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Abstract. The skew-normal distribution has been used successfully in vari-
ous statistical applications. The main purpose of this paper is to consider local
influence analysis, which is recognized as an important step of data analy-
sis. Motivated to simplify expressions of the conditional expectation of the
complete-data log-likelihood function, used in the EM algorithm, diagnostic
measures are derived from the case-deletion approach and the local influence
approach inspired by Zhu et al. [Biometrika 88 (2001) 727–737] and Zhu and
Lee [J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 (2001) 111–126]. Finally, the
results obtained are applied to a dataset from a study to evaluate quality of
life (QOL) and to identify its associated factors in climacteric women with a
history of breast cancer.

1 Introduction

Linear symmetrical models have been investigated by various authors. For exam-
ple, Lange, Little and Taylor (1989) presented an approach to model Student-t
distributions, while Galea-Rojas, Paula and Bolfarine (1997) and Liu (2000) dis-
cussed diagnostic methods for symmetrical linear regression models. Although
the class of symmetric distributions is a better alternative than that of the nor-
mal distribution, it is not appropriate in situations where the sample distribution is
asymmetrical. For example, Hill and Dixon (1982) discussed and presented exam-
ples with asymmetrical structures. From a practical viewpoint, many authors have
transformed variables to achieve normality, and in many cases their methods are
satisfactory. However, Azzalini and Capitanio (1999) pointed out some problems,
mentioning, for example, that the transformed variables are more difficult to deal
with and to interpret.

A family of skew-normal distributions that accommodates practical values of
skewness and kurtosis, and includes the normal distribution as a special case,
was introduced by Azzalini (1985). From then on, many authors have considered
these distributions in different areas, such as economics, oceanography, engineer-
ing and biomedical sciences, among others. Azzalini (2005) presented a discussion

Key words and phrases. Case-deletion, local influence, skew-normal distribution, approach, EM
algorithm.

Received August 2015; accepted January 2017.

525

http://imstat.org/bjps/
https://doi.org/10.1214/17-BJPS352
http://www.redeabe.org.br/


526 C. S. Ferreira, F. Vilca and H. Bolfarine

on skew-normal distributions with applications in regression models. Also, Lachos
et al. (2007) considered an application of diagnostics analysis in linear mixed mod-
els, and in the context of errors-in-variables models some results can be found
in Lachos, Montenegro and Bolfarine (2008). Sahu, Dey and Branco (2003) pro-
posed a new skew-normal distribution, equivalent to that of Azzalini (1985), in
which the EM algorithm used to obtain the maximum likelihood estimates is sim-
pler in the M-step. Consequently, some of its properties and applications can be
easily derived, such as diagnostics analysis based the conditional expectation of
the complete-data log-likelihood; see Zhu and Lee (2001) and Zhu et al. (2001).
Some applications of the skew-normal of Sahu, Dey and Branco (2003) can be
found in Azevedo, Bolfarine and Andrade (2011), Lee and McLachlan (2013) and
Dagne (2016), among others.

After the model is fitted, diagnostics analysis is a key step in data analysis sub-
sequent to parameter estimation. This procedure can be carried out by conducting
an influence analysis to detect influential observations. There are two usual ap-
proaches to detect influential observations. The first is the case-deletion approach,
which has received a great deal of attention due to the paper by Cook (1977),
which that presented an intuitively appealing method. Since then, the Cook dis-
tance or the likelihood distance have been applied to many statistical models. This
approach allows assessment of the individual impact of cases in the estimation pro-
cess (see, Cook and Weisberg (1982)). The second approach, which is a general
statistical technique used to assess the stability of the estimation outputs with re-
spect to the model inputs, is the local influence approach, due to Cook (1986). This
method has received considerable attention recently in the statistical literature on
regression models. Both approaches can be studied on the basis of the Q-function
considered by Zhu et al. (2001) to introduce the case-deletion measures and by
Zhu and Lee (2001) to study local influence diagnostics as can be seen in Ferreira,
Lachos and Bolfarine (2015), Massuia et al. (2015), and Zeller, Lachos and Vilca
(2014).

Although several diagnostic studies on regression models have appeared in
the literature, no application of local influence has been considered for regres-
sion models under the skew-normal distribution of Sahu, Dey and Branco (2003)
with emphasis on the case-deletion approach and local influence. Based on the Q-
function, which is closely related to the conditional expectation of the complete-
data log-likelihood in the E-step of the EM algorithm, we develop a study of local
influence following the approach of Zhu and Lee (2001), which produces results
very similar to those obtained from Cook’s method, but with simpler application.
We also develop methods to obtain case-deletion measures by using the method of
Zhu et al. (2001).

Following Sahu, Dey and Branco (2003), we say that an random variable Y has
an univariate skew-normal distribution with location parameter μ, scale parameter
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σ 2 and skewness parameter δ, if its probability density function (pdf) is given by

f (y) = 2√
σ 2 + δ2

φ

(
y − μ√
σ 2 + δ2

)
�

(
δ

σ

y − μ√
σ 2 + δ2

)
, (1.1)

where φ(·) and �(·) are the pdf and cumulative distribution function (cdf)
of the N(0,1) distribution, respectively. This distribution is denoted by Y ∼
SN(μ,σ 2, δ). It is easy to see that for δ = 0, the pdf in (1.1) reduces to the normal
distribution. The mean and variance of Y are

E(Y ) = μ +
√

2

π
δ and Var(Yj ) = σ 2 +

(
1 − 2

π

)
δ2, (1.2)

respectively. The stochastic representation is given by Y
d= μ + δ|X0| + σX1,

where X0 and X1 are independent with distribution N(0,1). The notation “ d=”
means that both variables have the same distribution.

