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Abstract. Recently some nonparametric estimation procedures have been
proposed using kernels and wavelets to estimate the copula function. In this
context, knowing that a copula function can be expanded in a wavelet ba-
sis, we propose a new nonparametric copula estimation procedure through
wavelets for independent data and times series under an α-mixing condition.
The main feature of this estimator is that we make no assumptions on the data
distribution and there is no need to use ARMA–GARCH modelling before
estimating the copula. Convergence rates for the estimator were computed,
showing the estimator consistency. Some simulation studies are presented, as
well as analysis of real data sets.

1 Introduction

In applications of insurance and risk management, copulas have been extensively studied
as an important tool to describe the dependence structure between random variables and
stochastic processes. These functions were introduced by Sklar (1959) and most of the liter-
ature focuses on parametric families of copulas like Gaussian, Student t , Frank, Clayton, etc.
For further discussion about mathematical properties and definitions, see Nelsen (2005).

Several methods have been used for copula estimation. In the parametric approach, it is
necessary to select a copula family and then estimate the parameters, usually by maximum
likelihood. For time series data, the usual procedure is to fit ARMA–GARCH models and
then estimate some parametric copula by considering the standardized residuals (for details,
see Patton (2012)).

Nonparametric estimation methods have been widely used. For independent data, Genest,
Massiello and Tribouley (2009) proposed a methodology based on the wavelet decomposition
of the copula density, called rank-based estimator. Another reference is Autin, Le Pennec and
Tribouley (2010), that used a nonlinear procedure based on thresholding methods.

Fermanian and Scaillet (2003) proposed copula estimators based on kernels. The proce-
dure involves estimation of densities, distribution functions, quantiles and finally estimating
the copula function, using the Sklar theorem. Morettin et al. (2010) present a new wavelet
estimator, smoothing the empirical copula. They presented some simulation studies to assess
the estimator performance and showed that the estimator outperformed the kernel-based esti-
mator. But no proof of consistency was given. Morettin et al. (2011) used the same approach
of Fermanian and Scaillet (2003) and derived statistical properties of the estimator.

In this work, we propose a new copula estimator through wavelets, for independent case
and time series data. It is shown, under regularity conditions, that the estimator is consistent.

This paper is organized as follows. In Section 2, we propose the new estimation method
of copulas through wavelets, for the case of independent data and for time series data. We
present two theorems that show the consistency of the estimator for both cases. In Section 3,
we perform some simulation studies and in Section 4 we apply the proposed techniques
to some real data sets. In Section 5, we conclude with remarks about the applicability and
advantages of the wavelet approach.
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2 Wavelet estimators

Since the copula function C(u, v) ∈ L2([0,1]2), considering an appropriated wavelet basis,
it can be expanded as

C(u, v) = ∑
k

cl,k�l,k(u, v) + ∑
j≥l

∑
k∈Z2

∑
μ=h,v,d

d
μ
j,k�

μ
j,k(u, v), (2.1)

where

cl,k =
∫
[0,1]2

C(u, v)�l,k(u, v) dudv,

d
μ
j,k =

∫
[0,1]2

C(u, v)�
μ
j,k(u, v) dudv. (2.2)

For details on copulas, see Nelsen (2005), and for details on wavelets and wavelets expan-
sions, for the bivariate case, see Vidakovic (1999) and Morettin (2014).

Therefore, to estimate the copula function given by (2.1), it is only necessary to estimate
the wavelet coefficients given by (2.2).

In this section, we propose and discuss copula estimation techniques for i.i.d. case and
time series data.

It is known that the space L2([0,1]2) can also be generated by the father wavelets
{�l,k(x, y),k = (k1, k2)}k, hence instead of (2.1) we may consider

Cl(u, v) = ∑
k

cl,k�l,k(u, v), (2.3)

with

cl,k =
∫
[0,1]2

C(u, v)�l,k(u, v) dudv

=
∫
[0,1]2

[∫ 1

s

∫ 1

r
�l,k(u, v) dudv

]
c(r, s) dr ds, (2.4)

where l is an arbitrary resolution level and c(r, s) is the copula density.
Considering r = F(x) and s = G(y), it is easy to see that

cl,k = Eh(x,y)

[∫ 1

G(Y)

∫ 1

F(X)
�l,k(u, v) dudv

]
. (2.5)

2.1 Estimation for i.i.d. case

In order to develop the estimation procedure, let (Xi, Yi), i = 1, . . . , n, be a random sample
from a distribution function H(·, ·), where the marginal distribution functions F(·) and G(·)
are unknown. Let Fn and Gn be their empirical counterparts respectively, that is, Fn(Xi) =
1
n

∑n
k=1 I{Xk ≤ Xi} and Gn(Yi) = 1

n

∑n
k=1 I{Yk ≤ Yi}, where I{x ∈ B} denotes the indicator

function, that is, I{x ∈ B} = 1 if x ∈ B and I{x ∈ B} = 0 otherwise.
From (2.5), the proposed estimator for cl,k is given by

c̃l,k = 1

n

n∑
i=1

[∫ 1

Gn(Yi)

∫ 1

Fn(Xi)
�l,k(u, v) dudv

]
,

and the estimator for C(u, v) is defined by

C̃l(u, v) = ∑
k

c̃l,k�l,k(u;v).
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In order to show the performance of the proposed wavelet estimator, we carry out numeri-
cal studies, in which we will use the Mean Integrated Squared Error (MISE), defined by

MISE
(
C̃l(u, v),C(u, v)

)
= Eh(x,y)

∥∥C̃l(u, v) − C(u, v)
∥∥2

2

= Eh(x,y)

[∫ 1

0

∫ 1

0

(
C̃l(u, v) − C(u, v)

)2
dudv

]
. (2.6)

To derive some properties of the wavelet estimator, suppose that the following assumptions
hold:

(A1) C belongs L2([0,1]2) and to the ball of radius M > 0 in the Besov space B
s,q
2 .

(A2) For every integer h ∈ Z, the joint distribution J ((Xt ;Yt ); (Xt+h;Yt+h)) exists and there
is a positive constant M > 0 such that, for every bounded zero-mean random variable
H(Xt ;Yt ) we have

E
[∣∣H(Xt ;Yt ).H(Xt+h;Yt+h)

∣∣] ≤ ME
[∣∣H(Xt ;Yt )

∣∣]E[∣∣H(Xt+h;Yt+h)
∣∣].

(A3) A bivariate process {(Xt , Yt ), t ∈ Z} isα-mixing and the coefficients α(p) are such that,
for r > 2,

∞∑
p=N

[
α(p)

]1− 2
r = O

(
N−1)

.

