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Maxima of branching random walks with piecewise
constant variance
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Université de Montréal

Abstract. This article extends the results of Fang and Zeitouni [Electron.
J. Probab. 17 (2012a) 18] on branching random walks (BRWs) with Gaussian
increments in time inhomogeneous environments. We treat the case where the
variance of the increments changes a finite number of times at different scales
in [0,1] under a slight restriction. We find the asymptotics of the maximum
up to an OP(1) error and show how the profile of the variance influences
the leading order and the logarithmic correction term. A more general result
was independently obtained by Mallein [Electron. J. Probab. 20 (2015b) 40]
when the law of the increments is not necessarily Gaussian. However, the
proof we present here generalizes the approach of Fang and Zeitouni [Elec-
tron. J. Probab. 17 (2012a) 18] instead of using the spinal decomposition of
the BRW. As such, the proof is easier to understand and more robust in the
presence of an approximate branching structure.

1 Introduction

1.1 The model

The tree underlying the branching process we are interested in can be described as
follows. At time k = 0, there exists only one particle o, called the origin, and we
set D0 � {o}. At time k = 1, there are b = 2 particles and each of them is linked
to o by an edge. Denote by D1 the set of particles at time 1. At time k = 2, there
are four particles, two of which are linked to the first particle in D1 and the other
two are linked to the second particle in D1. The set of particles at time 2 is denoted
by D2. The tree is defined iteratively in this manner up to time k = n, where Dk

denotes the set of all particles at time k and |Dk| = 2k . Figure 1 illustrates the tree
structure.

For all v ∈ Dn, we denote by vk the ancestor of v at time k, namely the unique
particle in Dk that intersects the shortest path from o to v. The branching time
ρ(u, v) is the latest time at which u, v ∈ Dn have the same ancestor. Formally,

ρ(u, v) � max
{
k ∈ {0,1, . . . , n} : uk = vk

}
.

In the standard branching random walk (BRW) setting, i.i.d. Gaussian random
variables N (0, σ 2) are assigned to each branch of the tree structure and the field
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Figure 1 The tree structure with a branching factor b = 2.

of interest is {Sv}v∈Dn
, where Sv is the sum of the Gaussian variables along the

shortest path from o to v. In the time-inhomogeneous context, the variance of the
Gaussian variables depends on time. Fix M ∈ N and consider the parameters

σ � (σ1, σ2, . . . , σM) ∈ (0,∞)M (variance parameters),

λ � (λ1, λ2, . . . , λM) ∈ (0,1]M (scale parameters),

where 0 � λ0 < λ1 < · · · < λM � 1. The parameters (σ ,λ) can be encoded simul-
taneously in the left-continuous step function

σ(s) � σ11{0}(s) +
M∑
i=1

σi1(λi−1,λi ](s), s ∈ [0,1].

The following definition and the results of this paper are easily extended to BRWs
with other branching factors b ∈ N.

Definition 1.1. The (σ ,λ)-BRW of length n is a collection of positively correlated
random walks {{Sv(t)}nt=0}v∈Dn

defined by

Sv(t) �
M∑
i=1

�λin�∧t∑
k=�λi−1n�+1

σiZvk
, t ∈ {0,1, . . . , n}, v ∈ Dn, (1.1)

where {Zvk
}k∈{1,...,n};v∈Dn

are i.i.d. N (0,1) random variables and b = 2.

By convention, summations are zero when there are no indices. To avoid trivial
corrections in the proofs, always assume, without loss of generality, that ti � λin ∈
N0 for all i ∈ {0,1, . . . ,M}. Hence, the floor functions can be dropped in (1.1). For
simplicity, we set Sv � Sv(n).
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1.2 Main result

First, we introduce some notations. For any positive measurable function f :
[0,1] → R, define the integral operators

Jf (s) �
∫ s

0
f (r) dr and Jf (s1, s2) �

∫ s2

s1

f (r) dr.

The first order of the maximum for the (σ ,λ)-BRW is merely the solution to an
optimization problem involving the concave hull of Jσ 2(·), which we denote by
Ĵσ 2 . We refer the reader to Ouimet (2014) for a detailed heuristic and a rigorous
proof, and to Arguin and Ouimet (2016) for the same results in the context of the
scale-inhomogeneous Gaussian free field. By definition, the graph of Ĵσ 2 is an
increasing and concave polygonal line, see Figure 2 below for some examples.

Figure 2 Examples of Jσ 2 (closed lines) and Ĵσ 2 (dotted lines).
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It is easy to see that there exists a unique non-increasing left-continuous step
function s �→ σ(s) such that

Ĵσ 2(s) = Jσ 2(s) =
∫ s

0
σ 2(r) dr for all s ∈ (0,1].

The scales in [0,1] where σ jumps are denoted by

0 � λ0 < λ1 < · · · < λm � 1, (1.2)

where m ≤ M . As we will see in Theorem 1.4, the effective scale parameters λj

and the effective variance parameters σ(λj ) are the only parameters needed to
fully determine the first and second order of the maximum for inhomogeneous
branching random walks.

To be consistent with previous notations, we set σ j � σ(λj ) and tj � λjn. We
write ∇j for the difference operator with respect to the index j . When the index
variable is obvious, we omit the subscript. For example, ∇tj = tj − tj−1.

To simplify the presentation of the proof of the main theorem, we impose a
restriction on the variance parameters.

Restriction 1.2. If Jσ 2 and Jσ 2 coincide on a subinterval of [λj−1, λj ] for
some j , then they must coincide everywhere on [λj−1, λj ].
Remark 1.3. Note that Jσ 2 and Jσ 2 can still coincide at isolated points in
(λj−1, λj ) when they do not coincide everywhere in that interval. The union of
all the scales λj and all the isolated points where Jσ 2 and Jσ 2 coincide form a
subset of the scale parameters, say {λid }0≤d≤p , where m ≤ p ≤ M .

For example, in Figure 2, the two models at the top satisfy Restriction 1.2, but the
two models at the bottom do not. For the top models, the sets of scales described
in Remark 1.3 are respectively, {λ0, λ3, λ5, λ6, λ7} and {λ0, λ3, λ5, λ7}.

The main result of this paper is the derivation of the second order of the maxi-
mum (up to an OP(1) error) for the (σ ,λ)-BRW of Definition 1.1, under Restric-
tion 1.2. This was an open problem in Fang and Zeitouni (2012a).

Theorem 1.4. Let {Sv}v∈Dn
be as in Definition 1.1, under Restriction 1.2. Let

g � √
2 log 2. For all ε > 0, there exists Kε > 0 such that for all n ∈N,

P

(∣∣∣∣∣max
v∈Dn

Sv −
m∑

j=1

[
gσ j∇tj − (1 + 2 · δj )σ j

2g
log
(∇tj

)]∣∣∣∣∣≥ Kε

)
< ε,

where δj � 1 when Jσ 2 and Jσ 2 coincide on [λj−1, λj ], and δj � 0 otherwise.

This theorem was proved in Fang and Zeitouni (2012a) for the case M = 2 and
λ1 = 1/2. Note that Restriction 1.2 is always satisfied when M = 2.



Time-inhomogeneous branching random walk 683

1.3 Related works

The first order of the maximum (without restriction),

lim
n→∞P

(∣∣∣∣∣max
v∈Dn

Sv −
m∑

j=1

gσ j∇tj

∣∣∣∣∣> εn

)
= 0, ∀ε > 0,

was proved in Section 2 of Ouimet (2014) for the (σ ,λ)-BRW and in Arguin and
Ouimet (2016) for the analogous model of scale-inhomogeneous Gaussian free
field (GFF). The proofs rely on an analysis of so-called “optimal paths” showing
where the maximal particle must be at all times with high probability. These paths
were found by a first moment heuristic and the resolution of a related optimisation
problem (using the Karush–Kuhn–Tucker theorem).

