survival function in the continuous case.
The parameter space of the class DS(x, y;a) is given in the next corollary.

Corollary 5.2. The parameter space a = (a0, a1, a2) of the joint survival function specified
by (5.2) satisfies the inequalities

max
{

ln
[
P(X = 0)

P (X = 1)

]
, ln

[
P(Y = 0)

P (Y = 1)

]}
≤ a0 ≤ B,

where B = min{− ln[SX(1) + SY (1) − 1],− ln[P(X = 1)],− ln[P(Y = 1)]} and

a1 ≤ − ln
[

1 − P(X = 1) exp(a0)

SX(1)

]
and a2 ≤ − ln

[
1 − P(Y = 1) exp(a0)

SY (1)

]
,

such that 2a0 ≥ a1 + a2.

Proof. Use inequality (5.5) with x = y = 0 to get

S(1,1) − S(1,0) − S(0,1) + S(0,0) ≥ 0, that is, S(1,1) ≥ SX(1) + SY (1) − 1.

Recall that from (5.4), a0 = − ln[S(1,1)], hence we obtain

a0 ≤ − ln
[
SX(1) + SY (1) − 1

]
.
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Since a0 ≥ 0, the marginal survival functions of X and Y should satisfy inequalities 1 ≥
SX(1) + SY (1) − 1 ≥ 0. But always 2 ≥ SX(1) + SY (1), so the marginal distributions corre-
sponding to the survival function S(x, y) specified by (5.2) are such that

P(X ≥ 1) ≥ P(Y = 0) and P(Y ≥ 1) ≥ P(X = 0).

Apply (5.5) with x = 1 and y = 0 to obtain

S(2,1) − S(2,0) − S(1,1) + S(1,0) ≥ 0.

Since S(2,1) = S(1,0) exp(−a0 − a1), S(1,1) = exp(−a0) and S(1,0) − S(2,0) =
P(X = 1), the last inequality can be written as

SX(1) exp(−a0 − a1) ≥ exp(−a0) − P(X = 1),

i.e.,

a1 ≤ − ln
[

1 − P(X = 1) exp(a0)

SX(1)

]
,

which implies that 0 ≤ 1 − P(X = 1) exp(a0) ≤ SX(1) and therefore,

ln
[
P(X = 0)

P (X = 1)

]
≤ a0 ≤ − ln

[
P(X = 1)

]
.

Now, exercise (5.5) with x = 0 and y = 1 yielding

S(1,2) − S(0,2) − S(1,1) + S(0,1) ≥ 0.

By analogy with the previous case we arrive at the restrictions

a2 ≤ − ln
[

1 − P(Y = 1) exp(a0)

SY (1)

]

and

ln
[
P(Y = 0)

P (Y = 1)

]
≤ a0 ≤ − ln

[
P(Y = 1)

]
.

Finally, linking all above inequalities we obtain the parameter space announced. �

5.2 Discrete Sibuya-type aging property

First, we will adapt Definition 2.1 to the discrete case as follows.

Definition 5.1. Let (Xt , Yt ) = [(X − t, Y − t) | X > t,Y > t] for t = 0,1,2, . . . be the resid-
ual lifetime vector corresponding to the non-negative integer-valued random vector (X,Y ).
The vector (X,Y ) possesses discrete Sibuya-type bivariate aging property (to be denoted
DS-BAP), if and only if

SXt ,Yt (x, y)

SXt (x)SYt (y)
= S(x, y)

SX(x)SY (y)
(5.6)

and the marginal survival functions of (Xt , Yt ) are specified by

SXt (x) = SX(x) exp{−a1xt} and SYt (y) = SY (y) exp{−a2yt}, (5.7)

for all x, y, t = 0,1,2 . . . and a1, a2 ≥ 0.
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Definition 5.1 indicates that the random vector (X,Y ) and its residual lifetime vector
(Xt , Yt ) should share, for all t = 0,1,2, . . . , the same Sibuya’s dependence function, that
is, it has to be tail invariant under marginal restrictions (5.7).

