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Abstract. The residual life of a random variable X at random time � is
defined to be a random variable X� having the same distribution as the con-
ditional distribution of X − � given X > � (denoted by X� = (X − �|X >

�)). Let (X,�1) and (Y,�2) be two pairs of jointly distributed random vari-
ables, where X and �1 (and, Y and �2) are not necessarily independent. In
this paper, we compare random variables X�1 and Y�2 by providing suffi-
cient conditions under which X�1 and Y�2 are stochastically ordered with
respect to various stochastic orderings. These comparisons have been made
with respect to hazard rate, likelihood ratio and mean residual life orders. We
also study various ageing properties of random variable X�1 . By considering
this generalized model, we generalize and unify several results in the liter-
ature on stochastic properties of residual lifetimes at random times. Some
examples to illustrate the application of the results derived in the paper are
also presented.

1 Introduction

Let the lifetime of a component be represented by a non-negative random variable
(r.v.) X having absolutely continuous distribution function (d.f.) F(·), probability
density function (p.d.f.) f (·) and survival function (s.f.) F̄ (·) = 1 − F(·). Then,
the residual life of the component which has survived up to time t , t > 0, is given
by r.v. Xt having the same distribution as conditional distribution of X − t given
X > t (denoted by Xt = (X − t |X > t)). If t is replaced by a r.v. �, then X� =
(X − �|X > �) represents the residual lifetime of r.v. X at random time �. The
following situations illustrate the interpretation of r.v. X�:

• In clinical trials, it often happens that the time at which a person goes to clinic
for examination of a disease is actually different from the time he got infected.
In this scenario, the latent period of the disease can be estimated by X� = (X −
�|X > �) (Cha and Finkelstein (2014), Finkelstein and Vaupel (2015)).

• Consider a series system with two components C1 and C2, having lifetimes �

and X, respectively. If C1 fails before C2, then the system will fail to work
but C2 may still be in working condition. In this situation, X� can be used to
determine the residual life of C2 after the failure of C1.
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The concept of residual life at a random time (RLRT), or at fixed time, has
been studied and discussed extensively in the literature (Stoyan (1983), Guess
and Proschan (1988), Shaked and Shanthikumar (2007), Cai and Zheng (2012)).
Various researchers have presented results on stochastic comparisons of RLRT
and have discussed its ageing properties (Yue and Cao (2000, 2001), Li and
Zuo (2004), Misra, Gupta and Dhariyal (2008), Eryilmaz (2013), Dewan and

Khaledi (2014)). These results have been derived either by assuming that X
d= Y

or �1
d= �2; here, d= means equality in distribution. Moreover, all the studies car-

ried out so far have assumed that X and �1 (and, Y and �2) are independently

distributed. Under the assumptions that X
d= Y , X and �1, and Y and �2 are inde-

pendently distributed, the following results are available in the literature:

(i) Yue and Cao (2000) established that if �1 ≤rh �2 and X has decreasing
(increasing) failure rate, then X�1 ≤st (≥st) X�2 . This result was further strength-
ened by Misra, Gupta and Dhariyal (2008) where, under the same assumptions as
in Yue and Cao (2000), it is proved that X�1 ≤hr (≥hr) X�2 . Recently, Dewan and
Khaledi (2014) gave a different proof of this result of Misra, Gupta and Dhariyal
(2008).

(ii) Under the assumptions that �1 ≤rh �2 and X has decreasing (increasing)
mean residual life, Yue and Cao (2000) proved that E(X�1) ≤ (≥) E(X�2). This
result was generalized by Li and Zuo (2004) who, under the same assumptions
as in Yue and Cao (2000), established increasing convex order between X�1 and
X�2 . Later on, Misra, Gupta and Dhariyal (2008), in their Theorem 3.2, further
strengthened the result of Li and Zuo (2004) by establishing the mean residual
life order between X�1 and X�2 . Dewan and Khaledi (2014) in their Theorem 2.8
(d) provided an alternate proof of the above result proved by Misra, Gupta and
Dhariyal (2008).

Dewan and Khaledi (2014) assumed that �1
d= �2, X and �1, and Y and �2

are independently distributed, and proved the following results:

(i) If X ≤rh Y and either X or Y has increasing reversed failure rate, then
X� ≤rh Y�.