The more involved question of finding the second order of the maximum was
first solved by Fang and Zeitouni (2012a) for the case M = 2 and λ1 = 1/2, and
later by Mallein (2015b), when the law of the increments changes a finite number
of times but is not necessarily Gaussian. In his proof, Mallein develops a time-
inhomogeneous version of the spinal decomposition for the BRW. The argument
presented in this paper was first developed, without the knowledge of Mallein’s
results, in Section 2.4 of Ouimet (2014) and instead generalizes the approach of
Fang and Zeitouni (2012a). The proof rely on the control of the increments of high
points at every effective scale λj .

One shortfall of the spinal decomposition is that it completely relies on the
presence of an exact branching structure. Specifically, a crucial step in Mallein
(2015b) is the proof of a time-inhomogeneous version of the classical many-to-one
lemma, which is a direct consequence of his comparison between the size-biased
law of the BRW (the usual change of measure) and a certain projection of a law on
the set of planar rooted marked trees with spine.

In contrast, our method can be adapted to a number of cases where the branching
structure is only approximate. For instance, although no explicit proof is written
down, it can be applied to prove the second order of the maximum for the scale-
inhomogeneous GFF of Arguin and Ouimet (2016). The model differs from the
time-inhomogeneous BRW in two ways:

1. The branching structure is approximate in the sense that increments of the field
that are below the branching scale are not perfectly correlated and they decor-
relate smoothly near the branching scale.

2. At a given scale, the covariance of the increments of the field decays near the
boundary of the domain. In the context of BRWs, this means that at a given
time, the law of each point process would depend on the position of the associ-
ated ancestors in the tree.
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The recent developments in the study of:

• cover times (see, e.g., Abe (2014, 2018), Belius (2013), Belius and Kistler
(2017), Comets et al. (2013), Dembo, Peres and Rosen (2003), Dembo et al.
(2004, 2006), Ding (2012, 2014), Ding, Lee and Peres (2012), Ding and Zeitouni
(2012));

• the extremes of the randomized Riemann zeta function on the critical line (see,
e.g., Arguin and Ouimet (2018), Arguin and Tai (2018), Arguin, Belius and
Harper (2017), Harper (2013), Ouimet (2018), Saksman and Webb (2018));

• the maxima of the Riemann zeta function on random intervals of the critical line
(see, e.g., Arguin et al. (2018), Najnudel (2017));

• the maxima of the characteristic polynomials of random unitary matrices (see,
e.g., Arguin, Belius and Bourgade (2017), Chhaibi, Madaule and Najnudel
(2017), Paquette and Zeitouni (2017));

• etc.

show that approximate branching structures are present in a huge variety of mod-
els. Hence, the approach of this paper might become relevant in applications be-
yond the study of “pure” BRW.

For other recent and relevant results on branching processes in time-inhomoge-
neous environments, the reader is referred to Bovier and Hartung (2014, 2015),
Bovier and Kurkova (2004a, 2004b), Chen (2018), Fang and Zeitouni (2012b),
Maillard and Zeitouni (2016), Mallein (2015a), Mallein and Piotr (2015), Ouimet
(2017).

2 Proof of the main result

2.1 Preliminaries

For all v ∈Dn and k, l ∈ {1, . . . ,M}, we can compute from Definition 1.1:

V
(
Sv(tl) − Sv(tk−1)

)= l∑
i=k

σ 2
i ∇ti = Jσ 2(λk−1, λl)n. (2.1)

The variance of the increments in (2.1) will be used repeatedly during the proofs
in conjunction with the following lemma.

Lemma 2.1 (Gaussian estimates, see, for example, Adler and Taylor (2007)).
Suppose that Z ∼ N (0, σ 2) where σ > 0, then for all z > 0,(

1 − σ 2

z2

)
σ√
2πz

e
− z2

2σ2 ≤ P(Z ≥ z) ≤ σ√
2πz

e
− z2

2σ2 .

The particle achieving the maximum of the BRW at time n act like a Brownian
bridge around the maximum level on all the intervals [t j−1, tj ] where Jσ 2(·/n)

and Jσ 2(·/n) coincide. The extra log terms in Theorem 1.4 (when δj = 1) com-
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pensate for the “cost” of the Brownian bridge to stay below a certain logarithmic
barrier. The sets Al below identify the indices j of these intervals up to scale λl .
The sets Tl consist of the effective times tj , 1 ≤ j ≤ l, and the integer times in
[t j−1, tj ], j ∈ Al , where a Brownian bridge estimate will be needed. More pre-
cisely, for all l ∈ {1, . . . ,m},

Al �
{
j ∈ {1, . . . , l} : δj = 1

}
= {

j ∈ {1, . . . , l} : Jσ 2 |[λj−1,λj ] ≡ Jσ 2 |[λj−1,λj ]
}
,

Tl �
{
t1, t2, . . . , t l

}∪ ⋃
j∈Al

{
tj−1, tj−1 + 1, . . . , tj

}
.

Let ϑk ∈ {1, . . . ,m} be the index such that tϑk−1 < k ≤ tϑk . For all k ∈
{0, . . . , n}, the concave hull of the optimal path for the maximum is

M	
n(k) �

ϑk∑
j=1

(k ∧ t j − tj−1)

∇tj

[
gσ j∇tj − (1 + 2 · δj )σ j

2g
log
(∇tj

)]
, (2.2)

where g � √
2 log 2, as in Theorem 1.4. We refer the reader to Ouimet (2014) or

Arguin and Ouimet (2016) for a first moment heuristic. Note that M	
n and the opti-

mal path coincide on Tm, see Figure 3 for an example of M	
n under Restriction 1.2.

Figure 3 Example of the path M	
n,x on the set Tm (in bold), the optimal path (thin line) and its

concave hull M	
n (dotted line).
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For all k ∈ Tm, define the logarithmic barrier as

bn(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if k ∈ {t0, t1, . . . , tm
}
,

5

2

σϑk

g
log
(
k − tϑk−1),

if ϑk ∈ Am, tϑk−1 < k ≤ tϑk−1 + tϑk

2
,

5

2

σϑk

g
log
(
tϑk − k

)
,

if ϑk ∈ Am,
tϑk−1 + tϑk

2
< k < tϑk .

(2.3)

For all x > 0, denote

bn,x(k) � bn(k) + x and M	
n,x(k) � M	

n(k) + bn,x(k).

Let us now define precisely what is meant by a Brownian bridge.

Definition 2.2 (Discrete Brownian bridge). Let 0 ≤ λ < λ′ ≤ 1 be such that
λn,λ′n ∈ N0 and σ > 0. The discrete σ -Brownian bridge on the interval [λn,λ′n]
is a centered Gaussian vector (Bk)

λ′n
k=λn such that:

(a) Bλn = Bλ′n = 0,
(b) Cov(Bk,Bk′) = (k∧k′−λn)(λ′n−k∨k′)

(λ′−λ)n
σ 2, k, k′ ∈ {λn,λn + 1, . . . , λ′n}.

Here are relevant examples of discrete Brownian bridges constructed from a
discrete random walk.

Lemma 2.3. Let v ∈ Dn and j ∈ Am. Then, the centered Gaussian vector

B
j
v,i � Sv(i) − Sv

(
tj−1)− i − tj−1

∇tj
∇Sv

(
tj
)
, tj−1 ≤ i ≤ t j , (2.4)

is independent of {Sv(i
′)}i′ /∈(tj−1,tj ) and defines a discrete σ j -Brownian bridge un-

der Definition 2.2. Similarly, when l ∈ Am and t l−1 < k ≤ t l , the centered Gaus-
sian vector

Bv,i � Sv(i) − Sv

(
t l−1)− i − t l−1

k − t l−1

(
Sv(k) − Sv

(
t l−1)), t l−1 ≤ i ≤ k, (2.5)

is independent of {Sv(i
′)}i′ /∈(t l−1,k) and defines a discrete σ l-Brownian bridge.

