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Abstract. Multivariate options are adequate tools for multi-asset risk man-
agement. The pricing models derived from the pioneer Black and Scholes
method under the multivariate case consider that the asset-object prices fol-
low a Brownian geometric motion. However, the construction of such meth-
ods imposes some unrealistic constraints on the process of fair option cal-
culation, such as constant volatility over the maturity time and linear cor-
relation between the assets. Therefore, this paper aims to price and ana-
lyze the fair price behavior of the call-on-max (bivariate) option consider-
ing marginal heteroscedastic models with dependence structure modeled via
copulas. Concerning inference, we adopt a Bayesian perspective and compu-
tationally intensive methods based on Monte Carlo simulations via Markov
Chain (MCMC). A simulation study examines the bias, and the root mean
squared errors of the posterior means for the parameters. Real stocks prices
of Brazilian banks illustrate the approach. For the proposed method is verified
the effects of strike and dependence structure on the fair price of the option.
The results show that the prices obtained by our heteroscedastic model ap-
proach and copulas differ substantially from the prices obtained by the model
derived from Black and Scholes. Empirical results are presented to argue the
advantages of our strategy.

1 Introduction

An option is a financial derivative which the investor acquires the right, but not
the obligation, to buy or sell a particular asset for a predetermined price and time,
where that price is known as the exercise price. Thus, a put option may be inter-
preted as an auto insurance policy, where it allows the investor to recover a pre-
established value for the asset, even if it has devalued. Regarding the call option, it
is compared to the signal paid in the purchase of a house, as it guarantees the fixed
price and also the preference in the purchase.

The elaboration of models with the purpose of pricing options began with the
authors Black and Scholes (1973) and Merton (1973). The model proposed by
the authors uses Brownian motion techniques to obtain the fair price of an option
in the univariate case. In the multivariate case, there are several methodologies
for achieving the fair price of the options, one of them being the model of Black
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and Scholes multivariate, where this approach consists of the use of Brownian
geometric movement for n assets considering the volatility constant over time.

Tools that accommodate the co-movements between its underlying processes
are needed to understand the price behavior of a multivariate option. A primary
tool that is widely used by the methods derived from the traditional Black and
Scholes model is the multivariate normal distribution modeling. However, the use
of this approach implies in linear associations as a measure of dependence between
the assets, and empirical evidence shows that a real association between financial
series is much more complex (Lopes and Pessanha, 2018).

The works of Margrabe (1978), Johnson and David (1987), Nelsen (2006) and
Shimko (1994) used the linear correlation coefficient to analyze and capture de-
pendence among the underlying assets. However, Embrechts, McNeil and Strau-
mann (2002) and Forbes and Rigobon (2002) criticize the use of this tool, where
the authors highlight the stylized facts in finance, such as the heavy tails of re-
turns distributions, their autocorrelations, groupings of volatilities over time and
non-normality.

As an alternative, the use of the copulas theory allows the joint modeling of
the assets in which there is a separation of the structure of dependence between
the variables and their marginal distributions, where this dependence can be lin-
ear, nonlinear and even dependence on the tails. Therefore, Rosenberg (2002) and
Cherubini and Luciano (2002) used the copula theory in an attempt to capture the
dependency among the assets in the derivative pricing process.

Besides, many models use the premise of constant volatility over time, which
may not be observed in finance series (French, William and Stambaugh, 1987;
Franses and Van Dijk, 2000). Thus, to make the pricing process more realistic,
Duan (1995) explored the concept of option pricing considering the heteroscedas-
ticity of the assets, where the author proposed to follow a modification of the
GARCH process.

Therefore, this paper aims to price and analyze the fair price behavior of bi-
variate call-on-max option considering marginal heteroscedastic models and the
dependence structure modeled via copulas. Besides, the results found will be com-
pared with the values obtained by the classic extended models of Black and Sc-
holes, known as Stulz Closed-form for a call-on-max option.

This work differs from the others found in the literature in two aspects: no stud-
ies are comparing the heteroscedastic approach with the classical one (derivations
from the Black and Scholes model) for the bivariate case and, furthermore, there
are no studies with this methodology considering the Brazilian stock market.

The structure of this paper is divided as follows. Section 2 presents the classical
models and the heteroscedastic approach for pricing call-on-max option. Section 3
gives the Bayesian inference procedure. Section 4 presents a simulation study.
Section 5 shows the application of the methodology in real data of the Brazilian
stock market. Finally, Section 6 gives some final remarks on this work.
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2 Copula functions

Copulas are useful tools in constructing joint distributions (Sharifonnasabi, Ala-
matsaz and Kazemi, 2018). That is, copula is a multidimensional distribution func-
tion in which the marginal distributions are uniform in [0,1]. A bivariate copula is
a function that satisfies C : I 2 −→ I ∈ [0,1] that satisfies the following conditions

C(x1,0) = C(0, x1) = 0 and C(x1,1) = C(1, x1) = x1, x1 ∈ I,

and the 2-increasing condition

C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0,

for all u1, u2, v1 and v2 ∈ [0,1] such u1 ≤ u2 and v1 ≤ v2.
One of the most famous theorems in copula theory is the Sklar theorem. Accord-

ing to Sklar’s theorem (Sklar, 1959), any bivariate cumulative distribution HS1,S2

can be represented as a function of the marginal distributions FS1 and FS2 . Be-
sides, if the marginal distributions are continuous, the copula exists, is unique and
is given by

HS1,S2(x1, x2) = C
(
FS1(x1),FS2(x2)

)
,

which C(u, v) = P(U ≤ u,V ≤ v), U = FS1(x1) and V = FS2(x2).
In the case of continuous and differentiable marginal distributions, the joint den-

sity function of the copula is given by

f (x1, x2) = fS1(x1)fS2(x2)c
(
FS1(x1),FS2(x2)

)
,

which fS1(x1) and fS2(x2) are the density for the distribution function FS1(x1) and
FS2(x2), respectively, and

c(u, v) = ∂2C(u, v)

∂uv
,

is the density of copula. For further details about copulas, see Nelsen (2006) and
Sanfins and Valle (2012). In this work we will use the Normal, t-Student, Gumbel,
Frank and Joe copulas. Details are given in the Appendix.

