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Abstract. Non-linear mixed models are useful in many practical longitudi-
nal data problems, especially when they are derived as solutions to differential
equations generated by subject matter theoretical considerations. When this
underlying rationale is not available, practitioners are faced with the dilemma
of choosing a model from the numerous ones available in the literature. The
situation is even worse for messy data where interpretation and computational
problems are frequent. This is the case with a pilot observational study con-
ducted at the School of Medicine of the University of São Paulo in which a
new method to estimate the time since death (post-mortem interval—PMI)
is proposed. In particular, the attenuation of the density of intra-cardiac hy-
postasis (concentration of red cells in the vascular system by gravity) ob-
tained from a series of tomographic images was observed in the thoraces of
21 bodies of hospitalized patients with known time of death. The images were
obtained at different instants and not always at the same conditions for each
body, generating a set of messy data. In this context, we consider three ad
hoc models to analyse the data, commenting on the advantages and caveats
of each approach.

1 Introduction

The estimated time since death, known as post-mortem interval (PMI), is funda-
mental in many instances such as in criminal investigations, because its determi-
nation may be used to acquit or condemn a suspect, as the data is compared with
the alibis provided by those under investigation. Standard estimates of PMI based
on the evaluation of some physical characteristics have margins of error of 2 hours
during the first 6 hours following death, of 3 hours in the next 14 hours and of
4.5 hours in the subsequent 10 hours as indicated by Kaliszan et al. (2009). These
authors mention that many alternatives to improve the determination of the PMI
have been attempted but they have not been regularly used in practice.

The concentration of red cells in the vascular system and the diffusion of plasma
into the adjacent tissues after death result in a reddish-purple color, a phenomenon
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called hypostasis [see Knight (1991), Sannohe (2002) or Dolinak et al. (2005), for
example] or livor mortis [Thali (2003)]. According to Dolinak et al. (2005), hy-
postasis begins to develop at the moment of cardiac arrest, becoming perceptible
after 3–4 hours and more obvious after 6–8 hours, with full development in the
skin occurring after 10–12 hours. Fávero (1991), on the other hand, suggests that
the first signs of hypostasis occur within 10 minutes after death, becoming obvious
after 1 to 3 hours and stabilizing after approximately 8 to 12 hours. Such differ-
ences in tissue density (attenuation) may be visualized via post-mortem computer
tomography (PMCT). Intra-cardiac hypostasis is caused by the gradual sedimen-
tation of the cellular elements of the blood in the heart and in the great vessels,
allowing visualization in the superior vena cava, the right atrium, the right ven-
tricle, the thoracic aorta, the left atrium and the left ventricle. Ishida et al. (2011)
examined 50 cases, concluding that intra-cardiac hypostasis was easily observed
in 55% of the patients, with the best sites for analysis being the right atrium (88%),
the left atrium (88%) and the thoracic aorta (76%).

To our knowledge, authors of studies involving PMCT virtual autopsy like Sh-
iotani et al. (2002), Levy et al. (2010) or Ishida et al. (2011) did not consider using
complementary imaging to facilitate PMI estimation; published studies concern-
ing tomographic analysis of hypostasis in the heart and in the great vessels use a
single image for each subject, rather than a series of timed images at increasing
post-mortem instants. Our objective is to discuss statistical methodology to ana-
lyze data from a pilot study designed to estimate the PMI based on a series of
tomographic analyses of intra-cardiac hypostasis.

In Section 2, we describe the pilot study identifying aspects that must be taken
into account for analysis. Three alternative models are presented in Section 3 and
the results of the data analyses are considered in Section 4. We conclude with a
brief discussion in Section 5.

2 The study

We consider a prospective observational pilot study conducted at the School of
Medicine of the University of São Paulo, Brazil and approved by its Ethics Com-
mittee. The data were collected from 21 corpses of patients of both sexes who
died while under medical care and were routed to autopsy. This guarantees the
knowledge of the exact time of death. For each subject, demographic data (age,
sex and ethnicity), disease history, the hypothetical cause of death and the time of
death observed by the physician were recorded. A pathologist was responsible for
specifying the causes of death as well as writing the autopsy reports.

The bodies were placed in dorsal decubitus position with the arms placed be-
hind the head to allow transition through the tomograph, to bypass cadaveric rigid-
ity and to reduce the emission of radiation. Images were obtained at post-mortem
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intervals of between one and twenty hours, with the examination repeated at in-
tervals of one hour, depending on the availability of the tomographic equipment.
The images were analyzed simultaneously by a forensic physician and by a radi-
ologist and were reviewed by a pulmonary pathologist. The acquired images were
analyzed one by one, with the goal of choosing the most appropriate slice for the
attenuation measurements. Each cardiac chamber was divided into two zones (an-
terior and posterior) and measurements were obtained in approximately spherical
portions with average volume of 1.4 cm3 within each zone. At each observation
instant, the average tissue density (in Hounsfield units) of each segment was com-
puted and the attenuation values in each area were determined.

The difference between the attenuation measurements obtained from the An-
terior segment of the Right atrium and the Posterior segment of the Left atrium
[labeled dif(ARPL)] in each selected image was used for statistical analysis. This
difference corresponds to the greatest distance between the measured points within
the heart and has been considered in previous studies [see Ishida et al. (2011), for
example]. Given that hypostasis begins when the heart stops beating, the densi-
ties of the anterior and posterior zones of the atrium were considered equal at the
moment of death.