Proof. We only prove (2.4) since the proof of (2.5) is completely analogous.
Assume j ∈ Am, meaning that σ(s) = σ j for all s ∈ (λj−1, λj ]. Then, for all
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i ′ ∈ {0,1, . . . , tj−1} ∪ {tj , tj + 1, . . . , n}, Cov(B
j
v,i, Sv(i

′)) is equal to

V
(
Sv

(
i ∧ i ′

))−V
(
Sv

(
tj−1 ∧ i ′

))− i − tj−1

∇tj
∇jV

(
Sv

(
tj ∧ i ′

))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V
(
Sv(i)

)−V
(
Sv

(
tj−1))− i − tj−1

∇tj
∇jV

(
Sv

(
tj
))

,

if tj ≤ i ′ ≤ n,

0 − i − tj−1

∇tj
0, if 0 ≤ i ′ ≤ tj−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.1)=

⎧⎨⎩σ 2
j

(
i − tj−1)− i − tj−1

∇tj
σ 2

j∇tj , if tj ≤ i ′ ≤ n,

0, if 0 ≤ i ′ ≤ tj−1

⎫⎬⎭= 0.

The first claim follows since {Bj
v,i}i∈{tj−1,...,tj } and {Sv(i

′)}i′ /∈(tj−1,tj ) form a
Gaussian vector together. For the second claim, we need to verify (a) and (b) in
Definition 2.2:

(a) We obviously have B
j

v,tj−1 = B
j

v,tj
= 0;

(b) For all i, i′ ∈ {tj−1, tj−1 + 1, . . . , tj },
Cov

(
B

j
v,i,B

j

v,i′
) = Cov

(
Sv(i) − Sv

(
tj−1), Sv

(
i ′
)− Sv

(
tj−1))

− i − tj−1

∇tj
Cov

(∇Sv

(
tj
)
, Sv

(
i ′
)− Sv

(
tj−1))

− i ′ − tj−1

∇tj
Cov

(
Sv(i) − Sv

(
tj−1),∇Sv

(
tj
))

+ (i − tj−1)(i ′ − tj−1)

(∇tj )2 V
(∇Sv

(
tj
))

(2.1)= (
i ∧ i′ − tj−1)σ 2

j − 2
(i − tj−1)(i ′ − tj−1)

∇tj
σ 2

j

+ (i − tj−1)(i ′ − tj−1)

(∇tj )2 σ 2
j∇tj

= (i ∧ i ′ − tj−1)(tj − i ∨ i′)
∇tj

σ 2
j .

This ends the proof of the lemma. �

Finally, to estimate the probability that a discrete Brownian bridge stays below
a logarithmic barrier such as the one defined in (2.3), we adapt Proposition 1′ of
Bramson (1978).
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Lemma 2.4 (Discrete Brownian bridge estimates). Let 0 ≤ λ < λ′ ≤ 1 be such
that λn,λ′n ∈ N0 and σ > 0. Let (Bk)

λ′n
k=λn be a discrete σ -Brownian bridge on

the interval [λn,λ′n]. For any constant D = D(λ,λ′, σ ) > 0 and the logarithmic
barrier

b(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if k ∈ {λn,λ′n

}
,

D log(k − λn), if λn < k ≤ λn + λ′n
2

,

D log
(
λ′n − k

)
, if

λn + λ′n
2

< k < λ′n,

there exists a constant C = C(D,σ) > 0 such that for all z > 0 and all n ∈ N,

P
(
Bk < b(k) + z,λn ≤ k ≤ λ′n

)≤ C
(1 + z)2

(λ′ − λ)n
.

In order to prove Lemma 2.4, we first need to prove that a random walk with
Gaussian increments stays below the first part of the logarithmic barrier b(·) + z

with probability O(n−1/2). This is achieved through the following lemma, which
is the analogue of Proposition 1 in Bramson (1978).

Lemma 2.5. Let σ > 0 and let (Sk)
t
k=0 be a discrete random walk with N (0, σ 2)

increments and S0 � 0. For any constant D = D(λ,λ′, σ ) > 0 and the logarithmic
barrier

b̃(k) =
{

0, if k = 0,

D log k, if 0 < k ≤ t,

there exists a constant C = C(D,σ) > 0 such that for all z > 0 and all t ∈ N,

P
(
Sk < b̃(k) + z,0 ≤ k ≤ t

)≤ C
(1 + z)

t1/2 .

Remark 2.6. Throughout the proofs of this article, c,C, C̃, etc., will denote pos-
itive constants whose value can change from line to line and can depend on the
parameters (σ ,λ). For simplicity, equations are always implicitly stated to hold
for n large enough when needed.

Proof. Let z > 0 and t ∈ N. When t = 1, the statement is trivially satisfied with
C ≥ 1. Therefore, assume C ≥ 1 and t ≥ 2 for the rest of the proof. Let qt =
�D log t� and for all x > 0, let τx � inf{k ≥ 1 : Sk ≥ x}. Then,

P
(
Sk < b̃(k) + z,0 ≤ k ≤ t

)
≤ P

(
max

0≤k≤t
Sk < z

)
+

qt∑
i=0

P

⎛⎜⎝
⌊
ei/D

⌋≤ τz+i ≤ t and
Sτz+i

< z + i + 1 and
max

τz+i≤k≤t
(Sk − Sτz+i

) < 1

⎞⎟⎠ . (2.6)



Time-inhomogeneous branching random walk 689

We bound the first probability in (2.6) using a standard gambler’s ruin estimate.
Indeed, from Theorem 5.1.7 in Lawler and Limic (2010), there exists a constant
C′ = C′(σ ) > 0 such that for all z > 0 and all t ∈ N,

P

(
max

0≤k≤t
Sk < z

)
≤ C′ z + 1

t1/2 . (2.7)

We proceed to the individual summands in (2.6). The strong Markov property for
the random walk implies

P

⎛⎜⎝
⌊
ei/D

⌋≤ τz+i ≤ t and
Sτz+i

< z + i + 1 and
max

τz+i≤k≤t
(Sk − Sτz+i

) < 1

⎞⎟⎠
=

t∑
j=�ei/D�

P(τz+i = j, Sτz+i
< z + i + 1) · P

(
max

0≤k≤t−j
Sk < 1

)

=
�t/2�∑

j=�ei/D�∧(1+�t/2�)
+

t∑
j=�ei/D�∨(1+�t/2�)

. (2.8)

Now, for the first summation in (2.8), we have
�t/2�∑

j=�ei/D�∧(1+�t/2�)
P(τz+i = j, Sτz+i

< z + i + 1) · P
(

max
0≤k≤t−j

Sk < 1
)

≤ P

(
max

0≤k≤�ei/D�
Sk < z + i + 1

)
· P
(

max
0≤k≤t−�t/2�Sk < 1

)
≤ C

z + i + 1

t1/2 e−i/(2D). (2.9)

We applied the estimate (2.7) to both terms on the second line and we used the
fact that (z + i + 2)/(z + i + 1) ≤ 2 for all (z, i) ∈ (0,∞) × N to obtain the last
inequality.

