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Abstract. Tadikamalla and Johnson [Biometrika 69 (1982) 461–465] devel-
oped the LB distribution to variables with bounded support by considering a
transformation of the standard Logistic distribution. In this manuscript, a con-
venient parametrization of this distribution is proposed in order to develop re-
gression models. This distribution, referred to here as L-Logistic distribution,
provides great flexibility and includes the uniform distribution as a particu-
lar case. Several properties of this distribution are studied, and a Bayesian
approach is adopted for the parameter estimation. Simulation studies, con-
sidering prior sensitivity analysis, recovery of parameters and comparison of
algorithms, and robustness to outliers are all discussed showing that the re-
sults are insensitive to the choice of priors, efficiency of the algorithm MCMC
adopted, and robustness of the model when compared with the beta distribu-
tion. Applications to estimate the vulnerability to poverty and to explain the
anxiety are performed. The results to applications show that the L-Logistic
regression models provide a better fit than the corresponding beta regression
models.

1 Introduction

Modeling data that are restricted to the interval (0,1), as for example, the propor-
tion of children vulnerable to poverty or anxiety as a function of the stress, is fre-
quently encouraged by researchers. Many different regression models have been
proposed in the past two decades for modeling this type of data. For example,
Buckley (2003), Ferrari and Cribari-Neto (2004), Paz, Bazán and Milan (2015),
Lemonte and Bazán (2016), Gómez-Déniz, Sordo and Calderín-Ojeda (2014) and
Bayes, Bazán and Castro (2017) have all proposed regression models. Yet, there
are still continuous distributions with bounded support that need further study.
This is the case of the L-Logistic distribution, which was originally proposed by
Tadikamalla and Johnson (1982) through a transformation of the standard Logistic
distribution. This construction is similar to the SB system proposed by Johnson
(1949). This distribution was studied by, Tadikamalla and Johnson (1990) and
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Johnson and Tadikamalla (1991), among others, who proposed the method of mo-
ments and the percentile point method to fit this distribution, and by Wang and
Rennolls (2005), who considered the Maximum Likelihood estimation. However,
regression models have not been studied based on this distribution.

In this work, we discuss the properties of this distribution by considering a new
parametrization. Another parametrization is also preserved in the Online Suple-
mentary Material. Here, we present the parametrization of the L-Logistic distribu-
tion that considers the median as one parameter and the dispersion as another pa-
rameter. Therefore, we propose a new regression model considering this distribu-
tion in the context of quantile regression (QR) models, which were introduced by
Koenker and Bassett (1978). Specifically, we propose a median regression model,
which may represent the relationship between the median (central location) of the
response and a set of covariates as well as of the dispersion parameter and an-
other or the same) set of covariates, by using a convenient link function. If the
data are highly skewed, since the median is a natural robust measure of location,
the conditional median modeling can be more useful than the usual conditional
mean modeling adopted usually in beta regression models (Buckley, Ferrari and
Cribari-Neto (2003, 2004)). Different from previous studies of L-Logistic distri-
bution, here we propose a Bayesian approach employing a Markov chain Monte
Carlo (MCMC) method for the modeling framework. The issues of model fitting
are addressed by means of a hybrid algorithm that combines Metropolis–Hasting
algorithm with Gibbs sampling. In the Online Supplementary Material (da Paz,
Balakrishnan and Bazán (2018)), we report results from the first studies with sim-
ulated data sets to investigate prior sensitivity analysis of the dispersion parameter
of the L-logistic distribution and the median L-logistic regression, parameter re-
covery and comparison of algorithms, and to evaluate the robustness to outliers
of the L-logistic distribution in comparison with beta distribution. These results
display that the proposed estimation method works well, and that the model pro-
posed is more robust than the beta models in the presence of outliers. Also, real
application of social and psychological data is considered to show the advantages
of proposed approach. First, we show that the proportion of children vulnerable to
poverty of the municipalities of the state of Alagoas in Brazil, for the 2010 season,
is best fitted by the L-Logistic distribution as compared to the beta distribution.
Additionally, we show that L-Logistic regression models provide a better fit than
the corresponding beta regression models for analyzing the anxiety as a function of
the stress using a sample of nonclinical women in Townsville, Queensland, Aus-
tralia.

The rest of this manuscript is organized as follows. Section 2 is dedicated to
L-Logistic distribution, and we study some characteristics of this distribution like
alternative parametrizations, some related distributions, moments, the skewness
and kurtosis measures. In Section 3, we propose the L-Logistic median regression
model. Section 4 is dedicated to the Bayesian estimation of the distribution param-
eters, and to the parameter of the proposed median regression model. Section 5
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Figure 1 L-Logistic probability density functions for m = 0.2,0.5 and 0.8 and some choices of
parameter b.

presents the results of three simulation studies that examine a prior sensitivity anal-
ysis, parameter recovery, comparison of algorithms, and robustness to outliers of
the L-Logistic distribution. Section 6 discusses applications of the proposed distri-
bution, including the applicability of regression models to real data sets. Finally,
some concluding remarks are made in Section 7.

2 The L-logistic distribution

We say that the random variable (r.v.) Y follows a L-Logistic distribution, denoted
by Y ∼ LL(m,b), if its probability density function (pdf) is given by

f (y|m,b) = b(1 − m)bmbyb−1(1 − y)b−1

[(1 − m)byb + mb(1 − y)b]2 ,

0 < y < 1,0 < m < 1, b > 0.