Anthropometric data for the 21 subjects as well as the initial and final PMI at
which the images were obtained and are summarized in Table 1.

The subjects included 12 males and 9 females, with an average age of 55.5
years (minimum of 19 and maximum of 92). The first measurement in each body
ranged from one to twenty hours post-mortem and different numbers of images
were obtained in each subject because of the demand for the autopsy room. The
temporal evolution of the observed measurements of dif(ARPL) is displayed in
Figure 1.

3 The models

Given that hypostasis tends to stabilize after a certain period, it seems reasonable
to adopt non-linear models with an asymptote to represent the data. Differently
from many cases addressed in the literature [see Davidian and Giltinan (2003),
for example], there is no known mechanistic model to describe the attenuation
process. We are then faced with the problem of choosing an ad hoc model that can
take the characteristics of the phenomenon under investigation into account. This
is a difficult task in view of the numerous alternatives available in the literature.

A special case of the Mitscherlich model (known in the literature as von Berta-
lanffy growth model) and multiplicative exponential models were considered as
candidates to represent the relation between the response [dif(ARPL)] and time
(PMI). Furthermore, the different behaviour observed for the different subjects
(see Figure 1) justifies the use of mixed models. For details on these models, the
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Table 1 Epidemiological data and the initial (PMIi) and final (PMIf) PMI at which the images
were obtained

Age PMIi PMIf Number of
Subject Sex Race (years) (hours) (hours) observations

1 Male Caucasian 26 4 4 1
2 Male Black 82 3 3 1
3 Female Black 53 4 7 4
4 Male Caucasian 44 13 14 2
5 Male Caucasian 37 7 7 1
6 Female Caucasian 67 12 13 2
7 Male Black 59 10 12 3
8 Female Black 83 19 20 2
9 Female Mixed 48 20 20 1

10 Female Caucasian 84 10 11 2
11 Male Mixed 68 8 9 2
12 Male Mixed 31 11 13 3
13 Female Caucasian 92 1 4 4
14 Male Caucasian 79 4 6 3
15 Male Caucasian 21 3 10 8
16 Female Mixed 68 12 14 3
17 Female Caucasian 49 12 14 3
18 Female Caucasian 19 8 16 9
19 Male Caucasian 47 8 11 4
20 Male Caucasian 50 11 13 3
21 Male Mixed 53 11 13 3

Figure 1 Individual profiles of the attenuation difference between the anterior segment of the right
atrium and the posterior segment of the left atrium [dif(ARPL)].
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reader is referred to Lindsey (2004), Fitzmaurice et al. (2011) or to Demidenko
(2013), among others.

The von Bertalanffy mixed model may be expressed as

yij = (γ + gi)
{
1 − exp

[−(δ + di)xij

]} + uij , xij ≥ 0, (3.1)

where yij denotes the j th response of the ith subject, xij denotes the corresponding
time where this response was observed, γ > 0 and δ > 0 are parameters, the ran-
dom effects gi = (gi, di)

� follow independent Gaussian distributions with mean
vector 0 and covariance matrix G and fij are random errors following indepen-
dent Gaussian distributions with mean 0 and variance σ 2. Furthermore, gi and uij

are considered independent. Here, the parameter γ represents the asymptote or the
value at which the response stabilizes and δ is a parameter related to the rate with
which the asymptote is reached (known as the intrinsic growth parameter). As dis-
cussed in Vonesh and Chinchilli (1996, Ch. 7), among others, the parameters γ and
δ in (3.1) have a subject-specific interpretation, that is, they represent the behaviour
of the response for a “typical” subject (one for which the random effects are equal
to zero) and not a population-averaged response. Although population-averaged
response curves may be obtained by integrating out the random effects, estimates
of the corresponding parameters are obtainable only in very special cases.

The multiplicative exponential mixed model is expressed as

yij = (αai) exp
[−(β + bi)/xij

]
eij , xij > 0 (3.2)

with parameters α and β having similar interpretations as those in the von Berta-
lanffy mixed model but refer to population-averaged characteristics as opposed to
subject-specific ones. Note that (3.2) may be linearized as

y∗
ij = α∗ + a∗

i + (
β∗ + bi

)
x∗
ij + e∗

ij , x∗
ij > 0, (3.3)

where y∗
ij = log(yij ), α∗ = log(α), β∗ = −β , a∗

i = log(ai), e∗
ij = log(eij ) and

x∗
ij = 1/xij . Assuming that the random effects b∗

i = (a∗
i , bi)

� follow independent
Gaussian distributions with mean vector 0 and covariance matrix G∗ and e∗

ij are
random errors following independent Gaussian distributions with mean 0 and vari-
ance τ 2, (3.3) may be classified as a standard linear mixed model. According to
this specification, in (3.2), eij follows a log-normal distribution and both α and ai

are positive implying that the predicted responses are positive, a feature required
by the problem under investigation.