The paper is organized as follows. Section 2 introduces the skew-normal linear
regression model and describes an EM algorithm for obtaining the maximum like-
lihood (ML) estimates. Section 3 provides a brief sketch of the case-deletion and
local influence approaches for models with incomplete data, and also develops a
method pertinent to linear regression models under the skew-normal distribution.
Moreover, the generalized leverage is discussed. Section 4 illustrates the method
with analysis of two examples involving life quality of women with breast cancer
and simulation studies. Finally, some concluding remarks are made in Section 5.

2 The skew-normal linear regression model

In this section, we present the linear regression models under the skew-normal
distribution (SN-LRM). Specifically, we consider the linear regression model un-
der the skew-normal distribution proposed by Sahu, Dey and Branco (2003), as
follows:

Yj = xjβ + δUj + εj , (2.1)

where x�
j = (1, xj2, . . . , xjp), β = (β1, β2, . . . , βp)�, εj ∼ N(0, σ 2) and Uj ∼

HN(0,1), j = 1, . . . , n, all independent, where HN(0,1) denotes the standard half-
normal distribution. So, Yj ∼ SN(x�

j β, σ 2, δ) with pdf give by

f (yj ; θ) = 2√
σ 2 + δ2

φ

( yj − x�
j β√

σ 2 + δ2

)
�

(
δ

σ

yj − x�
j β√

σ 2 + δ2

)
, (2.2)

where φ(·) and �(·) are as in (1.1). The mean and variance of Yj are given by

E(Yj ) = x�
j β +

√
2

π
δ and Var(Yj ) = σ 2 +

(
1 − 2

π

)
δ2, (2.3)
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respectively. The log-likelihood function for θ = (β�, σ 2, δ), given y1, . . . , yn, is
given by

	(θ) = n log 2 − n

2
log(2π) − n

2
log

(
σ 2 + δ2)

− 1

2(σ 2 + δ2)

n∑
j=1

(
yj − x�

j β
)2 +

n∑
j=1

log�(Bj ),
(2.4)

where Bj = δ

σ
√

σ 2+δ2
(yj − x�

j β). After some algebraic manipulations, the in-

formation matrix denoted by IF (θ) is given by IF (θ) = [Iγψ ], γ ,ψ = β, σ 2, δ,
whose components are given by

Iββ = 1

σ 2 + δ2

[
1 + δ2

σ 2 a02(δ/σ )

]
X�X,

Iβσ 2 = δ

(σ 2 + δ2)3/2

[
c

(σ 2 + δ2)1/2 − 2σ 2 + δ2

2σ 3 a1(δ, σ )

]
X,

Iβδ = σ

(σ 2 + δ2)3/2

[
2c

δ2

(σ 2 + δ2)1/2 − δa2(δ, σ ) + σa01(δ/σ )

]
X,

Iσ 2σ 2 = n

(σ 2 + δ2)2

[
1

2
+ (2σ 2 + δ2)2δ2

4σ 6 a22(δ/σ )

]
,

Iσ 2δ = nδ

(σ 2 + δ2)2

[
1 − (2σ 2 + δ2)

2σ 2 a22(δ/σ )

]
,

Iδδ = n

(σ 2 + δ2)2

[
2δ2 + σ 2a22(δ/σ )

]
,

where a1(δ, σ ) = a01(δ/σ ) − δ
σ
a12(δ/σ ) − δ2

σ 2 a21(δ/σ ), a2(δ, σ ) = δ
σ
a21(δ/σ ) +

a12(δ/σ ), c = √
2/π and ahk(x) = E[ZhWk

�(xZ)], with a01(x) = c(x2 + 1)−1/2

and a21(x) = c(x2 + 1)−3/2, and X is the model matrix. The other values a12(·)
and a22(·) are obtained through the approximation given in Rodríguez and Branco
(2007).

Next, we present the Q-function as an alternative to the observed-data log-
likelihood function, which is associated with the conditional expectation of the
complete-data log-likelihood function in the EM algorithm. The use of the Q-
function will be useful to detect influential observations in regression models when
the errors follow a skew-normal distribution because it is significantly simpler.
This idea is inspired by the works of Zhu and Lee (2001) and Zhu et al. (2001).

2.1 The Q-function and the EM algorithm

We implement the EM algorithm introduced by Dempster, Laird and Rubin (1977),
in which the M-step involves only the Q-function complete data, which in this case
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is computationally simple. The model (2.1) can be expressed by the hierarchical
representation

Yj |Uj = uj ∼ N
(
x�
j β + δuj , σ

2)
and Uj ∼ HN(0,1). (2.5)

Hence, Uj |Yj = yj ∼ HN( δ
σ 2+δ2 (yj − x�

j β), σ 2

σ 2+δ2 ). Now, letting y = (y1, . . . ,

yn)
� and u = (u1, . . . , un)

�, treating u as missing data, we have the complete-data
log-likelihood function associated with yc = (y�,u�)� is given by 	c(θ |yc) =∑n

j=1 	c(θ |yj , uj ), where (without the additive constant)

	c(θ |yj , uj ) = −1

2
logσ 2 − 1

2σ 2

(
yj − x�

j β
)2 + δ

σ 2 uj

(
yj − x�

j β
) − δ2

2σ 2 u2
j .

