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Abstract. Recently some nonparametric estimation procedures have been
proposed using kernels and wavelets to estimate the copula function. In this
context, knowing that a copula function can be expanded in a wavelet ba-
sis, we propose a new nonparametric copula estimation procedure through
wavelets for independent data and times series under an ¢-mixing condition.
The main feature of this estimator is that we make no assumptions on the data
distribution and there is no need to use ARMA-GARCH modelling before
estimating the copula. Convergence rates for the estimator were computed,
showing the estimator consistency. Some simulation studies are presented, as
well as analysis of real data sets.

1 Introduction

In applications of insurance and risk management, copulas have been extensively studied
as an important tool to describe the dependence structure between random variables and
stochastic processes. These functions were introduced by Sklar (1959) and most of the liter-
ature focuses on parametric families of copulas like Gaussian, Student ¢, Frank, Clayton, etc.
For further discussion about mathematical properties and definitions, see Nelsen (2005).

Several methods have been used for copula estimation. In the parametric approach, it is
necessary to select a copula family and then estimate the parameters, usually by maximum
likelihood. For time series data, the usual procedure is to fit ARMA-GARCH models and
then estimate some parametric copula by considering the standardized residuals (for details,
see Patton (2012)).

Nonparametric estimation methods have been widely used. For independent data, Genest,
Massiello and Tribouley (2009) proposed a methodology based on the wavelet decomposition
of the copula density, called rank-based estimator. Another reference is Autin, Le Pennec and
Tribouley (2010), that used a nonlinear procedure based on thresholding methods.

Fermanian and Scaillet (2003) proposed copula estimators based on kernels. The proce-
dure involves estimation of densities, distribution functions, quantiles and finally estimating
the copula function, using the Sklar theorem. Morettin et al. (2010) present a new wavelet
estimator, smoothing the empirical copula. They presented some simulation studies to assess
the estimator performance and showed that the estimator outperformed the kernel-based esti-
mator. But no proof of consistency was given. Morettin et al. (2011) used the same approach
of Fermanian and Scaillet (2003) and derived statistical properties of the estimator.

In this work, we propose a new copula estimator through wavelets, for independent case
and time series data. It is shown, under regularity conditions, that the estimator is consistent.

This paper is organized as follows. In Section 2, we propose the new estimation method
of copulas through wavelets, for the case of independent data and for time series data. We
present two theorems that show the consistency of the estimator for both cases. In Section 3,
we perform some simulation studies and in Section 4 we apply the proposed techniques
to some real data sets. In Section 5, we conclude with remarks about the applicability and
advantages of the wavelet approach.
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2 Wavelet estimators

Since the copula function C(u, v) € L2([0, 11?), considering an appropriated wavelet basis,
it can be expanded as

Cu,v) = chkcblk(u VYD D A, (2.1)
J=lkeZ7? u=h,v.d

where

ax= [ Clu v, v)dudv,
[0,1]?

d"y = /[01 C(u, v) 0¥, (u, v) du dv. 2.2)

For details on copulas, see Nelsen (2005), and for details on wavelets and wavelets expan-
sions, for the bivariate case, see Vidakovic (1999) and Morettin (2014).

Therefore, to estimate the copula function given by (2.1), it is only necessary to estimate
the wavelet coefficients given by (2.2).

In this section, we propose and discuss copula estimation techniques for i.i.d. case and
time series data.

It is known that the space L?([0, 1]?) can also be generated by the father wavelets
{®; k(x,y), k= (k1, k) }k, hence instead of (2.1) we may consider

Cr(u,v) = cr k@, v), (2.3)
k
with
Cl,k=f C(u,v)P; x(u, v)dudv
[0,1]2

1 rl
= |:/ / <I>1,k(u,v)dudv]c(r,s)drds, 2.4)

(0,112

where [ is an arbitrary resolution level and c(r, s) is the copula density.
Considering » = F(x) and s = G(y), it is easy to see that

1
crk = Ep, y)[ G v/F(X) dDI,k(u,v)dudU] (2.5)

2.1 Estimation for i.i.d. case

In order to develop the estimation procedure, let (X;, Y;), i =1, ..., n, be a random sample
from a distribution function H (-, -), where the marginal distribution functions F (-) and G(-)
are unknown. Let F,, and G, be their empirical counterparts respectively, that is, F,,(X;) =
% i1 HXk < X} and G, (Y;) = %ch’zl I{Y; < Y;}, where I{x € B} denotes the indicator
function, that is, [{x € B} = 1 if x € B and [{x € B} = 0 otherwise.

From (2.5), the proposed estimator for ¢; i is given by

1
Clk=— |:/ / D) k(u,v)du dv}
n; n(Yi) J Fu(X5)

and the estimator for C(u, v) is defined by

Cr(u,v) =) & kP x(u: v).
k
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In order to show the performance of the proposed wavelet estimator, we carry out numeri-
cal studies, in which we will use the Mean Integrated Squared Error (MISE), defined by
MISE(C; (u, v), C(u, v))

= Epgey | Cr(u, v) — Cu, )3

=Ehgey) [/01 /(;l(él(u, v) — C(u,v))zdudv]. (2.6)

To derive some properties of the wavelet estimator, suppose that the following assumptions
hold:

(A1) C belongs L» ([0, 11%) and to the ball of radius M > 0 in the Besov space ’B;’q.