(ii) If X ≤hr Y and either X or Y has decreasing failure rate, then X� ≤hr Y�.
(iii) If X ≤mrl Y and either X or Y has increasing mean residual life, then

X� ≤mrl Y�.

The purpose of this study is to unify and generalize aforementioned results by

considering stochastic comparison of X�1 and Y�2 , without assuming that X
d= Y

or �1
d= �2, and also without assuming that X and �1 (and, Y and �2) are in-

dependently distributed. The general layout of the model considered in this paper
is as follows: Let X, Y , �1, and �2 be non negative r.v.s with �i , i = 1,2, hav-
ing p.d.f. hi , d.f. Hi and s.f. H̄i . Let (X,�1) and (Y,�2) be two pairs of jointly
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distributed r.v.s with the common support [0,∞) × [0,∞). For any fixed θ > 0,
let Xθ (Yθ ) denote the r.v. having the same distribution as the conditional distribu-
tion of X (Y) given that �1 = θ (�2 = θ ). Let fθ (·), Fθ(·), F̄θ (·) (gθ (·), Gθ(·),
Ḡθ (·)), respectively be the p.d.f., d.f. and s.f. of Xθ (Yθ ), θ > 0. The residual
life of r.v. X (Y) at random time �1 (�2) is given by X�1 = (X − �1|X > �1)

(Y�2 = (Y − �2|Y > �2)). The s.f.s of X�1 and Y�2 are given by

M̄1(x) =
∫ ∞

0 F̄θ (x + θ)h1(θ) dθ∫ ∞
0 F̄θ (θ)h1(θ) dθ

, if x ≥ 0, and

(1.1)

M̄2(x) =
∫ ∞

0 Ḡθ (x + θ)h2(θ) dθ∫ ∞
0 Ḡθ (θ)h2(θ) dθ

, if x ≥ 0,

respectively. The density functions of X�1 and Y�2 are given by

m1(x) =
∫ ∞

0 fθ(x + θ)h1(θ) dθ∫ ∞
0 F̄θ (θ)h1(θ) dθ

, if x > 0, and

(1.2)

m2(x) =
∫ ∞

0 gθ (x + θ)h2(θ) dθ∫ ∞
0 Ḡθ (θ)h2(θ) dθ

, if x > 0,

respectively.
Note that models (1.1) and (1.2) are conditionally dependent mixture models.

Recently, various authors have studied stochastic properties of conditionally in-
dependent mixture models. Some of the contributions in this direction are due to
Gupta, Dhariyal and Misra (2011), Gupta and Kirmani A (2006) and Misra, Gupta
and Gupta (2009).

This paper is organized as follows: In Section 2, we mention some auxiliary re-
sults which will be used in proving the main results of the paper. Section 3 presents
results on stochastic comparison of X�1 and Y�2 with respect to various stochas-
tic orders. Specifically, we focus on stochastic comparisons with respect to hazard
rate, likelihood ratio and mean residual life orders. In Section 4, we discuss age-
ing properties of random variable X�1 , and finally, in Section 5, we present some
examples to illustrate applications of the results derived in the paper.

2 Preliminaries

Throughout the paper, the terms increasing and decreasing will imply non-
decreasing and non-increasing, respectively. Consider a r.v. Xi , i = 1,2, having
absolutely continuous d.f. Fi , s.f. F̄i and the Lebesgue p.d.f. fi , i = 1,2. Further,
for the sake of simplicity, assume that distributions of X1 and X2 have the com-
mon support [0,∞) = {t ∈ R : fi(t) > 0}, i = 1,2. For ease of reference, we first
review some standard notations and definitions before stating our main results. We
begin with definitions of some standard stochastic orders and ageing notions (see
Shaked and Shanthikumar (2007), Lai and Xie (2006), Li and Li (2013)).
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Definition 2.1. The r.v. X1 is said to be smaller than the r.v. X2 in

(i) hazard rate order (denoted by X1 ≤hr X2) if F̄2(x)/F̄1(x) increases in
x > 0;

(ii) reversed hazard rate order (denoted by X1 ≤rh X2) if F2(x)/F1(x) in-
creases in x > 0;

(iii) likelihood ratio order (denoted by X1 ≤lr X2) if f2(x)/f1(x) increases in
x > 0;

(iv) mean residual life order (denoted by X1 ≤mrl X2) if
∫ ∞
x F̄2(u) du/∫ ∞

x F̄1(u) du increases in x > 0.