The marginal survival functions of the residual lifetime vector (Xt , Yt ) are given by

SXt (x) = S(x + t, t)

S(t, t)
and SYt (y) = S(t, y + t)

S(t, t)
.

Hence, the class of bivariate discrete distributions specified by (5.6) can be equivalently de-
fined by the functional equation

S(x + t, y + t) = S(x, y)S(t, t)G(x, y; t) (5.8)

for all x, y, t = 0,1,2, . . . , where the function G(x,y; t) = SXt (x)SYt (y)

SX(x)SY (y)
might be interpreted

as an “aging” factor. Therefore, if only condition (5.6) in Definition 5.1 is fulfilled, we obtain
a general function G(x,y; t) depending of x, y and t in (5.8), that should satisfy the boundary
conditions G(x,y;0) = G(0,0; t) = 1.

For practical needs one is urged to consider appropriate and simple expression for the
function G(x,y; t), with a reasonable reliability interpretation. For this reason, the addi-
tional marginal conditions (5.7) determine an aging function in (5.8) given by G(x,y; t) =
exp{−(a1x + a2y)t}. So, our basic equation hereafter will be

S(x + t, y + t) = S(x, y)S(t, t) exp
{−(a1x + a2y)t

}
, x, y, t = 0,1,2, . . . . (5.9)

In the next characterization statements, we establish the equivalence between Defini-
tion 5.1 introducing the DS-BAP, joint survival function S(x, y) given by (5.2) representing
the class DS(x, y;a), and the functional equation (5.9).

Theorem 5.2. The discrete bivariate distribution of the random vector (X,Y ) possesses DS-
BAP determined by (5.6) and (5.7) if and only if its joint survival function solves the functional
equation (5.9) for all x, y, t = 0,1,2, . . . .

Proof. Let (5.9) be true. Put x = 0 in (5.9) to get

S(t, y + t)

S(t, t)
= S(0, y) exp{−a2yt}, that is,

SYt (y)

SY (y)
= exp{−a2yt}.

By analogy, set y = 0 in (5.9) to conclude that SXt (x)

SX(x)
= exp{−a1xt}. The last two expressions

are given by (5.7). Substitute both exponents in (5.9) to restore (5.6).
Conversely, let (5.6) and (5.7) be fulfilled. Substitute both relations (5.7) in the left side of

(5.6) to obtain (5.9). �

In Theorem 5.1, we established that relations (5.1) and (5.2) are equivalent and in Theo-
rem 5.2 we proved that DS-BAP is characterized by the functional equation (5.9). To close
the circle, the next statement shows that equations (5.9) and (5.2) are equivalent as well.

Theorem 5.3. The joint survival function S(x, y) is given by (5.2) if and only if the functional
equation (5.9) is fulfilled for all x, y, t = 0,1,2, . . . .

Proof. It follows step by step the proof of Theorem 4 in Pinto and Kolev (2015), taking into
account that the possible values of x, y and t belong to the set of non-negative integers. �

Thus, the class DS(x, y;a) specified by (5.1) coincides with DS-BAP notion introduced
by Definition 5.1.
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5.3 Examples

Here we will present several members of the class DS(x, y;a), that is, bivariate discrete
distributions possessing DS-BAP in a sense of Definition 5.1.

First, observe that under substitutions

pi = exp(−ai) ∈ (0,1] for i = 0,1,2, (5.10)

where the parameter vector a = (a0, a1, a2) satisfies conditions listed in Corollary 5.2, the
joint survival function given by (5.2) can be alternatively represented as

S(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

SX(x − y)p
y
0p

y(2x−y−1)/2
1 p

y(y−1)/2
2 , if x > y ≥ 0,

px
0 (p1p2)

x(x−1)/2, if x = y ≥ 0,

SY (y − x)px
0p

x(x−1)/2
1 p

x(2y−x−1)/2
2 , if y > x ≥ 0

for all x, y = 0,1,2, . . . . Perhaps, this expression for S(x, y) characterizing DS-BAP and
the class DS(x, y;a) is more convenient for the reader. Note that using (5.10), relation (5.3)
transforms into S(x+1,y+1)

S(x,y)
= p0p

x
1p

y
2 .