(A4) {Xt, t ∈ Z} and {Yt , t ∈ Z} are both α-mixing processes.

Then, we have the following theorem, that shows the estimator consistency for the inde-
pendent case.

Theorem 2.1. Under the assumption (A1), given a sample of size n from a bivariate distri-
bution H(·, ·), with an unknown copula function C(·, ·), choose l∗, such that

2l∗ ≤ n
1

2(s+4) < 2l∗+1.

Let C̃l∗(·, ·) be the estimator of C(·, ·) up to resolution level l∗.
Then, there exists a constant K > 0 such that

sup
C∈Bq

s,2(M)

n
s+2
s+4 MISE

(
C̃l∗(u, v),C(u, v)

) ≤ K.

Proof. See the Appendix. �

2.2 Estimation for time series case

Considering the proposed estimator for the time series case, the objective is to use some
dependence structure and to assume that the processes are α-mixing.

Let {Vt = (Xt , Yt ), t ∈ Z} be a two-dimensional stationary stochastic process, for all t ∈ Z,
and suppose that we have observations {Vt , t = 1, . . . , n}. Thus, the estimator c̃l,k is defined
by

c̃l,k = 1

n

n∑
t=1

[∫ 1

Gn(Yn)

∫ 1

Fn(Xn)
�l,k(u, v) dudv

]
.

It follows that the copula estimator is given by

C̃l(u, v) = ∑
k

c̃l,k�l,k(u, v).
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Then, we have the following result, showing the consistency of the wavelet estimator for
time series data.

Theorem 2.2. Under the assumptions (A1)–(A4), let n be the size of a sample from the
process {Vt , t ∈ Z}. Choose l∗, such that

2l∗ ≤ n
1

2(s+2) < 2l∗+1.

Let C̃l∗(·; ·) the estimator of C(u;v). Then, for a constant K > 0, we have

MISE
(
C̃l∗(u;v),C(u;v)

) ≤ Kn−1.

Proof. See the Appendix. �

Considering the proposed estimators based on wavelets, either the i.i.d. case or the time
series data case, the idea is to start from an adequate resolution level J , which depends on
the sample length n.

The procedure for estimating the copula function through the proposed method is as fol-
lows:

(1) As suggested by Genest, Massiello and Tribouley (2009), compute the index J for which
2J ≤ √

n < 2J+1.
(2) Denote each element of the sample matrix Ap×p by (ap1,p2), where p1,p2 ∈ {1, . . . , p}.

The matrix B is obtained by symmetrizing A, where

B =
⎛
⎝∗A∗ ∗A ∗A∗

A∗ A A∗
∗A∗ ∗A ∗A∗

⎞
⎠ ,

in which ∗A∗ = (ap+1−p1,p+1−p2), A∗ = (ap1,p+1−p2) and ∗A = (ap+1−p1,p2).
(3) Apply the Fast Wavelet Transform on B and extract the element in the second row and

second column of the transform.
(4) Compute the estimated scaling coefficients by the 2D wavelet inverse transform algo-

rithm,

C̃l(u, v) = ∑
k∈Z2

α̃l,k�j,k(u, v), (u, v) ∈ (0,1)2.

(5) Select l∗ and construct the estimated copula C∗ = C̃l∗ .

3 Simulation studies

In this section, we present the performance of the wavelet estimators, proposed in Section 2,
via simulation studies. The procedure was implemented with the Matlab (2013) software and
the wavelet toolbox package (see Misiti et al. (1996)). The steps taken are as follows:

(1) draw a sample (Xi, Yi), for i = 1, . . . , n;
(2) compute the empirical copula function on the grid ( i

n
,

j
n
), for which

Cn

(
i

n
; j

n

)
= 1

n

n∑
k=1

I{Xk ≤ X(i);Yk ≤ Y(j)};

(3) compute the copula estimator Ĉ;
(4) compute the true copula C( i

n
; j

n
) on the grid;
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(5) repeat the steps (1)–(3) “m” times and compute the Bias and mean squared errors (MSE),
defined as

Bias = 1

m

m∑
k=1

(Ĉk − C), MSE = 1

m

m∑
k=1

(Ĉk − C)2.

3.1 I.i.d. case

For the i.i.d. case, we consider the random vector (X,Y ), where[
X

Y

]
∼ N2

([
μx

μy

]
;
[

σ 2
x γx,y

γx,y σ 2
y

])
,

in which, γx,y is the covariance function between the random variables X and Y .
The simulation study was performed with independent and dependent components. In both

cases, we generate 5000 samples of size n = 1024. The results are shown in Table 1 and
Table 2. All values are expressed as multiples of 10−4.

3.1.1 Independent components. We generated samples from (X,Y ), where μx = 1.33,
μy = 4, σ 2

x = 0.8, σ 2
y = 2.86 and γx,y = 0.

Looking at Table 1, for levels l = 4 and l = 5, we see that the estimators have good perfor-
mance in terms of Bias and MSE. The results may be considered satisfactory for independent
components.

Table 1 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—i.i.d. case with independent compo-
nents

Copulas

×10−4 C(0.01;0.01) C(0.05;0.05) C(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C(0.95;0.95) C(0.99;0.99)

True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00

Wavelet estimator D2 (5000 samples)

l = 1

Mean 1.90561 24.92 625.60 2501.69 5625.93 9027.76 9851.28
Bias 0.90561 −0.07571 0.60058 1.69088 0.93426 2.76271 50.2832
MSE 0.00622 0.16637 3.6186 6.13468 3.50512 0.15379 2.52971

l = 2

Mean 1.25984 24.50 625.74 2501.65 5625.80 9028.50 9814.29
Bias 0.25984 −0.49238 0.73695 1.64967 0.79662 3.50903 13.2999
MSE 0.00071 0.02078 0.34866 0.59704 0.33520 0.02173 0.01788

l = 3

Mean 0.86686 24.50 625.72 2501.67 5625.84 9028.50 9087.87
Bias −0.13313 −0.49926 0.71719 1.67639 0.83611 3.50460 6.87077
MSE 0.00099 0.02047 0.34133 0.58830 0.32950 0.02113 0.00531

l = 4

Mean 0.98855 24.50 625.70 2501.69 5625.82 9028.50 9805.67
Bias −0.01144 −0.50075 0.70948 1.69390 0.81623 3.50504 4.67279
MSE 0.001062 0.02078 0.33915 0.58574 0.32783 0.02260 0.00327

l = 5

Mean 0.97892 24.50 625.75 2501.62 5625.89 9028.50 9805.67
Bias −0.02107 0.50252 0.75044 1.62857 0.89153 3.50348 4.67398
MSE 0.00095 0.02120 0.34447 0.59008 0.33201 0.02246 0.00318
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Table 2 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—i.i.d. case with dependent components