(1)

Depending on the parameters m and b, the L-Logistic distribution takes on a vari-
ety of shapes (see, for example, Figures 1 and 2). Note that when we set m = 0.5
and b = 1 in (1), the pdf of the L-Logistic distribution simply becomes the pdf of
the standard uniform distribution. Here, m is the median of the distribution, which
scales the graph to the left or right on the horizontal axis, and consequently it
is a location parameter. The L-Logistic density is uni-modal (or “uni-antimodal”),
increasing, decreasing, or constant, depending on the values of its parameters. Ad-
ditionally, we note that for a fixed value of the parameter m, the dispersion of the

Figure 2 L-Logistic probability density function for dispersion parameter b = 0.5,1 and 2 and
some choices of parameter m.
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distribution decreases as b increases, and so b is a parameter that governs the dis-
persion of the distribution. In the Online Supplementary Material, we show that
the parameter b is in fact a dispersion parameter.

The cumulative distribution function (cdf) of the L-Logistic distribution is given
by

FY (y|m,b) =
(

1 +
(

m(1 − y)

y(1 − m)

)b)−1
, 0 < y < 1, (2)

which can be readily inverted to yield the quantile function

QY (p) = F−1
Y (p) = ( m

1−m
)

( m
1−m

) + (
1−p
p

)1/b
, 0 ≤ p ≤ 1. (3)

This would readily enable a quantile-based analysis of this model. Note that if
p = 1 − p = 0.5, then Q(p) = m, which means that the parameter m is indeed the
50th percentile or the median of the L-Logistic distribution.

Equation (3) facilitates simple r.v. generation. Specifically, if U ∼ uniform(0,1),
then

X = Q(U) = ( m
1−m

)

( m
1−m

) + (1−U
U

)1/b
∼ LL(m,b). (4)

Additionally, we can express the inter-quartile range (IQR) as

IQR = Q(0.75) − Q(0.25) = m31/b

(1 − m) + 31/bm
− m

31/b(1 − m) + m
. (5)

The IQR has a breakdown point of 50%, and this measure is often preferred over
range. When the distribution is symmetric, half IQR equals the median absolute
deviation, and is often used in the detection of outliers in data.

2.1 Mode

Property 2.1. For b > 1, the mode y0 of the L-Logistic distribution is the solution
of the equation

(
1 − m

m

)b

=
(

1 − y0

y0

)b b + 2y0 − 1

b − 2y0 + 1
. (6)

Note that, upon taking δ = −b log( m
1−m

), the mode y0 can be obtained by solv-
ing the equation

δ = log
((

1 − y0

y0

)b b + 2y0 − 1

b − 2y0 + 1

)
. (7)

In addition, from (6) and (7), if y0 = m = 0.5, then δ = 0 for all values of b.
Thus, we can study the behavior of the mode by studying the function in (7). For
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this purpose, we take the derivative of the right-hand side of (7) with respect to y0
to obtain the equation

∂δ

∂y0
= b(b2 − 1)

(y0 − 1)y0{(b2 − 1) + 4y0 − 4y0
2} . (8)

(6) is negative for b > 1, the situation where δ decreases as y0 (mode) increases
(first derivative test), then the mode lies in the interval 〈0,0.5〉 if δ > 0 (or m < 0.5)
and for δ < 0 (or m > 0.5) the mode is in the interval 〈0.5,1〉. If b < 1, (8) is
positive whenever {(b2 − 1) + 4y0 − 4y2

0} > 0, that is, whenever 1−b
2 < y < 1+b

2 ,
the situation where δ increases as y increases. Thus, from (7) and (8), the minimum
of the pdf lies in the interval 〈1−b

2 ,1/2〉 for δ < 0 or m > 0.5, and in the interval
〈0.5, 1+b

2 〉 for δ > 0 or m < 0.5.

2.2 Moments

The following proposition gives an expression for the moments of the L-Logistic
distribution.

Property 2.2. If Y ∼ LL(m,b), then the moments of Y about zero are given by

E
[
Y t ] =

∫ 1

0

[
1 +

(
1 − v

v

)1/b(
1 − m

m

)]−t

dv. (9)

The integral in (9) cannot be expressed in an analytical form. However, we
can use numerical integration to evaluate some moments as EY (Y ), EY (Y 2) and
VarY (Y ) = EY (Y 2) − EY (Y )2. Table 1 shows some values of the first and sec-
ond moments and the variance of the L-Logistic distribution. In addition, Figure 3
shows the graphs of the mean and variance as functions of the dispersion param-
eter b, for some choices of the parameter m. For this purpose, the integral in (9)
was evaluated by the Gaussian quadrature.

2.3 Skewness and kurtosis measures

First, we have the following symmetry property.

Table 1 EY [Y ], EY [Y 2], and VarY (X) of the L-Logistic distribution for some choices of b and m

m 0.2 0.5 0.8 0.2 0.5 0.8
b 1 1 1 3 3 3

EY [Y ] 0.283 0.5 0.717 0.216 0.5 0.784
EY [Y 2] 0.145 0.333 0.579 0.056 0.269 0.625
VarY [Y ] 0.065 0.083 0.065 0.010 0.019 0.01
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Figure 3 Descriptive measures of the L-Logistic distributions for some values of the parameters.

Property 2.3. The L-Logistic density is symmetric when m = 0.5 for all values
of b.

For the case when the L-Logistic density is asymmetric, the degree of skewness
can be quantified by some measures of skewness. Since the L-Logistic distribution
is related to the Logistic distribution, the skewness measure introduced by Arnold
and Groeneveld (1995), denoted by γM , seems to be a suitable skewness measure.
The measure γM is based on the mode of distribution and is given by

γM = 1 − 2F(M), (10)

where M is the mode of the distribution and F(·) is the distribution function. The
value of γM lies in (−1,1), and if γM is near 1, it indicates extreme right skewness.
On the other hand, if γM is near −1, it indicates extreme left skewness.