3 Conceptual framework and model formulation

In this section, we introduce the Stulz (1982) model, which is an extension of the
Black and Scholes model for the bivariate case for the call-on-max option and
the Duan (1995) model, where the author considers the heteroskedasticity of the
underlying assets of the option. Besides, we will introduce how to use the copula
theory to model the joint distribution of assets, to capture non-linear dependence
between the assets.
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3.1 Call-on-max option

A European option call on the maximum of two risky assets (call-on-max) is de-
fined based on the maximum price between two assets. The payoff function of this
option is given by

g
(
S(T )

) = max
[
max

(
S1(T ), S2(T )

) − K,0
]
,

where Si(T ) is the price of the i − th asset (i = 1,2) at the maturity date T and K

is the strike price or exercise price. In this work will be discussed two approaches
for obtaining g(S(T )). In the first one, we will use marginal heteroscedastic pro-
cesses to modeling S1 and S2 and structure of copulas functions to analyze the
dependence between the assets. The second approach, with the objective of back-
testing, will use the model proposed by Stulz (1982), where the author proposed
a derivation of the Black and Scholes model for the bivariate case, in which the
main premises derive from Brownian geometric motion.

3.2 First approach: Duan model and copulas

To introduce heteroscedasticity, we will use the fundamental theorem of asset pric-
ing described by Delbaen and Schachermayer (1994). This theorem states that
since the stock price Si(T ) (i = 1,2) is free from arbitrage and present in a com-
plete market (Hull, 1992), there exists a measure of probability Q such that the
discounted price of the stock, e−r(T −t)Si(T ), is a martingale under Q and Q is
equivalent to the real world probability measure P.

The fair price of the call-on-max option depends on the dependency structure
among the object assets since its price is defined as an expected value (by definition
and ownership of a martingale measure, for more details, see Madan and Milne
(1991)). Therefore, we define the following definition to perform the pricing.

Definition 1. Let S1 and S2 be two stocks traded in a complete and free arbitrary
market. In addition, be t the present date, T the maturity date and r the fixed risk-
free rate yield, then the option price considering the payoff function g(S1, S2) =
max[max(S1(T ), S2(T )) − K,0] is

v(t, S1, S2)

= e−r(T −t)EQ
[
max

[
max

(
S1(T ), S2(T )

) − K,0
]|Ft

]
(3.1)

= e−r(T −t)
∫ ∞

0

∫ ∞
0

max
[
max

(
S1(T ), S2(T )

) − K,0
]

× f
Q
S1,S2

(x1, x2) dx1 dx2, (3.2)

which f
Q
S1,S2

is the the joint density function of the two measures under neutral
risk probability Q, which in this work will be modeled by copula functions, and
Ft is a filtering containing all information about the assets up to time t .
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Thus, we will express the joint density function using the marginal densities
fS1(x1) e fS2(x2) by means of copula functions as follows

f
Q
S1,S2

= cQ
(
F

Q
S1

,F
Q
S2

)
f
Q
S1

(x1)f
Q
S2

(x2),

which cQ = ∂2CQ(x1,x2)
∂x1∂x2

, where cQ(·) is the copula density and CQ(·) is a copula
function.

Therefore, to construct a joint process of neutral risk for the bivariate distribu-
tion of the option, the marginal processes are derived first. Duan (1995) defined
an option pricing model considering that the variance of the asset-object is not
constant over time.

Definition 2. Let r a fixed risk-free interest rate and λ > 0. Under the Duan
GARCH process (DGARCH) the log returns, xt = log( St

St−1
) = log(st )− log(st−1),

for t = 1, . . . , n, are given by

xt = r + λ
√

ht + 1

2
ht + √

htεt , εt ∼ N(0,1), (3.3)

ht = α0 +
q∑

j=1

αjε
2
t−jht−j +

p∑
j=1

βjht−j , (3.4)

which the parameters α0 > 0, α1 ≥ 0, β ≥ 0 and
∑q

j=1 αj + ∑p
j=1 βj < 1, which

the latter condition guarantees that the process variance will not explode, that is,
to maintain the stationarity of the process. The parameter λ can be interpreted as
the risk premium.

To apply the DGARCH model in the option pricing process, Duan (1995) de-
fined the concept of locally risk-neutral valuation relationship (LRNVR), where it
transforms the model of Equation (3.4) into a neutral risk measure Q. For more de-
tails on the transformation of the real-world measure P to the neutral risk measure
Q, see Duan (1995).

Definition 3. A measure Q satisfies the LRNVR if a measure Q is absolutely
continuous in respect to the measure P (real world). Under Q we have

EQ

[
St

St−1
|Ft

]
= er and VarQ(xt |Ft) = VarP(xt |Ft).

This definition shows that the conditional variance is the same for both measures
so that we can use the parameters of equation (3.4) under P. With this definition,
Duan showed that under local measurement of neutral risk Q, the previously de-
fined DGARCH process becomes

xt = r − 1

2
ht + √

htε
∗, ε∗ ∼ N(0,1), (3.5)
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ht = α0 +
q∑

j=1

αj

(
ε∗
t−j − λ

√
ht−j

)2 +
p∑

j=1

βjht−j , (3.6)

and in this work, as in Duan (1995) and Zhang and Guegan (2008), the orders
p = 1 and q = 1 will be used. The construction and derivation of the Duan model
is based on the premise of normality of the errors, but it is possible to consider
other distributions, as in Fonseca, Migon and Ferreira (2012). These extensions
are being studied in a different manuscript.