Copulas

×10−4 C(0.01;0.01) C(0.05;0.05) C(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C(0.95;0.95) C(0.99;0.99)

True 26.90 197.20 1509.80 3739.90 6508.80 9197.20 9826.90

Wavelet estimator D2 (5000 samples)

l = 1

Mean 28.02 246.54 1693.19 3974.67 6689.60 9247.27 9839.80
Bias 5.547882 24.68301 92.17984 117.39426 90.38550 25.04703 6.43748
MSE 0.025848 0.33976 3.78879 6.04942 3.66830 0.34989 0.03637

l = 2

Mean 28.24 246.79 1693.09 3974.68 6689.39 9247.31 9840.41
Bias 5.65745 24.80838 92.12631 117.39958 90.27855 25.07040 6.74231
MSE 0.02690 0.34450 3.78089 6.04487 3.65641 0.35090 0.03949

l = 3

Mean 29.29 247.85 1693.24 3974.80 6689.53 9246.78 9840.04
Bias 6.18244 25.34008 92.20058 117.45853 90.34739 24.80288 6.55926
MSE 0.03151 0.36085 3.78883 6.05331 3.66433 0.33809 0.02950

l = 4

Mean c 28.46279 253.11 1694.23 3975.69 6690.42 9247.86 9835.70
Bias 5.76884 27.96876 92.69756 117.90462 90.79356 25.34236 4.39136
MSE 0.01991 0.42927 3.83516 6.10562 3.70585 0.35227 0.01050

l = 5

Mean 27.77 235.93 1699.63 3979.61 6694.94 9241.76 9865.37
Bias 5.42284 19.37992 95.39718 119.8644 93.05555 22.29249 19.22409
MSE 0.01437 0.21517 4.06349 6.31467 3.89012 0.26519 0.14911

3.1.2 Dependent components. Considering dependent components, we generated a sample
from (X,Y ), where μx = 3.05, μy = 6.44, σ 2

x = 1.13, σ 2
y = 3.98 and γx,y = 1.49. The results

are shown in Table 2.
Comparing the results in Tables 1 and 2, we observe that the values are different in terms

of Bias and MSE for all resolution levels. Also, the values are higher than of dependent
components, but by considering that the values are expressed as multiples of 10−4, the results
for both cases are satisfactory.

3.2 Time series data

We consider the copula estimator for the VAR(1) process:

Vt = A + BVt−1 + εt , (3.1)

where Vt = (Xt ;Yt )
	, εt ∼ N(0;�) and A = (1;1)	. The matrices B and � are defined

taking into account the type of components. For both, we generate 5000 samples of size
n = 1024. All values are expressed as multiples of 10−4.

3.2.1 Independent components. For this case, let

B =
[
0.25 0

0 0.75

]
and � =

[
0.75 0

0 1.25

]
.

The results are shown in Table 3. These values show that at levels l = 4 and l = 5, the
proposed estimators have good performance, compared to other nonparametric estimators.
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Table 3 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—case with independent components

Copulas

×10−4 C(0.01;0.01) C(0.05;0.05) C(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C(0.95;0.95) C(0.99;0.99)

True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00

Wavelet estimator D2 (5000 samples)

l = 1

Mean 1.79043 25.69 630.85 2502.78 5624.26 9027.92 9851.29
Bias 0.79043 0.69320 5.85242 2.78267 −0.73069 2.92745 50.29317
MSE 0.00066 0.01840 0.42841 0.81192 0.42911 0.01671 0.25307

l = 2

Mean 1.19 24.62 630.91 2502.62 5624.21 9028.70 9814.31
Bias 0.18936 −0.37974 5.91207 2.62732 −0.78241 3.70217 13.31907
MSE 0.00076 0.02233 0.41422 0.78837 0.41536 0.02264 0.017952

l = 3

Mean 0.87626 24.51 630.89 2502.63 5624.32 9028.68 9807.86
Bias −0.12373 −0.48726 5.89316 2.62973 −0.67675 3.68293 6.86647
MSE 0.00105 0.02195 0.40864 0.77857 0.40861 0.02208 0.00529

l = 4

Mean 0.98333 24.50 630.88 2502.66 5624.36 9028.58 9805.67
Bias −0.01667 −0.49575 5.88007 2.66045 −0.63316 3.58812 4.67924
MSE 0.00114 0.02220 0.40662 0.77657 0.40668 0.02339 0.00329

l = 5

Mean 0.98539 24.50 630.92 2502.61 5624.35 9028.60 9805.69
Bias −0.01460 −0.49638 5.91641 2.61533 −0.64523 3.59959 4.68638
MSE 0.00105 0.02250 0.41132 0.78310 0.410305 0.02330 0.00322

For further details, see Fermanian and Scaillet (2003), Morettin et al. (2010) and Morettin
et al. (2011).

3.2.2 Dependent components. In this case, we considered samples, in which

B =
[
0.25 0.2
0.2 0.75

]
and � =

[
0.75 0.5
0.5 1.25

]
.

We observe that the values in Table 4 are similar for all resolution levels. The results in
terms of Bias are higher than those presented by Morettin et al. (2010), but are similar to those
of Fermanian and Scaillet (2003). The difference can be due to the use of scaling functions
only in the wavelet expansion.

Up to this point, we have used the estimator based on the expansion (2.3). Now, we will
consider the estimation procedure based on the expansion (2.1), given by

Ĉ(u;v) = ∑
k

ĉl,k�l,k(u;v) +
J∑

j≥l

∑
k∈Z2

∑
μ=h,v,d

d̂
μ
j,k�

μ
j,k(u;v), (3.2)

and then use a threshold for the wavelet coefficients d̂
μ
j,k. Usually, we may use hard or soft

thresholds, defined by

δH
λ (x) =

{
0, if |x| ≤ λ,

x, if |x| > λ,
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Table 4 Mean, Bias and MSE of the estimator—Wavelet Daubechies D2—case with dependent components

Copulas

×10−4 C(0.01;0.01) C(0.05;0.05) C(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C(0.95;0.95) C(0.99;0.99)