(A2) Forevery integer h € Z, the joint distribution J ((X¢; Y7); (X¢4n; Yr+n)) exists and there
is a positive constant M > 0 such that, for every bounded zero-mean random variable
H(X;;Y;) we have

E[|H(X,; Y).H(Xqn; Yt+h)}] < MIE[|H(X,; Y,)|]E[{H(X,+h; Y,+h)|].

(A3) A bivariate process {(X;, Y;),t € Z} isa-mixing and the coefficients o(p) are such that,
forr > 2,

o0

Y [a(m]' T =0(N7).

p=N
(A4) {X;,t € Z} and {Y;,t € Z} are both «-mixing processes.
Then, we have the following theorem, that shows the estimator consistency for the inde-
pendent case.

Theorem 2.1. Under the assumption (A1), given a sample of size n from a bivariate distri-
bution H (-, -), with an unknown copula function C(-, -), choose l*, such that

1
2" <y < "

Let Cp<(-, -) be the estimator of C(-,-) up to resolution level I*.
Then, there exists a constant K > O such that

sup  nH MISE(Cpe (e, v), C(u, v)) < K.
CceB!, M)

Proof. See the Appendix. ([l

2.2 Estimation for time series case

Considering the proposed estimator for the time series case, the objective is to use some
dependence structure and to assume that the processes are o-mixing.

Let {V; = (X;, Y;), t € Z} be atwo-dimensional stationary stochastic process, for all t € Z,
and suppose that we have observations {V;,# =1, ..., n}. Thus, the estimator ¢; i is defined

by
1t 1 1
Cr k= —Z[/ f d>1,k(u,u)dudv].
n.= n(Yn) S Fn(Xy)

It follows that the copula estimator is given by

Cr(u,v) =& kP, v).
k
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Then, we have the following result, showing the consistency of the wavelet estimator for
time series data.

Theorem 2.2. Under the assumptions (Al1)—(A4), let n be the size of a sample from the
process {V;,t € Z}. Choose I*, such that

* 1 *
2" <pxm < 2L
Let él* (+; -) the estimator of C(u; v). Then, for a constant K > 0, we have

MISE(Cp+(u; v), C(u; v)) < Kn™'.
Proof. See the Appendix. U

Considering the proposed estimators based on wavelets, either the i.i.d. case or the time
series data case, the idea is to start from an adequate resolution level J, which depends on
the sample length 7.

The procedure for estimating the copula function through the proposed method is as fol-
lows:

(1) As suggested by Genest, Massiello and Tribouley (2009), compute the index J for which
2/ < /n <2/t

(2) Denote each element of the sample matrix A, , by (ap, p,), where p1, p2 € {1, ..., p}.
The matrix B is obtained by symmetrizing A, where

*A* *A *A*
B= A* A A* )
*A* *A *A*

in which Ay, = (@p11-p;, p+1—p2)s Ax = (@p; p+1—p,) and A = (Api1—p; p)-

(3) Apply the Fast Wavelet Transform on B and extract the element in the second row and
second column of the transform.

(4) Compute the estimated scaling coefficients by the 2D wavelet inverse transform algo-
rithm,

Ci(u,v)=Y @ Pk, v), (@ v)e( 1)
keZ?

(5) Select I* and construct the estimated copula C* = Cr+.

3 Simulation studies

In this section, we present the performance of the wavelet estimators, proposed in Section 2,
via simulation studies. The procedure was implemented with the Matlab (2013) software and
the wavelet toolbox package (see Misiti et al. (1996)). The steps taken are as follows:

(1) draw a sample (X;, Y;),fori=1,...,n; _
(2) compute the empirical copula function on the grid (-, %), for which
C (i-j>—12n:]I{X <Xi Y=Yk
n n’n _nk:1 k= (l)v k= (J) )
(3) compute the copula estimator é ;
(4) compute the true copula C(;; ﬁ) on the grid;
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(5) repeat the steps (1)—(3) “m” times and compute the Bias and mean squared errors (MSE),
defined as

1 . 1 .
Bias=— Y (Cx — O), MSE=— Y (Cy — O)%.

3.1 L.i.d. case

For the 1.i.d. case, we consider the random vector (X, Y), where

2
Ly Vx,y Oy

in which, y, , is the covariance function between the random variables X and Y.

The simulation study was performed with independent and dependent components. In both
cases, we generate 5000 samples of size n = 1024. The results are shown in Table 1 and
Table 2. All values are expressed as multiples of 107%.

3.1.1 Independent components. We generated samples from (X, Y), where u, = 1.33,
iy =4,0r=0807=286and y, , =0.

Looking at Table 1, for levels [ =4 and [ = 5, we see that the estimators have good perfor-
mance in terms of Bias and MSE. The results may be considered satisfactory for independent
components.