When the concept of locally risk-neutral valuation relationship is present, the
futures prices of the individual assets can be expressed by

Si(T ) = Si(0) exp

[
rT − 0.5

T∑
t=1

hi,t +
T∑

t=1

√
hi,t ε

∗
i,t

]
,

which Si(0) is the last price of the period under analysis for each i = 1,2.
To obtain the expected value of the continuous function given by equation 3.1

of a bivariate vector (S1, S2) with cumulative distribution function H(x1, x2), we
will use Monte Carlo integration expressed by

E
[
g(S1, S2)

] =
∫ ∞
−∞

∫ ∞
−∞

g(S1, S2) dH(x1, x2),

which can be approximated by following the algorithm below:

1. Generate n observations of bivariate random vector (S1,S2);
2. For each observation i, calculate gi = g(x1i , x2i ), for i = 1,2, . . . , n;
3. E[g(S1, S2)] ≈ 1

n

∑n
i=1 gi .

To generate n samples of the specific copula we will use the algorithms pro-
posed by Schmidt (2007) and Nelsen (2006). Therefore, under the probability
measure of neutral risk Q, the fair price of the option with payoff function g(·)
at the maturity time T is given by

v(t, S1, S2) = e−r(T −t)

N

N∑
i=1

g
(
S1,i(T ), S2,i(T )

)
. (3.7)

In order to compare the consistency of the results obtained by the duan model
and copulas approach, we will examine the prices generated by applying the closed
formula of Stulz (1982), where it is a derivation of the Black and Scholes model
for the bivariate case, where the author considers that the active objects follow a
geometric Brownian motion, as in Black and Scholes (1973) and Merton (1973).

3.3 Second approach: Stulz closed-form solution

The closed formula proposed by Stulz (1982) has two significant limitations, being
that the volatility of the asset-object is considered constant throughout the time of
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maturity and the joint distribution is a bivariate normal, which implies a linear
correlation between the assets. The fair price for the call-on-max option is set by

cmax(S1, S2,K,T ) = S1e
−rT M(y1, d;ρ1) + S2e

−rT M(y2,−d + σ
√

T ;ρ2)

− Ke−rT ∗ [
1 − M(−y1 + σ1

√
T ,−y2 + σ2

√
T ;ρ)

]
,

where

d = ln(S1/S2) + (σ 2/2)T

σ
√

T
, y1 = ln(S1/K) + (σ 2

1 /2)T

σ1
√

T
,

y2 = ln(S2/K) + (σ 2
2 /2)T

σ2
√

T
,

σ =
√

σ 2
1 + σ 2

2 − 2ρσ1σ2, ρ1 = σ1 − ρσ2

σ
and ρ2 = σ2 − ρσ1

σ
,

where Si is the price of stock i, K the strike price, T the time for the option
to expire in years, r the risk-free interest rate, σi the stock volatility of asset i,
ρ the linear correlation between the two assets, N(x) the cumulative function of
the standard normal distribution and M(a,b;ρ) the cumulative function of the
bivariate normal distribution in (a, b) with linear correlation coefficient ρ.

4 Bayesian inference

Given a 2-dimensional copula, C(u1, u2), and two univariate distributions, FS1(x1)

and FS2(x2), the joint density function is given by

f (x1, x2) = c
(
FS1(x1),FS2(x2)

) 2∏
i=1

fSi
(xi),

where fSi
represents the marginal density functions and c is the density function

of the copula which is given by

c(u1, u2) = f (F−1
S1

(u1),F
−1
S2

(u2))∏2
i=1 fSi

(F−1
Si

(ui))
.

The marginal distribution for each xit is given by uit = FSi
(xit ) = Fεi

([xit −
μit ]/√hit ), where Fεi

(·) denotes the univariate distribution function of εit (Ausin
and Lopes, 2010; Rossi, Ehlers and Andrade, 2012). Therefore, the joint density
of xt is then given by,

f (x1t , x2t ) = c(u1t , u2t )

2∏
i=1

fSi
(xit ) = c(u1t , u2t )

2∏
i=1

1√
hit

fεi

(
xit − μit√

hit

)
,
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where fεi
(·) is the marginal density function of each εit and μit is the mean of

duan process.
Now, given a bivariate density function f (·) with joint distribution function

F(·) and corresponding marginal densities fSi
(·) the copula density is obtained

and then,

f (x1t , x2t ) = f (F−1
S1

(u1t ),F
−1
S2

(u2t ))∏2
i=1 fSi

(F−1
Si

(uit ))

2∏
i=1

1√
hit

fεi

(
xit − μit√

hit

)
.

In this work we will use Bayesian inference, which is an approach that de-
scribes the model parameters by probability distributions. It offers a natural way
to introduce parameter uncertainty in the estimation of volatilities. We design here
a two-step Bayesian algorithm, for more details in Ausin and Lopes (2010). In
the first step, we estimate each marginal series independently considering a uni-
variate Duan GARCH model under measure P given in equation (3.3), where
xit |hit ∼ N(r + λ

√
ht − 1/2ht , ht ), for i = 1,2. For each marginal series, we

have four parameters to estimate θ i = (α0,i , α1,i , βi, λi), for i = 1,2, and the log-
likelihood is given by

l(θ i |xt ) = −n

2

[
log(2π) + 1

n

n∑
t=1

[
log(ht ) + (xt − r − λ

√
ht + 1/2ht )

2

ht

]]
.