True 26.90 197.20 1509.80 3739.90 6508.80 9197.20 9826.90

Wavelet estimator D2 (5000 samples)

l = 1

Mean 20.52574 172.051 1376.47 3586.99 6465.42 9181.81 9855.91
Bias 6.39937 −25.1177 −132.371 −152.891 −43.4135 −15.3651 28.9833
MSE 0.01052 0.19315 2.20303 2.91158 0.54573 0.07141 0.08477

l = 2

Mean 17.3965 165.603 1374.81 3585.62 6465.04 9185.07 9821.37
Bias −9.52861 −31.5727 −134.02 −154.26 −43.7941 −12.0981 −5.55452
MSE 0.02029 0.21037 2.22979 2.93473 0.54438 0.08432 0.00473

l = 3

Mean 17.7891 164.393 1374.55 3585.35 6465.20 9184.22 9817.49
Bias −9.13599 −32.7832 −134.28 −154.53 −43.6367 −12.9511 −9.43256
MSE 0.01867 0.20959 2.23056 2.93672 0.55730 0.08182 0.014811

l = 4

Mean 18.3893 164.139 1374.60 3585.32 6465.16 9184.03 9815.85
Bias −8.53580 −33.0367 −134.233 −154.568 −43.6722 −13.1460 −11.0753
MSE 0.022259 0.208256 2.242146 2.950065 0.558231 0.080473 0.022071

l = 5

Mean 18.2113 164.098 1374.62 3585.38 6465.17 9187.01 9815.71
Bias −8.71379 −33.0777 −134.221 −154.503 −43.6685 −13.1644 −11.2071
MSE 0.021615 0.207158 2.240509 2.946415 0.560300 0.080146 0.021664

and

δS
λ (x) =

{
0, if |x| ≤ λ,

sin(x)
(|x| − λ

)
, if |x| > λ,

respectively. For more details, see Vidakovic (1999).
Thus, the final estimator is given by

Ĉ(u;v) = ∑
k

ĉl,k�l,k(u;v) +
J∑

j≥l

∑
k∈Z2

∑
μ=h,v,d

δ
H,S
λ

(
d̂

μ
j,k

)
�

μ
j,k(u;v).

In this research, we choose as the threshold the high quantile proposed by Morettin et al.
(2010), in which

δQ(x) =
{

0, if x ≤ Qp(x),

x, if x > Qp(x),

where Qp(x) is the p-quantile of x. We take p = 0.9 in what follows.
We generated 5000 samples of size n = 1024 of the VAR(1) model given by (3.1), with

dependent components. The results are in Table 5.
Comparing the values of Table 4 and Table 5, we can note that there are not many changes

in terms of Bias and MSE for the copula estimation on the borders, but the estimations for
other quantiles are lower in terms of the Bias when the threshold method is used.
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Table 5 Mean, Bias and MSE of the estimator—Wavelet Daubechie D2, case of dependent components with
quantile threshold (p = 0.9)

Copulas

×10−4 C(0.01;0.01) C(0.05;0.05) C(0.25;0.25) C(0.50;0.50) C(0.75;0.75) C(0.95;0.95) C(0.99;0.99)

True 26.90 192.20 1509.80 3739.90 6508.80 9197.20 9826.90

Wavelet estimator D2—threshold (5000 samples)

l = 1

Mean 20.52574 184.39444 1482.05 3656.44 6518.90 9181.81 9822.95
Bias −6.39936 −12.78198 −26.78521 −83.44168 10.062352 −15.36508 −3.97346
MSE 0.01052 0.10116 0.47938 1.22934 0.37617 0.07141 0.00726

l = 2

Mean 17.3965 185.1919 1483.57 3656.22 6517.98 9185.07 9821.37
Bias −9.52861 −11.98454 −25.27142 −83.66274 9.15075 −12.09881 −5.55453
MSE 0.02029 0.11018 0.50373 1.23807 0.361494 0.08432 0.00473

l = 3

Mean 17.78912 185.72434 1483.41 3656.32 6518.07 9184.22 9817.49
Bias −9.13599 −11.45208 −25.42999 −83.57007 9.23171 −12.95116 −9.43256
MSE 0.01867 0.12077 0.50173 1.24342 0.36941 0.08182 0.01481

l = 4

Mean 18.38931 185.65573 1483.51 3656.32 6518.10 9184.03 9815.84
Bias −8.53580 −11.52069 −25.32560 −83.56696 9.26386 −13.14606 −11.07530
MSE 0.02225 0.11923 0.50913 1.25208 0.37141 0.08047 0.02207

l = 5

Mean 18.21132 185.73713 1483.50 3656.31 6518.09 9184.01 9815.71
Bias −8.71379 −11.43929 −25.33263 −83.57427 9.26093 −13.16446 −11.20713
MSE 0.02161 0.12264 0.50845 1.25159 0.37387 0.08014 0.02166

Figures 1 and 2 show the graphical representations of the estimators for different resolution
levels, without and with the threshold for dependent components.

3.3 Additional simulations

To evaluate the results of the proposed methodology, we consider an additional simulation
study, as presented by Autin, Le Pennec and Tribouley (2010). Consider the empirical loss
functions, given by

Error(Ĉl∗,Cθ) = 1

N2 ‖Ĉl∗ − Cθ‖2
2

= 1

N2

N∑
i=1

N∑
j=1

{
Ĉl∗

(
i

N
,

j

N

)
− Cθ

(
i

N
,

j

N

)}2
,

and

RE(Ĉl∗,Cθ) = Error(Ĉl∗,Cθ ) ×
[

1

N2 ‖Cθ‖2
2

]−1
,

where RE is the relative error, Ĉl∗ is the estimated copula function on the grid ( i
N

,
j
N

),
i, j = 1, . . . ,N and Cθ is the parametric copula, with fixed θ .

The procedure is as follows:
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Figure 1 Graphical representations of the estimated copula at different levels—dependent components without
thresholds. Last graphic is for the Normal copula.

(1) draw a sample of size n from a parametric copula Cθ ;
(2) compute a copula estimator using wavelets;
(3) consider N = n and compute the RE between the parametric copula and the estimated

copula on the grid;
(4) repeat the steps (1)–(3) r times;
(5) compute the mean and the standard deviation (SD) of the r replications of RE.

We considered r = 5000 replicates for samples of size n = 256 and n = 1024, from Nor-
mal, Student-t, Gumbel, Clayton and Frank copula, with fixed parameters. For the normal
copula, the correlation coefficient is 0.5. For the Student-t copula the correlation coefficient
is 0.5 and degree of freedom is 5. For the Gumbel, Clayton and Frank copula, we take the
parameter of dependence as 5. The idea is to study the estimation performance for different
sample sizes.