Table 1 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—i.i.d. case with independent compo-
nents

Copulas

x10~4 C(0.01;0.01) C(0.05;0.05) (€(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C€(0.95;0.95) (C(0.99;0.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00

Wavelet estimator D2 (5000 samples)

I=1
Mean 1.90561 24.92 625.60 2501.69 5625.93 9027.76 9851.28
Bias 0.90561 —0.07571 0.60058 1.69088 0.93426 2.76271 50.2832
MSE 0.00622 0.16637 3.6186 6.13468 3.50512 0.15379 2.52971
[=2
Mean 1.25984 24.50 625.74 2501.65 5625.80 9028.50 9814.29
Bias 0.25984 —0.49238 0.73695 1.64967 0.79662 3.50903 13.2999
MSE 0.00071 0.02078 0.34866 0.59704 0.33520 0.02173 0.01788
1=3
Mean 0.86686 24.50 625.72 2501.67 5625.84 9028.50 9087.87
Bias —0.13313 —0.49926 0.71719 1.67639 0.83611 3.50460 6.87077
MSE 0.00099 0.02047 0.34133 0.58830 0.32950 0.02113 0.00531
I=4
Mean 0.98855 24.50 625.70 2501.69 5625.82 9028.50 9805.67
Bias —0.01144 —0.50075 0.70948 1.69390 0.81623 3.50504 4.67279
MSE 0.001062 0.02078 0.33915 0.58574 0.32783 0.02260 0.00327
1=5
Mean 0.97892 24.50 625.75 2501.62 5625.89 9028.50 9805.67
Bias —0.02107 0.50252 0.75044 1.62857 0.89153 3.50348 4.67398

MSE 0.00095 0.02120 0.34447 0.59008 0.33201 0.02246 0.00318
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Table 2 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—i.i.d. case with dependent components

Copulas

x10~% C(0.01;0.01) C(0.05;0.05) (€(0.25;0.25) (€(0.50;0.50) C(0.75;0.75) €(0.95;0.95) (C(0.99;0.99)
True 26.90 197.20 1509.80 3739.90 6508.80 9197.20 9826.90

Wavelet estimator D2 (5000 samples)

=1

Mean 28.02 246.54 1693.19 3974.67 6689.60 9247.27 9839.80

Bias 5547882 24.68301  92.17984  117.39426  90.38550  25.04703  6.43748

MSE 0.025848  0.33976 3.78879 6.04942 3.66830 0.34989 0.03637
1=2

Mean 28.24 246.79 1693.09 3974.68 6689.39 924731 9840.41

Bias 5.65745  24.80838  92.12631  117.39958  90.27855  25.07040  6.74231

MSE 0.02690 0.34450 3.78089 6.04487 3.65641 0.35090 0.03949
1=3

Mean 29.29 247.85 1693.24 3974.80 6689.53 9246.78 9840.04

Bias 6.18244 2534008 9220058  117.45853  90.34739  24.80288  6.55926

MSE 0.03151 0.36085 3.78883 6.05331 3.66433 0.33809 0.02950
I=4

Meanc  28.46279 253.11 1694.23 3975.69 6690.42 9247.86 9835.70

Bias 576884 2796876  92.69756  117.90462  90.79356 2534236  4.39136

MSE 0.01991 0.42927 3.83516 6.10562 3.70585 0.35227 0.01050
1=5

Mean 27.77 235.93 1699.63 3979.61 6694.94 9241.76 9865.37

Bias 5.42284 19.37992 9539718 119.8644  93.05555 2229249  19.22409

MSE 0.01437 0.21517 4.06349 6.31467 3.89012 0.26519 0.14911

3.1.2 Dependent components. Considering dependent components, we generated a sample
from (X, Y), where px =3.05, uy = 6.44, 0)% =1.13, Uy2 =3.98 and y,,, = 1.49. The results
are shown in Table 2.

Comparing the results in Tables 1 and 2, we observe that the values are different in terms
of Bias and MSE for all resolution levels. Also, the values are higher than of dependent
components, but by considering that the values are expressed as multiples of 10™4, the results
for both cases are satisfactory.

3.2 Time series data
We consider the copula estimator for the VAR(1) process:
V[=A+BV[_1 + €, (31)

where V;, = (X;; Y)) T, ¢ ~ N(0; £) and A = (1; 1) ". The matrices B and X are defined
taking into account the type of components. For both, we generate 5000 samples of size
n = 1024. All values are expressed as multiples of 1074,

3.2.1 Independent components. For this case, let

025 0 075 0
B:[o 0.75} and E:[o 1.25]

The results are shown in Table 3. These values show that at levels [ =4 and [ = 5, the
proposed estimators have good performance, compared to other nonparametric estimators.
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Table 3 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—case with independent components

Copulas

x10~4 C(0.01;0.01) C(0.05;0.05) (€(0.25;0.25) C(0.50;0.50) (C(0.75;0.75) C€(0.95;0.95) (C(0.99;0.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00

Wavelet estimator D2 (5000 samples)

=1

Mean 1.79043 25.69 630.85 2502.78 5624.26 9027.92 9851.29

Bias 0.79043 0.69320 585242 278267  —0.73069 292745  50.29317

MSE 0.00066 0.01840 042841  0.81192 0.42911 0.01671 0.25307
1=2

Mean 1.19 24.62 630.91 2502.62 5624.21 9028.70 9814.31

Bias 0.18936 ~037974 591207  2.62732  —0.78241 3.70217 13.31907

MSE 0.00076 0.02233 041422 0.78837 0.41536 002264  0.017952
1=3

Mean 0.87626 2451 630.89 2502.63 5624.32 9028.68 9807.86

Bias ~0.12373 —048726  5.89316  2.62973 —0.67675  3.68293 6.86647

MSE 0.00105 0.02195 040864  0.77857 0.40861 0.02208 0.00529
I=4

Mean 0.98333 24.50 630.88 2502.66 5624.36 9028.58 9805.67

Bias —0.01667  —0.49575  5.88007  2.66045 —0.63316  3.58812 4.67924

MSE 0.00114 0.02220 040662  0.77657 0.40668 0.02339 0.00329
1=5

Mean 0.98539 24.50 630.92 2502.61 5624.35 9028.60 9805.69

Bias —0.01460  —0.49638 591641 2.61533 —0.64523 359959 4.68638

MSE 0.00105 0.02250 041132 0.78310 0.410305 0.02330 0.00322

For further details, see Fermanian and Scaillet (2003), Morettin et al. (2010) and Morettin
etal. (2011).