Definition 2.2. The r.v. X is said to have the

(i) increasing (decreasing) likelihood ratio (ILR (DLR)) if f (x) is log-
concave (log-convex) on (0,∞);

(ii) increasing (decreasing) failure rate (IFR (DFR)) if F̄ (x) is log-concave
(log-convex) on (0,∞);

(iii) decreasing reversed failure rate (DRFR) if F(x) is log-concave on (0,∞);
(iv) increasing (decreasing) mean residual life (IMRL (DMRL)) if

∫ ∞
x F̄ (t) dt

is log-convex (log-concave) on (0,∞).

The next definition on totally positive and reverse regular functions may be
found in Karlin (1968).

Definition 2.3. Let S1, S2 ⊆ R and let k : S1 × S2 → [0,∞) be a non-negative
function, where R denotes the real line. The function k(x, y) is said to be totally
positive (reverse regular) of order 2, denoted by TP2(RR2), if k(x1, y1)k(x2, y2) ≥
(≤) k(x1, y2)k(x2, y1), whenever x1 ≤ x2, y1 ≤ y2, x1, x2 ∈ S1 and y1, y2 ∈ S2.

Dewan and Khaledi (2014) and Khaledi (2014) have listed a few results due to
Karlin (1968) and Joag-Dev, Kochar and Proschan (1995) on T P2 (RR2) func-
tions. We now state the following lemma, proved in Naqvi (2017), which will be
helpful in deriving the main results of this paper and may also be of independent
interest to researchers. This lemma extends the results mentioned in Dewan and
Khaledi (2014) (also see Khaledi (2014) and Misra and van der Meulen (2003)).

Let ψi : [0,∞) × [0,∞) → R, i = 1,2, be a function and let gi(θ) be the
Lebesgue p.d.f. of a r.v. Ti , i = 1,2. In many branches of statistics, one often
encounters the problem of verifying the monotonicity of function of the type

ψ(x) =
∫ ∞

0 ψ2(x, θ)g2(θ) dθ∫ ∞
0 ψ1(x, θ)g1(θ) dθ

, x > 0. (2.1)

In the following lemma, we provide sufficient conditions on ψi(·, ·), i = 1,2,
for the function in (2.1) to be monotone.
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Lemma 2.4. Suppose that ψ2(x,θ)
ψ1(x,θ)

increases (decreases) in x ∈ (0,∞) and in-
creases in θ ∈ (0,∞). Further suppose that any of the following three conditions
hold:

(i) T1 ≤lr T2 and ψ1(x, θ) or ψ2(x, θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) ×
(0,∞);

(ii) T1 ≤hr T2 and
ψ1(x, θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is increasing in

θ ∈ (0,∞) or,
ψ2(x, θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is increasing in

θ ∈ (0,∞);
(iii) T1 ≤rh T2 and

ψ1(x, θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is decreasing in
θ ∈ (0,∞) or,

ψ2(x, θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is decreasing in
θ ∈ (0,∞).

Then, the function ψ(x), as defined in (2.1), increases (decreases) in x ∈ (0,∞).

3 Main results

In this section, we carry out stochastic comparisons of residual lifetimes at random
times. The first result presents sufficient conditions for stochastic monotonicity in
terms of the likelihood ratio order.

Theorem 3.1. Suppose that �1 ≤lr �2 and that the following assumptions are
fulfilled:

(i) fθ (x + θ) or gθ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞);
(ii) For every fixed θ > 0, gθ (x + θ)/fθ (x + θ) is increasing (decreasing) in

x ∈ (0,∞);
(iii) For every fixed x > 0, gθ (x + θ)/fθ (x + θ) is increasing in θ ∈ (0,∞).

Then, X�1 ≤lr (≥lr) Y�2 .