For the second summation in (2.8), we can use an estimate closely related to the
first hitting time distribution in the gambler’s ruin problem. Indeed, from Lemma 3
in Mogul’skiı̆ (2009), there exists a constant C′′ = C′′(σ ) > 0 such that for all
x > 0 and all j ∈ N,

P(τx = j, Sτx < x + 1) ≤ P

(
Sj ∈ [x, x + 1] and
Sj = max

0≤k≤j
Sk

)
≤ C′′ x + 1

j3/2 . (2.10)

Using successively (2.10), the gambler’s ruin estimate (2.7), the change of variable
j ′ = t − j and the fact that s �→ s−1/2 is decreasing, we have

t∑
j=�ei/D�∨(1+�t/2�)

P(τz+i = j, Sτz+i
< z + i + 1) · P

(
max

0≤k≤t−j
Sk < 1

)
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≤
t∑

j=�ei/D�∨(1+�t/2�)
C′′ z + i + 1

j3/2 · P
(

max
0≤k≤t−j

Sk < 1
)

≤ 23/2C′′ z + i + 1

t3/2 ·
{

1 +
�t/2�∑
j ′=1

C′ 2

(j ′)1/2

}

≤ 23/2C′′ z + i + 1

t3/2 ·
{

4
(
1 + C′) ∫ t

0

1

2s1/2 ds

}
= C

z + i + 1

t
. (2.11)

From (2.8), (2.9) and (2.11), we deduce

P

⎛⎜⎝
⌊
ei/D

⌋≤ τz+i ≤ t and
Sτz+i

< z + i + 1 and
max

τz+i≤k≤t
(Sk − Sτz+i

) < 1

⎞⎟⎠≤ C	 z + i + 1

t1/2 e−i/(2D) (2.12)

for a certain constant C	 = C	(σ ) > 0, since t−1/2 ≤ e−i/(2D) for all i ≤ qt .
Note that (z+ i +1) ≤ (z+1)(i +1) for all i ≥ 0. Therefore, by applying (2.12)

and (2.7) in (2.6), we get

P
(
Sk < b̃(k) + z,0 ≤ k ≤ t

)≤ C′ z + 1

t1/2 + C	 z + 1

t1/2

qt∑
i=0

(i + 1)e−i/(2D).

The conclusion holds since
∑∞

i=0(i + 1)e−i/(2D) < ∞. �

Now, the proof of Lemma 2.4 is exactly the same (except in discrete time) as the
proof of Proposition 1’ in Bramson (1978) for the case s0 = t . We give the details
for completeness.

Proof of Lemma 2.4. Without loss of generality, assume that λ = 0, λ′ = 1 and
n/3 ∈ N. Let (Bk)

n
k=0 be a discrete σ -Brownian bridge and let (Sk)

n
k=0 be a discrete

random walk with N (0, σ 2) increments and S0 � 0. Denote by Pb1 , Pb2 and Pb3 ,
the sets of discrete paths in {0,1, . . . , n} lying below the barrier b(·)+ z on the sets
{0, . . . , n/3}, {n/3, . . . ,2n/3} and {2n/3, . . . , n}, respectively. Using the Markov
property of B and S,

(	) � P
(
Bk < b(k) + z,0 ≤ k ≤ n

)
=
∫ b(n/3)+z

−∞

∫ b(2n/3)+z

−∞
P(B ∈ Pb1 |Bn/3 = x1)fBn/3(x1)

× P(B ∈ Pb2 |B2n/3 = x2,Bn/3 = x1)fB2n/3|Bn/3(x2|x1)

× P(B ∈ Pb3 |B2n/3 = x2) dx1 dx2

= 1

fSn(0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ b(n/3)+z

−∞

∫ b(2n/3)+z

−∞
P(S ∈ Pb1 |Sn/3 = x1)fSn/3(x1)

× P(S ∈ Pb2 |S2n/3 = x2, Sn/3 = x1)fS2n/3|Sn/3(x2|x1)

× P(S ∈ Pb3 |Sn = 0, S2n/3 = x2)fSn|S2n/3(0|x2) dx1 dx2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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But P(S ∈ Pb2 |S2n/3 = x2, Sn/3 = x1) ≤ 1, fS2n/3|Sn/3(x2|x1) ≤ fSn/3(0) and

fSn/3(0)/fSn(0) = √
3, so

(	) ≤ √
3

⎧⎪⎪⎨⎪⎪⎩
∫ b(n/3)+z

−∞
P(S ∈ Pb1 |Sn/3 = x1)fSn/3(x1) dx1

×
∫ b(2n/3)+z

−∞
P

(
S ∈ Pb3

∣∣∣∣Sn = 0,

S2n/3 = x2

)
fSn|S2n/3(0|x2) dx2

⎫⎪⎪⎬⎪⎪⎭ .

By the symmetry of b(·) around n/2, both integrals are exactly the same. Thus, the
right-hand side is equal to

√
3
(
P
(
Sk < b̃(k) + z,0 ≤ k ≤ n/3

))2
.

The conclusion follows directly from Lemma 2.5. �

2.2 Why Restriction 1.2?

Let πj ∈ {0,1, . . . ,M} denote the indice such that λπj
= λj . When the contin-

uous and piecewise linear functions Jσ 2 and Jσ 2 coincide on a subinterval of
[λj−1, λj ], they either coincide:

1. everywhere on [λj−1, λj ];
2. everywhere on the left and right end, meaning on [λj−1, λπj−1+1] and

[λπj−1, λ
j ] respectively, but not somewhere in (λπj−1+1, λπj−1);

3. everywhere on the left end, but not on the right end;
4. everywhere on the right end, but not on the left end.

Imposing Restriction 1.2 means that we only deal with the first case. The only rea-
son we do this is to avoid overburdening the notation in the proof of Theorem 1.4
by dividing each interval [tj−1, tj ], j ∈ Am, in three parts like we did in the proof
of Lemma 2.4.

From Lemma 2.5, the probability that the left (resp. right) end of a Brownian
bridge stays below the left (resp. right) end of the logarithmic barrier b(·) + z is
O(n−1/2). The probability that the middle part of the Brownian bridge stays below
the middle part of the logarithmic barrier is O(1). Thus, it should now be obvious
how to modify the statement of Theorem 1.4 when there is no restriction. Simply
replace 2 · δj by δleft

j + δ
right
j , where

δleft
j �

{
1, when Jσ 2 and Jσ 2 coincide on

[
λj−1, λπj−1+1

]
,

0, otherwise,

δ
right
j �

{
1, when Jσ 2 and Jσ 2 coincide on

[
λπj−1, λ

j ],
0, otherwise.

For confirmation, the reader is referred to Theorem 1.4 in Mallein (2015b), where
a more general statement is given.
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2.3 Second order of the maximum and tension

Theorem 1.4 is a direct consequence of Lemma 2.7, which proves the exponential
decay of the probability that the recentered maximum is above a certain level, and
Lemma 2.9, which shows the corresponding lower bound.

Lemma 2.7 (Upper bound). Let {Sv}v∈Dn
be the (σ ,λ)-BRW at time n of Defini-

tion 1.1, under Restriction 1.2. Recall the definition of M	
n from (2.2). There exists

a constant C = C(σ ,λ) > 0 such that for all x > 0,

P

(
max
v∈Dn

Sv ≥ M	
n(n) + x

)
≤ C(1 + x)

2
∑m

j=1 δj e
−x

g
σ1

for n large enough, where δj � 1{j∈Am}.

The proof of Lemma 2.7 is separated in two parts with a technical lemma in
between them (Lemma 2.8).

Proof of Lemma 2.7 (first part). Define the set of particles that are above the
path M	

n,x at time k:

Hk,n,x �
{
v ∈ Dk : Sv(k) ≥ M	

n,x(k)
}
, k ∈ Tm.