In the examples below, the joint survival function S(x, y) is given explicitly. Following
Remark 5.1, we will check if the linear representation (5.1) is fulfilled, by applying relation
(5.3). In such a case, the parameters a0, a1 and a2 can be computed using equations (5.4) as
well.

Example 5.1 (MO-type bivariate geometric distribution). Let the joint survival function
of non-negative integer valued random variables X and Y be given by

S(x, y) =
{
p

y
0p

x−y
1 , if x ≥ y,

px
0p

y−x
2 , if y ≥ x

(5.11)

for x, y = 0,1,2, . . . , where p1 + p2 ≤ 1 + p0 and 0 < p0 ≤ pi < 1, i = 1,2.
The distribution related to (5.11) is known as MO-type bivariate geometric distribution,

being a discrete analog of the MO bivariate exponential distribution (2.12). The marginals X

and Y are geometric random variables with survival functions SX(x) = px
1 and SY (y) = p

y
2 .

Applying (5.3) we obtain that S(x+1,y+1)
S(x,y)

= exp{−a0}, that is, the parameters in (5.1) sat-
isfy a1 = a2 = 0 and a0 = − lnp0. Hence, the distribution specified by (5.11) belongs to the
class DS(x, y;a), that is, it possesses DS-BAP according to Definition 5.1.

The joint survival function S(x, y) given by (5.11) solves the functional equation

S(x + t, y + t) = S(x, y)S(t, t) for all x, y, t = 0,1,2, . . . , (5.12)

being a discrete analogue of bivariate lack of memory property (DBLMP). Moreover, if the
marginals X and Y are geometric random variables, the discrete vector (X,Y ) possesses
DBLMP if and only if its joint survival function is specified by (5.11).

For history, properties and multivariate version of (5.11) consult Section 8.2.2 in Nair,
Sankaran and Balakrishnan (2018) and references therein. Let us note that (depending on the
sign of p0 −p1p2), the distribution (5.11) is neither positive quadrant dependent nor negative
quadrant dependent. Observe the difference with continuous case.

Now, we will generate the joint survival function (5.11) using an alternative approach. Let
us consider the stochastic representation

(X,Y ) = [
min(T0, T1),min(T0, T2)

]
, (5.13)

where T0, T1 and T2 are three independent geometric variates with parameters α0, α1 and α2,
respectively. Then S(x, y) = α

max(x,y)
0 αx

1 α
y
2 for all x, y = 0,1,2, . . . and the last expression

transforms into (5.11) by parametrization p0 = α0α1α2, p1 = α0α1 and p2 = α0α2.
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Example 5.2 (Gumbel’s bivariate geometric distribution). A discrete version of Gumbel’s
distribution (2.13) has been introduced by Mi (1993) through

S(x, y) = px
1p

y
2θxy,

p1,p2 ∈ (0,1), θ ∈ (0,1],1 + p1p2θ ≥ p1 + p2, x, y = 0,1,2, . . .
(5.14)

and it also has geometric marginals given by SX(x) = px
1 and SY (y) = p

y
2 . See Section 8.2.1

in Nair, Sankaran and Balakrishnan (2018) for more information.
The Gumbel’s discrete distribution (5.14) satisfies relation (5.1) with a0 = − ln(p1p2θ)

and a1 = a2 = − ln θ , i.e., it is a member of the class DS(x, y;a) as well.
Let us mention, that by analogy to the continuous case, the Gumbel’s-type bivariate ge-

ometric distribution (5.14) is negative quadrant dependent and satisfies local lack of mem-
ory property (i.e., conditional distributions X | Y ≥ y and Y | X ≥ x are geometrically dis-
tributed).