Given the current estimate θ̂
(k) = (β̂

(k)�
, σ̂ 2(k)

, δ̂(k))� of θ at the kth itera-
tion, the E-step calculates the conditional expectation of the complete-data log-
likelihood function or simply the Q-function

Q
(
θ |̂θ (k)) =

n∑
j=1

E
[
	c(θ |yj , uj )|yj , θ = θ̂

(k)] =
n∑

j=1

Qj

(
θ |̂θ (k))

, (2.6)

where

Qj

(
θ |̂θ (k)) = C∗ − 1

2
log σ̂ 2(k) − 1

2σ̂ 2(k)
ε̂2
j

(k) + δ̂(k)

σ̂ 2(k)
û

(k)
j ε̂

(k)
j − δ̂2(k)

2σ̂ 2(k)
û2(k)

j ,

with ε̂
(k)
j = yj − x�

j β̂
(k)

, and the quantities û
(k)
j = E(Uj |yj , θ = θ̂

(k)
) and û2(k)

j =
E(U2

j |yj , θ = θ̂
(k)

) are obtained from properties of the half-normal distribution

û
(k)
j = δ̂(k)

σ̂ 2(k) + δ̂2(k)
ε̂
(k)
j + σ̂ (k)

(σ̂ 2(k) + δ̂2(k)
)1/2

W�

(
B

(k)
j

)
, (2.7)

û2(k)

j = σ̂ 2(k)

σ̂ 2(k) + δ̂2(k)
+ δ̂2(k)

(σ̂ 2(k) + δ̂2(k)
)2

ε̂2
j

(k)

(2.8)

+ δ̂(k)σ̂ (k)

(σ̂ 2(k) + δ̂2(k)
)3/2

ε̂
(k)
j W�

(
B

(k)
j

)
,

where Bj is as in (2.4), j = 1, . . . , n and W�(u) = φ(u)/�(u). Thus, we have the
following EM-algorithm:

E-step: Given θ = θ̂
(k)

, compute û
(k)
j and û2(k)

j for j = 1, . . . , n, using (2.7) and
(2.8).
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M-step: Update θ̂
(k+1)

by maximizing Q(θ |̂θ (k)
) over θ , which leads to the fol-

lowing closed form expressions

β̂
(k+1) = (

X�X
)−1X�y − δ̂(k)(X�X

)−1X�û(k),

σ̂ 2(k+1) = 1

n

[̂
ε(k)� ε̂(k) − 2δ̂(k)û(k)� ε̂(k) + δ̂2(k)

n∑
j=1

û2(k)

j

]
,

δ̂(k+1) = û(k)� ε̂(k)∑n
j=1 û2(k)

j

,

where û(k) = (û
(k)
1 , . . . , û

(k)
n )�, ε̂(k) = (̂ε

(k)
1 , . . . , ε̂

(k)
n )� and X is the model ma-

trix.

3 Diagnostics analysis

Influence diagnostic techniques are used to identify anomalous observations that
impact model fit or statistical inference for the assumed statistical model. In the
literature, there are primarily two approaches to detect influential observations.
The case-deletion approach of Cook (1977) is the most popular one for identify-
ing influential observations. For assessing the impact of influential observations
on parameter estimates, some metrics have been used to measure the distance be-
tween θ̂ [j ] and θ̂ , such as the likelihood distance and Cook’s distance. The second
approach is a general statistical technique used to assess the stability of the estima-
tion outputs with respect to the model inputs proposed by Cook (1986). We study
here the case-deletion measures and the local influence diagnostics for linear re-
gression models on the basis of the Q-function inspired by the results of Zhu et al.
(2001), Zhu and Lee (2001) and Lee and Xu (2004). We first consider the case-
deletion measures, then the local influence measures based on some perturbation
schemes and generalized leverage.

3.1 Case-deletion measures

Case-deletion is a classic approach to study the effects of dropping the j th case
from the dataset. Let yc = (y,u) be the augmented dataset, where a quantity with
a subscript “[j ]” denotes the original one with the j th observation deleted. The
complete-data log-likelihood function based on the data with the j th case deleted

is denoted by 	c(θ |yc[j ]). Let θ̂ [j ] = (β̂
�
[j ], σ̂ 2[j ], δ̂[j ])� be the maximizer of the

function Q[j ](θ |̂θ) = E[	c(θ |Yc[j ])|y[j ], θ = θ̂ ], where θ̂ = (β̂
�
, σ̂ 2, δ̂)� is the

ML estimate of θ , and the estimates θ̂ [j ] are obtained by using the EM algorithm
based on the remaining n−1 observations, with θ̂ as the initial value. To assess the
influence of the ith case on θ̂ , we compare θ̂ [j ] with θ̂ . If θ̂ [j ] is far from θ̂ in some
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sense, then the ith case is regarded as influential. As θ̂ [j ] is needed for every case,
the required computational effort can be quite heavy, especially when the sample

size is large. Hence, to calculate the case-deletion estimate θ̂
1
[j ] of θ , Zhu et al.