We also consider another measure of skewness, called quantile skewness (de-
noted here by γp), first proposed by Hinkley (1975). This skewness measure is
given by

γp = Q(1 − p) + Q(p) − 2m

Q(1 − p) − Q(p)
, (11)



L-Logistic regression models 461

which is a function of high and low percentiles defined by p ∈ (0,0.5) with Q(·)
being as in (3). The maximum value of γp is 1, representing extreme right skew-
ness, while the minimum is −1 representing extreme left skewness. This measure
is also zero for any symmetric distribution. However, the function in (11) depends
on the value of p. We can remove this dependence by integrating over p, or to
decide which value of p is appropriate for use. In Brys, Hubert and Struyf (2003),
there is a comparison between several robust skewness measures in which accu-
racy, robustness, and computational complexity are all considered. The most inter-
esting skewness measure of all the measures investigated is octile skewness. Octile
skewness takes p = 0.125 in (11), that is, it is given by

γO = O7 − O4 + O1 − O4

O7 − O1
= Q(0.875) + Q(0.125) − 2m

Q(0.875) − Q(0.125)
. (12)

For the L-Logistic distribution, we made use of this particular skewness measure
instead of removing the dependence over p through integration.

Moreover, the kurtosis of the L-Logistic distribution can also be derived easily
by using the quantiles. The kurtosis measure introduced by Moors (1988) is given
by

κO = O7 − O6 + O3 − O1

O6 − O2

= Q(0.875) − Q(0.625) + Q(0.375) − Q(0.125)

Q(0.75) − Q(0.25)
,

(13)

with κO ∈ (0,∞). Moors (1988) justified the use of the kurtosis measure in (13)
by the interpretation that the two terms in the numerator of (13) are large (small)
if relatively little (much) probability mass is concentrated in the neighborhood
of Q(0.75) and Q(0.25). This corresponds to large (small) dispersion around
(roughly) EY [Y ] ± VarY [Y ] where EY [Y ] and VarY [Y ] are the mean and variance
of Y , respectively.

Figure 4 presents the results of the measures of skewness and kurtosis described
here for some values of the parameter m as a function of the dispersion parameter
b, for b > 1. From this figure, we can see that when m < 0.5, the two measures of
skewness decrease as b increases. However, when m > 0.5, the two measures of
skewness increase as b increases. For m = 0.5, we can see that these two measures
are constant. In addition, the mode of the L-Logistic distribution increases as b

increases when m < 0.5, is constant when m = 0.5, and decreases as b increases
when m > 0.5. For the measure of kurtosis, we see no pattern in this figure.

3 L-Logistic median regression model

Regression analysis estimates the potential differential effect of a covariate on the
mean or quantiles of the conditional distribution (Hao and Naiman (2007)). Here,
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Figure 4 The mode, two measure of skewness (γM , γO ), and kurtosis (κO ) of the L-Logistic distri-
bution for some choice of the parameters.

we are interested in studying the conditional (or regression) median as a function
of the covariates when the response variable takes values in a bounded interval.
Our goal is to define a median regression model for a r.v. that assumes values in
the standard unit interval. Let Y = (Y1, . . . , Yn) be a vector of independent r.v.’s
following the distribution in (1) with median mi and dispersion parameter bi , and
consider that xT

1i and xT
2i are q- and d-dimensional vectors, respectively, contain-

ing the explanatory variables both with 1 as the first component. Thus, in the re-
gression analysis with the L-Logistic distribution, we assume that conditional on
the explanatory variables (covariates), the r.v.’s Yi , i = 1, . . . , n, are mutually in-
dependent with L-Logistic distribution, that is,

Yi ∼ LL(mi, bi), (14)

with

h1(mi) = xT
1iβ and h2(bi) = xT

2iδ, (15)

where β = (β0, . . . , βq−1) and δ = (δ0, . . . , δd−1) (βi, δj ∈ R for i = 0, . . . ,

(q − 1) and j = 0, . . . , (d − 1)) represent, respectively, q- and d-dimensional vec-
tors of unknown regression parameters. In (15), h1 and h2 are strictly monotone
and twice differentiable real link functions. This method allows to fit the model
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adequately with a variety of link functions, which ensures parameter m is in the in-
terval (0,1) and the dispersion parameter b is in the interval (0,∞). Some choices
of link functions for a parameter are discussed in Ferrari and Cribari-Neto (2004).
A common link function for the parameter m is the logit function,

logit(mi) = xT
1iβ ⇒ mi = exp{xT

1iβ}
1 + exp{xT

1iβ} . (16)

For the dispersion parameter, a common link function is the log-linear link func-
tion. For easy interpretation, here we follow Smithson and Verkuilen (2006) and
take h2 = − log(bi), that is,

log(bi) = −xT
2iδ or bi = exp

{−xT
2iδ

}
. (17)

4 Bayesian estimation

In this section, we describe the Bayesian approach for the estimation of parameters
of the L-Logistic distribution, and also of the L-Logistic regression model.