Example 5.3 (Bivariate geometric distribution of Nair and Asha (1997)). The authors
define the joint survival function by

S(x, y) =
{
px

1 , if px
1 ≤ p

y
2 ;

p
y
2 , if px

1 ≥ p
y
2 ,

(5.15)

where p1,p2 ∈ (0,1) and x, y = 0,1,2, . . . Its marginals are geometric also.
Calculating coefficients a0, a1 and a2 via (5.3) and using the results in Nair and Asha

(1997) one can write

g1(x, y)+g2(x+1, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− lnp1, if px
1 ≤ p

y
2 ,px

1 ≤ p
y+1
2 ;

− lnp2 + (lnp1)x − (lnp2)y, if px
1 ≤ p

y
2 ,px

1 ≥ p
y+1
2 ;

− lnp1 − (lnp1)x + (lnp2)y, if px
1 ≥ p

y
2 ,px+1

1 ≤ p
y
2 ;

− lnp2, if px
1 ≥ p

y
2 ,px+1

1 ≥ p
y
2 .

(5.16)

As we see, depending on values p1,p2 and realizations x, y = 0,1,2, . . . , the sum
g1(x, y) + g2(x + 1, y) might be a constant a0 = − lnp1 or a0 = − lnp2 (with a1 = a2 = 0),
or with a1 �= a2 in relation (5.1) governing the class DS(x, y;a).

Of course, there are many bivariate discrete distributions with geometric marginals that do
need to satisfy Definition 5.1 or equation (5.1), that is, do not belong to the class DS(x, y;a).
An example is the distribution given by

S(x, y) =
{
αp

x+y
0 + (1 − α)px

0 , if x ≥ y;
αp

x+y
0 + (1 − α)p

y
0 , if x ≤ y,

where p0 ∈ (0,1), α ∈ (0,1] and x, y = 0,1,2, . . . If α = 1, we obtain that X and Y are
independent and identically distributed geometric random variables.

On the other side, there are many bivariate discrete distributions which follow Defini-
tion 5.1 or relation (5.1), but their marginals are not geometrically distributed. The next two
examples are confirmation.

Example 5.4 (Mixture of MO geometric distributions of Asha, Sankaran and Nair
(2003)). The joint survival function for x, y = 0,1,2, . . . is given by

S(x, y) =
{
p

y
0

[
αp

x−y
0 + (1 − α)p

x−y
1

]
, if x ≥ y;

px
0
[
αp

y−x
0 + (1 − α)p

y−x
2

]
, if x ≤ y,

(5.17)
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where 0 < p0 < p1,p2 < 1,p0 �= p1,p2, α ∈ [0,1] and 1 −p0 +α(2p0 −p1 −p2) > 0. The
marginal distributions of (5.17) are mixtures of two geometric distributions

SX(x) = αpx
0 + (1 − α)px

1 and SY (y) = αp
y
0 + (1 − α)p

y
2 .

Moreover, S(x, y) satisfies Definition 5.1 and (5.1) with a0 = − lnp0 and a1 = a2 = 0. If
substitute α = 1 in (5.17) one will get the MO geometric distribution distribution (5.11) con-
sidered in Example 5.1 and the independence model can be obtained when α = 0. Two more
bivariate discrete distributions, being mixtures of MO-type distributions given via (5.11) are
listed in Asha, Sankaran and Nair (2003).

Example 5.5 (Generalized MO distributions). Let us consider the stochastic representa-
tion (5.13) keeping the independence between discrete variables T0, T1 and T2 defined on
0,1,2, . . . , but allowing that their distribution is arbitrary, not necessarily geometric. Such
a construction has been introduced by Li and Pellerey (2011) in continuous case (where the
Ti’s are independent non-negative random variables).