Therefore, we define an MCMC algorithm for sample from the posteriori distri-
bution of θ i for each series with a Gibbs sampling scheme, where each parameter
is updated using a Metropolis–Hastings. For each element of the Monte Carlo sam-
ple of size N , we can obtain a set of residuals,

α
(n)
0,i , α

(n)
1,i , β

(n)
i , λ

(n)
i =⇒ ε

(n)
it = xit − μ

(n)
i√

h
(n)
it

,

for t = 1, . . . , T , and for n = 1, . . . ,N , where μt = r + λ
√

ht − 1/2ht denote the
mean process.

Thus, we can estimate the residual for each time t for each series as follows,

ε̂it = 1

N

N∑
n=1

ε
(n)
it ,

for i = 1,2.
To estimate the copula parameters, ρc, we plug in these estimations in the like-

lihood of specific copula using

Ûit = F−1(
F(ε̂it )

)
,

and obtaining the following likelihood functions for ρc,

l(ρc|xt ) =
n∑

i=1

ln cρ(Ûit ),
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where cρ is the density of the copula displayed in annex, ρ is a vector of the
parameters of the copula and Ûi refers to the pseudo uniform sample.

Now, we construct another Markov Chain to sample from the posterior distri-
bution of ρc using Metropolis–Hasting steps, as in Ausin and Lopes (2010) and
Rossi, Ehlers and Andrade (2012).

4.1 Prior distributions

In the Bayesian approach, we need to specify prior distributions for the vector of
parameters which define the marginal Duan GARCH model, that is, α0,i , α1,i , βi

and λi , i = 1,2 plus the parameters in the copula functions, that is, ρi in the Nor-
mal, Gumbel, Frank and Joe Copulas and ρi and νi in the t copula. Following
Ausin and Lopes (2010), for each parameter we assume a uniform prior over their
respective domains imposing the stationary condition, that is, α1,i + βi ≤ 1. We
shall adopt these prior choices in the simulation studies of Section 4.

4.2 Selection criteria for marginal and joint models

In order to verify if the distribution of the residues follows a standard normal dis-
tribution, the Kolmogorov–Smirnov and Shapiro–Wilk tests will be used for a ran-
dom sample. The Kolmogorov–Smirnov (KS) test for a random sample is used to
compare a dataset through its distribution function F(x) with a known cumulative
function G(x). The null hypothesis is that x ∼ G, and the KS statistic is defined
by DKS = max(|F(x) − G(x)|). The Shapiro–Wilk (SW) test statistic is W =
(
∑n

i=1 aix(i))
2/

∑n
i=1(xi − x̄)2, where x(i) is the ith order statistic, x̄ is the sample

mean and the constants ai is given by (a1, . . . , an) = mT V −1/(mT V −1V −1m)0.5,
where m = (m1, . . . ,mn)

T , and m1, . . . ,mn are the expected values of the order
statistics of independent and identically distributed random variables sampled from
the standard normal distribution, and V is the covariance matrix of those order
statistics.

The Ljung–Box test (LB) will be performed to test whether residuals from
marginal distributions have independent increments. Considering the null hypoth-
esis that the residuals do not have autocorrelation, the Ljung-box test statistic is

given by Q = N(N + 2)
∑M

k=1
ρ2

k

N−k
, which N is the sample size, M is the number

of autocorrelated lags and ρk is the autocorrelation in lag k. Moreover, under the
null hypothesis, the test statistic follows asymptotically a distribution χ2(M).

In order to make the choice of the best copula model in the bivariate distribu-
tion fitted, the Expected Akaike Information Criteria (EAIC), Expected Bayesian
Information Criterion (EBIC), Deviance Information Criteria (DIC) and and Log-
Predictive Score (LPS) will be adopted. These are given by EAIC = E[D(θM)] +
2npM , EBIC = E[D(θM)] + log(n)npM , DIC = 2E[D(θM)] − D(E[θM ]) and
Log-Predictive Score (LPS) = −1

T

∑T
t=1 logp(yt |yt−1, θM) (Delatola and Griffin,

2011; Abanto-Valle, Lachos and Dey, 2015; Leão, Abanto-Valle and Chen, 2017)
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respectively, where npM represents the number of parameters in model M , θM is
the set os parameters in model M , n is the sample size and D(·) is the deviance
function defined as minus twice the log-likelihood function. For more details see,
Spiegelhalter et al. (2002).

5 Simulation study

In this section, we illustrate the proposed methodology with artificial time series.
The simulation study main concern is to assess the bias, mean squared error (MSE)
and coverage probabilities of the posterior means for the parameters of marginals
and copula obtained by two-step Bayesian algorithm described previously.

First, we simulate the innovation distribution (ε1t and ε2t ) through a copula
with a fix parameter ρ. For show the proposed simulation study will be used the
Frank copula, where it obtains good fitted to financial series in several works in the
literature (Klugman and Parsa, 1999; Cherubini and Luciano, 2002; Hürlimann,
2004). Then we simulate bivariate time series Duan GARCH processes with these
copula-dependent innovations for each sample size (n = 250,500 and 1000) and
fixed interest rate r at 7% per annum with the following univariate models,

x1t = r − 1

2
h1t + √

h1t ε1t , ε1t ∼ N(0,1),

x2t = r − 1

2
h2t + √

h2t ε2t , ε2t ∼ N(0,1),

h1t = 0.012 + 0.17(ε1t−1 − 0.12
√

h1t−1)
2 + 0.81h1t−1,

h2t = 0.01 + 0.15(ε2t−1 − 0.1
√

h2t−1)
2 + 0.8h2t−1,

and the Frank copula parameter is fixed in ρ = 2. The arbitrary choice of the cop-
ula parameter value was based on a positive relationship between the underlying
assets, representing a moderately correlated market.

The priors were chosen following Ausin and Lopes (2010), as described in the
previous subsection. For each setup, we generated 500 (replication) bivariate time
series. The proposed two-stage MCMC algorithm is run for 20,000 iterations with
first 10,000 as burn-in iterations. The code was made in R.