4.1 Bayesian estimation of the L-logistic distribution

If we consider a random sample Y = (Y1, . . . , Yn) from the distribution in (2), then
the likelihood function is given by

L(m,b|y) =
n∏

i=1

b(1 − m)bmbyb−1
i (1 − yi)

b−1

[(1 − m)byb
i + mb(1 − yi)b]2

, (18)

where 0 < m < 1 and b > 0. To complete the Bayesian specification of the model,
since parameters m and b have different behavior, we assume independence be-
tween them, and the following structure is then considered:

π(m,b) = π(m)π(b), (19)

where π(m) and π(b) are the prior densities for m and b, respectively.
The prior π(b) can be, for example, the pdf of the Gamma distribution with

parameter vector (ε, ε), ε being a small value. The choice of this prior seems to
be reasonable as a Gamma prior has large variance. The prior sensitivity analy-
sis considering other priors for the parameter b presented in Section 7 shows the
robustness of results in the selection of prior distributions. For the parameter m,
we can take m ∼ unifom(0,1) or m ∼ beta(1,1), where beta(a, b) represents the
beta distribution with parameters a and b. This is a “flat” prior where all values in
the range are equally likely. This choice can be considered weakly informative be-
cause in other cases (i.e., when a or b 	= 1) we will expect a value of the median m

to be greater than 0.5 or otherwise. Then, a more informative, subjective or expert
prior by interviewing experts can be considered in order to elicit parameters in a
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parametric family of priors following methods discussed, for example, by Albert
et al. (2012). Another choice for m can be through specifying other values of the
hyper parameters a and b in the beta distribution. From our results in simulation
studies, we did not find any problem with this choice for the model without co-
variate. By considering the specifications above, the joint posterior distribution for
(m,b) is given by

π(m,b|y) ∝ ∏
i=1

b(1 − m)bmbyb−1
i (1 − yi)

b−1

[(1 − m)byb
i + mb(1 − yi)b]2

π(b), (20)

where 0 < m < 1 and b > 0.
Since the posterior distribution is not available in a closed-form, the Markov

Chain Monte Carlo (MCMC) approach (Gelman et al. (2013, pp. 259–349)) is
used to estimate the model parameters. Initially, we consider the full conditional
posterior distributions for the parameters (m,b) given by

π(m|b,y) = K−1
1

(1 − m)nbmnb

∏n
i=1[(1 − m)byb

i + mb(1 − yi)b]2
, (21)

π(b|m,y) = K−1
2

n∏
i=1

(
b(1 − m)bmbyb−1

i (1 − yi)
b−1

[(1 − m)byb
i + mb(1 − yi)b]2

)
π(b), (22)

where 0 < m < 1 and b > 0 with K1 and K2 being normalizing constants.
Thus, a hybrid algorithm that combines Metropolis–Hastings algorithm and

Gibbs sampling was implemented in R language (R Development Core Team
(2015)) to obtain a sample from the posterior distribution of model parameters
(m,b). These codes are available upon request from the authors.

As suggested by a referee, we also implemented a MH algorithm. Based on
different scenarios, we did not find difference in the recovery of parameters based
on this two algorithms.

4.2 Bayesian estimation of the L-logistic regression model

Now, let Y = (Y1, . . . , Yn) be a vector of independent r.v.’s following the L-
Logistic distribution with median mi and dispersion parameter bi given by (16) and
(17), respectively. Then, the likelihood of the observed sample y = (y1, . . . , yn) of
Y can be written as

L(β, δ|y,X) =
n∏

i=1

bi(1 − mi)
bim

bi

i y
bi−1
i (1 − yi)

bi−1

[(1 − mi)bi yb
i + mbi (1 − yi)bi ]2

, (23)

where X is the matrix containing all the explanatory variables, and β and δ are the
regression parameters such that

logit(mi) = xT
1iβ and log(bi) = −xT

2iδ. (24)
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Suppose we have no prior information from historical data for the regression pa-
rameters. In many applications, a normal prior distribution centered at zero with
a standard error equal to 100 for the regression coefficient will be sufficiently
noninformative. So, we assign these weakly informative prior distributions to the
parameters, that is, we adopt prior normal distributions with large variance such
that

βj ∼ normal(0,100), for j = 0, . . . , q − 1,

δl ∼ normal(0,100), for l = 0, . . . , d − 1.
(25)

The prior distributions of parameters are chosen here under the assumption that
they are independent of each other.

Assuming the prior distributions in (25) for the parameters, the posterior density
takes on the form

π(b,β, δ|y) ∝ L(β, ϕ|y,X)π(β)π(δ) =
n∏

i=1

f (yi |xi ,β, δ)π(β)π(δ). (26)

Therefore, the full conditional posterior distributions for β and δ can be written
as

π(β|xi , δ) ∝
n∏

i=1

f (yi |xi ,β, δ)π(β),

π(δ|xij ,β) ∝
n∏

i=1

f (yi |xi ,β, δ)π(δ).

(27)

Using the posterior distribution in (26), we can use several Bayesian mech-
anisms for estimating the parameters. Here, a Gibbs sampling algorithm with
Metropolis–Hasting step inside becomes useful since the full conditional poste-
rior distribution for β and δ in (27) does not have a closed-form. The algorithm
described above was implemented in R language (R Development Core Team
(2015)), and these codes are available upon request from the authors.

4.3 Model comparison criteria and Posterior predictive checking

In order to compare alternative models, we made use of some model compari-
son criteria. Specifically, we considered the Expected Akaike information criterion
(EAIC), the expected Bayesian information criterion (EBIC), the deviance infor-
mation criterion (DIC), and the Watanabe–Akaike information criterion, which are
all described in Section 2 of Suplementary Material. Additionally, in this section,
using MCMC techniques, we show how to simulate values of the posterior predic-
tive distribution for checking the model.
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5 Simulation studies

This section presents three simulation studies, one that examines a prior sensitivity
analysis, another investigates the recovery of the parameters of the model by the
proposed estimation method and, finally, another that compares the proposed ap-
proach and existing approaches to model data with outliers. For this purpose, the
Bayesian method is applied on simulated data sets from the L-Logistic distribution,
considering different scenarios. For the estimation of parameters, we generated
20,000 values from the posterior distribution in (20), then the first 10,000 values
were discarded and sequences of 10 observations were eliminated, and finally the
resulting sample of size 1000 were used for inference.