Proof. From (1.2), it suffices to prove that

ψ∗
1 (x) = m2(x)

m1(x)
=

∫ ∞
0 gθ (x + θ)h2(θ) dθ∫ ∞
0 fθ (x + θ)h1(θ) dθ

(3.1)

is increasing (decreasing) in x ∈ (0,∞). Define ψ1(x, θ) = fθ (x + θ) and
ψ2(x, θ) = gθ (x+θ), (x, θ) ∈ (0,∞)×(0,∞). Now, upon applying Lemma 2.4(i)

with T1
d= �1 and T2

d= �2, it can be proved that the function ψ∗
1 (x) increases (de-

creases) in x ∈ (0,∞). Hence the theorem follows. �
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Remark 3.2. It is useful to observe that condition (i) of Theorem 3.1, which is
equivalent to saying that fθ2(x2 + θ2)fθ1(x1 + θ1) ≥ (≤) fθ2(x1 + θ2)fθ1(x2 + θ1),
for 0 < x1 < x2 < ∞ and 0 < θ1 < θ2 < ∞ is satisfied if Xθ has DLR (ILR) and
Xθ1 ≤lr (≥lr) Xθ2 , ∀ 0 < θ1 ≤ θ2. Also, it can be easily seen that condition (ii) of
Theorem 3.1 holds if Xθ ≤lr (≥lr) Yθ , ∀ θ > 0.

The above remark leads to the following corollary.

Corollary 3.3. Suppose that �1 ≤lr �2 and that the following assumptions are
fulfilled:

(i) For every θ > 0, Xθ has DLR (ILR) and Xθ1 ≤lr (≥lr) Xθ2 , ∀ 0 < θ1 ≤ θ2;
or,

For every θ > 0, Yθ has DLR (ILR) and Yθ1 ≤lr (≥lr) Yθ2 , ∀ 0 < θ1 ≤ θ2;
(ii) Xθ ≤lr (≥lr) Yθ , ∀ θ > 0;
(iii) Condition (iii) of Theorem 3.1 holds.

Then, X�1 ≤lr (≥lr) Y�2 .

As a consequence of Theorem 3.1, we immediately obtain the following corol-
lary, which compares the residual lifetimes at random times in terms of the likeli-
hood ratio order for the case when Xθ and Yθ are identically distributed.

Corollary 3.4. Assume that Xθ
d= Yθ , ∀ θ > 0, fθ (x +θ) is T P2 (RR2) in (x, θ) ∈

(0,∞) × (0,∞), and �1 ≤lr �2. Then, X�1 ≤lr (≥lr) X�2 .

It is to be noted here that when X and �1 are independently distributed, and Y

and �2 are independently distributed, we have Xθ
d= X and Yθ

d= Y , i.e., fθ ≡ f

and gθ ≡ g, θ > 0. In addition, if X
d= Y , then f ≡ g. Thus, we have the following

corollary to Theorem 3.1.

Corollary 3.5. Let X and �1 be independently distributed, and let Y and �2 be
also independently distributed.

(i) If X or Y has DLR, X ≤lr Y , and �1 ≤lr �2, then X�1 ≤lr Y�2 .

(ii) Let X
d= Y . If X has DLR (ILR), and �1 ≤lr �2, then X�1 ≤lr (≥lr ) X�2 .

(iii) Let �1
d= �2. If X or Y has DLR, and X ≤lr Y , then X� ≤lr Y�.

Remark 3.6. It is worth mentioning here that there are typos in Theorem 2.2(a)
and Theorem 2.8(a) of Dewan and Khaledi (2014). In these theorems, ILR should
be replaced by DLR, and vice-versa. Under this correction, Corollary 3.5(ii) and
(iii) above are the corresponding versions of Theorem 2.2(a) and Theorem 2.8(a)
of Dewan and Khaledi (2014).
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In what follows, we would like to compare two residual lifetimes with respect
to hazard rate ordering. In the following theorem, likelihood ratio order is assumed
between �1 and �2 and sufficient conditions are obtained to establish hazard rate
ordering between X�1 and Y�2 . The proof follows on using Lemma 2.4(i) with

T1
d= �1, T2

d= �2, ψ1(x, θ) = F̄θ (x + θ) and ψ2(x, θ) = Ḡθ (x + θ), (x, θ) ∈
(0,∞) × (0,∞).

Theorem 3.7. Suppose that �1 ≤lr �2 and that the following assumptions are
fulfilled:

(i) F̄θ (x + θ) or Ḡθ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞);
(ii) For every fixed θ > 0, Ḡθ (x + θ)/F̄θ (x + θ) is increasing (decreasing) in

x ∈ (0,∞);
(iii) For every fixed x > 0, Ḡθ (x + θ)/F̄θ (x + θ) is increasing in θ ∈ (0,∞).