Alternatively, the evolution of dif(ARPL) could be represented by a mixed seg-
mented regression model with random change-points like

yij = κi

{
ψi + (xij − ψi)I{xij≤ψi}

} + eij , (3.4)

where κi = κ + ki , ψi = ψ + pi , eij ∼ N(0, σ 2) and bi = (ki,pi)
� ∼ N [0,G(θ)]

with G denoting an unstructured covariance matrix with parameters θ = (σ 2
k , σ 2

p,

σkp)� are independent random variables. Here, κ denotes the slope (“rate”) with
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which the response dif(ARPL) stabilizes, and ψ indicates the time at which this
occurs. The level at which the response stabilizes (“asymptote”) corresponds to
κiψi Given its non-linear nature, the parameters in this model have the same in-
terpretational characteristics as those defining the von Bertalanffy model, that is,
the parameters refer to the characteristics of a “typical” subject (corresponding to
bi = 0).

Model (3.1) is intrinsically non-linear and is derived from differential equations
with interesting interpretations as described in Lindsey (2004, p. 273). It may be
fitted with standard methodology for non-linear mixed models as indicated in Pin-
heiro et al. (2014). Model (3.4) is attractive because of its simplicity but requires
specialized algorithms. We motivate and describe an adaptation of an algorithm
in Muggeo et al. (2014) in the Appendix. Model (3.2) may be linearized, yielding
(3.3) and as such may be fitted via standard linear mixed models methodology out-
lined in Demidenko (2013), for example. Furthermore, diagnostic tools for linear
mixed models are well disseminated in the literature.

Note that for biological reasons, the intercept of the three models are constrained
to zero but this is not necessary in a more general setting.

4 Results

Initially, we considered restricted maximum likelihood methods (REML) to fit
variations of the three models obtained by including or not random effects associ-
ated to each parameter using the package nlme [Pinheiro et al. (2014)] of the R
software [R Core Team (2014)] as well as the algorithm outlined in the Appendix
for the segmented regression model. The results are displayed in Table 2.

Fitting the von Bertalanffy (3.1) or the segmented (3.4) regression models re-
quires good initial estimates, a difficult task especially because the search involves
two or three parameters; in some instances convergence is not attained and in other
cases, different starting values lead to different solutions. In general, such problems
do not occur when fitting the exponential model (3.2) in the linearized form (3.3).
This last model has the advantage of allowing comprehensive diagnostic tools as
indicated in Singer et al. (2017) who developed R functions for such purposes
(available from www.ime.usp.br/~jmsinger/lmmdiagnostics.zip). Given the lack of
theoretical reasons underlying the structure of the phenomenon under study, such
tools may have a limited role regarding the choice of the most appropriate class of
models, but may well serve to a fine tuning of the chosen one. Furthermore, the
exponential model allows the estimation (prediction) of the random effects via the
solution of Henderson’s equations as opposed to genuinely non-linear models, that
require iterative methods for such purposes. Details may be obtained in Lindstrom
and Bates (1990), Vonesh and Chinchilli (1996, Ch. 7) and Singer et al. (2017), for
example. Based on these considerations as well as on the descriptive analysis, that
suggests different asymptotes and different rate parameters for different subjects

http://www.ime.usp.br/~jmsinger/lmmdiagnostics.zip
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Table 2 Parameter estimates, standard errors (Std error) and goodness of fit criteria

Random Estim Std Estim Std
Model effects asympt error rate error AIC BIC

von Bertalanffy asymptote 48.25 4.86 0.19 0.04� 470.89 479.53
von Bertalanffy rate 97.76 17.85 0.06 0.02� 478.94 487.45
von Bertalanffy both 47.33 3.81 0.25 0.05� 479.19 491.96

Exponential asymptote 42.79
 3.96� 0.92 0.36 52.23 60.74
Exponential rate 64.64
 6.21� 4.78 1.11 34.09 42.60
Exponential both 60.91
 11.03� 3.55 1.46 −0.97 11.80

Segmented rate 47.85• 4.06 5.90 0.52 486.55 495.06
Segmented rate &

change-point 52.79� 3.77 5.31 0.69 496.81 509.57


: computed as exp(α∗)

�: computed via the Delta method
•: computed as rate × change-point (= 5.90 × 8.10)
�: computed as rate × change-point (= 5.31 × 9.95)

(see Figure 1), the chosen models for subsequent analyses included random effects
associated with both parameters.

We considered the diagnostic plots described in Singer et al. (2017) to evaluate
the fit of the linearized exponential mixed model. A plot of the modified Lesaffre–
Verbeke index for the chosen model is displayed in Figure 2, suggesting that the
adopted covariance structure is not appropriate for subjects labeled 10, 12 and 14.
Also, a plot of the elements of the generalized random component leverage matrix
(Figure 3) suggests that subject 13 is influential with respect to the estimates of the
elements of the covariance matrix. A reasonable strategy for analysis is to mod-
ify the model to accommodate these differences in the covariance structure given
that other diagnostic tools depend on good estimates of the associated covariance
matrices.

These plots suggest that possibly a completely heteroskedastic model should
be considered. However, the over-parametrization of such a model along with the
small number of observations for many subjects lead to convergence problems. An
alternative is to seek for more parsimonious models trying to identify for which
subjects a different variance component should be included. This may be accom-
plished by iteratively fitting models with different variances for the subjects iden-
tified via diagnostic procedures.