(2001) proposed the following one-step approximation based on the Q-function:

θ̂
1
[j ] = θ̂ + {−Q̈(̂θ |̂θ)

}−1
Q̇[j ](̂θ |̂θ), (3.1)

where Q̈(̂θ |̂θ) = ∂2Q(θ |̂θ)/∂θ ∂θ�|θ=θ̂ and Q̇[j ](̂θ |̂θ) = ∂Q[j ](θ |̂θ)/∂θ |θ=θ̂ are
the Hessian matrix and the gradient vector evaluated at θ̂ , respectively. The
Hessian matrix is an essential element in the method developed by Zhu and
Lee (2001) to obtain the measures for case-deletion diagnosis. To develop the
case-deletion measures, we have to obtain the elements in (3.1), Q̇[j ](̂θ |̂θ) and
Q̈(̂θ |̂θ), which can be obtained quite easily from (2.6). The vector Q̇[j ](̂θ |̂θ) =
(Q̇[j ]β (̂θ |̂θ)�, Q̇[j ]σ 2 (̂θ |̂θ), Q̇[j ]δ(̂θ |̂θ))� has its elements given by

Q̇[j ]β (̂θ |̂θ) = 1

σ̂ 2 X�[j ](̂ε[j ] − δ̂û[j ]),

Q̇[j ]σ 2 (̂θ |̂θ) = 1

2σ̂ 2

[
−n + 1 + 1

σ̂ 2

(
ε̂�[j ]̂ε[j ] − 2δ̂û�[j ]̂ε[j ] + δ̂2

n∑
i=1,i �=j

û2
i

)]
,

Q̇[j ]δ(̂θ |̂θ) = 1

σ̂ 2

(
û�[j ]̂ε[j ] − δ̂

n∑
i=1,i �=j

û2
i

)
.

Moreover, the Hessian matrix Q̈(̂θ |̂θ) and its inverse matrix are respectively given
by

Q̈(̂θ |̂θ) =
(

Q̈11 Q̈12

Q̈21 Q̈22

)
and

Q̈−1(̂θ |̂θ) =
⎛⎝Q̈−1

11 + 1
K

Q̈−1
11 Q̈12Q̈21Q̈

−1
11 − 1

K
Q̈−1

11 Q̈12

− 1
K

Q̈12Q̈
−1
11 1/K

⎞⎠ ,

(3.2)

where K = Q̈22 − Q̈21Q̈
−1
11 Q̈12,

Q̈11(̂θ) = − 1

σ̂ 2

(
X�X 0

0 n

σ̂ 2

)
, Q̈12(̂θ) = − 1

σ̂ 2

(
X�û

0

)
and

Q̈22(̂θ) = − n

σ̂ 2
û2,

with û = (û1, . . . , ûn)
� and û2 denoting the mean of the components of vector

û2 = (û2
1, . . . , û2

n)
�. Inspired by the classic case-deletion measures, Cook’s dis-

tance and the likelihood displacement, Zhu et al. (2001) and Lee and Xu (2004)
presented analogous measures based on the Q-function. These measures are:
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(i) Generalized Cook distance: This measure is defined similar to the usual
Cook distance, which is based on the genuine likelihood

GDj = (̂θ [j ] − θ̂)�
{−Q̈(̂θ |̂θ)

}
(̂θ [j ] − θ̂). (3.3)

Upon substituting (3.1) into (3.3), we obtain the approximate distance given by

GD1
j = Q̇[j ](̂θ |̂θ)�

{−Q̈(̂θ |̂θ)
}−1

Q̇[j ](̂θ |̂θ).

(ii) Q-distance: This measure of the influence of the ith case is based on the
Q-distance function, similar to the likelihood distance LDj discussed by Cook
(1977), defined as

QDj = 2
{
Q(̂θ |̂θ) − Q(̂θ [j ]|̂θ)

}
. (3.4)

We can calculate an approximation of the likelihood displacement QDj by substi-
tuting (3.1) into (3.4), resulting in the following approximation QD1

j of QDj :

QD1
j = 2

{
Q(̂θ |̂θ) − Q

(̂
θ

1
[j ]|̂θ

)}
.