5.1 Prior sensitivity analysis

Prior sensitivity analysis plays an important role in applied Bayesian analysis. This
is especially true for Bayesian models used for new distribution, wherein the in-
terpretability of the corresponding parameters becomes important. In this section,
we consider a simulation study to evaluate the sensitivity of different choices of
prior distributions for parameter b since this is different from parameter m, which
is clearer in its interpretation. Specifically, we assume prior independence between
parameters b and m, considering a unit uniform distribution for parameter m.

We considered five different prior distributions for b, considering simulated data
sets from the L-Logistic distribution for some pairs of parameters m and b. The val-
ues of m and b used are as follows: b ∈ {0.5,1,5} and m ∈ {0.2,0.5,0.9}, leading
to nine scenarios or pairs of parameters, corresponding to nine models simulated.
We simulated samples of size n = 100, y1, . . . yn, from the L-Logistic distribu-
tion based on these pairs of parameters, then nine distinct simulated datasets were
considered in the analysis.

Based on the works of Figueroa-Zúñiga, Arellano-Valle and Ferrari (2013), we
consider for the parameter b three relatively non-informative and two informa-
tive prior distributions. The non-informative prior distributions are the gamma dis-
tribution with parameter vector (0.001,0.001) (b ∼ Gamma(0.001,0.001)), de-
noted by prior A, the uniform distribution with parameter vector (0,100) for U

(U ∼ uniform(0,100)) with b = U2, denoted by prior B, and the central Stu-
dent t distribution with parameter vector (10,0,2) (L ∼ St (10,0,2)) for L with
log(b) = L, denoted by prior C. The prior B is chosen because it is less in-
formative than the usual gamma with parameter vector (ε, ε). For the informa-
tive prior distributions, we consider b ∼ Gamma(2.5,1), denoted by prior D, and
b ∼ Gamma(50,1), denoted by prior E. Note that prior E provides incorrect infor-
mation about parameter b, while prior D provides almost correct information. In all
the cases, the prior distribution for parameter m is taken as the uniform distribution
with parameters 0 and 1, that is, m ∼ uniform(0,1).

In order to compare the models with different prior distributions, we made use of
some model comparison criteria. Specifically, we considered the Expected Akaike
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information criterion (EAIC), the expected Bayesian information criterion (EBIC),
the deviance information criterion (DIC), and the Watanabe–Akaike information
criterion. For a review of these criteria, one may refer to Gelman et al. (2013)
(a brief description of these criteria is also given in the Online Supplementary Ma-
terial 2). Based on these criteria, for all the simulated datasets in the nine consid-
ered scenarios, we found that prior E provided the model with the worst fit among
all the fitted models. However, for the models using all other prior distributions,
the values of WAIC, EAIC, EBIC, and DIC are all quite close, showing no sig-
nificant difference, giving evidence that the estimated models provide almost the
same quality of fit for the analyzed samples. Thus, for these cases, the posterior
distribution does not seem to be sensitive with respect to the specification of these
prior distributions. The values of WAIC, EAIC, EBIC and DIC for the fitted mod-
els, considering these different prior distributions, are presented in Tables A and B
of the Supplementary Material 3.1.

For a more detailed analysis, additionally, we choose the non-informative pri-
ors A and C, and the worst informative prior E to present HPD intervals and point
estimates. Prior A was chosen for this second analysis because it is simplest among
the non-informative priors considered before, while prior C presents lower values
for EAIC, EBIC and DIC than prior B in most of the studied cases. In this analysis,
we observe that when prior E is used, the HPD interval does not contain the true
value of b. On the other hand, the non-informative A and C priors provide intervals
containing the true value of the parameters for all the cases analyzed. However,
prior A provides the estimated values for the parameter b (posterior mean) closer
to the true value than prior C in most cases. The posterior mean and the 95% HPD
interval (obtained from the package of Martin, Quinn and Park (2011)) can be seen
in Table C of the Supplementary Material 3.1.

Considering the results discussed before, we choose priors A and C for de-
veloping a sensitivity analysis in the context of the median regression model.
Here, we also consider prior independence between the parameters in which
βj ∼ N(0,100), for j = 0,1, . . . , q − 1. The simulated data sets for this analy-
sis were generated from L-Logistic distribution such that

Yi ∼ LL(mi, b),

logit(mi) = xT
i β,

(28)

for i = 1, . . . , n, where β = (β0, . . . , βq−1). The x′
is were generated indepen-

dently from beta distributions (beta(2,5),beta(5,1) and beta(1,3), respectively)

and their values were centered at their respective sample averages, in order to
improve the convergence of the MCMC algorithm. We considered two different
median regression models, the first with just one covariate (q = 2) and the sec-
ond with three covariates (q = 4). For each median regression model, we con-
sidered three true values for the dispersion parameter b leading to six scenarios
which are presented in Table 2. For each scenario, we simulated samples of size
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Table 2 Statistics for model comparison with different prior distributions for parameter b, using sample size of 100, 50 and 20 observations simulated
from L-Logistic distribution for different values of b and the coefficient of the median regression model

Prior A Prior C

Coefficient β = (β0, . . . ,βp) Dispersion b WAIC EAIC EBIC DIC WAIC EAIC EBIC DIC

Sample size n = 100
β = (−1.5,1.5) 0.5 99.60 −192.25 −182.44 −193.20 99.64 −192.37 −182.56 −193.44

1 69.77 −132.59 −122.77 −133.52 69.81 −132.62 −122.81 −133.58
5 187.88 −368.84 −359.03 −369.82 187.89 −368.73 −358.92 −369.60

β = (−3,−1.5,1.5,3) 0.5 206.55 −400.50 −385.48 −403.45 206.65 −400.41 −385.38 −403.19
1 220.62 −428.65 −413.62 −431.61 220.72 −428.73 −413.70 −431.70
5 366.60 −720.56 −705.53 −723.46 366.60 −720.72 −705.69 −723.79