With this in mind, the model was modified to accommodate different variances
for the error term associated with the measurements of subjects 10, 12, 13 and 14
and refitted to the data. In the next step, subject 13 was still identified as influential
with respect to the estimates of the elements of the covariance matrix (see Figure 4)
although with less intensity as in the previous model and subject 15 showed up as
a candidate for a different covariance component (see Figure 5).



168 Singer, Rocha, André and Zerbini

Figure 2 Plot of the modified Lesaffre–Verbeke index (initial model). Dashed line: 3rd quartile +
1.5 interquartile range.

Figure 3 Plot of the generalized random component leverage (initial model). Dashed line: 3rd
quartile + 1.5 interquartile range.

This process was repeated once more, since residual analysis for the modified
model still showed that for subjects 13 and 15 the covariance structure may not be
appropriate. Note that the profile for subject 13 exhibits a convex rather than the
expected concave shape (see Figure 1). Also, the first observation of subject 15
(which is the one with the second largest number of observations) is highlighted
as the possible cause of the poor fit of the covariance structure.
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Figure 4 Plot of the generalized random component leverage (model with different covariance
components for subjects 10, 12, 13 and 14). Dashed line: 3rd quartile + 1.5 interquartile range.

Figure 5 Plot of the modified Lesaffre–Verbeke measure (model with different covariance compo-
nents for subjects 10, 12, 13 and 14). Dashed line: 3rd quartile + 1.5 interquartile range.

Although one cannot expect an optimal model for data with the same nature
as those under investigation, we specified a model that included different variance
components for subjects 10, 12, 14 and 15 after excluding subject 13 and the first
observation of subject 15. The residual plots for this model (see Figures A.1–A.5
in the Appendix) suggest that the assumption of normality is reasonable for both
the random effects and the error terms, that the covariance structure is acceptable
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for all subjects and that there are no outliers. Subject 2 is highlighted as possibly
influential, but one may not expect a perfect fit with this sort of sparse and irregular
data, specially given that subject 2 has a single observation.

For this model, the (marginal) AIC = −49.78 and the BIC = −29.35 (in con-
trast with AIC = −0.97 and BIC = 11.80 for the original model) and the cor-
responding estimates (± standard errors) for the population averaged asymp-
tote (α) and speed related parameter (β) are respectively α̂ = 52.7 ± 5.6 and
β̂ = 1.99 ± 0.68.

Because the objective of the proposed method is to estimate the PMI for a fixed
value of dif(ARPL) for a specific subject, say yi0, we are essentially facing a cal-
ibration problem, that is, one in which the roles of the explanatory and response
variables are interchanged. For details, the reader is referred to Graybill and Iyer
(1994, pp. 425–431) among others. For such purpose, we may invert expression
(3.3), obtaining

P̂MIi (yi0) = β̂∗ + b̂i

log(yi0) − (α̂∗ + â∗
i )

, (4.1)

where α̂∗ and β̂∗ are the maximum likelihood estimates of α and β and â∗
i and

b̂i are the best linear unbiased predictors of a∗
i and bi in model (3.3) with the

modifications introduced in the covariance structure. The corresponding standard
error may be obtained via the Delta Method [see Sen et al. (2009, pp. 211–212),
for example]. Since the expression for the this standard error is quite intricate, we
present the details in the Appendix.

Estimated PMI and corresponding standard errors for the individual observed
values of dif(ARPL) as well as the real (observed) PMI are displayed in Table 3.
The individual fitted curves are displayed in Figure 6.

Although some estimates have large standard errors, those corresponding to
subjects with 4 or more measurements tend to be smaller than the standard errors
obtained by other methods, as reported in Kaliszan et al. (2009).

The predicted PMI corresponding to the second measurements for subjects 8
and 10 and 12 deserve some attention. Subjects 8 and 10 have only two obser-
vations and were observed close to 12 hours after death, when hypostasis tend to
stabilize, i.e., when the asymptote is reached and this may induces imprecision on
the predictions, reflected in the large standard errors. For subject 12, one would
expect the value of dif(ARPL) at the third observation to be closer to that of the
second observation.

The R codes for fitting the mixed models (3.1), (3.3) and (3.4), for obtaining
the individual predicted PMI and corresponding standard errors as well as for
constructing the predicted individual profiles are available at http://www.ime.usp.
br/~jmsinger/hypostasis.zip.

http://www.ime.usp.br/~jmsinger/hypostasis.zip
http://www.ime.usp.br/~jmsinger/hypostasis.zip
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Table 3 Observed values of the response variable [dif(ARPL)] as well as observed and exponential
(final) model predicted PMI along with standard errors

Observed Real Pred Std Observed Real Pred Std
Subj dif(ARPL) PMI PMI Error Subj dif(ARPL) PMI PMI Error