The idea of the proof is to split the probability that at least one particle at time n

exceeds M	
n,x(n) by looking at the first time k ∈ Tm when the set Hk,n,x is non-

empty. Using sub-additivity, we have the following upper bound on the probability
of the lemma:

P
(|Hn,n,x | ≥ 1

)≤ ∑
k∈Tm

P

( |Hk,n,x | ≥ 1 and |Hi,n,x | = 0
∀i ∈ Tm such that i < k

)

≤ ∑
k∈Tm

2k max
v∈Dk

P

⎛⎝Sv(k) ≥ M	
n,x(k)

and Sv(i) < M	
n,x(i)

∀i ∈ Tm such that i < k

⎞⎠ . (2.13)

We only discuss the case k > t1 from hereon. The case k ≤ t1 is easier (there is no
conditioning in (2.14)), so we omit the details. Fix l ∈ {2, . . . ,m} and t l−1 < k ≤ t l

for the remaining of the proof. By conditioning on the event

Ev �
{(

Sv

(
t1), . . . , Sv

(
t l−1))= (x1, . . . , xl−1) � x

}
,

the probability in the maximum in (2.13) is equal to

∫ M	
n,x(t1)

−∞
· · ·
∫ M	

n,x(t l−1)

−∞
P

⎛⎝Sv(k) ≥ M	
n,x(k)

and Sv(i) < M	
n,x(i)

∀i ∈ Tm such that i < k

∣∣∣∣∣Ev

⎞⎠
︸ ︷︷ ︸

�(♣)

fv(x) dx, (2.14)
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where fv is the density function of (Sv(t
1), . . . , Sv(t

l−1)).
Now, make the convenient change of variables

Yv,j � ∇Sv

(
tj
)− ∇M	

n

(
tj
)
, j ∈ {1, . . . , l − 1}.

By the independence of the increments, the density of the vector (Sv(t
j ))l−1

j=1 is the
product of the densities of the Yv,j ’s, namely

fv(x) � fv(x1, . . . , xl−1) = fYv,1(y1) · . . . · fYv,l−1(yl−1).

Since V(Yv,j ) = V(∇Sv(t
j )) = σ 2

j∇tj , we can bound each density:

fYv,j
(yj ) = e

− (yj +∇M	
n(tj ))2

2σ2
j
∇tj

√
2π
√

σ 2
j∇tj

≤ C2−∇tj e
(1+2·δj )

2 log(∇tj )

√∇tj
e
−yj

g
σj

= C2−∇tj (∇tj
)δj e

−yj
g

σj .

We deduce that the integral in (2.14) is smaller than

C2−t l−1
∫ x

−∞

∫ x−y1

−∞
· · ·
∫ x−∑l−2

j=1 yj

−∞
(♣) ·

l−1∏
j=1

(∇tj
)δj e

−yj
g

σj dy. (2.15)

From Lemma 2.3, we know that for all j ∈ Al−1, the process

B
j
v,i � Sv(i) − Sv

(
tj−1)− i − tj−1

∇tj
∇Sv

(
tj
)
, tj−1 ≤ i ≤ t j , (2.16)

is independent of {Sv(i
′)}i′ /∈(tj−1,tj ) and defines a discrete σ j -Brownian bridge.

Similarly, when l ∈ Am, the process

Bv,i � Sv(i) − Sv

(
t l−1)− i − t l−1

k − t l−1

(
Sv(k) − Sv

(
t l−1)), t l−1 ≤ i ≤ k, (2.17)

is independent of {Sv(i
′)}i′ /∈(t l−1,k) and defines a discrete σ l-Brownian bridge.

Using the independence of Sv(k)−Sv(t
l−1) with respect to (Sv(t

j ))l−1
j=1 and the

processes in (2.16) and (2.17), we get

(♣) ≤ P
(
Sv(k) − Sv

(
t l−1)≥ M	

n,x(k) − xl−1
)

× ∏
j∈Al−1

P

⎛⎝B
j
v,i < M	

n,x(i) − xj−1 − i − tj−1

∇tj
∇xj

for all i such that tj−1 < i < tj

⎞⎠

× P

⎛⎜⎝Bv,i <
(
M	

n,x(i) − xl−1
)− i − t l−1

k − t l−1

(
M	

n,x(k) − xl−1
)

for all i such that t l−1 < i < k

⎞⎟⎠
1{l∈Am}

� (1) × ∏
j∈Al−1

(2)j × (3). (2.18)
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We bound (1) using a Gaussian estimate, and (2)j and (3) using the Brownian
bridge estimates of Lemma 2.4. We pause the proof of Lemma 2.7 to state and
prove these bounds in Lemma 2.8. �

Lemma 2.8. Let l ∈ {2, . . . ,m} and t l−1 < k ≤ t l . As in (2.14), we make the
change of variables

Yv,j � ∇Sv

(
tj
)− ∇M	

n

(
tj
)
, j ∈ {1, . . . , l − 1}. (2.19)

In (2.18), there exist constants C,D > 0, only depending on (σ ,λ), such that for
n large enough,

(1) ≤ C2−(k−t l−1)hl(k)
(
k − t l−1)1{l∈Am and (t l−1+t l )/2<k≤t l }e

− x−∑l−1
j=1 yj

g−1σ l , (2.20)

where

hl(k) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
k − t l−1)−3/2

, when l ∈Am and t l−1 < k ≤ t l−1 + t l

2
,(

t l − k
)−5/2

, when l ∈Am and
t l−1 + t l

2
< k < tl,

1, when k = t l,

and

(2)j ≤ C
(1 + D + 2x − 2

∑j−1
j ′=1 yj ′ − yj )

2

∇tj
, j ∈ Al−1, (2.21)

and

(3) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C

(1 + D + 2x − 2
∑l−2

j ′=1 yj ′ − yl−1)
2

k − t l−1 ,

if l ∈ Am and
t l−1 + t l

2
< k ≤ t l,

1, otherwise.

(2.22)

Proof of inequality (2.20). Since V(Sv(k) − Sv(t
l−1)) = (k − t l−1)σ 2

l when k ∈
Tm, a Gaussian estimate yields

(1) � P
(
Sv(k) − Sv

(
t l−1)

≥ M	
n,x(k) − xl−1

)
≤

√
(k − t l−1)σ 2

l√
2π(M	

n,x(k) − xl−1)
e
− (M	

n,x (k)−M	
n,x (tl−1)+M	

n,x (tl−1)−xl−1)2

2(k−t l−1)σ2
l . (2.23)
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Use successively xl−1 ≤ M	
n,x(t

l−1) from (2.14), the definition of M	
n in (2.2), the

fact that bn,x(k) ≥ x and x �→ (logx)/x is decreasing for x ≥ e, to show

M	
n,x(k) − xl−1

≥ M	
n,x(k) − M	

n,x

(
t l−1)

= g
(
k − t l−1)σ l − (1 + 2 · δl)σ l

2g

(k − t l−1)

∇t l
log
(∇t l

)+ bn,x(k) − x

≥ g
(
k − t l−1)σ l − (1 + 2 · δl)σ l

2g
log
(
e ∨ (k − t l−1)). (2.24)

Plugging inequality (2.24) in (2.23) and using the definition of bn,x from (2.3) and
the fact that M	

n,x(t
l−1) − xl−1 = x −∑l−1

j=1 yj , we have

(1) ≤ C2−(k−t l−1) e

(1+2·δl )
2 log(e∨(k−t l−1))− bn,x (k)−x

g−1σ l√
k − t l−1

e
−M	

n,x (tl−1)−xl−1
g−1σ l

≤ C̃2−(k−t l−1)hl(k)
(
k − t l−1)1{l∈Am and (t l−1+t l )/2<k≤t l }e

− x−∑l−1
j=1 yj

g−1σ l ,

where

hl(k) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
k − t l−1)−3/2

, when l ∈ Am and t l−1 < k ≤ t l−1 + t l

2
,(

t l − k
)−5/2

, when l ∈ Am and
t l−1 + t l

2
< k < tl,

1, when k = t l .