The Table 1 presents the true values, posterior mean, posterior median, high-
est posterior density (HPD) interval 95%, size of HPD interval, bias, MSE and
coverage probabilities for each model parameter obtained from MCMC outputs.
Observe that, the bias and MSEs decrease tending to zero when the sample size
increases. We also noticed that the posterior means are very close to the posterior
medians. Furthermore, the amplitude of the HPD interval tends to decrease as the
sample size increases. The coverages are closer to the nominal ones for increasing
sample sizes. Therefore, through this simulation study, the asymptotic properties
of the model are satisfactorily verified.
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Table 1 Simulation results to n = 250,500 and 1000

Sample size Parameter True value Posterior mean Posterior median HPD 95% Size of HPD Bias MSE C.P

n = 250 α01 0.012 0.0593 0.0525 [0.0082; 0.1291] 0.1209 −0.0473 0.0022 0.9266
α11 0.170 0.2093 0.2024 [0.0941; 0.3361] 0.2420 −0.0393 0.0015 0.9725
β1 0.810 0.6560 0.6690 [0.4337; 0.8449] 0.4112 0.1540 0.0237 0.8716
λ1 0.120 0.1364 0.1337 [0.0299; 0.2430] 0.2131 −0.0164 0.0003 0.9358
α02 0.010 0.0441 0.0411 [0.0081; 0.0877] 0.0796 −0.0341 0.0012 0.7982
α12 0.150 0.1989 0.1900 [0.0700; 0.3453] 0.2752 −0.0489 0.0024 0.9725
β2 0.800 0.5677 0.5757 [0.2938; 0.8141] 0.5203 0.2323 0.0540 0.7890
λ2 0.100 0.1120 0.1084 [0.0172; 0.2112] 0.1940 −0.0120 0.0001 0.9633
ρ 2.000 1.9317 1.9314 [1.1733; 2.7030] 1.5297 0.0683 0.0047 0.9639

n = 500 α01 0.012 0.0232 0.0217 [0.0065; 0.0429] 0.0363 −0.0112 0.0001 0.9662
α11 0.170 0.1878 0.1849 [0.1177; 0.2639] 0.1462 −0.0178 0.0003 0.9595
β1 0.810 0.7655 0.7698 [0.6712; 0.8504] 0.1792 0.0445 0.0020 0.9189
λ1 0.120 0.1193 0.1183 [0.0368; 0.2012] 0.1644 0.0007 0.0000 0.9595
α02 0.010 0.0191 0.0195 [0.0048; 0.0368] 0.0320 −0.0091 0.0001 0.9797
α12 0.150 0.1749 0.1706 [0.0929; 0.2643] 0.1714 −0.0249 0.0006 0.9527
β2 0.800 0.7755 0.7345 [0.5777; 0.8547] 0.2770 0.0245 0.0006 0.9392
λ2 0.100 0.1024 0.1010 [0.0268; 0.1784] 0.1516 −0.0024 0.0000 0.9257
ρ 2.000 1.9413 1.9412 [1.4021; 2.4781] 1.0760 0.0587 0.0035 0.9502

n = 1000 α01 0.012 0.0149 0.0145 [0.0066; 0.0241] 0.0176 −0.0029 0.0000 0.9548
α11 0.170 0.1757 0.1747 [0.1322; 0.2195] 0.0872 −0.0057 0.0000 0.9582
β1 0.810 0.8017 0.8031 [0.7539; 0.8474] 0.0936 0.0083 0.0001 0.9481
λ1 0.120 0.1209 0.1210 [0.0338; 0.1511] 0.1173 −0.0009 0.0000 0.9502
α02 0.010 0.0138 0.0130 [0.0056; 0.0226] 0.0170 −0.0038 0.0000 0.9409
α12 0.150 0.1606 0.1582 [0.1045; 0.2211] 0.1166 −0.0106 0.0001 0.9620
β2 0.800 0.7980 0.7929 [0.6787; 0.8505] 0.1718 0.0020 0.0000 0.9492
λ2 0.100 0.0933 0.0928 [0.0342; 0.1495] 0.1154 0.0067 0.0000 0.9591
ρ 2.000 1.9861 1.9845 [1.5515; 2.3128] 0.7612 0.0139 0.0002 0.9481
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Table 2 Summary descriptive statistics of the daily log returns

Min. Median Mean Max. S.D. Skewness Kurtosis

Banco do Brasil −0.2378 0.0000 0.0008 0.1342 0.0322 −0.2236 7.6770
Itau −0.0909 0.0003 0.0007 0.1036 0.0215 0.2432 4.7957

Figure 1 Original time series of prices and log-returns.

6 Application to Brazilian stock market data

In this section, our methodology is illustrated on real Brazilian stock market data,
specifically the stock price of Banco do Brasil and Itau, where the prices of the
option will be compared with the results of the methodology proposed by Stulz
(1982) presented in Chapter 2. The data is from 03/07/2014 to 03/22/2017, con-
taining 754 daily observations. Data was collected on the Google Finance website.
Table 2 presents the descriptive statistics of log-return data, where it is given by
xit = log(Sit /Sit−1) = log(Sit ) − log(Sit−1) for t = 1, . . . , n and i = 1,2.

As expected, the mean returns of the two stocks are close to zero, means are
close to medians, and the returns have kurtosis greater than 3. The skewness
presents a different result for the series, where the Banco do Brasil obtained left
(negative) asymmetry and the Itau right asymmetry (positive). Figure 1 show the
behavior of the original series and the log-returns, respectively. Similar variability
becomes apparent, as indicated by the standard deviation (S.D.) in the descriptive
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Figure 2 Histograms and scatterplot of the log-returns.

statistics table. This result is expected, given that the two companies are from the
same sector industry.