3.2.2 Dependent components. In this case, we considered samples, in which

025 02 0.75 05
Bz[o.z 0.75] and Z:[0.5 1.25]'

We observe that the values in Table 4 are similar for all resolution levels. The results in
terms of Bias are higher than those presented by Morettin et al. (2010), but are similar to those
of Fermanian and Scaillet (2003). The difference can be due to the use of scaling functions
only in the wavelet expansion.

Up to this point, we have used the estimator based on the expansion (2.3). Now, we will
consider the estimation procedure based on the expansion (2.1), given by

Cu: v)—chkCle(u v)—l—z Yo dh s, (3.2)

Jj=lke7? u=h,v,d

and then use a threshold for the wavelet coefficients ﬁ;‘ k- Usually, we may use hard or soft
thresholds, defined by

0, if x| <4,

sH(x)=
» () x, if|x| > A,
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Table 4 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—case with dependent components

Copulas

x10~% C(0.01;0.01) C(0.05;0.05) (€(0.25;0.25) (€(0.50;0.50) C(0.75;0.75) €(0.95;0.95) (C(0.99;0.99)
True 26.90 197.20 1509.80 3739.90 6508.80 9197.20 9826.90

Wavelet estimator D2 (5000 samples)

=1

Mean  20.52574 172.051 1376.47 3586.99 6465.42 9181.81 9855.91

Bias 6.39937 —25.1177  —132371  —152.891  —434135  —15.3651 28.9833

MSE 0.01052 0.19315 220303 2.91158 0.54573 0.07141 0.08477
1=2

Mean 17.3965 165.603 1374.81 3585.62 6465.04 9185.07 9821.37

Bias —9.52861  —31.5727  —134.02 —15426 ~ —437941  —12.0981  —5.55452

MSE 0.02029 0.21037 2.22979 2.93473 0.54438 0.08432 0.00473
1=3

Mean 17.7891 164.393 1374.55 3585.35 6465.20 9184.22 9817.49

Bias —9.13599  —32.7832  —134.8 —15453  —43.6367  —129511  —9.43256

MSE 0.01867 0.20959 2.23056 2.93672 0.55730 0.08182 0.014811
I=4

Mean 18.3893 164.139 1374.60 3585.32 6465.16 9184.03 9815.85

Bias ~853580  —33.0367  —134233  —154.568  —43.6722  —13.1460  —11.0753

MSE 0022259 0208256 2242146 2950065  0.558231  0.080473  0.022071
1=5

Mean 18.2113 164.098 1374.62 3585.38 6465.17 9187.01 9815.71

Bias —8.71379  —33.0777  —134221  —154.503  —43.6685  —13.1644  —11.2071

MSE 0.021615 0.207158 2.240509 2.946415 0.560300 0.080146 0.021664

and
0, if |x| <A,

5 () = sin(r)(lx] — A), if x| > A,

respectively. For more details, see Vidakovic (1999).
Thus, the final estimator is given by

Cu;v) = qucblk(u U)"‘ZZ Z SHSd”k \D”k(u v).

jzlkez? p=h.v.d

In this research, we choose as the threshold the high quantile proposed by Morettin et al.
(2010), in which

0, ifx<Q,),

o) =1 ifx > 0,00,

where O, (x) is the p-quantile of x. We take p = 0.9 in what follows.

We generated 5000 samples of size n = 1024 of the VAR(1) model given by (3.1), with
dependent components. The results are in Table 5.

Comparing the values of Table 4 and Table 5, we can note that there are not many changes
in terms of Bias and MSE for the copula estimation on the borders, but the estimations for
other quantiles are lower in terms of the Bias when the threshold method is used.
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Table 5 Mean, Bias and MSE of the estimator—Wavelet Daubechie D2, case of dependent components with
quantile threshold (p = 0.9)

Copulas
x10~4 C(0.01;0.01) C(0.05;0.05) C€(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C€(0.95;0.95) (C(0.99;0.99)
True 26.90 192.20 1509.80 3739.90 6508.80 9197.20 9826.90
Wavelet estimator D2—threshold (5000 samples)
=1
Mean  20.52574 184.39444 1482.05 3656.44 6518.90 9181.81 9822.95
Bias —6.39936  —12.78198  —26.78521  —83.44168  10.062352  —15.36508 —3.97346
MSE 0.01052 0.10116 0.47938 1.22934 0.37617 0.07141 0.00726
=2
Mean 17.3965 185.1919 1483.57 3656.22 6517.98 9185.07 9821.37
Bias —9.52861  —11.98454  —25.27142  —83.66274 9.15075 —12.09881 —5.55453
MSE 0.02029 0.11018 0.50373 1.23807 0.361494 0.08432 0.00473
=3
Mean 17.78912 185.72434 1483.41 3656.32 6518.07 9184.22 9817.49
Bias —9.13599  —11.45208  —25.42999  —83.57007 9.23171 —12.95116 —9.43256
MSE 0.01867 0.12077 0.50173 1.24342 0.36941 0.08182 0.01481
=4
Mean 18.38931 185.65573 1483.51 3656.32 6518.10 9184.03 9815.84
Bias —8.53580  —11.52069  —25.32560  —83.56696 9.26386 —13.14606  —11.07530
MSE 0.02225 0.11923 0.50913 1.25208 0.37141 0.08047 0.02207
=5
Mean 18.21132 185.73713 1483.50 3656.31 6518.09 9184.01 9815.71
Bias —8.71379  —11.43929  —25.33263  —83.57427 9.26093 —13.16446  —11.20713
MSE 0.02161 0.12264 0.50845 1.25159 0.37387 0.08014 0.02166