Note that the last inequality is an equality with C̃ = C whenever k − t l−1 ≥ e.
When k − t l−1 ∈ {1,2}, taking C̃ = e3/2 · C is sufficient to “absorb” the terms that
do not cancel out exactly. �

Proof of inequality (2.21). Let j ∈ Al−1 and define

zi,j � M	
n,x(i) − xj−1 − i − tj−1

∇tj
∇xj , tj−1 < i < tj .

We have

zi,j = bn,x(i) + M	
n(i) +

{
i − tj−1

∇tj
xj−1 + tj − i

∇tj
xj

}
− xj−1 − xj

= bn,x(i) +
[
M	

n(i) − tj − i

∇tj
M	

n

(
tj−1)− i − tj−1

∇tj
M	

n

(
tj
)]

+
{
i − tj−1

∇tj

(
xj−1 − M	

n

(
tj−1))+ tj − i

∇tj

(
xj − M	

n

(
tj
))}

− (xj−1 − M	
n

(
tj−1))− (xj − M	

n

(
tj
))

.
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Now, bound the braces using (xj−1 − M	
n(tj−1)) ∨ (xj − M	

n(tj )) ≤ x from the
integration limits of xj−1 and xj in (2.14). The quantity between the brackets is
zero because M	

n is affine on [tj−1, tj ]. Consequently,

zi,j ≤ bn,x(i) + x − (xj−1 − M	
n

(
tj−1))− (xj − M	

n

(
tj
))

(2.19)= bn(i) + 2x −
j−1∑
j ′=1

yj ′ −
j∑

j ′=1

yj ′ . (2.25)

Since (2)j � P(B
j
v,i < zi,j , t

j−1 < i < tj ), where B
j
v is a discrete σ j -Brownian

bridge on [tj−1, tj ], the conclusion follows from Lemma 2.4 and (2.25). �

Proof of inequality (2.22). Assume l ∈ Am and (t l−1 + t l)/2 < k ≤ t l . The other
cases are trivial because (3) is a probability. Now, define

zi �
(
M	

n,x(i) − xl−1
)− i − t l−1

k − t l−1

(
M	

n,x(k) − xl−1
)
, t l−1 < i < k.

Similarly to the proof of (2.21), the path M	
n is affine on [t l−1, t l] ⊇ [t l−1, k] and

xl−1 − M	
n(t l−1) ≤ x from the integration limits of xl−1 in (2.14), so

zi = bn,x(i) − i − t l−1

k − t l−1 bn,x(k) − k − i

k − t l−1

(
xl−1 − M	

n

(
t l−1))

+
[
M	

n(i) − k − i

k − t l−1 M	
n

(
t l−1)− i − t l−1

k − t l−1 M	
n(k)

]

= bn(i) − i − t l−1

k − t l−1 bn(k) +
(

1 − i − t l−1

k − t l−1

)
x

+ i − t l−1

k − t l−1

(
xl−1 − M	

n

(
t l−1))− (xl−1 − M	

n

(
t l−1))

≤ bn(i) − i − t l−1

k − t l−1 bn(k) + x −
l−1∑
j ′=1

yj ′ . (2.26)

In order to use Lemma 2.4, it remains to show that the first two terms in (2.26) are
bounded by an appropriate logarithmic barrier. Assume for now that k �= t l . There
are three cases to consider.

Case 1: All i such that t l−1 < i ≤ (t l−1 + k)/2 < (tl−1 + t l)/2 < k < tl

Clearly,

bn(i) − i − t l−1

k − t l−1 bn(k) ≤ bn(i)
(2.3)= 5

2

σ l

g
log
(
i − t l−1). (2.27)
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Case 2: All i such that t l−1 < (tl−1 + k)/2 < i ≤ (t l−1 + t l)/2 < k < tl

Observe that i− t l−1 ≤ t l − i and t l −k ≤ k− t l−1 and x �→ (logx)/x is decreasing
for x ≥ e. Also, we have (t l − i) = (t l − k) + (k − i) ≤ 2(t l − k)(k − i) because
a + b ≤ 2ab for a, b ≥ 1. Using all this (in that order), we get

bn(i) − i − t l−1

k − t l−1 bn(k)
(2.3)= 5

2

σ l

g

{
log
(

i − t l−1

t l − k

)
+ k − i

k − t l−1 log
(
t l − k

)}

≤ 5

2

σ l

g

{
log
(

t l − i

t l − k

)
+ log

(
e ∨ (k − i)

)}

≤ 5

2

σ l

g

{
log 2 + 2 log

(
e ∨ (k − i)

)}
. (2.28)

Case 3: All i such that t l−1 < (tl−1 + t l)/2 < i < k < tl

By the same reasoning as in Case 2 (without i − t l−1 ≤ t l − i), we get

bn(i) − i − t l−1

k − t l−1 bn(k)
(2.3)= 5

2

σ l

g

{
log
(

t l − i

t l − k

)
+ k − i

k − t l−1 log
(
t l − k

)}

≤ 5

2

σ l

g

{
log 2 + 2 log

(
e ∨ (k − i)

)}
. (2.29)

Finally, when k = t l , the inequalities (2.27), (2.28) and (2.29) are trivial because
bn(k) = 0. Therefore, applying all three inequalities in (2.26), there exist appropri-
ate constants D,D̃ > 0, depending only on (σ ,λ), for which

zi ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
D̃ log

(
i − t l−1)+ D + x −

l−1∑
j ′=1

yj ′, if t l−1 < i ≤ t l−1 + k

2
,

D̃ log(k − i) + D + x −
l−1∑
j ′=1

yj ′, if
t l−1 + k

2
< i < k

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
D̃ log

(
i − t l−1)+ D + 2x − 2

l−2∑
j ′=1

yj ′ − yl−1, if t l−1 < i ≤ t l−1 + k

2
,

D̃ log(k − i) + D + 2x − 2
l−2∑
j ′=1

yj ′ − yl−1, if
t l−1 + k

2
< i < k.

We used
∑l−2

j ′=1 yj ′ ≤ x from the integration limits of yl−2 in (2.15) to get the

last inequality. When l ∈ Am, recall that (3) � P(Bv,i < zi, t
l−1 < i < k), where

Bv is a discrete σ l-Brownian bridge on [t l−1, k]. Applying Lemma 2.4 yields the
conclusion. �
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Proof of Lemma 2.7 (last part). By applying Lemma 2.8 in (2.18), the integral
in (2.15) is smaller than

C2−khl(k)e
−x

g
σ l

∫ x

−∞

∫ x−y1

−∞
· · ·
∫ x−∑l−2

j=1 yj

−∞

(
1 + D + 2x − 2

l−2∑
j ′=1

yj ′ − yl−1

)2·δl

(2.30)

×
[ ∏

j∈Al−1

(
1 + D + 2x − 2

j−1∑
j ′=1

yj ′ − yj

)2]
·

l−1∏
j=1

e
yj [ g

σ l
− g

σj
]
dy

for an appropriate constant D = D(σ ,λ) > 0. To obtain (2.30), the terms (∇t j )

in (2.15) canceled with the factors 1/(∇tj ) in (2.21), for all j ∈ Al−1. Similarly,
the term (k − t l−1) in (2.20) canceled with the factor 1/(k − t l−1) in (2.22), when
l ∈ Am and (t l−1 + t l)/2 < k ≤ t l .