The scatterplot and histograms provide us a visual analysis of the log-returns
dispersions and are shown in Figure 2. Concerning the joint dispersion of the log-
returns, we observed the greatest agglomeration around the point of origin (0,0)

and a smaller concentration, but not insignificant, in the tails, which is corroborated
by the histograms.

Prior distributions for marginals and joint distributions were equal to ones spec-
ified in the simulation study. We considered two chains of 100 000 iterations and
the first 40,000 were ignored to avoid the influence of first value, i.e., as burn-in.
The resulting samples are checked for absence of convergence using the test and
the graphics analysis proposed by Geweke (1992).

Table 3 shows the values of the Geweke’s statistic for each parameter obtained
for marginals. Using statistical convergence diagnostics, we cannot prove conver-
gence, but these provide evidence for no lack of convergence, since, if the samples
are drawn from the stationary distribution of the chain, the Geweke’s statistic has
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Table 3 Values of the Geweke’s statistic for each parameter obtained

α01 α11 β1 λ1 α02 α12 β2 λ2

Chain 1 −0.2564 1.0583 −0.4843 1.3618 −0.7262 −1.4010 1.2620 −0.6024
Chain 2 −1.3027 −0.3860 1.5931 0.7212 1.3068 0.8917 −1.1425 −0.9654

Figure 3 Densities and convergence diagrams of the posterior samples of each parameter for the
Banco do Brasil.

Figure 4 Densities and convergence diagrams of the posterior samples of each parameter for the
Itau.

an asymptotically standard normal distribution. Also, Figure 3 and Figure 4 shows
the traces of the posterior samples of each model parameter. These indicate a good
mixing performance of the Markov chain as it moves fluidly through all possible
states.
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Table 4 Parameter estimation results

Parameter Posterior mean S.D. HPD 95%

α01 0.00004 0.00001 [0.00001; 0.00008]
α11 0.10940 0.02495 [0.06025; 0.15737]
β1 0.85390 0.03123 [0.77720; 0.91061]
λ1 0.05035 0.02944 [0.00018; 0.10332]
α02 0.00001 0.00000 [0.00000; 0.00003]
α12 0.06698 0.02022 [0.03591; 0.10247]
β2 0.90230 0.03278 [0.84367; 0.95212]
λ2 0.06529 0.03260 [0.00871; 0.12427]

Table 5 Kolmogorov–Smirnov, Shapiro–Wilk and Ljung–Box test

Test Banco do Brasil Itau

KS statistic (p-value) 0.0325 (p-value = 0.4553) 0.0428 (p-value = 0.2792)
Shapiro statistic (p-value) 0.9464 (p-value = 0.3193) 0.8639 (p-value = 0.1613)
LB statistic (p-value) 2.7249 (p-value = 0.1249) 0.0791 (p-value = 0.7502)

Table 4 presents the posterior means together with their 95% HPD credibility
intervals for the marginals process and their standard deviation (s.d).

The DGARCH model assumes that the residues follow a standard normal dis-
tribution and that they have independent increments. Table 5 shows the results of
KS, Shapiro–Wilk and LB test for the significance level of 5%. As we can see, we
do not reject the null hypothesis that the residues follow a normal distribution and
have independent increments.

Figure 5 shows the normal quantile plot for the standardized residuals of the
fitted DGARCH(1,1) model for each series. In this particular case, the Gaussian
assumption is not perfect, but acceptable for this paper.

Therefore, we conclude that there was a good fit of the DGARCH(1,1) model
for both series and, thus, we can follow in the joint modeling through the copulas
theory. Table 6 presents the posterior means (mean), s.d, 95% HPD credibility
intervals and their corresponding EAIC, EBIC, DIC and LPS criteria for copulas
fitted.

Table 6 shows that the best copula according to the selection criteria was Frank,
followed by t-student, Normal, Gumbel and Joe copulas. The Geweke criterion for
Frank’s copula obtained the values of 0.2482 and 0.6438 for the first and second
chain, respectively, showing that there is no evidence of non-convergence. Figure 6
shows the density and convergence diagram of its parameter.

For the sake of space, we omit here the tables and figures with the same results
considering the marginal processes but changing the copula structure, which we
obtained the same satisfactory results presented for the Frank copula.
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Figure 5 QQ-plot for the standardized residuals—Banco do Brasil (left) and Itau (right).

Table 6 Copulas fitted

Copula Mean S.D. HPD 95% EAIC EBIC DIC LPS

Normal 0.7596 0.0123 [0.7354; 0.7843] 16,839.35 16,838.51 16,836.48 1.4525
t-student (ν) 0.7724 0.0146 [0.7435; 0.7996] 16,672.18 16,676.8 16,670.18 1.4380

[4.9530] [0.5216] [3.9518; 5.9857]
Gumbel 2.1183 0.0661 [2.0729; 2.1387] 17,928.41 17,937.65 17,926.3 1.5466
Frank 7.2524 0.3146 [6.6251; 7.8433] 16,652.83 16,657.45 16,651.82 1.4365
Joe 2.2792 0.0796 [2.0294; 2.5283] 19,743.26 19,742.41 19,740.39 1.6937

Figure 6 Density and convergence diagram of the posterior samples of Frank copula.
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Table 7 Classification of moneyness

Classification Call option Put option

ITM Min(S1, S2) > Strike Max(S1, S2) < Strike
ATM Max(S1, S2) = Strike Max(S1, S2) = Strike
OTM Max(S1, S2) < Strike Min(S1, S2) > Strike

6.1 Fixed parameters used in black and Scholes models

To make a comparison of the results of the methodology discussed in this work
with the classic Stulz model, we will define some necessary parameters presented
in Chapter 2. The parameters, their interpretations, and their values are given be-
low.