For instance, let us assume that variables T1 and T2 in stochastic relation (5.13) are inde-
pendent and discrete Rayleigh distributed, that is, P(Ti ≥ x) = px2

i for x = 0,1,2, . . . and
pi ∈ (0,1), i = 1,2. If T0 is independent of T1 and T2 and geometrically distributed with
parameter p0 ∈ (0,1), the joint survival function of X and Y can be written as

S(x, y) = p
max(x,y)
0 px2

1 p
y2

2 , x, y = 0,1,2, . . . (5.18)

The marginal survival functions are SX(x) = px
0px2

1 and SY (y) = p
y
0p

y2

2 , and from (2.18) we
obtain the corresponding hazard rates

gX(x) = − ln
[
SX(x + 1)

SX(x)

]
= α1 + a1x

and

gY (y) = − ln
[
SY (y + 1)

SY (y)

]
= α2 + a2y,

where αi = − ln(p0pi) and ai = −2 lnpi, i = 1,2. Thus, the bivariate distribution (5.18) has
linear marginal hazard/failure rates, corresponding to continuous distributions of the same
type, see Kodlin (1967).

It is direct to verify that the joint distribution (5.18) satisfies Definition 5.1 and rela-
tion (5.1) with a0 = − ln(p0p1p2), a1 = −2 lnp1 and a2 = −2 lnp2, but it does not exhibit
DBLMP advocated by functional equation (5.12).

Example 5.6 (Bivariate discrete distributions possessing DBLMP). If substitute a1 =
a2 = 0 in (5.1), one will get a subclass of DS-BAP. Taking into account Definition 5.1, from
relations (5.7) we have SXt (x) = SX(x) and SYt (y) = SY (y) for all x, y, t = 0,1,2, . . . , that
is, the joint distribution of the vector (X,Y ) and its residual lifetime vector (Xt , Yt ) coin-
cide. But this is the familiar feature of the DBLMP specified by functional equation (5.12),
which preserves the joint distributions of the vectors (Xt , Yt ) and (X,Y ) and their marginal
distributions as well.

It is well known that many bivariate discrete distributions follow DBLMP even when their
marginals are not geometrically distributed. For instance, consult Example 5.4 and the model
considered by Dhar (1998), who derived a bivariate geometric distribution which is a discrete
analog of the continuous model introduced by Freund (1961). We will mention two more
geometric type bivariate models introduced by Omey and Minkova (2014) and Lee, Cha and
Pulcini (2017). Other examples can be found in Nair, Sankaran and Balakrishnan (2018).
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Example 5.7 (Independent members of the class). DS(x, y;a). Here we will identify
members of the class DS(x, y;a) with independent marginals. Hence, when (X,Y ) ∈
DS(x, y;a), we are urged to find solutions of functional equation

S(x, y) = SX(x)SY (y) for all x, y = 0,1,2, . . . ,

where S(x, y) is given by (5.2).
Let gX(x) and gY (y) be hazard rates of random variables X and Y , correspondingly, that

is,

gX(x) = − ln
[
S(x + 1,0)

S(x,0)

]
and gY (y) = − ln

[
S(0, y + 1)

S(0, y)

]
.

The independence between X and Y implies that g1(x, y) = gX(x) and g2(x, y) = gY (y) for
all x, y = 0,1,2, . . . . Therefore, relation (5.1) transforms into

g1(x, y) + g2(x + 1, y) = gX(x) + gY (y) = a0 + a1x + a2y.

The last functional equation is equivalent to both

gX(x) = β1 + a1x and gY (y) = β2 + a2y,

where β1 ∈ [0, a0] and β2 = a0 − β1, that is, the marginal hazard rates of random variables
X and Y are linear functions corresponding to the joint survival function considered in Ex-
ample 5.5. If β1 = β2 = 0, we obtain independent geometric marginals. All possible combi-
nations indicate nine members of the class DS(x, y;a) with independent marginals.