Sample size n = 50
β = (−1.5,1.5) 0.5 42.56 −78.25 −70.52 −79.21 42.63 −78.36 −70.62 −79.40

1 35.25 −63.59 −55.86 −64.52 35.30 −63.75 −56.01 −64.80
5 98.36 −189.83 −182.10 −190.78 98.35 −189.92 −182.18 −190.96

β = (−3,−1.5,1.5,3) 0.5 112.62 −212.86 −201.30 −215.78 112.81 −213.01 −201.45 −215.94
1 124.40 −236.41 −224.85 −239.28 124.56 −236.63 −225.07 −239.61
5 198.21 −384.03 −372.47 −386.89 198.22 −383.97 −372.41 −386.79

Sample size n = 20
β = (−1.5,1.5) 0.5 30.10 −52.91 −47.92 −53.80 30.38 −53.04 −48.05 −54.00

1 19.22 −31.18 −26.20 −32.10 19.46 −31.40 −26.42 −32.43
5 39.81 −72.35 −67.36 −73.21 39.90 −72.47 −67.48 −73.43

β = (−3,−1.5,1.5,3) 0.5 39.34 −66.33 −59.35 −69.17 39.85 −66.64 −59.66 −69.51
1 33.03 −53.67 −46.69 −56.48 33.48 −54.10 −47.12 −57.06
5 56.97 −101.49 −94.51 −104.19 57.10 −101.66 −94.68 −104.48
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n ∈ {20,50,100} from these models. The true values of the coefficients and the
dispersion parameter for each considered model are shown in Table 2. As in the
previous analysis, considering the results presented in Table 2, we can see no dif-
ference between the models fitted with priors A and C for the dispersion parame-
ter b.

5.2 Parameter recovery and comparison of algorithms

A study of parameter recovery for the parameters of the L-Logistic distribution us-
ing prior A for the dispersion parameter b and the unit uniform prior for the param-
eter m was conducted and can be seen in Supplementary Material 3.2. This study
showed that the proposed estimation method for the parameters of the L-Logistic
distribution works quite well. Additionally, following a recommendation of the As-
sociate Editor, we compared the proposed hybrid algorithm (Metropolis–Hastings
algorithm within the Gibbs sampler) with an adaptive Metropolis–Hastings algo-
rithm in order to estimate the median L-logistic regression. The results presented
in Supplementary Material reveal that there is no difference in the recovery of the
parameters of the model by both these methods.

5.3 Robustness to outliers of L-Logistic distribution

Now, we discuss a simulation study carried out to examine the robustness to out-
liers of the L-Logistic distribution, that is, we discuss a study of the relative perfor-
mance of the procedure for estimating the beta and L-Logistic models, with data
coming from a beta distribution with outliers.

The contaminated beta data were generated following Bayes, Bazán and García
(2012) in two steps. First, the datasets were generated from a beta distribution with
location parameter μ = 0.2, considering two values of the dispersion parameter,
φ = 10,30, and three sample sizes, n = 50,100,200. Second, these data were
contaminated with outliers generated from a uniform distribution with parameters
0.999 and 1. The proportions of outliers considered were 0.02, 0.05 and 0.08 for
each dataset, that is, r = 2%,5%,8% of the data in each dataset were randomly
replaced by outliers. This gave r ×n/100 total outliers in each dataset containing n

values. The combination of values of φ, n and r provides 2 × 3 × 3 = 18 scenarios
to be analyzed.

In order to compare the fit of beta and L-Logistic models to each of the contami-
nated datasets, WAIC, EAIC, EBIC and DIC were obtained for beta and L-Logistic
models for 100 replications in each scenario. Thus, the percentage of cases in
which the L-Logistic model achieved a lower value for WAIC, EAIC, EBIC and
DIC than the beta model was determined. We found no significant difference be-
tween the two analyzed models when the DIC is used to select the model. How-
ever, the L-Logistic model performed better than beta models in all analyzed cases
based on WAIC, EAIC and EBIC (see Table F of Suplementary Material 3.3).
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Figure 5 Estimated densities for beta and L-Logistic models for the scenario in which n = 100,
φ = 10 and r = 5%.

The bias and MSE of the estimators of m and μ obtained by replicating in
each scenario, considering 0.2 as the true value for the parameters m and μ, were
obtained (see Table F of Supplementary Material 3.3). The bias and MSE were al-
ways smaller for the m estimator than the μ estimator showing that for any scenario
with outliers, there was an improvement in the accuracy (bias and MSE decrease)
for the estimation of the model parameters when using an L-Logistic model rather
than the beta model for a contaminated dataset. In order to illustrate the results,
the estimated densities for the scenario in which n = 100, r = 5% and φ = 10 is
shown in Figure 5, where the L-Logistic model is seem to fit the data better than
the beta model.

6 Applications of L-Logistic distribution to real data

In order to illustrate the advantages of the use of the L-Logistic distribution in
comparison to beta distribution, in Section 6.1 we estimate the distribution of the
vulnerability to poverty in Alagoas state, Brazil. Later in Section 6.2, we propose
different regression models to explain the anxiety as a function of stress, consider-
ing a know data set in the literature.
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6.1 Estimating the distribution of the vulnerability to poverty in Alagoas
state

In this subsection, we consider a real dataset, which contains the proportion of
children (0–14 year olds) vulnerable to poverty. The data came from the munici-
palities of the state of Alagoas in Brazil, and was collected in 2010. The state of
Alagoas is located in the eastern part of the Northeastern Region of Brazil and is
made up of 102 municipalities. This state is one of the poorest states of Brazil and
its HDI (Human Development Index) is the country’s worst, based on information
available in PNUD, IPEA and FJP (2013). Thus, we are interested in modeling the
proportion of children vulnerable to poverty (PCVP). Here, a child is considered
vulnerable to poverty if the per capita household income is at most BRL 255, in
2010. The PCVP data set comprises 102 observations and is modeled here using
the L-Logistic distribution and the beta distribution that is often used to model data
when a distribution over some finite interval is needed; see Gupta and Nadarajah
(2004). Here, we use the re-parametrized beta distribution discussed by Ferrari and
Cribari-Neto (2004) in the context of regression analysis.