Figures 1 and 2 show the graphical representations of the estimators for different resolution
levels, without and with the threshold for dependent components.

3.3 Additional simulations

To evaluate the results of the proposed methodology, we consider an additional simulation
study, as presented by Autin, Le Pennec and Tribouley (2010). Consider the empirical loss

functions, given by

and

~ 1 4
Error(Cx, Cy) = FHCZ* —Cy ||%

L E S ()b )

i=1j=1

R R 1 -1
RE(Cy+, Cg) = Error(Cj+, Cg) x [mncen%] ,

where RE is the relative error, C‘l* is the estimated copula function on the grid (%, %),
i,j=1,..., N and Cy is the parametric copula, with fixed 6.
The procedure is as follows:
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Estimated Copula (Dep) - Level I=1 Estimated Copula (Dep) - Level I=2

%
Yr520;
200202
(55
DRRO550555%

S
KR
SIS

SIS
SRS

Figure 1 Graphical representations of the estimated copula at different levels—dependent components without
thresholds. Last graphic is for the Normal copula.

(1) draw a sample of size n from a parametric copula Cy;

(2) compute a copula estimator using wavelets;

(3) consider N = n and compute the RE between the parametric copula and the estimated
copula on the grid;

(4) repeat the steps (1)—(3) r times;

(5) compute the mean and the standard deviation (SD) of the r replications of RE.

We considered r = 5000 replicates for samples of size n =256 and n = 1024, from Nor-
mal, Student-t, Gumbel, Clayton and Frank copula, with fixed parameters. For the normal
copula, the correlation coefficient is 0.5. For the Student-t copula the correlation coefficient
is 0.5 and degree of freedom is 5. For the Gumbel, Clayton and Frank copula, we take the
parameter of dependence as 5. The idea is to study the estimation performance for different
sample sizes.

From Table 6 and Table 7, we notice that the SD of the RE decreases when sample size
increases. This behavior is the same for all resolution levels.
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Estimated copula (Dep-Thresh) - Level I=1 Estimated copula (Dep-Thresh) — Level I=2
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Figure 2 Graphical representations of the estimated copula at different levels—dependent components with
quantile threshold (p = 0.9). Last graphic is for the Normal copula.

4 Applications
In this section, we apply the proposed estimation procedure for two pairs of series.

4.1 Ibovespa—IPC

Ibovespa is an index of about 50 stocks that are traded on the BM&FBOVESPA (Sao Paulo
Stock Exchange). IPC (Indice de Precios y Cotizaciones) is an index of 35 stocks that are
traded on the Mexican Stock Exchange.

We consider daily returns recorded from September 4th, 1995 to December 30th, 2004
with 1981 observations. The correlation coefficient is moderate, equal to 0.5516. Figure 3
shows the scatter plot of returns of the Ibovespa and IPC.

To verify if the proposed estimator is appropriate, we calculated the error and the relative
error between the proposed wavelet estimator (for different wavelets D2, D4, D6 and D8) and
five estimated parametric copulas. The values are reported in Table 8, where we see that the
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Table 6 Mean and standard deviation(SD) of RE for the wavelet estimator and some parametric copulas, n =
256

Wavelets
n =256 Daubechie D2 Daubechie D4 Daubechie D6 Daubechie D8
Copulas Mean SD Mean SD Mean SD Mean SD

1=1
Normal 433428 365873 435456 364782 427880  36.5374 445405  36.5577
Student-t 432367 362312 433472 36.1408  42.6834 362340 443287  36.2324
Gumbel  39.5915 357352  38.9729  35.6866  38.1589 357829  40.0677  35.7841
Clayton 413565  38.6787  40.8990 385900  39.9253  38.7219  42.1046  38.7085
Frank 429201  37.1642 42,7577  37.1098  42.0791  37.1950  43.8146  37.1927

=2
Normal 44.0426 36.5550 44.4046 36.5556 44.3168 36.5514 44.3604 36.5497
Student-t 43.9318 36.2537 44.2702 36.2531 44.1876 36.2506 44.2372 36.2585
Gumbel 39.0460 35.7829 39.3049 35.7858 39.1993 35.7865 39.2538 35.7889
Clayton 40.8397 38.7152 41.1343 38.7115 41.0108 38.7124 41.0713 38.7162
Frank 43.2385 37.1989 43.5473 37.2062 43.4611 37.2030 43.5114 37.2035