From Table 6 and Table 7, we notice that the SD of the RE decreases when sample size
increases. This behavior is the same for all resolution levels.
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Figure 2 Graphical representations of the estimated copula at different levels—dependent components with
quantile threshold (p = 0.9). Last graphic is for the Normal copula.

4 Applications

In this section, we apply the proposed estimation procedure for two pairs of series.

4.1 Ibovespa—IPC

Ibovespa is an index of about 50 stocks that are traded on the BM&FBOVESPA (São Paulo
Stock Exchange). IPC (Índice de Precios y Cotizaciones) is an index of 35 stocks that are
traded on the Mexican Stock Exchange.

We consider daily returns recorded from September 4th, 1995 to December 30th, 2004
with 1981 observations. The correlation coefficient is moderate, equal to 0.5516. Figure 3
shows the scatter plot of returns of the Ibovespa and IPC.

To verify if the proposed estimator is appropriate, we calculated the error and the relative
error between the proposed wavelet estimator (for different wavelets D2, D4, D6 and D8) and
five estimated parametric copulas. The values are reported in Table 8, where we see that the
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Table 6 Mean and standard deviation(SD) of RE for the wavelet estimator and some parametric copulas, n =
256

Wavelets

n = 256 Daubechie D2 Daubechie D4 Daubechie D6 Daubechie D8

Copulas Mean SD Mean SD Mean SD Mean SD

l = 1

Normal 43.3428 36.5873 43.5456 36.4782 42.7880 36.5374 44.5405 36.5577
Student-t 43.2367 36.2312 43.3472 36.1408 42.6834 36.2340 44.3287 36.2324
Gumbel 39.5915 35.7352 38.9729 35.6866 38.1589 35.7829 40.0677 35.7841
Clayton 41.3565 38.6787 40.8990 38.5900 39.9253 38.7219 42.1046 38.7085
Frank 42.9201 37.1642 42.7577 37.1098 42.0791 37.1950 43.8146 37.1927

l = 2

Normal 44.0426 36.5550 44.4046 36.5556 44.3168 36.5514 44.3604 36.5497
Student-t 43.9318 36.2537 44.2702 36.2531 44.1876 36.2506 44.2372 36.2585
Gumbel 39.0460 35.7829 39.3049 35.7858 39.1993 35.7865 39.2538 35.7889
Clayton 40.8397 38.7152 41.1343 38.7115 41.0108 38.7124 41.0713 38.7162
Frank 43.2385 37.1989 43.5473 37.2062 43.4611 37.2030 43.5114 37.2035

l = 3

Normal 44.9479 36.5558 45.0958 36.5598 45.0678 36.5578 45.0677 36.5588
Student-t 44.8298 36.2573 44.9745 36.2613 44.9484 36.2593 44.9481 36.2594
Gumbel 39.6670 35.7895 39.7959 35.7938 39.7575 35.7917 39.7527 35.7917
Clayton 41.4846 38.7158 41.6213 38.7195 41.5805 38.7163 41.5768 38.7167
Frank 44.0507 37.2066 44.1870 37.2115 44.1612 37.2084 44.1612 37.2086

l = 4

Normal 45.4800 36.5596 45.5347 36.5612 45.5368 36.5602 45.5394 36.5604
Student-t 45.3584 36.2601 45.4129 36.2606 45.4170 36.2600 45.4176 36.2603
Gumbel 40.0904 35.7915 40.1378 35.7923 40.1366 35.7925 40.1381 35.7912
Clayton 41.9263 38.7154 41.9747 38.7160 41.9738 38.7156 41.9753 38.7152
Frank 44.5467 37.2091 44.5975 37.2109 44.5998 37.2098 44.6017 37.2101

l = 5

Normal 45.7792 36.5626 45.7935 36.5624 45.7967 36.5622 45.7998 36.5623
Student-t 45.6582 36.2612 45.6730 36.2614 45.6764 36.2616 45.6790 36.2615
Gumbel 40.3360 35.7940 40.3472 35.7935 40.3498 35.7935 40.3520 35.7938
Clayton 42.1822 38.7166 42.1934 38.7161 42.1961 38.7163 42.1986 38.7163
Frank 44.8271 37.2120 44.8409 37.2120 44.8440 37.2120 44.8466 37.2120

values of the copula estimate with the wavelet D2 and those using the Student-t copula, are
similar.

Figure 4 shows the estimated copula and respective contour plots for this case. To evaluate
how the data are associated, we propose an empirical estimation of tail dependence using the
estimated copulas, as presented by Caillault and Guégan (2005). Figure 5 shows the estimated
empirical tail dependence measures for the Ibovespa and IPC series. These are important tools
to describe the properties of the copulas with respect to their tail behavior. These quantities
are also useful for computing risk measures.

4.2 Net profit—Sales margin

We consider now annual rates of the sales performance of 1018 companies in Brazil, 2006
according to Exame magazine. This data set was used by Latif and Morettin (2010), who
suggested to analyze the normalized ranks of Net profit (US$) and Sales margin (%), denoted
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Table 7 Mean and standard deviation(SD) of RE for the wavelet estimator and some parametric copula, n =
1024

Wavelets

n = 1024 Daubechie D2 Daubechie D4 Daubechie D6 Daubechie D8

Copulas Mean SD Mean SD Mean SD Mean SD

l = 1

Normal 11.0341 8.6375 11.0549 8.6368 11.0471 8.6367 11.0788 8.6373
Student-t 11.2959 9.1673 11.3151 9.1663 11.3085 9.1672 11.3383 9.1667
Gumbel 9.8137 8.8952 9.8232 8.8950 9.8139 8.8954 9.8470 8.8953
Clayton 10.4294 9.5182 10.4388 9.5182 10.4289 9.5188 10.4655 9.5188
Frank 0.9561 9.2673 10.9718 9.2675 10.9654 9.2676 10.9945 9.2677

l = 2

Normal 11.1450 8.6372 11.1601 8.6373 11.1607 8.6374 11.1624 8.6372
Student-t 11.4071 9.1674 11.4216 9.1674 11.4224 9.1674 11.4241 9.1673
Gumbel 9.8933 8.8956 9.9056 8.8957 9.9052 8.8957 9.9071 8.8957
Clayton 10.5110 9.5190 10.5240 9.5188 10.5236 9.5186 10.5255 9.5188
Frank 11.0574 9.2677 11.0706 9.2674 11.0713 9.2676 11.0731 9.2677