The Bayesian methodology was used to estimate the parameters of both models.
For the L-Logistic distribution with parameters m and b, we considered prior A
discussed earlier in Section 5. Since the beta distribution has parameters 0 < μ < 1
and φ > 0, we considered the same prior A in this model as well.

The final result on the estimation is presented in Table 3. This table also shows
the values of statistics for model comparison in order to evaluate the ability of
L-Logistic and beta models to fit the data. According to this table, it is clear that
the L-Logistic model is better for modeling the PCVP data than the beta model. In
addition, Figure 6 shows two graphs with the mean values and error bars with 95%
credible intervals plotted against the corresponding observed value of the data. The
error bars were constructed from 1000 values (ordered, and of size 102) generated
from the L-Logistic and beta distributions, respectively, for each graph, with the
estimated parameters. In the case of the L-Logistic model, the bars crossed by the
diagonal line y = x indicate that the model is quite suitable for the data. On the
other hand, in the case of the beta model, we observe high deviations between

Table 3 Estimates and 95% HPD intervals for the parameters of the L-Logistic and beta models,
and model comparison criteria

Criteria

Model Parameter WAIC EAIC EBIC DIC

L-Logistic m 0.86(0.85,0.87) 155.1322 −304.2996 −299.0496 −306.3422
b 4.04(3.42,4.72)

beta μ 0.85(0.84,0.86) 150.8993 −295.3312 −290.0813 −297.3437
φ 37.81(27.55,47.83)
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Figure 6 Posterior predictive error bars with 95% confidence intervals of the generated values y
rep
(i)

versus ordered observed data y(i) for the PCVP data, using L-Logistic and beta models.

the predicted and observed data, mainly in the tail of the distribution. In this case,
an observation is flagged as an outlier, since the corresponding posterior interval
does not contain the observed value. Thus, Figure 6 provides evidence that the
beta model is not suitable for these data. Finally, the estimated and the observed
histograms of the PCVP data are presented in Figure 7, which confirms that the
L-Logistic model provides a better fit for these data than the beta model.

Assuming the L-Logistic model as a final model, we can see in Table 3 that
the median of proportion of children vulnerable to poverty is close to 1 with low
dispersion. Therefore, based on these results we can conclude that the children
vulnerable to poverty in the Alagoas state is higher and systematically present
lower dispersion.

6.2 Application of the L-Logistic regression model

In order to illustrate the regression analysis considering the L-Logistic distribu-
tion, we analyzed a known data set in the literature that come from a sample of
nonclinical women in Townsville, Queensland, Australia. The data set contains
166 observations on two variables, namely, the stress score and the anxiety score.
Both variables were assessed on the Depression Anxiety Stress Scales, ranging
from 0 to 42, but linearly transformed to the open unit interval by Smithson and
Verkuilen (2006). The scatter plot of the anxiety versus stress variable, and the his-
tograms of the data, are presented in Figure 8. The histogram given in this figure
suggest that the anxiety is strongly skewed.

For this data, we propose four possible regression sub-models using L-Logistic
distribution. We consider a null regression model without any covariate, a regres-
sion model considering only covariate effects in parameter m, a dispersion regres-
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Figure 7 Observed and estimated density of PCVP data.

sion model considering only covariate effects in the dispersion parameter b, and
full regression model considering both effects, as follows:

Yi ∼ LL(mi, bi) and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

null model (L0) : logit(mi) = β0 and log(bi) = −δ,

median-model (L1) : logit(mi) = xT
1iβ and log(bi) = −δ0,

dispersion model (L2) : logit(mi) = β0 and log(bi) = −xT
1iδ,

full model (L3) : logit(mi) = xT
1iβ and log(bi) = −xT

2iδ,

for i = 1, . . . ,166. In addition, we also consider equivalent regression models us-
ing the beta distribution as follows:

Yi ∼ beta(μi, φi) and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

null model (B0) : logit(μi) = β0 and log(φi) = −δ,

mean-model (B1) : logit(μi) = xT
1iβ and log(bi) = −δ0,

dispersion model (B2) : logit(μi) = β0 and log(φi) = −xT
1iδ,

full model (B3) : logit(μi) = xT
1iβ and log(φi) = −xT

2iδ,

for i = 1, . . . ,166.
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Figure 8 Scatterplot and histograms of the data in Application 6.2.

Here, the Bayesian approach is considered for the inference process with a prior
distribution for the unknown regression parameters, as given in (25). All the algo-
rithms were prepared in the R language and we report the results corresponding to
10,000 iterations following a burn-in period also of 10,000 iterations. In order to
eliminate dependence, we eliminated a sequence of 10 observations every 11 sim-
ulations in the sample of size 10,000, resulting in a final sample of 1000 elements.
Finally, the convergence of MCMC chain was assessed by using the separated par-
tial means test of Geweke (1992), which provided evidence for the chains to have
converged.