1. Interest Rate: An annualized rate expresses the annual interest rate takes into
account the effect of compound interest. That is, the average daily interest rate,
annualized based on 252 traded days. The value 7% per year was chosen in an
attempt to standardize the rate over the maturity period according to the SELIC
rate presented by Central Bank of Brazil.

2. Si : Stock price of asset i, i = 1,2. And we observe S1 = R$33.05 and S2 =
R$38.05.

3. T : Time of maturity. That is, 1/2 means half a year. We adopt one year.
4. σi : The annualized volatility of the stock i. Volatility is the annualized ex-

pression of the average variability of the stock return. As the returns were calcu-
lated on a daily basis, to obtain volatility, the standard deviation obtained by mul-
tiplying the squared root of the annual term used, which in this work is 252 days,
should be annualized. We calculate and obtained σ1 = 43.44% and σ2 = 30.19%.

5. ρ: The coefficient of linear correlation between the returns of the two assets
in the last year. We calculate ρ = 0.7374.

6. K : The strike price of the option. The chosen had as a criterion the use of
ATM (moneyness) defined below.

Moneyness is the difference between the strike price and the asset value and
is classified into three categories: in-the-money (ITM), at-the-money (ATM) and
out-the-money (OTM). The more out-the-money the option is, the less likely it is
to exercise on the part of the holder and consequently the more in-the-money, the
more likely it is to exercise. Let S1 be the market price of asset 1 and S2 the market
price of asset 2, Table 7 shows which classification will be used from now on.

As we are interested in calculating a call option, we have that an option will be
ATM when striking (K) = R$38.05. This extrapolation of the concepts of money-
ness to the bivariate case aims to analyze the effect of its classification on the final
prices of the options.
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Table 8 Option pricing call-on-max (R$) with K = R$38.05 and T = 1 year

Model Option price

Stulz model R$ 5.755644
Normal copula R$ 5.563650
t copula R$ 5.593955
Gumbel copula R$ 5.666805
Frank copula R$ 5.600540
Joe copula R$ 5.875227

6.2 Comparison of methodologies

The purchase and sale of multivariate options are traded over the counter, that
is, from individual to individual. Moreover, for this reason, there is no series in
which we can check their prices for comparison of fit of models concerning their
errors. However, the comparison of models with different assumptions is and can
be performed, to efficiently price an option with realistic characteristics.

In this paper, we will perform the fitted of several models and compare them,
mainly in relation to the models from Stulz (1982), where the latter is the most
widely used, widespread and with more credibility in the literature and the market
for call-on-max option, because it is a derivation of the model of Black and Scholes
(Zhang and Guegan, 2008). Table 8 shows the price of the options considering the
call-on-max option defined in Chapter 2 and the parameters presented previously,
considering all the copulas and the Stulz model. Moreover, 100,000 Monte Carlo
simulations were performed to obtain the fair price of the option in Equation (3.7).

Two strong arguments to give credibility to the results obtained by the copulas
are: (1) the marginals process and copulas obtained good joint fitted of the series,
and (2) the dependencies derived from these models take into account the non-
linear dependence between the observations, which is inherent in the universe of
finance. Therefore, the difference obtained between these models and Stulz model
brings with it these two arguments that make modeling more realistic.

To analyze the effect of strike price, Table 9 shows the values of the call-on-
max option for all models varying strike from R$ 31.00 to R$ 42.00. We verified
the same behavior in all the models, that is when we increase the strike price the
value of the option decreases. This result was expected because, according to the
logic of the options contract, if we expect to buy an option for a higher price on the
maturity date, the price of its premium tends to be lower (Chiou and Tsay, 2008).
Figure 7 shows the same results in graphic form.

Note that Joe copula obtained the highest values when we varied the variable
strike (K). The result is justified because this copula obtained the worst fitted ac-
cording to the criteria of selection of models used. Besides, the classical Stulz
model also obtained discrepant results from the others, a finding that can be based
on the constant volatility over time of the option and the modeling through the
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Table 9 Option prices call on max (R$) varying strike

Strike Stulz Normal t Gumbel Frank Joe

31 9.77469 10.98429 11.02635 11.03995 11.01208 11.36508
32 9.10702 10.10753 10.14828 10.16287 10.13688 10.48244
33 8.47138 9.25741 9.29584 9.31168 9.28815 9.62346
34 7.86822 8.43997 8.47662 8.49324 8.47240 8.79502
35 7.29764 7.66072 7.69669 7.71314 7.69550 8.00356
36 6.75950 6.92642 6.96056 6.97811 6.96281 7.25351
37 6.25337 6.24172 6.27292 6.29216 6.27855 6.54970
38 5.77858 5.60880 5.63776 5.65781 5.64567 5.89643
39 5.33430 5.03038 5.05693 5.07829 5.06646 5.29689
40 4.91953 4.50697 4.53031 4.55341 4.54263 4.75068
41 4.53313 4.03815 4.05868 4.08241 4.07271 4.25778
42 4.17390 3.62216 3.63895 3.66288 3.65373 3.81750

Figure 7 Option prices call on max (R$) varying strike.

normal bivariate distribution. The normal, t-student, Gumbel and Frank copulas
obtained results very close to each other, an expected result because these distri-
butions obtained very close results in EBIC, EAIC, DIC and LPS metrics.

It should be noted that at the beginning of the graph, when the strike price is at
R$ 31.00, there is the most significant difference between the models and that, with
the increasing strike, this difference becomes smaller. The finds of Hull and White
(1987), Johnson and David (1987) and Kang and Brorsen (1993) corroborate this
result, where the authors empirically demonstrated that, in the in-the-money op-
tions, the Black and Scholes (BS) model (Stulz model is derived from BS Model)
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Figure 8 Option prices call on max (R$) vs. correlation.

underestimates the options. This result highlights the importance of the joint dis-
tribution to capture the dependency structure in the pricing process.