Therefore, the class of bivariate discrete distributions possessing DS-BAP is huge: link-
ing DBLMP and local lack of memory property. Its members can exhibit positive quadrant
dependence or/nor negative quadrant dependence. The distributions in above examples be-
long to different bivariate aging notions as well, see a detailed analysis in Nair, Sankaran and
Balakrishnan (2018), Chapter 7.

5.4 Closure properties

The solutions S(x, y) of functional equation (5.6) which satisfy (5.7) (i.e., distributions pos-
sessing DS-BAP being members of the class DS(x, y;a) as well), are given by (5.2) and the
parameter vector a have to satisfy the inequalities listed in Corollary 5.2. These bivariate dis-
crete distributions can be used as building blocks to construct other distributions that satisfy
relation (5.1).

We will present in the next theorem several closure properties of the class DS(x, y;a).

Theorem 5.4. Denote by S1 and S2 joint survival functions belonging to the class
DS(x, y;a). The following closure properties are fulfilled:

(CP1) If S1, S2 ∈DS(x, y;a), then their product S1S2 ∈ DS(x, y;a).
(CP2) If S1 ∈ DS(x, y;a), then [S1]q ∈ DS(x, y;a) for some q ≥ 1.
(CP3) If S1, S2 ∈DS(x, y;a), then [S1]q1[S2]q2 ∈ DS(x, y;a) for some q1, q2 ≥ 1.
(CP4) If S1(x, y) ∈ DS(x, y;a) and q > 0, then S1(qx, qy) ∈ DS(x, y;a).

Proof. To check (CP1), let us suppose that the independent vectors (Xi, Yi), with joint sur-
vival function Si , are members of the class DS(x, y;a), i = 1,2. Then, the joint distribution
of vector [(X1, Y1), (X2, Y2)] has a survival function S1S2 which is proper and also belongs
to the class DS(x, y;a).

One can verify that the distributions obtained via operations (CP2) to (CP4) have valid
joint survival functions which satisfy equation (5.6).

Note that the parameter vector a will be updated with additional parameters due to closure
properties listed in Theorem 5.4. �
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Example 5.8 (Application of closure property (CP1)). Let the distribution of independent
vectors (Xi, Yi) be given by Example 5.1, i = 1,2. Closure property (CP1) results in a new
member exhibiting DA-BAP with joint survival function

S(x, y) =
{
p

2y
0 p

2(x−y)
1 , if x ≥ y,

p2x
0 p

2(y−x)
2 , if y ≥ x

(5.19)

for x, y = 0,1,2, . . . , where p1 + p2 ≤ 1 + p0 and 0 < p0 ≤ pi < 1, i = 1,2.

The closure properties listed in Theorem 5.4 are efficient tools to generate new members
of the class DS(x, y;a). We will offer an alternative constructive method in the last example.

Example 5.9 (Discrete version of the Extended MO model). Let us examine the stochastic
representation (5.13), where T1 and T2 are dependent random variables, defined by the joint
survival function ST1,T2(x, y), and both T1 and T2 are independent of random variable T0
having a survival function ST0 . This construction extends the classical fatal shock model
introduced in Marshall and Olkin (1967) in continuous case, where Ti’s are assumed to be
independent and exponentially distributed. Therefore, the joint survival function of the vector
(X,Y ) is given by

S(x, y) = ST1,T2(x, y)min
{
ST0(x), ST0(y)

}
, x, y ≥ 0. (5.20)

The right-hand side in (5.20) is a product of two bivariate distributions. The first one is
defined by ST1,T2(x, y), and the second one refers to a bivariate random vector with comono-
tonic components sharing the same marginal distribution as T0. The class of bivariate contin-
uous models specified by (5.20) has been introduced by Kolev and Pinto (2015b) under the
name Extended Marshall–Olkin model.