If the interest is to consider the influence of the ith case on some subset of pa-
rameters, then it can be obtained quite easy as follows: Let θ = (θ�

1 , θ�
2 )�, where

here θ1 = (β�, σ 2)� is the parameter of the usual regression model and θ2 = δ

is the skewness parameter. From the expressions of Q̇[j ](̂θ |̂θ) and Q̈(̂θ |̂θ), the
generalized Cook distance for the parameters (β�, σ 2)� and δ can be defined as
follows:

(1) Both β and σ 2 are the parameters of interest and δ is the nuisance parameter

GD1
j

(
β, σ 2) = Q̇[j ]θ1 (̂θ |̂θ)�[Ip+1,0]{−Q̈(̂θ |̂θ)

}−1

× [Ip+1,0]�Q̇[j ]θ1 (̂θ |̂θ),
(3.5)

where Q̇[j ]θ1 (̂θ |̂θ) = (Q̇[j ]β (̂θ |̂θ)�, Q̇[j ]σ 2 (̂θ |̂θ))�, with θ1 = (β�, σ 2)�;
(2) δ is the parameter of interest and both β and σ 2 are nuisance parameters

GD1
j (δ) = Q̇[j ]δ (̂θ |̂θ)�b�

2
{−Q̈(̂θ |̂θ)

}−1b2Q̇[j ]δ(̂θ |̂θ)
(3.6)

= (
Q̇[j ]δ(̂θ |̂θ)

)2b�
2

{−Q̈(̂θ |̂θ)
}−1b2,

where Q̇[j ]δ (̂θ |̂θ) is the third element of Q̇[j ](̂θ |̂θ) and b2 is the (p +2)×1 vector
with one at (p + 2)th position.

3.2 The local influence approach

Consider a perturbation vector ω varying in an open region � ∈ R
q . Let

	c(θ ,ω|yc), θ ∈ R
p be the complete-data log-likelihood of the perturbed model.

We assume there is a ω0 such that 	c(θ ,ω0|yc) = 	c(θ |yc) for all θ . Let θ̂ω be
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the maximizer of the function Q(θ ,ω|̂θ) = E[	c(θ ,ω|yc)|y, θ̂ ]. Then the influence
graph is defined as α(ω) = (ω�, fQ(ω))�, where fQ(ω) is the Q-displacement
function defined as

fQ(ω) = 2
[
Q(̂θ |̂θ) − Q(̂θω |̂θ)

]
.

Following the approach developed in Zhu and Lee (2001), the normal curvature
CfQ,d, of α(ω) at ω0 in the direction of a unit vector d can be used to summarize
the local behavior of the Q-displacement function. It can be shown that

CfQ,d(θ) = −2d�Q̈ω0d = 2d���
ω0

{−Q̈(̂θ |̂θ)
}−1

�ω0d�

where Q̈(̂θ |̂θ) = ∂2Q(θ |̂θ)/∂θ ∂θ�|θ=θ̂ and �ω = ∂2Q(θ ,ω|̂θ)/∂θ ∂ω�|θ=θ̂ω
. As

in Cook (1986), the expression −Q̈ω0 = ��
ω0

{−Q̈(̂θ |̂θ)}−1�ω0 is fundamental to
detect influential observations. It may be of interest to assess the influence on a sub-
set θ1 of θ = (θ1, θ2)

�. For example, one may be interested in θ1 = β or θ1 = δ.
In such situations, the curvature in the direction d is given by

CfQ,d(θ1) = 2d���
ω0

(−Q̈(̂θ |̂θ)−1 − B22
)
�ω0d�, (3.7)

where

B22 =
(

0 0

0 −Q̈22(̂θ |̂θ)−1

)
,

and Q̈22(̂θ |̂θ) is obtained from the partition of Q̈(̂θ |̂θ) according to the partition
of θ . A clear picture of −Q̈ω0 (a symmetric matrix) is given by its spectral decom-
position

−2Q̈ωo =
n∑

k=1

λkeke�
k ,

where (λ1, e1), . . . , (λn, en) are the eigenvalue-eigenvector pairs of the matrix
−2Q̈ωo , with λ1 ≥ · · · ≥ λq > λq+1 = · · · = λn = 0 and e1, . . . , en are elements
of the associated orthonormal basis. Zhu and Lee (2001) proposed to inspect all
eigenvectors corresponding to nonzero eigenvalues for more revealing informa-
tion, but this can be computationally intensive for large n. Following Zhu and Lee
(2001) and Lu and Song (2006), we consider an aggregated contribution vector of
all eigenvectors corresponding to nonzero eigenvalues. Starting with some nota-
tion, let λk = λk/(λ1 + · · · + λq), e2

k = (e2
k1, . . . , e

2
kn) and

M(0) =
q∑

k=1

λke2
k.

Hence, the assessment of influential cases is based on {M(0)l, l = 1, . . . , n} and
one can obtain M(0)l via BfQ,ul

= −2u�
l Q̈ω0ul/ tr[−2Q̈ω0], where ul is a column

vector in R
n with the lth entry equal to one and all other entries zero. Refer to
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Zhu and Lee (2001) for other theoretical properties of BfQ,ul
, such as invariance

under reparameterization of θ . Additionally, Lee and Xu (2004) propose to use
1/n + c∗SM(0) as a benchmark to regard the lth case as influential, where c∗ is an
arbitrary constant (depending on the real application) and SM(0) is the standard
deviation of {M(0)l, l = 1, . . . , n}.

Finally, following the idea of Verbeke and Molenberghs (2000), we consider
another important direction given by d = dkq which corresponds to a q × 1 vector
with one in the kth position and all other entries zero. In that case, the normal
curvature is called the total local influence of kth observation, which is given by

Ck = d�
kq�

�
ω0

{−Q̈(̂θ |̂θ)
}−1

�ω0d�
kq, k = 1, . . . , q. (3.8)

Moreover, the kth term is an influential observation if Ck is larger than the cutoff
value c∗ = ∑q

k=1 Ck/q .
Now, we are ready to evaluate the matrix �ω0 under three different pertur-

bation schemes: case weights perturbation, response perturbation and explana-
tory perturbation. Each perturbation scheme has the partitioned form of �ω0 =
(��

β ,��
σ 2,�

�
δ )�.