1 44.0 4 4.1 0.4 15 35.0 4 3.6 0.8
2 17.0 3 3.0 0.1 15 48.6 5 5.0 1.0
3 40.7 4 4.1 0.6 15 64.7 6 7.2 1.0
3 42.6 5 5.1 0.6 15 70.6 7 8.3 1.0
3 44.5 6 6.8 1.4 15 72.2 8 8.6 1.0
3 43.7 7 6.0 0.9 15 70.3 9 8.2 1.0
4 38.5 13 12.8 1.9 15 74.1 10 9.1 1.0
4 39.1 14 14.0 2.3 16 44.4 12 10.8 1.2
5 41.8 7 7.1 0.7 16 48.2 13 14.9 2.0
6 32.9 12 9.5 1.5 16 47.5 14 14.0 1.5
6 37.7 13 17.6 5.2 17 34.9 12 11.2 0.7
7 33.2 10 9.6 1.2 17 36.0 13 13.0 1.0
7 35.1 11 12.6 2.1 17 36.8 14 14.7 1.6
7 34.0 12 10.7 1.2 18 39.1 8 6.6 0.6
8 39.9 19 13.8 2.9 18 47.4 9 9.9 0.5
8 44.5 20 32.2 16.6 18 50.7 10 11.9 1.2
9 34.6 20 18.9 7.4 18 51.0 11 12.1 1.3

10 26.8 10 4.6 1.9 18 52.4 12 13.2 1.9
10 43.0 11 27.5 60.6 18 52.3 13 13.7 1.8
11 51.0 8 7.8 0.6 18 53.2 14 13.9 2.3
11 55.4 9 9.5 0.9 18 52.8 15 13.6 2.0
12 16.8 11 2.7 1.7 18 53.1 16 13.9 2.2
12 25.6 12 6.6 3.9 19 47.9 8 7.6 1.1
12 29.1 13 11.5 11.2 19 52.7 9 9.4 0.9
13 36.1 1 – – 19 55.9 10 10.9 0.8
13 35.6 2 – – 19 55.1 11 10.5 0.8
13 36.4 3 – – 20 40.2 11 10.9 1.1
13 43.1 4 – – 20 41.4 12 12.4 1.4
14 5.9 4 1.5 0.2 20 41.6 13 12.7 1.5
14 12.4 5 2.3 0.3 21 45.9 11 10.1 <0.1
14 32.9 6 7.5 0.6 21 48.7 12 12.1 <0.1
15 21.4 3 2.6 0.7 21 51.2 13 14.5 <0.1

5 Discussion

In practice, applied statisticians are often faced with the problem of analyzing data
generated from observational studies that may have small sample size, be unbal-
anced, sparse and subject to large variability. Furthermore, the phenomenon under
investigation may have certain peculiarities (an asymptote, for example) that must
be taken into account in the adopted statistical models. In many cases, there are
theoretical subject matter considerations, generally based on differential equations,
that indicate the appropriate class of models to be employed in the analysis. Inter-
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Figure 6 Exponential model estimated individual profiles of the predicted PMI and observed PMI
(subjects 13 and third observation of subject 15 excluded); PA = population averaged, SS = subject
specific.

pretation of the associated parameters is their most important feature and there is
no question that this is the class of models to be considered. There are cases, how-
ever, when no such theoretical arguments are available and the analyst must cope
with the dilemma of choosing between the numerous non-linear models available
in the literature and some more tractable approximate (usually linear) alternative.
The data set that motivated this manuscript is a typical example. Even if the results
from the analysis based on such models may not be optimal, they are important,
specially when the problem under investigation involves new methodologies. The
availability of efficient fitting algorithms and diagnostic tools as well as software
for their implementation may definitely help in the process of specifying a reason-
able model and understanding the data. We believe that development of such tools
for non-linear mixed models may be a rewarding direction for research.

Based on the example, we describe an analysis strategy that includes the spec-
ification of models with different complexities and evaluate their advantages and
caveats regarding convergence of the fitting algorithms, flexibility of interpreta-
tion as well as software availability. In general, inclusion of covariates improves
the performance of statistical models; however, the sparseness and messy nature
of the data in our example with some subjects measured irregularly along time
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and some with a single observation) did not allow a refinement of the analysis by
controlling for sex, race and age.

Although attractive, genuine non-linear mixed models like (3.1) may be associ-
ated to convergence problems in small samples. In our example, the choice of the
initial values for the fitting algorithm was crucial, since in some cases it led to local
maxima. We used initial values obtained from fitting von Bertalanffy model with
no random effects so that more time was required for analysis. The mixed seg-
mented regression model is appealing because of its simplicity, but requires spe-
cialized algorithms when random change-points are included. Linearizable mixed
models, on the other hand, may be fitted via standard algorithms (that do not re-
quire specification of initial values) and, in general, have good convergence proper-
ties. Furthermore, their goodness of fit may be evaluated via well established resid-
ual, leverage and local influence analyses and individual estimated curves may be
easily constructed.

As in the case of the linearized exponential model (3.2), expressions (3.1) and
(3.4) may be inverted to generate predictions of the PMI from a given value of
dif(ARPL), say, yi0, yielding, respectively,

P̂MIi (yi0) = − 1

δ̂ + d̂i

log
[
1 − yi0

γ̂ − ĝi

]
and

P̂MIi (yi0) =
{
yi0/(κ̂ + k̂i ) if xij ≤ ψ̂i,

ψ̂i if xij > ψ̂i.