=3
Normal 44.9479 36.5558 45.0958 36.5598 45.0678 36.5578 45.0677 36.5588
Student-t 44.8298 36.2573 44.9745 36.2613 44.9484 36.2593 44.9481 36.2594
Gumbel 39.6670 35.7895 39.7959 35.7938 39.7575 35.7917 39.7527 35.7917
Clayton 41.4846 38.7158 41.6213 38.7195 41.5805 38.7163 41.5768 38.7167
Frank 44.0507 37.2066 44.1870 37.2115 44.1612 37.2084 44.1612 37.2086

I=4
Normal 454800  36.5596 455347 365612 455368  36.5602 455394  36.5604
Studentt 453584 362601 454129 362606 454170  36.2600 454176  36.2603
Gumbel  40.0904 357915  40.1378 357923  40.1366  35.7925  40.1381  35.7912
Clayton ~ 41.9263 387154 419747 387160 419738 387156 419753  38.7152
Frank 445467 372091 445975 372109  44.5998 372098  44.6017  37.2101

=5
Normal 45.7792 36.5626 45.7935 36.5624 45.7967 36.5622 45.7998 36.5623
Student-t 45.6582 36.2612 45.6730 36.2614 45.6764 36.2616 45.6790 36.2615
Gumbel 40.3360 35.7940 40.3472 35.7935 40.3498 35.7935 40.3520 35.7938
Clayton 42.1822 38.7166 42.1934 38.7161 42.1961 38.7163 42.1986 38.7163
Frank 44.8271 37.2120 44.8409 37.2120 44.8440 37.2120 44.8466 37.2120

values of the copula estimate with the wavelet D2 and those using the Student-t copula, are
similar.

Figure 4 shows the estimated copula and respective contour plots for this case. To evaluate
how the data are associated, we propose an empirical estimation of tail dependence using the
estimated copulas, as presented by Caillault and Guégan (2005). Figure 5 shows the estimated
empirical tail dependence measures for the Ibovespa and IPC series. These are important tools
to describe the properties of the copulas with respect to their tail behavior. These quantities
are also useful for computing risk measures.

4.2 Net profit—Sales margin

We consider now annual rates of the sales performance of 1018 companies in Brazil, 2006
according to Exame magazine. This data set was used by Latif and Morettin (2010), who
suggested to analyze the normalized ranks of Net profit (US$) and Sales margin (%), denoted
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Table 7 Mean and standard deviation(SD) of RE for the wavelet estimator and some parametric copula, n =

1024
Wavelets
n=1024 Daubechie D2 Daubechie D4 Daubechie D6 Daubechie D8
Copulas Mean SD Mean SD Mean SD Mean SD
[=1
Normal 11.0341 8.6375 11.0549 8.6368 11.0471 8.6367 11.0788 8.6373
Student-t 11.2959 9.1673 11.3151 9.1663 11.3085 9.1672 11.3383 9.1667
Gumbel 9.8137 8.8952 9.8232 8.8950 9.8139 8.8954 9.8470 8.8953
Clayton 10.4294 9.5182 10.4388 9.5182 10.4289 9.5188 10.4655 9.5188
Frank 0.9561 9.2673 10.9718 9.2675 10.9654 9.2676 10.9945 9.2677
[=2
Normal 11.1450 8.6372 11.1601 8.6373 11.1607 8.6374 11.1624 8.6372
Student-t 11.4071 9.1674 11.4216 9.1674 11.4224 9.1674 11.4241 9.1673
Gumbel 9.8933 8.8956 9.9056 8.8957 9.9052 8.8957 9.9071 8.8957
Clayton 10.5110 9.5190 10.5240 9.5188 10.5236 9.5186 10.5255 9.5188
Frank 11.0574 9.2677 11.0706 9.2674 11.0713 9.2676 11.0731 9.2677
[=3
Normal 11.2099 8.6375 11.2169 8.6376 11.2175 8.6376 11.2179 8.6376
Student-t 11.4719 9.1674 11.4788 9.1674 11.4794 9.1674 11.4798 9.1674
Gumbel 9.9452 8.8959 9.9511 8.8959 9.9513 8.8959 9.9516 8.8958
Clayton 10.5653 9.5189 10.5714 9.5189 10.5717 9.5189 10.5720 9.5189
Frank 11.1177 9.2675 11.1241 9.2675 11.1247 9.2675 11.1251 9.2676
=4
Normal 11.2441 8.6376 11.2472 8.6377 11.2478 8.6377 11.2480 8.6377
Student-t 11.5061 9.1675 11.5092 9.1675 11.5098 9.1675 11.5101 9.1675
Gumbel 9.9731 8.8959 9.9758 8.8959 9.9761 8.8959 9.9764 8.8959
Clayton 10.5945 9.5189 10.5972 9.5189 10.5977 9.5189 10.5979 9.5189
Frank 11.1497 9.2676 11.1525 9.2676 11.1531 9.2676 11.1533 9.2676
| =
Normal 11.5250 8.6377 11.2640 8.6377 11.2643 8.6377 11.2644 8.6377
Student-t 11.5250 9.1675 11.5261 9.1675 11.5263 9.1675 11.5265 9.1675
Gumbel 9.9886 8.8959 9.9895 8.8959 9.9897 8.8959 9.9898 8.8959
Clayton 10.6107 9.5189 10.6116 9.5189 10.6118 9.5189 10.6120 9.5189
Frank 11.1672 9.2676 11.1683 9.2676 11.1685 9.2676 11.1687 9.2676