To analyze the impact of the dependency parameter on the final price of the
option we adopted the following criterion. The choice of copula for this analysis
was based on the good fitted shown in Table 6 and on the selection of a copula
that presents negative and positive dependence. So, the analysis of this subsection
is based on the t-student copula with 4.9530 degrees of freedom. Besides, authors
such as Zhang and Guegan (2008) and Lopes and Pessanha (2018) have found
empirical results that t-student copula has a good fit and functional characteristics
in the joint modeling of stock returns.

Figure 8 emphasized that when the dependence is negative, the values are higher
than with positive dependence. This result corroborates with those found by Chiou
and Tsay (2008) for the call-on-max option using the American and Taiwanese in-
dices. An intuitive interpretation is that the values of this option tend to be smaller
when the underlying assets move in the same direction as when in opposite direc-
tions.

Furthermore, this figure represents the importance of copula selection to rep-
resent the joint structure and especially the importance of a good inferential ap-
proach, where a high discrepancy between the values is observed, varying the cor-
relation coefficient of the t-student copula, which is between −1 and 1.
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7 Final remarks

In this paper, we proposed to accommodate the heteroskedasticity of the assets-
objects through the marginal model Duan GARCH and to capture the structure of
dependency between them through copulas functions. To compare and analyze the
method proposed in this work with Stulz’s already consolidated model, we price
the call-on-max option for two Brazilian companies stock prices.

As a result, there was evidence that the DGARCH(1,1) model fitted well to the
data of the Banco do Brasil and Itau stocks prices, as we did not reject the normal-
ity of residues using the KS and SW tests and its increments were not autocorre-
lated through the Ljung-box test. These results are prerequisites for transforming
the data into uniform distribution to adjust the copula functions.

Besides, we verified the good fit of the copula functions, especially Frank and
t-student, and these two copulas obtained the values closest to each other. Another
result shown in this paper, which corroborates with the options literature, is the
effect of a strike at the fair price. Besides, we illustrate the impact of choosing the
dependency structure on the final options prices.

We can point out the following contributions of this paper. It is possible to use
the same tooling described in Section 3 to obtain the fair price for various payoff
functions, this is not verified in the case of extensions of the Black and Scholes
model, as presented in Haug (2007), because for each option one formula is re-
quired. The heteroscedastic model approach and the capture of dependence via
copulas bring more realistic support for the modeling of financial assets and con-
sequently more credibility. Due to the good marginal and joint fit, in addition to the
values obtained concerning the Stulz consolidated model, there are arguments to
believe that the differences obtained between the best models through the copulas
and the extension of the classical method are improvements in the calculation of
fair value. It is an empirical study providing evidence and corroborating the use
of techniques that consider the modeling of non-normality in financial markets,
especially considering this approach in emerging markets.

Finally, a vast field of research in this area is emphasized, as follows. The use of
non-parametric copulas, copulas with dependency parameter varying in time, other
processes for ht , trivariate and/or multivariate case using Vine copulas, other tests
of suitability of marginal and joint fitted, comparison of different sectors stocks,
other assets-objects, the use of the predictive density to calculate the option price
and so on.

Appendix section

Normal copula

The normal copula or commonly known as Gaussian copula receives this name
because it comes from the normal density function for d ≥ 2. A bivariate Normal
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copula is expressed by

C(u, v) =
∫ x1

−∞

∫ x2

−∞
1

2π

√
1 − ρ2

exp
(
− t2

1 − 2ρt1t2 + t2
2

2(1 − ρ2)

)
dt2

1 dt2
2 ,

which x1 = �−1(u), x2 = �−1(v), where �(·) denotes the cumulative function of
the N(0,1) and −1 ≤ ρ ≤ 1.

This type of copula has no dependence on the tails of the distributions and is
symmetric.

t-Student copula

A t-student copula coincides with the bivariate t-student’s distribution function,
where its form is expressed by

C(u, v) =
∫ x1

−∞

∫ x2

−∞
1

2π

√
1 − ρ2

(
1 + t2

1 − 2ρt1t2

ν(1 − ρ2)

)−(ν+2)/2
dt1 dt2,

which ν represents the degrees of freedom of t-student. As in the case of normal
copula, the marginal copula t-student bivariate coincide with the t-student stan-
dard, being x1 = t−1

ν (u) e x2 = t−1
ν (v).

This type of copula does not have independence in the tails, which favors its
use in extreme events, such as, for example, unplanned oscillations in the stock
market. However, given the symmetry of the function, the degree of dependence
on the upper tail is equal to the lower tail.

Gumbel copula

The Gumbel copula is characterized by the dependence only on the upper tail and
is represented by

C(u, v) = exp
(−[(− ln(u)

)ρ + (− ln(v)
)ρ]1/ρ)

,

which ρ ∈ [1,∞]. When ρ −→ ∞ dependence is perfectly positive and indepen-
dent when ρ = 1.

Frank copula

The form of a Frank copula is expressed through

C(u, v) = − 1

ρ
ln

(
1 + [exp(−ρu) − 1][exp(−ρv) − 1]

exp(−ρ) − 1

)
,

which ρ �= 0. When ρ −→ ∞ we have perfect positive dependence and we have
the case of independence when we ρ −→ 0. This copula has the same dependence
on both function tails, such as elliptic copulas.
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Joe copula

Copula Joe is expressed by

C(u, v) = 1 − ([1 − u]ρ + [1 − v]ρ − [1 − u]ρ[1 − v]ρ)1/ρ
,

which 1 ≤ ρ ≤ ∞. When ρ = 1 we have the case of independence and the case of
perfect positive dependence when ρ −→ ∞.
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