The predicted profiles obtained via the three models are presented in Figures 6, 7
and 8. Because of their non-linear nature, the parameters of both non-linear mixed
models have a subject-specific interpretation rather than a population-averaged one
and for this reason, are not comparable to those associated to the linearized mixed
model. This is why the population averaged profiles are not presented in Figures 7
and 8.

Given the calibration nature of the problem, we may also compare the three
models via the difference between the corresponding observed and predicted PMI,
displayed in Table 4. The mean squared difference between the observed and pre-
dicted PMI for the exponential, von Bertalanffy and segmented regression models
are, respectively, 11.01, 13.53 and 5.48, indicating that the segmented regression
model may be preferable for predicting the PMI associated to the sample sub-
jects.

If, however, the objective is to predict the behaviour of a new subject, the ex-
ponential model is certainly more convenient. In this context, two cases may be
considered

(i) no measurements of dif(ARPL) are available for this subject;
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Figure 7 Segmented regression model estimated individual profiles of the predicted PMI and ob-
served PMI; SS = subject specific.

(ii) at least one measurement of dif(ARPL) is available for this subject.

In the first case, prediction of the PMI must be carried out via the estimates of the
population averaged parameters [(A.2) in the Appendix with � and � replaced by
their estimates]. Note that this option may not be considered when the analysis is
carried out via the non-liner models. In the second case, one may consider two
approaches:

(a) use the estimates of both the population averaged and subject specific
parameters [(A.2)–(A.3) in the Appendix with � and � replaced by their es-
timates] with the addition of new rows to X and Z corresponding to the ob-
served times for the new subject and to y with the associated observed values
of dif(ARPL);

(b) refit the entire model with the inclusion of the new subject data.

Here we note that although we used the AIC only as an additional criterion
to help in the choice of an appropriate model (within each class) there may be
some concern as to whether a marginal (which we adopted) or a conditional ver-
sion should be employed as discussed in Vaida and Blanchard (2005) or Liang
et al. (2008). In cases where the interest lies in the population averaged parame-
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Figure 8 von Bertalanffy model estimated individual profiles of the predicted PMI and observed
PMI; SS = subject specific.

ters, these authors suggest that a marginal AIC should be considered; otherwise,
if the interest lies in the subject specific parameters, the conditional AIC is pre-
ferred. Since depending on the availability of information for a new subject, we
may be interested in either population averaged or subject specific inferences, it is
difficult to choose between the two approaches. Furthermore, these authors have
developed the conditional AIC methodology for models that are simpler than the
ones we considered. Nevertheless, we feel that this might open an interesting field
for further research.

Finally, we note that if considered for determination of PMI within the first
12 hours after death and provided 4 or more measurements may be obtained on
a subject, the proposed method may generate better results (with slightly smaller
margins of errors) than the standard ones, like those based on body cooling and
drying out of the cornea as described by Kaliszan et al. (2009). We recognize the
limitations of the motivating study, conducted under non-ideal conditions and note
that the proposed technique for evaluation of PMI requires further investigation
before it may be employed in practical applications. All the available methods have
limitations so that their concomitant use may generate more precise and useful
results.



176 Singer, Rocha, André and Zerbini

Table 4 Predicted PMI

Predicted PMI Predicted PMI

Subject Real PMI Exp Bert Seg Subject Real PMI Exp Bert Seg

1 4.0 4.1 5.1 4.4 15 4.0 3.6 2.5 3.6
2 3.0 3.0 2.3 3.1 15 5.0 5.0 4.2 5.0
3 4.0 4.1 5.1 4.5 15 6.0 7.2 8.1 6.7
3 5.0 5.1 5.6 4.7 15 7.0 8.3 11.8 7.3
3 6.0 6.8 6.2 5.2 15 8.0 8.6 13.9 7.3
3 7.0 6.0 5.9 5.2 15 9.0 8.2 11.5 7.3
4 13.0 12.8 11.3 12.1 15 10.0 9.1 20.4 7.3
4 14.0 14.0 12.5 12.1 16 12.0 10.8 9.9 11.0
5 7.0 7.1 7.4 7.1 16 13.0 14.9 20.6 11.0
6 12.0 9.5 8.0 11.4 16 14.0 14.0 15.6 11.0
6 13.0 17.6 18.5 12.7 17 12.0 11.2 9.9 11.9
7 10.0 9.6 8.9 10.7 17 13.0 13.0 11.6 12.5
7 11.0 12.6 11.3 11.3 17 14.0 14.7 13.5 12.5
7 12.0 10.7 9.7 10.9 18 8.0 6.6 5.3 7.7
8 19.0 13.8 10.5 11.6 18 9.0 9.9 8.8 9.3
8 20.0 32.2 – 11.6 18 10.0 11.9 12.1 9.9
9 20.0 18.9 10.7 12.5 18 11.0 12.1 12.6 10.3