0.05
L
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0.0

-0.05

-0.10

-0.15
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Figure 3  Scatter plot for the returns of Ibovespa and IPC series.
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Table 8 Error and RE of copula estimators, for the Ibovespa and IPC series

Parametric Wavelet D2 Wavelet D4 Wavelet D6 Wavelet D8
Copula Estimative Error RE Error RE Error RE Error RE
Normal 0.4356 0.3418 26173 03418 26175 0.3418 26176 0.3418 2.6177
Student-t  0.4439 (7.45)*  0.2933  2.2401 0.2934 22403 0.2934 22403 0.2934 2.2405
Gumbel 1.3559 1.1778 9.0066 1.1778 9.0069 1.1778 9.0070 1.1778  9.0071
Clayton 0.6529 0.8760 7.0072 0.8760 7.0075 0.8760 7.0076  0.8760  7.0077
Frank 2.8910 0.3743  2.8398 0.3743 2.8400 0.3743 2.8401 0.3744 2.8402

*The value inside of (-) represents the estimated degrees of freedom.

Estimated copula - Level I=5

Contour plot — Estimated copula
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Figure 4 Graphical representations of the estimated copulas (wavelets in the first line and Student-t in the
second line) and contour plots for the Ibovespa and IPC series.
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Figure S Graphical representations of the estimated tail dependence for the Ibovespa and IPC series.
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Figure 6 Scatter plot of normalized ranks for the Net profit and Sales margin series.

Table 9 Error and RE of copula estimators, for the Net profit and Sales margin series

Parametric Wavelet D2 Wavelet D4 Wavelet D6 Wavelet D8
Copula Estimative Error RE Error RE Error RE Error RE
Student-t 0.85 (3.35)* 1.05 6.76 1.05 6.76 1.05 6.76 1.05 6.77
Gumbel 247 2.85 18.64 2.85 18.64 2.85 18.64 2.85 18.65
Clayton 3.57 0.56 3.73 0.56 3.73 0.56 3.74 0.56 3.74
Frank 10.39 0.99 6.33 0.99 6.33 0.99 6.33 0.99 6.33

*The value inside of (-) represents the estimated degrees of freedom.

by u and v, respectively, in order to find the dependence structure. The correlation coefficient
between u and v is 0.8455. See Figure 6.

In Table 9, we present the error and the relative error between the proposed wavelet es-
timator (for different wavelets D2, D4, D6 and D8) and five estimated parametric copulas.
The closest values are for the estimated copula with Wavelet D2 and the estimated Clayton
copula.

Figure 7 shows the graphical representations of the estimated wavelet, the estimated Clay-
ton copula and contour plots. Figure 8 shows the estimated empirical tail dependence mea-
sures.

5 Conclusions

In this paper, we proposed a new procedure for the estimation of a copula function by di-
rect expansion on wavelet bases. An advantage of the wavelet approach is that it can be
used directly with the original series, without estimating densities, distribution functions or
assumptions about the data distribution.

Although the idea here was to use these estimators with time series data, they can also be
applied to random samples (i.i.d. data). The aim was to propose a methodology with better
results in terms of Bias and of MSE, compared with the results obtained through kernels.
We have established consistency of the estimators for i.i.d. and time series data. We reported
some simulation studies to assess the performance of the proposed estimators, and the find-
ings show that they perform equally or outperform previous proposals. We also applied the
proposed estimation procedure to real data sets.
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Figure 7 Graphical representations of the estimated copulas (wavelets in the first line and Clayton in the second
line) and contour plots for the Net profit and Sales margin series.
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Figure 8 Graphical representations of the estimated tail dependence for the Net profit and Sales margin series.

Appendix

Proof of Theorem 2.1
Let

[Pk ), k= (ki k) fy U s ) k= (k1 ko), w=hyv,d) g
be an orthonormal basis of LZ([0, 1]%). We have that

MISE(C;(u; v), C(u; v)) < Eeopy | C1(u; v) — Cru; v)|3
2

Il X 2 Vi) . (A1)

J=lke7? u=h,v.d
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IfCe’B;,’q,withs>O, 1 <p,q <oo,then
1
i 2.4 q
ICls,p.q = llcillp + <Z(2/(S+p+ )”dj,”p)q> )

izl

Under assumption (A1), using the Holder inequality, with é i, =1 and p =2, for the
second term in (A.1),
)Q) 1/q
2

ZZdJ k\I’jk(u v)
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Note that, as in Genest, Massiello and Tribouley (2009), for the first term in (A.1)
Enie.y) | Crus; v) — Ci(u; v)“% < 2Ep x| Cr(us v) — Cr(u; v)||§
+ 2By || Ci (w5 ) —

12 1 1
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where

with

Now, we want to find upper bounds for (A.3), separately.
For the first term in (A.3),
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Since Y = 2%, applying the Dvoretzky—Kiefer-Wolfowitz inequality (see Dvoretzky,

Kiefer and Wolfowitz (1956)), provided that € = {‘Sloz—gn(")}%, where § could be as large as
desired, one finds
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where k1, ky and k3 depend on ||d>(w, Z2)|loo and 8.
For the second term in (A.3)
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Let
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where W; are i.i.d. random variables, with Ky, y,)(W;) = 0. Then, applying the Rosenthal’s
inequality (see Rosenthal (1970)), we have that
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Using (A.2), (A.4) and (A.5), we have that

log(n)