The regression models investigated were compared by the use of EAIC, EBIC,
DIC and WAIC criteria, and the obtained results are shown in Table 4. The param-

Table 4 Model comparison criteria for model comparison

L-Logistic model beta model

Sub model WAIC EAIC EBIC DIC WAIC EAIC EBIC DIC

0 259.34 −512.94 −506.72 −514.92 239.45 −472.90 −466.67 −474.90
1 277.67 −545.51 −536.17 −548.56 243.28 −478.06 −468.72 −481.07
2 316.57 −624.78 −615.44 −627.83 283.41 −556.95 −547.62 −559.92
3 319.65 −627.47 −615.02 −631.48 301.91 −591.85 −579.41 −595.82
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eter estimates for these models are shown in Table 5. Considering Table 4, we can
observe that the regression models considering L-Logistic distribution provides a
better fit than the corresponding beta regression models, for all the criteria consid-
ered. These results also give evidence that L3 and L2 are the best models among
the ones based on the L-Logistic distribution. Though there is no significant differ-
ence between the L2 and L3 regressions, we consider the L3 regression model to
be a reasonable choice for this data set, due to the expected influence on covariates
in the dispersion parameter (Smithson and Verkuilen (2006)).

Moreover, a posterior distribution of residuals was obtained and a posterior
mean of this distribution was computed (Gelman et al. (2014)). That is, for
i = 1, . . . ,166, we have r̂i = G−1 ∑G

g=1
yi−ŷg

SD(Yi |βg)
, where β1, . . . ,βG are obtained

from the posterior distribution, ŷ is the estimated value of a data point yi , and
SD(Y |βg) is the standard deviation of posterior values of Y , both obtained given a
single random draw βg of the posterior distribution. Figure 9 shows the standard
residual versus the estimated values in which we can see that the L3 regression
model provides a better fit than the B3 model, which confirms that L3 model are
better than the corresponding B3 model.

Finally, from Table 5 giving the 95% HPD intervals for all the coefficients of
the models under analysis, we can see that the estimates are quite precise. For
the model chosen, that is, L3 model, we observe that the HPD intervals for the
estimates of the parameters β1 and δ1 do not contain zero giving evidence that
the parameters in the model are significant in the model. In other words, stress is
important in both parameters of the distribution of anxiety.

7 Final remarks

The L-Logistic distribution, introduced by Tadikamalla and Johnson (1982), is a
bounded continuous distribution that possesses some nice properties, as discussed
in Section 2. Considering the parametrization introduced in this manuscript, we
propose a Bayesian estimator by considering an MCMC method as an alternative
to the moment and maximum likelihood methods developed previously in the liter-
ature. In the Bayesian context, a non-informative prior distribution can be adopted
for the parameter m since it lies in the unit interval, enabling the use of unit uni-
form distribution as a non-informative prior distribution.

The main motivation of the parametrization introduced here is the development
of regression models based on the L-Logistic distribution. We also introduce con-
ditional median regression models, which is a special case of quantile regression
wherein a conditional quantile is modeled as a function of covariates.

Two applications have been considered in this work. First, we consider an ap-
plication to social data, wherein the proportion of children vulnerable to poverty of
the municipalities of the state of Alagoas in Brazil, for the 2010 season, is modeled.
Second, we analyze a known data set, previously analyzed using beta distribution
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Table 5 Parameter estimates and 95% HPD intervals for the L-Logistic and beta models

Coefficient

Model β̂0(HPD) β̂1(HPD) δ̂0(HPD) δ̂1(HPD)

L-Logistic L0 −3.354 (−3.615,−3.106) – −0.08 (−0.20,0.04) –
L1 −4.78 (−5.04,−4.52) 5.78 (4.99, 6.58) −0.44 (−0.57,−0.31) –
L2 −4.03 (−4.27,−3.78) – −0.87 (−1.14,−0.58) 2.56 (1.62,3.42)

L3 −4.77 (−5.00,−4.53) 5.64 (4.68, 6.61) −0.76 (−1.03,−0.48) 1.14 (0.19,2.05)

beta B0 −2.239 (−2.430,−2.04) – −1.78 (−2.02,−1.54) –
B1 −3.47 (−3.75,−3.18) 3.74 (3.11, 4.37) −2.44 (−2.7,−2.20) –
B2 −2.54 (−2.80,−2.27) – −2.49 (−2.98,−1.95) 1.53 (0.42,2.55)

B3 −4.02 (−4.30,−3.72) 4.95 ( 4.09, 5.83) −3.94 (−4.45,−3.44) 4.28 (2.78,5.79)
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Figure 9 Standard residual versus adjusted values for the L-Logistic and beta models.

by Smithson and Verkuilen (2006), which contains the stress score and the anxiety
score. Here, the anxiety variable is modeled as a function of the stress. In the case
of the L-Logistic distribution, we use a regression model proposed in this work.
In these applications, we observe that the L-Logistic distribution seems to fit bet-
ter than the beta model for both this analyzed cases. Considering the application
to the anxiety data set (Anxiety explained by stress), we show that the L-Logistic
regression models can be a good alternative to the beta model. An advantage of
this approach is the possibility of modeling other quantiles in order to describe a
non-central position of a distribution. So, one may choose a position specifically
for his/her needs. For example, it is possible to consider a regression model to
explain other quantiles to the Anxiety considering the influence of the stress in
our application. Thus, conditional quantile models offer the flexibility to focus on
these population segments, whereas conditional mean models do not. However,
since quantile regression curves are estimated individually, the quantile curves can
cross, leading to an invalid distribution for the response. Thus, this problem, re-
ferred to as crossing in the literature, needs to be studied carefully. Some authors
have proposed methods to deal with this problem; see, for example, Cai and Jiang
(2015).

In the future, we aim to develop techniques for mixed quantile regression for
the L-Logistic distribution. Moreover, we intend to explore mixtures of L-Logistic
distributions in a Bayesian framework as well as a multivariate version of this
distribution.
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