10 10.0 4.6 4.7 7.9 18 12.0 13.2 16.3 10.3
10 11.0 27.5 – 12.7 18 13.0 13.7 15.9 10.3
11 8.0 7.8 8.2 8.1 18 14.0 13.9 24.5 10.3
11 9.0 9.5 11.5 8.8 18 15.0 13.6 18.6 10.3
12 11.0 2.7 3.9 8.3 18 16.0 13.9 22.1 10.3
12 12.0 6.6 12.2 12.6 19 8.0 7.6 7.1 8.1
12 13.0 11.5 – 14.3 19 9.0 9.4 9.8 8.9
13 1.0 – 2.8 2.7 19 10.0 10.9 13.8 9.4
13 2.0 – 2.8 2.6 19 11.0 10.5 12.3 9.4
13 3.0 – 2.9 2.7 20 11.0 10.9 10.3 11.1
13 4.0 – 3.7 3.2 20 12.0 12.4 12.1 11.6
14 4.0 1.5 1.0 1.6 20 13.0 12.7 12.5 11.6
14 5.0 2.3 2.4 3.3 21 11.0 10.1 9.4 10.7
14 6.0 7.5 – 8.8 21 12.0 12.1 12.7 10.7
15 3.0 2.6 1.4 2.2 21 13.0 14.5 – 10.7

Exp: exponential model.
Bert: Bertalanffy model.
Seg: segmented regression model.

Appendix

Details for the linear mixed model (3.3)

Consider the linear mixed model

yi = Xiβ + Zibi + ei , i = 1, . . . , n, (A.1)
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where yi = (yi1, . . . , yimi
)� is a mi × 1 vector of observations for the ith sub-

ject, β = (β1, . . . , βp)� is a p × 1 vector of unknown population parameters,
Xi is a mi × p known specification matrix corresponding to the fixed effects,
bi = (bi1, . . . , biq)

� is a q × 1 vector of unobservable random elements, Zi is
a mi × q known specification matrix corresponding to the random effects and
ei = (ei1, . . . , eimi

)� is an mi × 1 vector of random errors. Assume that the bi

and the ei are all uncorrelated and are such that E(bi) = 0, V(bi) = G, E(ei ) = 0,
V(ei ) = Ri , where G = G(θ) and Ri = Ri(θ) are, respectively, q ×q and mi ×mi

positive-definite symmetric matrices depending on an t × 1 covariance parameter
vector θ , not functionally related to β .

Letting y = (y�
1 , . . . ,y�

n )�, X = (X�
1 , . . . ,X�

n )�, Z = ⊕n
i=1 Zi , b = (b�

1 , . . . ,

b�
n )� and e = (e�

1 , . . . , e�
n )�, we can write model (A.1) more compactly as

y = Xβ + Zb + e.

This implies that E(y) = Xβ and V(y) = � = Z�Z� + R where � = In ⊗ G and
R = ⊕n

i=1 Ri .
Based on the joint distribution of y and b and assuming that the covariance ma-

trices � and R are known, best linear unbiased estimators (BLUE) of the fixed
effects β and best linear predictors (BLUP) of the random effects bi may be ob-
tained as the solutions to the Henderson (1975) equations(

X�R−1X X�R−1Z
Z�R−1X X�R−1Z + �−1

)(
β̂

b̂

)(
X�R−1y
Z�R−1y

)
,

namely,

β̂ = (
X��−1X

)−1X��−1y, (A.2)

b̂ = �Z��−1(y − Xβ̂) = �Z�Qy, (A.3)

where Q = �−1 − �−1X(X��−1X)−1X��−1. This implies that

E(β̂) = β, V(β̂) = (
X��−1X

)−1
,

E(̂b) = 0, V(b̂) = �Z�QZ�,

Cov(β̂, b̂) = 0.

As noted by Harville (1976) and Laird and Ware (1982) among others, the vari-
ance of b̂ does not take the variability of the random effects b into account so that
for prediction purposes, it is more appropriate to use

V(b̂ − b) = � − �Z�QZ�,

Cov
[
β̂, (b̂ − b)

] = −(
X��−1X

)−1X��−1Z�.

In practice, we replace the unknown elements of G and R with estimates.
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Figure A.1 Plot of the modified Lesaffre–Verbeke measure for the final exponential model (with
different variance components for subjects 10, 12, 14 and 15 after excluding subject 13 and the first
observation of subject 15). Dashed line: 3rd quartile + 1.5 interquartile range.

Now consider predictors of the form P̂ = Lβ̂ + Db̂ = KB̂ where K = (LD)

and B̂ = (β̂
�
, b̂�)�. Then, letting VB̂ = V[β̂�

, (̂b − b)�]�, it follows that VP̂ =
V(P̂) = KVB̂K�.

For the hypostasis data, β̂ = (α̂∗, β̂∗)�, b̂ = ⊕21
i=1(â

∗
i , b̂i)

�142, where 1r de-
notes a vector of dimension r with all elements equal to 1, L = 121 ⊗ I2, with
Ir denoting the identity matrix of dimension r and D = I42. This implies that
P̂ = ⊕21

i=1 P̂i142 with P̂i = (α̂∗
i , β̂∗

i )�, α̂∗
i = α̂∗ + â∗

i and β̂∗
i = β̂∗ + b̂i . The vari-

ance of P̂i corresponds to the 2 × 2 block matrix associated to the ith subject in
VP̂.

Recalling (4.1) and letting P̂MIi (yi0) = g(α̂∗
i , β̂∗

i ), it follows that

∂g
(
α̂∗

i , β̂∗
i

)
/∂α̂∗

i = −β̂∗
i /

[
log(yi0) − α̂∗

i

]2 and

∂g
(
α̂∗

i , β̂∗
i

)
/∂β̂∗

i = 1/
[
log(yi0) − α̂∗

i

]
.