l = 3

Normal 11.2099 8.6375 11.2169 8.6376 11.2175 8.6376 11.2179 8.6376
Student-t 11.4719 9.1674 11.4788 9.1674 11.4794 9.1674 11.4798 9.1674
Gumbel 9.9452 8.8959 9.9511 8.8959 9.9513 8.8959 9.9516 8.8958
Clayton 10.5653 9.5189 10.5714 9.5189 10.5717 9.5189 10.5720 9.5189
Frank 11.1177 9.2675 11.1241 9.2675 11.1247 9.2675 11.1251 9.2676

l = 4

Normal 11.2441 8.6376 11.2472 8.6377 11.2478 8.6377 11.2480 8.6377
Student-t 11.5061 9.1675 11.5092 9.1675 11.5098 9.1675 11.5101 9.1675
Gumbel 9.9731 8.8959 9.9758 8.8959 9.9761 8.8959 9.9764 8.8959
Clayton 10.5945 9.5189 10.5972 9.5189 10.5977 9.5189 10.5979 9.5189
Frank 11.1497 9.2676 11.1525 9.2676 11.1531 9.2676 11.1533 9.2676

l = 5

Normal 11.5250 8.6377 11.2640 8.6377 11.2643 8.6377 11.2644 8.6377
Student-t 11.5250 9.1675 11.5261 9.1675 11.5263 9.1675 11.5265 9.1675
Gumbel 9.9886 8.8959 9.9895 8.8959 9.9897 8.8959 9.9898 8.8959
Clayton 10.6107 9.5189 10.6116 9.5189 10.6118 9.5189 10.6120 9.5189
Frank 11.1672 9.2676 11.1683 9.2676 11.1685 9.2676 11.1687 9.2676

Figure 3 Scatter plot for the returns of Ibovespa and IPC series.
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Table 8 Error and RE of copula estimators, for the Ibovespa and IPC series

Parametric Wavelet D2 Wavelet D4 Wavelet D6 Wavelet D8

Copula Estimative Error RE Error RE Error RE Error RE

Normal 0.4356 0.3418 2.6173 0.3418 2.6175 0.3418 2.6176 0.3418 2.6177
Student-t 0.4439 (7.45)∗ 0.2933 2.2401 0.2934 2.2403 0.2934 2.2403 0.2934 2.2405
Gumbel 1.3559 1.1778 9.0066 1.1778 9.0069 1.1778 9.0070 1.1778 9.0071
Clayton 0.6529 0.8760 7.0072 0.8760 7.0075 0.8760 7.0076 0.8760 7.0077
Frank 2.8910 0.3743 2.8398 0.3743 2.8400 0.3743 2.8401 0.3744 2.8402

∗The value inside of (·) represents the estimated degrees of freedom.

Figure 4 Graphical representations of the estimated copulas (wavelets in the first line and Student-t in the
second line) and contour plots for the Ibovespa and IPC series.

Figure 5 Graphical representations of the estimated tail dependence for the Ibovespa and IPC series.



Copula estimation 453

Figure 6 Scatter plot of normalized ranks for the Net profit and Sales margin series.

Table 9 Error and RE of copula estimators, for the Net profit and Sales margin series

Parametric Wavelet D2 Wavelet D4 Wavelet D6 Wavelet D8

Copula Estimative Error RE Error RE Error RE Error RE

Student-t 0.85 (3.35)∗ 1.05 6.76 1.05 6.76 1.05 6.76 1.05 6.77
Gumbel 2.47 2.85 18.64 2.85 18.64 2.85 18.64 2.85 18.65
Clayton 3.57 0.56 3.73 0.56 3.73 0.56 3.74 0.56 3.74
Frank 10.39 0.99 6.33 0.99 6.33 0.99 6.33 0.99 6.33

∗The value inside of (·) represents the estimated degrees of freedom.

by u and v, respectively, in order to find the dependence structure. The correlation coefficient
between u and v is 0.8455. See Figure 6.

In Table 9, we present the error and the relative error between the proposed wavelet es-
timator (for different wavelets D2, D4, D6 and D8) and five estimated parametric copulas.
The closest values are for the estimated copula with Wavelet D2 and the estimated Clayton
copula.

Figure 7 shows the graphical representations of the estimated wavelet, the estimated Clay-
ton copula and contour plots. Figure 8 shows the estimated empirical tail dependence mea-
sures.

5 Conclusions

In this paper, we proposed a new procedure for the estimation of a copula function by di-
rect expansion on wavelet bases. An advantage of the wavelet approach is that it can be
used directly with the original series, without estimating densities, distribution functions or
assumptions about the data distribution.

Although the idea here was to use these estimators with time series data, they can also be
applied to random samples (i.i.d. data). The aim was to propose a methodology with better
results in terms of Bias and of MSE, compared with the results obtained through kernels.
We have established consistency of the estimators for i.i.d. and time series data. We reported
some simulation studies to assess the performance of the proposed estimators, and the find-
ings show that they perform equally or outperform previous proposals. We also applied the
proposed estimation procedure to real data sets.
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Figure 7 Graphical representations of the estimated copulas (wavelets in the first line and Clayton in the second
line) and contour plots for the Net profit and Sales margin series.

Figure 8 Graphical representations of the estimated tail dependence for the Net profit and Sales margin series.

Appendix

Proof of Theorem 2.1

Let {
�l,k(x;y),k = (k1, k2)

}
k ∪ {

�
μ
j,k(x;y),k = (k1, k2),μ = h, v, d

}
j≥l,k

be an orthonormal basis of L2([0,1]2). We have that

MISE
(
C̃l(u;v),C(u;v)

) ≤ Eh(x,y)

∥∥C̃l(u;v) − Cl(u;v)
∥∥2

2

+
∥∥∥∥∑
j≥l

∑
k∈Z2

∑
μ=h,v,d

d
μ
j,k�

μ
j,k(u;v)

∥∥∥∥2

2
. (A.1)
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If C ∈ B
s,q
p , with s > 0, 1 ≤ p, q < ∞, then

‖C‖s,p,q = ‖cl.‖p +
(∑

j≥l

(
2j (s+ 2

p
+1)‖dj.‖p

)q) 1
q

.