To bound the integral in (2.30), it is crucial to observe that the brackets in the ex-
ponentials are always strictly positive because σ 1 > σ 2 > · · · > σm by definition.
Denote these brackets by βj,l,1 ≤ j ≤ l − 1. We evaluate the integral iteratively.
Note that

∑l−2
j=1 yj ≤ x and

∑l−3
j=1 yj ≤ x from the integration limits of yl−2 and

yl−3 in (2.30). By integrating by parts, it is easy to show that the first integral (from
the interior) have the property∫ x−∑l−2

j=1 yj

−∞

(
1 + D + 2x − 2

l−2∑
j ′=1

yj ′ − yl−1

)a

eyl−1βl−1,l dyl−1

≤ (a + 1)!
(1 ∧ βl−1,l)a+1

(
1 + D + 2x − 2

l−3∑
j ′=1

yj ′ − yl−2

)a

e
(x−∑l−2

j=1 yj )βl−1,l

for any exponent a ∈ N0. Therefore, iterating this reasoning in (2.30) gives

(2.30) ≤ C̃2−khl(k)e
−x

g
σ l · (1 + D + x)

2
∑l

j=1 δj e
x
∑l−1

j=1 βj,j+1

= C̃2−khl(k)e
−x

g
σ1 · (1 + D + x)

2
∑l

j=1 δj .

Applying this bound in (2.13) yields the conclusion since
m∑

l=1

∑
k∈Tm

tl−1<k≤t l

hl(k) < ∞.

This ends the proof of Lemma 2.7. �

Lemma 2.9 (Lower bound). Let {Sv}v∈Dn
be the (σ ,λ)-BRW at time n of Def-

inition 1.1, under Restriction 1.2. Recall the definition of M	
n from (2.2). For all

ε > 0, there exists Kε > 0 such that for all n ∈ N,

P

(
max
v∈Dn

Sv ≤ M	
n(n) − Kε

)
< ε.
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Proof. Let S	
n � maxv∈Dn

Sv . From Theorem 1 of Fang (2012), we know that the
family {S	

n − Med(S	
n)}n∈N is tight, that is for all ε > 0, there exists K̃ε > 0 such

that for all n ∈ N,

P
(∣∣S	

n − Med
(
S	

n

)∣∣≥ K̃ε

)
< ε. (2.31)

We claim that there exist c,C > 0 and n0, ñ0 ∈ N such that{
P
(
S	

n ≥ M	
n(n) − C

)≥ c

for all n ≥ n0

}
=⇒

{
Med

(
S	

n

)≥ M	
n(n) − C − K̃c

for all n ≥ ñ0

}
. (2.32)

Otherwise, by (2.31), for each choice of c,C > 0, there would exist a subsequence
{ni}i∈N such that

c ≤ P
(
S	

ni
≥ M	

ni
(ni) − C

)≤ P
(
S	

ni
≥ Med

(
S	

ni

)+ K̃c

)
< c,

which is impossible. If the left-hand side of (2.32) was satisfied for some constants
c,C > 0, we could define Kε � K̃ε + C + K̃c, and (2.31) would give

P
(
S	

n ≤ M	
n(n) − Kε

)≤ P
(
S	

n ≤ Med
(
S	

n

)− K̃ε

)
< ε, n ≥ ñ0,

and the proof of the lemma would be over.
To conclude, it remains to show the left-hand side of (2.32). We now use Re-

striction 1.2. Recall from Remark 1.3 that {λid }0≤d≤p is the union of all the scales
λj and all the isolated points where Jσ 2 and Jσ 2 coincide. By independence of the
increments, the left-hand side of (2.32) is satisfied if there exist constants c,C > 0
such that

P

(
max

v∈D∇d tid

Sid
v ≥ ∇dM	

n(tid ) − (C/p)

)
≥ c1/p, 1 ≤ d ≤ p, (2.33)

where each field {Sid
v }v consists of the end points of an inhomogeneous BRW on

the time interval [0,∇d tid ] with variance parameters given by the step function
s �→ σ(s) on (λid−1, λid ].

It suffices to show (2.33) for the subinterval(s) [tid−1, tid ] ⊆ [0, t1] since we did
not assume anything on the other intervals [tj−1, tj ]. When 1 ∈ Am, that is when
there is only one variance parameter σ1 = σ 1 on (0, λ1], then (2.33) follows from
Theorem 3 of Addario-Berry and Reed (2009) by choosing C > 0 large enough and
c > 0 small enough. Since M	

n(·) is linear on [0, t1] and the argument presented
below could be applied for each subinterval of the partition (independently of d),
we can assume, without loss of generality, that ti1 = t1, namely that

Jσ 2 lies strictly below its concave hull Jσ 2

everywhere on
(
0, t1). (2.34)

The usual trick to prove a lower bound in the BRW setting is the Paley–
Zygmund inequality. If we naively try to apply the Paley–Zygmund inequality
to the number of particles that stay above the optimal path, the method will not
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work because the correlations of the BRW inflate the second moment too much,
see (2.36). Instead, we need to add a barrier condition that eliminates the overly
large number of particles that are too far off the optimal path during their lifetime.
For simplicity, we omit the superscript i1 for Si1

v in the remaining of the proof.
Define Sv � Sv(t

1) and let

In �
[
M	

n

(
t1),M	

n

(
t1)+ 1

]
,

Ik,n(x) �
[
sk,n(x) − fk,n, sk,n(x) + fk,n

]
,

Nn � #
{
v ∈ Dt1 : Sv ∈ In, Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1},

where sk,n(x) is a path leading to x ∈ R and fk,n is a concave barrier. The definition
we give to sk,n could seem strange at first, but is actually quite natural. It is argued
in Arguin and Ouimet (2016) and proved in Appendix A of Ouimet (2014) that the
log-number of particles that are above the path

sk,n(x) � Jσ 2(k/n)

Jσ 2(λ1)
x, 0 ≤ k ≤ t1,

during their lifetime is asymptotically the same as the log-number of particles
above x at time t1. In particular, for particles reaching x = M	

n(t1) at time t1, this
path is optimal (for the first order). The barrier is

fk,n �
{
Cf

(
Jσ 2(k/n)n

)2/3
, if 0 ≤ k ≤ t1,

Cf

(
Jσ 2

(
k/n,λ1)n)2/3

, if t1 < k ≤ t1,
(2.35)

where the constant Cf > 0 will be chosen large enough later in the proof. The
exponent 2/3 is not essential here (any exponent in (1/2,1) works), but this defi-
nition is useful for the Gaussian estimates.

Under assumption (2.34), the Paley–Zygmund inequality yields that the proba-
bility in (2.33) (when d = 1) is bounded from below by

P

(
max
v∈D

t1
Sv ≥ M	

n

(
t1))≥ P(Nn ≥ 1)

P–Z≥ (E[Nn])2

E[(Nn)2] . (2.36)

To conclude, we show E[Nn] ≥ c	 and E[(Nn)
2] ≤ (E[Nn])2 + (1+C	)E[Nn] for

some constants c	,C	 > 0.

Lower bound on the first moment

By the linearity of expectation, we have the lower bound

E[Nn] = 2t1
P
(
Sv ∈ In, Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1)

= 2t1
P(Sv ∈ In)P

(
Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1)

≥ c	, (2.37)

provided that there exist constants c1, c2 > 0 such that
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(1) Sv is independent of {Sv(k) − sk,n(Sv)}t1

k=0,

(2) 2t1
P(Sv ∈ In) ≥ c1,

(3) P(Sv(k) ∈ Ik,n(Sv) ∀0 < k < t1) ≥ c2.

To show (1), observe that V(Sv(k)) = Jσ 2(k/n)n and V(Sv) = Jσ 2(λ1)n from
(2.1), so the independence between Sv(k) and Sv − Sv(k) gives

Cov
(
Sv, Sv(k) − sk,n(Sv)

)= V
(
Sv(k)

)− Jσ 2(k/n)

Jσ 2(λ1)
V(Sv) = 0.