(i) Case weight perturbation
Let ω = (ω1, . . . ,ωn)

� be an n × 1 dimensional vector with ω0 = (1, . . . ,1)� ∈
R

n. Then, consider the following arbitrary allocation of weights for the Q-
function, which may capture departures in general directions Q(θ ,ω|̂θ) =∑n

k=1 ωkQk(θ |̂θ). In this case, the matrix 
ω0 is given by


ω0 = 1

σ̂ 2

⎛⎜⎝ X�D(̂ε)
1

2σ̂ 2
ε̂�D(̂ε) − 1

21�
n

0

⎞⎟⎠ + 1

σ̂ 2

⎛⎜⎜⎝
δ̂X�D(̂u)

δ̂

σ̂ 2
ε̂�D(̂u) − δ̂2

2σ̂ 2
û�

2

−ε̂�D(̂u) + δ̂û�
2

⎞⎟⎟⎠ , (3.9)

where D(a) denotes the diagonal matrix of vector a.
(ii) Response perturbation

A perturbation of the response variables Y = (Y1, . . . , Yn)
� is introduced by

replacing Yk by Ykω = Yk + ωkSy , where Sy is the standard deviation of Y.
The perturbed Q-function is given by Q(θ ,ω|̂θ), switching Ykω with Yk and
ω = (ω1, . . . ,ωn)

�. Under this perturbation scheme, the vector ω0 = 0 and the
matrix 
ω0 is expressed as


ω0 = Sy

σ̂ 2

⎛⎜⎝ X�
1
σ̂ 2

ε̂�

0

⎞⎟⎠ + Sy

σ̂ 2

⎛⎜⎜⎝
0

− δ̂

σ̂ 2
û�

û�

⎞⎟⎟⎠ . (3.10)

(iii) Explanatory perturbation
We are interested in perturbing a specific explanatory variable. Under this condi-
tion, we have the perturbed explanatory variable xtω = xt + Stω, t ∈ {1, . . . , p},
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where St is the standard deviation of the explanatory variable xt and ω0 = 0. The
perturbed Q-function is given by Q(θ ,ω|̂θ), switching xtω with xt . The (p+2)×n

matrix 
ω0 is given by


ω0 = St

σ̂ 2

⎛⎜⎝ep(t )̂ε� − β̂tX�

− β̂t

σ̂ 2
ε̂�

0

⎞⎟⎠ + St

σ̂ 2

⎛⎜⎝−δ̂ep(t)û�
β̂t

σ̂ 2
δ̂û�

−β̂t û�

⎞⎟⎠ , (3.11)

where βt is the t th element of β , ep(t) is a p×1 vector with one in the t th position
and zeros elsewhere.

3.3 Generalized leverage

Another concept that has been useful in the development of diagnostics in linear
regression is the leverage. The main idea behind the concept of leverage is that of
evaluating the influence of yj on its own predicted value (see Wei, Qu and Fung
(1998)). This influence can be represented by the derivative ∂ŷj /∂yj . Under usual
linear regression model, ∂ŷj /∂yj = hjj that is the j th principal diagonal element
of the projection matrix H = X(X�X)−1X�. Inspired by the generalized leverage
proposed by Wei, Qu and Fung (1998), we consider a generalized leverage matrix
for models with incomplete data defined by

GL(̂θ) = Dθ

[−Q̈(̂θ |̂θ)
]−1

Q̈θ ,y(̂θ), (3.12)

where Dθ = ∂μ/∂θ�, Q̈θ ,y(̂θ) = ∂2Q(θ |̂θ)/∂θ ∂y�|θ=θ̂ and Q̈(̂θ |̂θ) is the Hes-
sian matrix.

In the linear regression models under skew-normal distribution, the expectation
of Y is given by E(Y ) = μ(θ) = Xβ +

√
2
π
δ1n, then Ŷ = μ(̂θ) is the predicted

response vector. In this case, we have that Dθ = [X,0n, c1n], Q̈θ ,y(̂θ) is as in
(3.10) without the term Sy and Q̈θ (̂θ |̂θ) is given in (3.2). We use c0p0/n, p0 =
tr(GL(̂θ)), as a benchmark to regard the j th case as a leverage point, where c0 is a
selected constant (depending on the real application). So, observations with values
GLjj (̂θ) > c0p0/n are considered leverage points.