Under assumption (A1), using the Hölder inequality, with 1
q

+ 1
q ′ = 1 and p = 2, for the

second term in (A.1),∥∥∥∥∑
j≥l

∑
k,μ

d
μ
j,k�

μ
j,k(u;v)

∥∥∥∥
2
≤

(∑
j≥l

(
2j (s+2)

∥∥∥∥∑
k,μ

d
μ
j,k�

μ
j,k(u;v)
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2
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×
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j≥l

(
2−j (s+2))q ′)1/q ′

≤ ‖C‖s,2,q

(∑
j≥l

2−j (s+2)q ′
)1/q ′

≤ M2−2l(s+2). (A.2)

Note that, as in Genest, Massiello and Tribouley (2009), for the first term in (A.1)

Eh(x,y)

∥∥C̃l(u;v) − Cl(u;v)
∥∥2

2 ≤ 2Eh(x,y)

∥∥C̃l(u;v) − Ĉl(u;v)
∥∥2

2

+ 2Eh(x,y)

∥∥Ĉl(u;v) − Cl(u;v)
∥∥2

2, (A.3)

where

ĉl,k = 1

n

n∑
i=1

[∫ 1

G(Yi)

∫ 1

F(Xi)
�l,k(u;v) dudv

]
,

with

Ĉl(u;v) = ∑
k

ĉl,k�l,k(u;v).

Now, we want to find upper bounds for (A.3), separately.
For the first term in (A.3),
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− (
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)(
1 − G(Yi)

)]}2

≤ ∑
k

Eh(x,y)

(∥∥�l,k(u;v)
∥∥∞

)2

×
{

1

n

n∑
i=1

[∣∣G(Yi) − Gn(Yi)
∣∣ + ∣∣F(Xi) − Fn(Xi)

∣∣]}2

.

Let
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where k1, k2 and k3 depend on ‖�(w; z)‖∞ and δ.
For the second term in (A.3)
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Let
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where Wi are i.i.d. random variables, with Eh(xi ,yi )(Wi) = 0. Then, applying the Rosenthal’s
inequality (see Rosenthal (1970)), we have that
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Using (A.2), (A.4) and (A.5), we have that
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anced. For more details about this procedure, see Härdle et al. (1998). In this case,
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This completes the proof of Theorem 2.1.

Proof of Theorem 2.2

In the same way as in the i.i.d. case, to study the performance of c̃l,k under dependence
structure, we have that
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Under the assumption (A1),∥∥∥∥∑
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∥∥∥∥2

2
≤ M2−2l(s+2). (A.6)

Then, it is only necessary to study

Eh(x,y)

∥∥C̃l(u;v) − Cl(u;v)
∥∥2

2 ≤ 2Eh(x,y)

∥∥C̃l(u;v) − Ĉl(u;v)
∥∥2

2

+ 2Eh(x,y)

∥∥Ĉl(u;v) − Cl(u;v)
∥∥2

2, (A.7)

where

ĉl,k = 1

n

n∑
t=1

[∫ 1

G(Yt )

∫ 1

F(Xt )
�l,k(u;v) dudv

]
.

We have, for the first term in (A.7)

Eh(x,y)

∥∥C̃l(u;v) − Ĉl(u;v)
∥∥2

2

= ∑
k

Eh(x,y)

[
(c̃l,k − ĉl,k)2]

≤ ∑
k

Eh(x,y)

(∥∥�l,k(u;v)
∥∥∞

)2

×
{

1

n

n∑
t=1

[∣∣G(Yt) − Gn(Yt )
∣∣ + ∣∣F(Xt) − Fn(Xt)

∣∣]}2

= ∑
k

Eh(x,y)

(∥∥�l,k(u;v)
∥∥∞

)2

{
1

n

n∑
t=1

[∣∣�(Xt)
∣∣ + ∣∣�(Yt )

∣∣]}2

,

where �(Yi) = �(Yi)(I{|�(Yi)| > ε} + I{|�(Yi)| ≤ ε}). For fixed ε > 0, which ε = 1
n

, we
have that ∑

k

Eh(x,y)

[
(c̃l,k − ĉl,k)2]

≤ 22l(∥∥�(w; z)∥∥∞
)2

× ∑
k

{
k1

1

n2 +
(
k2 + k3

1

n

)[
P

{∣∣�(Xi)
∣∣ > ε

} + P
{∣∣�(Yi)

∣∣ > ε
}]}

.

Proceeding as in Yu (1993), let {Xt , t ∈ Z} be a stationary sequence of random variables,
with the same distribution function F(x). If F(x) is continuous and

∞∑
t=1

1

n2 Cov{Xt,Sn−1} < ∞, (A.8)

when t = 1, . . . , n, Sn = ∑n
t=1 Xt and n → ∞, we have that

sup
x∈R

∣∣Fn(x) − F(x)
∣∣ q.c−→ 0. (A.9)

For a stationary sequence, the condition (A.8) can be replaced by

1

n

n∑
t=1

Cov{Xt,Xn} −→ 0.
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Under assumption (A4), and knowing that the mixing condition implies ergodicidity, by
the equation (A.9), we have that∑

k

Eh(x,y)

[
(c̃l,k − ĉl,k)2] = o(1).

For the second term in (A.7), we have that

Eh(x,y)

∥∥Ĉl(u;v) − Cl(u;v)
∥∥2

2 ≤ Eh(x,y)

∥∥Ĉ(u;v) −Eh(x,y)

(
Ĉ(u;v)

)∥∥2
2

+ ∥∥Eh(x,y)

(
Ĉ(u;v)

) − C(u;v)
∥∥2

2. (A.10)

For a stationary sequence,∥∥Eh(x,y)

(
Ĉ(u;v)

) − C(u;v)
∥∥2

2 = 0.

Then, for the first term in (A.10)

Eh(x,y)

∥∥Ĉ(u;v) −Eh(x,y)

(
Ĉ(u;v)

)∥∥2
2

= ∑
k

Eh(x,y)

[(
ĉl,k −Eh(x,y)(ĉl,k)

)2]

= ∑
k

Eh(x,y)

[(
1

n

n∑
t=1

Wt

)2]

= 1

n2

∑
k

Eh(x,y)

[
n∑

t=1

W 2
t +

n∑
t=1

n∑
h=1
t �=h

WtWh

]

= 1

n2

∑
k

[
n∑

t=1

Eh(x,y)

(
W 2

t

)

+ 2
n−1∑
h=1

(n − h)Eh(x,y)(WnWn−h)

]
, (A.11)

where

Wt =
∫ 1

G(Yt )

∫ 1

F(Xt )
�l,k(u;v) dudv −Eh(x,y)

(∫ 1

G(Yt )

∫ 1

F(Xt )
�l,k(u;v) dudv

)
.