Letting

ġ
(
α̂∗

i , β̂∗
i

) = {−β̂∗
i /

[
log(yi0) − α̂∗

i

]2
,1/

[
log(yi0) − α̂∗

i

]}�

we may use the Delta method to compute

V
[
P̂MIi (yi0)

] = ġ
(
α̂∗

i , β̂∗
i

)�
V(P̂i )ġ

(
α̂∗

i , β̂∗
i

)
.

Algorithm for fitting the mixed segmented regression model (3.4)

Details on an adaptation of the algorithm proposed by Muggeo et al. (2014) for the
specific case under investigation are presented below. For notational simplicity, we
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Figure A.2 Mahalanobis distance for the final exponential model (with different variance compo-
nents for subjects 10, 12, 14 and 15 after excluding subject 13 and the first observation of subject
15). Dashed line: 3rd quartile + 1.5 interquartile range.

Figure A.3 Mahalanobis distance QQ plot for the final exponential model (with different variance
components for subjects 10, 12, 14 and 15 after excluding subject 13 and the first observation of
subject 15). Dashed line: 3rd quartile + 1.5 interquartile range.

re-express model (3.4) as

yij = κif (xij ,ψi) + eij ,
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Figure A.4 Least confounded residual QQ plot and histogram for the final exponential model (with
different variance components for subjects 10, 12, 14 and 15 after excluding subject 13 and the first
observation of subject 15).

Figure A.5 Plot of the generalized random component leverage for the final exponential model
(with different variance components for subjects 10, 12, 14 and 15 after excluding subject 13 and the
first observation of subject 15). Dashed line: 3rd quartile + 1.5 interquartile range.

where f (xij ,ψi) = ψi + (xij − ψi)I{xij≤ψi}. To restrict the possible values of ψi

to the interval (a1, a2) where where a1 and a2 are, respectively, the minimum and
maximum observed values of xij , we consider the reparametrization

ψi = ψi(λi) = a1 + a2 exp(λi)

1 + exp(λi)
.
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We proceed with the first order Taylor expansion

f
[
xij ,ψi(λi)

] ≈ f
[
xij ,ψ(̂λi)

] + (λi − λ̂i)
∂f (xij ,ψi)

∂λi

∣∣∣
λi=λ̂i

.

Observing that ∂f (xij ,ψi)/∂ψi = 1 − I{xij≤ψi} = hij (λi) and that ∂ψ(λi)/∂λi =
(a2 − a1) exp(λi)/[1 + exp(λi)]2 = gi(λi), we may write

∂f [xij ,ψi(λi]
∂λi

∣∣∣
λi=λ̂i

= hij (̂λi)gi (̂λi).

Therefore, we have

yij ≈ κi

{
ψ(̂λi) + [

xij − ψ(̂λi)
]
I{xij≤ψi (̂λi)} + (λi − λ̂i)hij (̂λi)gi (̂λi)

}
≈ κiuij (̂λi) + κ̂i(λi − λ̂i)hij (̂λi)gi (̂λi)

≈ κiuij (̂λi) + λiκ̂ihij (̂λi)gi (̂λi) − κ̂i λ̂ihij (̂λi)gi (̂λi),

where uij (̂λi) = ψ(̂λi) + [xij − ψ(̂λi)]I{xij≤ψ(̂λi)}. We may re-express the model
as

y∗
ij = yij + κ̂i λ̂ihij (̂λi)gi (̂λi) = κiuij (̂λi) + λiκ̂ihij (̂λi)gi (̂λi) + eij ,

where κ̂i λ̂ihij (̂λi)gi (̂λi) is considered as an offset. This suggests the following
algorithm to obtain the maximum likelihood estimators of the parameters and pre-
dictors of the random effects:

Step 1: Set r = 0 and ψ
(0)
i = ψ(0).

Step 2: Fit the linear mixed model yij = ψ
(0)
i + κi(xij − ψ

(0)
i )I{xij≤ψ

(0)
i } + eij

to obtain κ
(0)
i .

Step 3: Compute λ
(r)
i = log[(ψ(r)

i − a1)/(a2 − ψ
(r)
i )], h

(r)
ij = I{xij−ψ

(r)
i }, g

(r)
i =

(a2 − a1) exp(λ
(r)
i )/[1 + exp(λ

(r)
i )]2, y

(r)
ij = yij − κ

(r)
i λ

(r)
i h

(r)
ij g

(r)
i .

Step 4: Fit the linear mixed model y
(r)
ij = κi(xij − ψ

(r)
i )h

(r)
ij + κ

(r)
i λig

(r)
i h

(r)
ij +

eij to obtain κ
(r+1)
i , λ

(r+1)
i and ψ

(r+1)
i = [a1 + a2 exp(λ

(r+1)
i )]/[1 + exp(λ

(r+1)
i )].

Step 5: Verify if some convergence criterion is satisfied. If yes, stop and κ
(r+1)
i ,

and ψ
(r+1)
i will provide the required estimates. Otherwise, set r = r +1 and return

to Step 3.
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