4 Numerical application

In this section, a simulation study and a real example are presented to illustrate the
performance of the developed method. First, we carry out a numerical illustration
with simulated data. Finally, we analyze real data to illustrate the usefulness of the
proposed method.
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Table 1 Simulated and adjusted values for model (4.1), with n = 100, with standard errors in
parentheses

Adjusted

Parameters Simulated Model A Model B Model C

β0 5.0 5.06 (0.15) 5.02 (0.15) 6.26 (0.25)
β1 1.0 1.01 (0.21) 1.12 (0.21) 1.09 (0.27)
σ 2 0.1 0.09 (0.04) 0.08 (0.04) 0.41 (0.11)
δ 1.0 0.98 (0.12) 1.06 (0.12) −0.57 (0.26)

Table 2 Simulated and adjusted values for model (4.1) with n = 500, with standard errors in paren-
theses

Adjusted

Parameters Simulated Model A Model B Model C

β0 5.0 5.04 (0.07) 4.98 (0.07) 6.14 (0.13)
β1 1.0 1.00 (0.09) 1.01 (0.09) 0.98 (0.12)
σ 2 0.1 0.12 (0.03) 0.09 (0.02) 0.46 (0.05)
δ 1.0 1.01 (0.06) 1.08 (0.06) −0.41 (0.14)

4.1 Simulation study

In this section, we examine the performance of the developed method based on
simulated data. We consider a dataset of size n = 100,500 from linear regression
models defined in (4.1). That is,

yj = β0 + β1xj + εj , (4.1)

where the true values of the parameters are given by β0 = 5.0, β1 = 1.0, σ 2 = 0.1
and δ = 1.0, where xj is generated from the uniform distribution U(0,1), j =
1, . . . , n. For each sample, we choose an observation and disturb it in the response
variable. So, we consider three linear regression models:

Model A: model without perturbation;
Model B: yB(ind) = a ∗ y(ind);
Model C: yC(ind) = b ∗ y(ind),

where a > 1 and 0 < b < 1. For n = 100, a = 1.4, b = 0.5 and ind = 58; for
n = 500, a = 1.7, b = 0.5 and ind = 308. Tables 1 and 2 shows the maximum
likelihood (ML) estimates for the parameters of the three models for n = 100 and
n = 500, respectively. In Model B, the estimate of β0 is slightly lower than that of

Model A, while the estimate of δ is slightly higher. However, as ŷj = x�
j β̂ +

√
2
π
δ̂,

the fitted line is very similar to that in Model A. In Model C, the differences of the
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Figure 1 Simulated data with n = 100 (a) and n = 500 (b). Scatterplot with adjusted line for
Models A (solid line), B (dashed line) and C (dashdot line).

Figure 2 Simulated data with n = 100. Model B: Case weight perturbation (a), Response per-
turbation (b) and Explanatory perturbation (c). Model C: Case weight perturbation (d), Response
perturbation (e) and Explanatory perturbation (f).

estimates for the parameters β0, σ 2 and δ are more pronounced, but the fitted line
is also similar to that in Model A, as can be seen in Figure 1.

Local influence analysis under three perturbation schemes and generalized
leverage measures for simulated data are described next. For n = 100, Model A
yielded observations #49 and #99 as influential in case weight perturbation, and
#43, #49 and #99 under response and explanatory variables. Observations #1,
#2 and #3 were classified as leverage points; see Figure 1. Model B indicated
observations #58 and #99 are influential for the three perturbation schemes; see
Figures 2(a)–(c). For the three perturbation schemes under Model C, only obser-
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Figure 3 Simulated data with n = 500. Model B: Case weight perturbation (a), Response per-
turbation (b) and Explanatory perturbation (c). Model C: Case weight perturbation (d), Response
perturbation (e) and Explanatory perturbation (f).

vation #58 is detected; see Figures 2(d)–(f). Following the same way, we have
similar results for n = 500, with observation #308 as influential, as presented in
Figures 3(a)–(c) and 3(e)–(f). The results do not change for large samples size,
and are omitted.

4.2 Real dataset

A dataset on life quality of women with breast cancer obtained by the Center for
Integral Attention to Women’s Health (State University of Campinas, Brazil) was
adjusted to the skew-normal regression model and the diagnostic analysis approach
was applied. The index of life quality was evaluated by the Medical Outcome
Study 36-item Short-Form Health Survey (SF-36) questionnaire. These indexes
condense eight components into two: a physical component summary and a men-
tal component summary. Conde et al. (2005) analyzed this dataset, evaluating the
associated factors of the life quality of women with breast cancer.

The response variable is the physical component summary of the life quality
index (pcs) and the explanatory variables are the indicator variable dizziness and
the body mass index (bmi) of the individual. In this study, we discuss these data
based on the skew-normal linear regression model

pcsj = β0 + β1 ∗ dizzinessj + β2 ∗ bmij + ej , j = 1, . . . ,97, (4.2)

where ej are independent such that ej ∼ SN(0, σ 2, δ).
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Figure 4 Simulated envelope for quality of life dataset. (a) Adjusted under normal linear model
and (b) Adjusted under skew-normal linear model.