To show (2), note that M	
n(t1) = gσ 1t

1 − 1
2

σ 1
g

log(t1), under assumption (2.34),

and V(Sv) = σ 2
1t

1. Therefore,

P(Sv ∈ In) =
∫ M	

n(t1)+1

M	
n(t1)

e
− z2

2σ2
1t1√

2πσ 2
1t

1
dz ≥ 1 · c√

t1
e
− (M	

n(t1)+1)2

2σ2
1t1 ≥ c12−t1

.

To show (3), note that Cov(sk,n(Sv), Sv(k) − sk,n(Sv)) = 0, by the independence
in (1), and thus

V
(
Sv(k) − sk,n(Sv)

)= Cov
(
Sv(k), Sv(k) − sk,n(Sv)

)
= Jσ 2(k/n)n

[
1 − Jσ 2(k/n)

Jσ 2(λ1)

]
.

Then, sub-additivity followed by Gaussian estimates yield

P

(
Sv(k) ∈ Ik,n(Sv)

∀0 < k < t1

)
≥ 1 − 2

t1−1∑
k=1

P
(
Sv(k) − sk,n(Sv) > fk,n

)

≥ 1 − 2
t1−1∑
k=1

C exp
(
−1

2

(fk,n)
2

Jσ 2(k/n)n[1 − J
σ2 (k/n)

J
σ2 (λ1)

]

)
.

By considering the cases 0 < k ≤ t1 and t1 < k < t1 separately, the last sum is
bounded from above by

t1∑
k=1

Ce
− 1

2 C2
f σ

2/3
1 k1/3 +

t1−1∑
k=t1+1

Ce
− 1

2 C2
f mini∈{2,3,...,π1} σ

2/3
i (t1−k)1/3

.

For Cf large enough, this is strictly smaller than 1/2, independently of n, which
proves (3).
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Upper bound on the second moment

To estimate the second moment, we split E[(Nn)
2] according to the branching time

ρ(u, v) � max{r ∈ {0,1, . . . , t1} : ur = vr} of each pair of particles:

E
[
(Nn)

2]= t1∑
r=0

∑
u,v∈D

t1
ρ(u,v)=r

P

(
Su,Sv ∈ In and Su(k) ∈ Ik,n(Su),

Sv(k) ∈ Ik,n(Sv) for all 0 < k < t1

)
.

When ρ(u, v) = 0, the processes {Su(k)}k and {Sv(k)}k are independent. There-
fore, in the case r = 0, the second sum above is bounded by (E[Nn])2 by adding
the missing terms. In the case r = t1, the second sum is equal to E[Nn] because
u and v coincide. In the remaining cases 0 < r < t1, the increment Sv − Sv(r) is
independent of {Su(k)}k , and Su(k) = Sv(k) for all k ≤ r . Therefore, E[(Nn)

2] is
bounded from above by

(
E[Nn])2 +E[Nn] +

t1−1∑
r=1

∑
u,v∈D

t1
ρ(u,v)=r

P

(
Su ∈ In and Su(k) ∈ Ik,n(Su)

for all 0 < k < t1

)

(2.38)
× max

x∈In

P
(
Sv − Sv(r) ∈ x − Ir,n(x)

)
.

There are at most 2t1 · 2t1−r pairs (u, v) ∈ D
2
t1 with branching time equal to r , so

the double sum in (2.38) is bounded from above by

E[Nn] ×
t1−1∑
r=1

2t1−r max
x∈In
v∈D

t1

P
(
Sv − Sv(r) ∈ x − Ir,n(x)

)︸ ︷︷ ︸
(♠)r

. (2.39)

It remains to estimate the probabilities (♠)r in (2.39). From (2.1), we know that
V(Sv − Sv(r)) = Jσ 2(r/n,λ1)n for all v ∈ Dt1 .

In the case 0 < r ≤ t1, we have fr,n = Cf (σ 2
1 r)2/3. Thus, for x ∈ In,

(♠)r =
∫
x−Ir,n(x)

e
− 1

2
z2

J
σ2 (r/n,λ1)n√

2πJσ 2(r/n,λ1)n
dz ≤ 2fr,n

e
− 1

2
(M	

n(t1)−sr,n(M	
n(t1))−fr,n)2

J
σ2 (r/n,λ1)n√

Jσ 2(r/n,λ1)n

≤ Cr2/32
−J

σ2 (r/n,λ1)t1

J
σ2 (λ1) e

1
2

J
σ2 (r/n,λ1)

J
σ2 (λ1)

log(t1)√
Jσ 2(r/n,λ1)n

e

Cf (σ2
1 r)2/3

g−1σ1 (2.40)

≤ Cr2/32−(t1−η1r)eC̃r2/3
. (2.41)

To obtain the last bound, we use two crucial observations. Since the function x �→
(logx)/x is decreasing for x ≥ e, the ratio of the exponential over the square root
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Figure 4 Example of η1 and η2 under assumption (2.34). The thin line represents Jσ 2 .

in (2.40) is bounded by a constant independent of r and n. Also, under assumption
(2.34) and for 0 < r ≤ t1,

Jσ 2(r/n,λ1)t1

Jσ 2(λ1)
= t1 −

1
r/n

Jσ 2(r/n)

1
λ1Jσ 2(λ1)

r = t1 −
1
λ1
Jσ 2(λ1)

1
λ1Jσ 2(λ1)

r � t1 − η1r,

where η1 < 1 independently of r and n. See Figure 4 for an example.
Similarly, in the case t1 < r < t1, we have fr,n = Cf (Jσ 2(r/n,λ1)n)2/3. Thus,

for x ∈ In,

(♠)r =
∫
x−Ir,n(x)

e
− 1

2
z2

J
σ2 (r/n,λ1)n√

2πJσ 2(r/n,λ1)n
dz ≤ 2fr,n

e
− 1

2
(M	

n(t1)−sr,n(M	
n(t1))−fr,n)2

J
σ2 (r/n,λ1)n√

Jσ 2(r/n,λ1)n

≤ C2
−J

σ2 (r/n,λ1)t1

J
σ2 (λ1) e

1
2

J
σ2 (r/n,λ1)

J
σ2 (λ1)

log(t1)

(Jσ 2(r/n,λ1)n)−1/6 e

Cf (J
σ2 (r/n,λ1)n)2/3

g−1σ1 (2.42)

≤ C2−η2(t
1−r)(Jσ 2

(
r/n,λ1)n)2/3

eC̃(t1−r)2/3
. (2.43)

Again, to obtain the last bound, we use two crucial observations. The first expo-
nential in (2.42) is bounded by C(Jσ 2(r/n,λ1)n)1/2, where C is independent of
r and n, using the fact that x �→ (logx)/x is decreasing for x ≥ e. Also, under
assumption (2.34) and for t1 < r < t1,

Jσ 2(r/n,λ1)t1

Jσ 2(λ1)
=

1
λ1−r/n

Jσ 2(r/n,λ1)

1
λ1Jσ 2(λ1)

(
t1 − r

)≥ η2
(
t1 − r

)
,
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where η2 is the minimum of the last ratio with respect to r ∈ {t1, . . . , t1 − 1}. Note
that η2 > 1 independently of r and n, see Figure 4 above.

By combining the bounds on (♠)r in (2.41) and (2.43), the sum in (2.39) is
bounded from above by

C

[
t1∑

r=1

2−(1−η1)r+o(r) +
t1−1∑

r=t1+1

2(1−η2)(t
1−r)+o(t1−r)

]
≤ C	,

where η1 < 1 and η2 > 1 independently of r and n. By applying this bound in
(2.39) and back in (2.38), we have

E[(Nn)
2]

(E[Nn])2 ≤ 1 + 1 + C	

E[Nn]
(2.37)≤ 1 + 1 + C	

c	

. (2.44)

Using (2.44) in (2.36) yields (2.33) when d = 1, under assumption (2.34). This
ends the proof of Lemma 2.9. �
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