MISE(C;(u; v), C(u; v)) < 24+1 [k +hon0 + k3 (log(n)) <5+%>}

24l+1
+ K/ + M2—2](S+2).
n
But the expression K’ 24;—“ + M2726+2) has a minimum when the two terms are bal-
anced. For more details about this procedure, see Hérdle et al. (1998). In this case,

~ * 1 *
MISE(C;(u; v), C(u; v)) has a minimum when [* is such that 2" < n 26+ < 20"+1,
Then,

—(s+2)

sup  MISE(Cp+(u; v), C(u; v)) < Kn s+
CceB!, (M)

s+2 ~
= sup nvH MISE(Cp(u; v), C(u; v)) < K.
CeB! (M)

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2

In the same way as in the i.i.d. case, to study the performance of ¢; x under dependence
structure, we have that

MISE(Cy(u; v), C(u; v)) < Epg | Cru; v) — Ci(us ) |3

ZZ Z dfbk jk(u v)

J=lkez? p=h,v.d
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Under the assumption (A1),
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We have, for the first term in (A.7)

Ehie.y) | Cr(us; v) — Cilu; v)H%

=Y Eaeey [@rk — &0)*]
k

<Y Engeo (| @1k v)| o)
k

n

2
1
x =2 MG = Gu(¥)| + [F(X0) = Fn<Xf>|]}

t=1

n

2
1
- Y Euen(l@ms vl sl +ao]
k

t=1

where A(Y;) = A(Y;)I{|A(Y;)| > €} + I{|A(Y;)| < €}). For fixed € > 0, which € = %, we
have that
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Proceeding as in Yu (1993), let {X;, t € Z} be a stationary sequence of random variables,
with the same distribution function F'(x). If F(x) is continuous and

> 1
> — Cov{X;, Sp—1} < 00, (A.8)
t=1 n

whent=1,...,n,S8,=>/_, X; and n — oo, we have that
sup| F (x) — F(x)| £5 0. (A.9)
xeR

For a stationary sequence, the condition (A.8) can be replaced by

1 n
— > " Cov{X;, X»} — 0.
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Under assumption (A4), and knowing that the mixing condition implies ergodicidity, by
the equation (A.9), we have that

Y Enen[@rx — é)*] = 0(1).
K

For the second term in (A.7), we have that
Epe,y) | C1us v) — Crus v) |5 < Eney | € s v) — Eage,y (€ s 0) |3
+ | Enep (€@ v)) — Cus ) 5. (A.10)

For a stationary sequence,
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For the first term in (A.11),
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For the second term in (A.11)
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For the first term in (A.12), under the assumption (A2), we get
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/[a/,a]Z d(r)p(s)drds — Epx y) </[a/,a]2 d(r)g(s)dr ds) <1

and we have that Ej ) (|W;|) < 2~ uniformly in (x; y), forallt=1,...,n
Then, since ZZ:I h < oo, we have that

Z( :) Eh(x y)|W |)(Eh(x y)|Wn hl)i|

2M r Ay
572[2(1‘;)2 }

k Lh=1
2M h 2My 2M
< 1—= i
= (1) =S

h=1
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For the second term in (A.12)

n—1
22{ > (=B, (Wy Wi— h)}

k Lh=y+1

n—1

> (=B, (Wy Wop)
h=y+1

522

n* 4

2

n—1
= _Z|: Z ’Eh(x,y)(WnW - i|»

n h=y+1

Kk
Forallt =1, ...,n, since Ej(y, y)(W;) =0, we have that |Ej . y) (W, W,,_p)| = | Cov(W,,
Wn—h)|-

Moreover, using the Davydov inequality presented by Davydov (1968) and Rio (1993), we
obtain

—Z[ > (1—§)|Eh<x,y><wnwn_h)|}

k Lh=y+1
h) r 1-2
<=z —— )2——(Qa(h)) 7
g[k;l( n/ r—2

~ |

1
X [Ence, ) (IWal )] [Ene, ) (IWn—nl")] ]
For all t = 1,...,n and (x;y), |Wi| < 2~ and [W,|" < (271", so we have that
Epe,y) (IW; ") <2707,
Then

" h r 1-2
(1 _ ;)2r " ah)

h=y+1

By

k

X [Ehu,y)(anlr)]%[Eh<x.y)(|Wn—h|’)]ﬂ

1 " h _2
<22y L » <1 - —)(a(h))l o
n

n r—2h: ]

K Z (a(h))"

h=y+1

where K, —23_l r2

Under the assumption (A3), ) _ y+1 (a (h)) r= O(y_l) and we have that

—K Z (a(h))"

h=y+1
With the results of (A.12) we can conclude for the first term in (A.10) that
Ence,y | €5 v) = Bie ) (Crus; )5
(M)?> 2My 2M L 1

< h+-K,0(y™!
_n+n nz};—i_n ).

*II\)

:—K o(r™").
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And then, by (A.7) and (A.10),
(M)? N 2My ML

Zh K.0(y7")

MISE(C; (u; v), C(u; v)) <

n

As in i.i.d. case, the expression presents two antagonistic terms that must be balanced for
which the expression has a minimum value.

~ * 1 *
So, MISE(C;(u; v), C(u; v)) has a minimum when [* is such that 2 < peT < 2L
Then

MISE(Cp+(u; v), C(u; v)) < Kn™ 1,

which completes the proof of Theorem 2.2.
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