Table 3 ML estimates of the life quality dataset for normal and skew-normal linear regression
models

SN Normal

Parameter Estimate SE Estimate SE

β0 68.57 4.64 61.29 4.75
β1 −7.62 1.91 −7.92 1.91
β2 −0.35 0.17 −0.43 0.16
σ 2 25.47 14.76 79.13 11.73
δ −11.99 2.33 – –

Log-likelihood −346.36 −348.14
AIC 702.73 704.27

4.2.1 Goodness-of-fit and estimation:. The ML estimates of parameters and their
corresponding standard deviations (calculated using the observed information ma-
trix) are reported in Table 3, which shows that the estimates of β in both models are
similar. In contrast, the estimates of the parameter σ 2 are different. We have con-
structed the QQ-plots and envelopes in Figure 4 (lines represent the 5th percentile,
the mean and the 95th percentile of 100 simulated points for each observation)

based on r2
j = (yj−x�

j β̂)2

σ̂ 2+δ̂2
, which has an approximate χ2

1 distribution. The random

variable rj also enables us to check the model and detect the presence of outlying
observations. The simulated envelope graph plotted to validate the skew-normal re-
gression model indicates no points lie outside the confidence bounds (Figure 4(b)).
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Figure 5 Quality of life dataset. (a) Scatter plot and adjusted lines, (b) Pearson residuals

Figure 6 Quality of life dataset. (a) Generalized Cook distance, (b) Q-Distance

On the other hand, the simulated envelope for the normal linear regression model
(Figure 4(a)) indicates some exterior points.

Figure 5 displays the scatter plot of data and the adjusted lines for each status of
dizziness, showing a negative relationship between pcs and bmi. Figure 5(b) shows
the histogram of the model waste set (4.2), indicating the presence of asymmetric
data. Based on the normal approximation of the ML estimates, the 95% confidence
interval for δ (CI: δ̂ ± 1.96SE) is [−16.56,−7.42], which does not include the
value zero. That is, a skew-normal model is more suitable than a normal linear
model. A similar result is obtained when testing the null hypothesis H0 : δ = 0
against the alternative H1 : δ �= 0 when we use the likelihood-ratio (LR) statistic,
which has a χ2

1 distribution under H0. In this case, LR = 2(	(̂θ) − 	(̂θ0)) = 3.88,
with a p-value of 0.05.

4.2.2 Influence diagnostics analysis. First, we identify outlying observations un-
der the fitted model based on case-deletion measures, the Q-distance and gener-
alized Cook distance. The results are reported in Figure 6. We note from these
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Figure 7 Quality of life dataset. Diagnostics of case weight perturbation (a) and response variable
perturbation (b) (benchmark with c∗ = 3).

figures that observations #42 and #73 are potentially influential on the parame-
ter estimates. These refer to women without dizziness with low life quality index.
Observation #65 shows a slight influence and represents a woman with high life
quality index. We also used the generalized Cook distance when the interest is a
subset of the parameters. All results were similar, so they are not shown here to
save space.

Second, we conducted the local influence diagnostics analysis to detect outlying
observations, using the perturbation schemes discussed previously and the gener-
alized leverage. For the perturbation schemes, we obtained the values of M(0)

and the figures present the index graphs of M(0). The horizontal lines delimit the
Lee and Xu (2004) benchmark for M(0), with c∗ = 3. So, under the perturbation
schemes, observations #20, #42 and #73 are potentially influential on the parame-
ter estimates. These results are reported in Figure 7 and Figure 8(a). Note that ob-
servations #42 and #73 are potentially influential under all perturbation schemes,
which correspond to the smallest values of pcs for women without dizziness. On
the other hand, observation #20 is influential under case weight perturbation and
response perturbation. This observation is a woman with smaller values of pcs and
with dizziness. Moreover, we performed diagnostics analysis based on Ci mea-
sures defined in (3.8), and the influential observations were the same observations
#42 and #73. We then used the generalized leverage and observations #15, #21 and
#23 were indicated as influential, as can be seen in Figure 8(b). These observations
are more distant from the mass data (right), which are women without dizziness
and high bmi. It is important to note that these observations were not detected us-
ing the perturbation schemes, so the usefulness of the generalized leverage can be
seen.

Finally, we also discuss the influence of some observations on the estimates
of β and δ based on CfQ,d(β) and CfQ,d(δ), as defined in (3.7). For the three
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Figure 8 Quality of life dataset. (a) Diagnostic of bmi variable perturbation (benchmark with
c∗ = 3) and (b) Generalized leverage.

Figure 9 Quality of life dataset. Diagnostic of influence in β and δ (benchmark with c∗ = 3):
(a) Case weight perturbation, (b) Response variable, (c) bmi variable and (d) Ci for case weight.

perturbation schemes, Figures 9(a)–(c) show the scatter plots of CfQ,d(β) versus
CfQ,d(δ). From these figures, we observe that #73 is potentially influential on both
parameter estimates β and δ, regardless of the perturbation scheme. Moreover,
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Figure 9(d) shows that observation #23 is found to have relatively large Ci(β) and
Ci(δ), which corresponds to the woman without dizziness and high bmi.

5 Conclusion

In this paper, we have provided a diagnostics analysis for skew-normal regres-
sion models based on the approaches proposed by Zhu et al. (2001) and Zhu and
Lee (2001). We have proposed a procedure for computing case-deletion measures
and local influence diagnostics on the basis of the conditional expectation of the
complete-data log-likelihood function in relation to the EM algorithm and also
we have considered a generalized leverage. Case weight, response and explana-
tory perturbations are considered. Explicit expressions are obtained for the Hessian
matrix Q̈(̂θ |̂θ) and for the matrix �ω0 under different perturbation schemes. The
generalized leverage developed here is a necessary supplement to the results ob-
tained based on the perturbation schemes. This diagnostic measure helps to detect
observations that were not detected by perturbation schemes.
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