Let us consider a discrete version of (5.20), assuming that (T1, T2) follows the Gumbel’s
bivariate geomeric distribution (5.14) and T0 is geometrically distributed with parameter
p0 ≥ 0. Hence, the resulting joint survival function reads

S(x, y) = p
max(x,y)
0 px

1p
y
2θxy, p0,p1,p2 ∈ (0,1), θ ∈ (0,1],1 + p1p2θ ≥ p1 + p2 (5.21)

for all x, y = 0,1,2, . . . . Therefore, a new bivariate discrete distribution has been con-
structed: the joint survival function specified by (5.21) might be named extended bivariate
Gumbel-type geometric model. Observe, that in this case the coefficients in (5.1) are given by
a0 = − ln(p0p1p2θ) and a1 = a2 = − ln θ .

6 Conclusions

In this article, we introduced a probabilistic interpretation of discrete line integral of gradient
vector on the uniform grid in the support of I 2+ = {(x, y)|x, y = 0,1,2, . . .}. In Lemma 3.1,
we present a discrete analog of the fundamental theorem of calculus for the line integrals on
uniform grids. In Theorem 4.1, we established an exponential representation of the joint sur-
vival function S(x, y) through the line integral along the increasing path connecting the nodes
(0,0) and (x, y). It seems that such a statement and related probability interpretation appears
in literature for a first time. Since the components of the discrete gradient vector uniquely
determine the joint distribution of the vector (X,Y ) via exponential representation (4.1),
all bivariate discrete distributions defined on I 2+ can be obtained for specific (pre-specified)
expressions of the gradient vector elements, taking into account the physical nature of the
process to be analyzed.
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Using a particular increasing path between (0,0) and (x, y) we got a general expression
(4.2) for S(x, y). In Definition 5.1, we introduced a new aging notion: the discrete Sibuya-
type bivariate aging property (DS-BAP), specified by equations (5.6) and (5.7). We estab-
lished several characterizations connecting the class DS(x, y;a) and DS-BAP by the follow-
ing equivalent relations

(5.1) ⇔ (5.2) ⇔ (5.6) + (5.7) ⇔ (5.9),

see Theorems 5.1, 5.2 and 5.3. Moreover, in Theorem 5.4 we obtained closure properties
of bivariate discrete distributions belonging to the class DS(x, y;a) which help to generate
plenty of new distributions from the same class. Many known bivariate discrete models pos-
sess DS-BAP (see Examples 5.1 to 5.8), but also new ones can be obtained using the extended
MO construction used in Example 5.9.

Several authors define the joint survival function by S(x, y) = P(X > x,Y > y) for x, y =
0,1,2, . . . , see Shaked, Shanthikumar and Torres (1995). In such a case, all above results are
valid with a minor adjustment of corresponding relations.

Of course, other analytical forms (even “non-aging”) of the function G(x,y; t) in (5.8)
are possible and desirable, depending on the real problem at hand. For instance, a weak
version of the DS-BAP can be investigated if we relax the marginal equations (5.7), that is,
considering only the functional equation (5.6) in Definition 5.1. In this case, one would obtain
new bivariate discrete models which includes DS-BAP as a particular case. For example,
consider the joint survival function of X and Y given by

S(x, y) = p
max(x,y)
0 px3

1 p
y3

2 , x, y = 0,1,2, . . .

for p0,p1,p2 ∈ (0,1). One can verify that the distribution satisfies partially Definition 5.1:
relation (5.6) is fulfilled but (5.7) fails. Really, in this case we have

g1(x, y) + g2(x + 1, y) = a0 + 3a1x(x + 1) + 3a2y(y + 1),

that is, the sum does not have a linear form advocated by (5.1), being a particular case of the
relation

g1(x, y) + g2(x + 1, y) = A1(x) + A2(y), x, y = 0,1,2, . . . ,

where A1(x) and A2(y) are pre-specified non-negative increasing functions with properties
reflecting the evolution of the gradient vector corresponding to problem at hand to be mod-
eled. An investigation of the bivariate discrete model based on last equation would be a valu-
able future research.
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