For the first term in (A.11),

1

n2

∑
k

[
n∑

t=1

Eh(x,y)

(
W 2

t

)]

≤ 1

n2

∑
k

n∑
t=1

Eh(x,y)

[(∫ 1

G(Yt )

∫ 1

F(Xt )
�l,k(u;v) dudv

)2]

≤ 1

n2

∑
k

n∑
t=1

Eh(x,y)

[(
2−l

∫ 2l−k2

2lG(Yt )−k2

∫ 2l−k1

2lF (Xt )−k1

φ(r)φ(s) dr ds

)2]

≤ 2−2l

n2

∑
k

[
n∑

t=1

Eh(x,y)

(
M2

1
)] = 2−2l

n

∑
k

M2
1 ,

where 2lu − k1 = r , 2lv − k2 = s, and

M1 = sup
l,k

∥∥∥∥
∫ 2l−k2

2lG(Yt )−k2

∫ 2l−k1

2lF (Xt )−k1

φ(r)φ(s) dr ds

∥∥∥∥∞
.
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For the second term in (A.11)

2

n2

∑
k

[
n−1∑
h=1

(n − h)Eh(x,y)(WnWn−h)

]

= 2

n2

∑
k

[ γ∑
h=1

(n − h)Eh(x,y)(WnWn−h)

+
n−1∑

h=γ+1

(n − h)Eh(x,y)(WnWn−h)

]
. (A.12)

For the first term in (A.12), under the assumption (A2), we get

2

n2

∑
k

[ γ∑
h=1

(n − h)Eh(x,y)(WnWn−h)

]

≤ 2M

n

∑
k

[ γ∑
h=1

(
1 − h

n

)(
Eh(x,y)|Wn|)(Eh(x,y)|Wn−h|)

]
.

But, for all t = 1, . . . , n,

Eh(x,y)

(|Wt |) = Eh(x,y)

∣∣∣∣
∫ 1

G(Yt )

∫ 1

F(Xt )
�l,k(u;v) dudv

−Eh(x,y)

(∫ 1

G(Yt )

∫ 1

F(Xt )
�l,k(u;v) dudv

)∣∣∣∣
= 2−l

Eh(x,y)

∣∣∣∣
∫ 2l−k2

2lG(Yt )−k2

∫ 2l−k1

2lF (Xt )−k1

φ(r)φ(s) dr ds

−Eh(x,y)

(∫ 2l−k2

2lG(Yt )−k2

∫ 2l−k1

2lF (Xt )−k1

φ(r)φ(s) dr ds

)∣∣∣∣,
where ∫ 2l−k2

2lG(Yt )−k2

∫ 2l−k1

2lF (Xt )−k1

φ(r)φ(s) dr ds ≤
∫
[a′,a]2

φ(r)φ(s) dr ds.

Consider that φ(r)φ(s) is nonnulll at [a′, a]2. So, we have that∣∣∣∣
∫
[a′,a]2

φ(r)φ(s) dr ds −Eh(x,y)

(∫
[a′,a]2

φ(r)φ(s) dr ds

)∣∣∣∣ ≤ 1,

and we have that Eh(x,y)(|Wt |) ≤ 2−l uniformly in (x;y), for all t = 1, . . . , n.
Then, since

∑γ
h=1 h < ∞, we have that

2M

n

∑
k

[ γ∑
h=1

(
1 − h

n

)(
Eh(x,y)|Wn|)(Eh(x,y)|Wn−h|)

]

≤ 2M

n

∑
k

[ γ∑
h=1

(
1 − h

n

)
2−2l

]

≤ 2M

n

γ∑
h=1

(
1 − h

n

)
= 2Mγ

n
− 2M

n2

γ∑
h=1

h.
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For the second term in (A.12)

2

n2

∑
k

[
n−1∑

h=γ+1

(n − h)Eh(x,y)(WnWn−h)

]

≤ 2

n2

∑
k

∣∣∣∣∣
n−1∑

h=γ+1

(n − h)Eh(x,y)(WnWn−h)

∣∣∣∣∣
≤ 2

n

∑
k

[
n−1∑

h=γ+1

∣∣Eh(x,y)(WnWn−h)
∣∣],

For all t = 1, . . . , n, since Eh(x,y)(Wt) = 0, we have that |Eh(x,y)(WnWn−h)| = |Cov(Wn,

Wn−h)|.
Moreover, using the Davydov inequality presented by Davydov (1968) and Rio (1993), we

obtain

2

n

∑
k

[
n−1∑

h=γ+1

(
1 − h

n

)∣∣Eh(x,y)(WnWn−h)
∣∣]

≤ 2

n

∑
k

[
n∑

h=γ+1

(
1 − h

n

)
2

r

r − 2

(
2α(h)

)1− 2
r

× [
Eh(x,y)

(|Wn|,r)] 1
r
[
Eh(x,y)

(|Wn−h|r)] 1
r

]
.

For all t = 1, . . . , n and (x;y), |Wt | ≤ 2−l and |Wt |r ≤ (2−l)r , so we have that
Eh(x,y)(|Wt |r ) ≤ 2−lr .

Then

2

n

∑
k

[
n∑

h=γ+1

(
1 − h

n

)
2

r

r − 2

(
2α(h)

)1− 2
r

× [
Eh(x,y)

(|Wn|r)] 1
r
[
Eh(x,y)

(|Wn−h|r)] 1
r

]

≤ 1

n
22l23− 1

r
r

r − 2

n∑
h=γ+1

(
1 − h

n

)(
α(h)

)1− 2
r 2−2l

≤ 1

n
Kr

n∑
h=γ+1

(
α(h)

)1− 2
r ,

where Kr = 23− 1
r

r
r−2 .

Under the assumption (A3),
∑n

h=γ+1(α(h))1− 2
r = O(γ −1), and we have that

1

n
Kr

n∑
h=γ+1

(
α(h)

)1− 2
r = 1

n
KrO

(
γ −1)

.

With the results of (A.12) we can conclude for the first term in (A.10) that

Eh(x,y)

∥∥Ĉl(u;v) −Eh(x,y)

(
Ĉl(u;v)

)∥∥2
2

≤ (M1)
2

n
+ 2Mγ

n
− 2M

n2

γ∑
h=1

h + 1

n
KrO

(
γ −1)

.
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And then, by (A.7) and (A.10),

MISE
(
C̃l(u;v),C(u;v)

) ≤ (M1)
2

n
+ 2Mγ

n
− 2M

n2

γ∑
h=1

h
1

n
KrO

(
γ −1)

≤ K

[
2

n
+ M2−2l(s+2)

]
.

As in i.i.d. case, the expression presents two antagonistic terms that must be balanced for
which the expression has a minimum value.

So, MISE(C̃l(u;v),C(u;v)) has a minimum when l∗ is such that 2l∗ ≤ n
1

2(s+2) < 2l∗+1.
Then

MISE
(
C̃l∗(u;v),C(u;v)

) ≤ Kn−1,

which completes the proof of Theorem 2.2.
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