Then, X�1 ≤hr (≥hr) Y�2 .

Remark 3.8. It needs to be mentioned that condition (i) of Theorem 3.7 is satisfied
if, ∀ θ > 0, Xθ has DFR (IFR) and Xθ1 ≤hr (≥hr) Xθ2 , ∀ 0 < θ1 ≤ θ2. Also, it can
be easily seen that condition (ii) of Theorem 3.7 holds if Xθ ≤hr (≥hr) Yθ , ∀ θ > 0.
As a consequence, we obtain the following result for hazard rate ordering between
X�1 and Y�2 .

Corollary 3.9. Suppose that �1 ≤lr �2 and that the following assumptions are
fulfilled:

(i) For every θ > 0, Xθ has DFR (IFR) and Xθ1 ≤hr (≥hr) Xθ2 , ∀ 0 < θ1 ≤ θ2
or,

For every θ > 0, Yθ has DFR (IFR) and Yθ1 ≤hr (≥hr) Yθ2 , ∀ 0 < θ1 ≤ θ2;
(ii) Xθ ≤hr (≥hr) Yθ , ∀ θ > 0;

(iii) Condition (iii) of Theorem 3.7 holds.

Then, X�1 ≤hr (≥hr) Y�2 .

It is of interest to know whether conclusions of Theorem 3.7 may still hold if
�1 and �2 are ordered with respect to hazard rate or reversed hazard rate order.
The following theorem gives an answer.

Theorem 3.10. Suppose that conditions (ii) and (iii) of Theorem 3.7 hold true. In
addition, suppose that either of the following two assumptions are fulfilled:

(i) �1 ≤hr �2 and
F̄θ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is increasing in

θ ∈ (0,∞) or,
Ḡθ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is increasing in

θ ∈ (0,∞);
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(ii) �1 ≤rh �2 and
F̄θ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is decreasing in

θ ∈ (0,∞) or,
Ḡθ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and is decreasing in

θ ∈ (0,∞).

Then, X�1 ≤hr (≥hr) Y�2 .

Remark 3.11. It is useful to observe that when the assumption of stronger stochas-
tic order between �1 and �2 (i.e.,�1 ≤lr �2) in Theorem 3.7 is replaced by a
weaker stochastic ordering (�1 ≤hr (≤rh) �2) in Theorem 3.10, then an extra
condition on F̄θ (x + θ) or Ḡθ (x + θ) is required for the same result to hold. Thus,
there exists a trade-off between these two set of conditions.

The following corollary, which readily follows from Theorem 3.7 and Theo-
rem 3.10, explains how one can compare X�1 and X�2 in terms of hazard rate
ordering based on the likelihood ratio, hazard rate and reversed hazard order be-
tween �1 and �2.

Corollary 3.12. Assume that Xθ
d= Yθ , ∀ θ > 0. Further suppose that either of the

following three assumptions are fulfilled:

(i) �1 ≤lr �2 and F̄θ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞);
(ii) �1 ≤hr �2 and F̄θ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and

is increasing in θ ∈ (0,∞);
(iii) �1 ≤rh �2 and F̄θ (x + θ) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) and

is decreasing in θ ∈ (0,∞).

Then, X�1 ≤hr (≥hr) X�2 .

As an immediate consequence of Theorem 3.10(ii), we have the following corol-
lary.

Corollary 3.13. Assume that X and �1 are independently distributed, and Y and
�2 are also independently distributed.

(i) If X or Y has DFR, X ≤hr Y , and �1 ≤rh �2, then X�1 ≤hr X�2 .

(ii) Let X
d= Y . If X has DFR (IFR), and �1 ≤rh �2, then X�1 ≤hr (≥hr) X�2 .

(iii) Let �1
d= �2. If X or Y has DFR, and X ≤hr Y , then X� ≤hr Y�.

Remark 3.14. Misra, Gupta and Dhariyal (2008) and Dewan and Khaledi (2014)
presented the result of Corollary 3.13(ii) as Theorem 3.1 and Theorem 2.8(c), re-
spectively. Dewan and Khaledi (2014) also reported the result of Corollary 3.13(iii)
as Theorem 2.2 (c).
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Now, we provide results concerning comparison of residual lifetimes with
respect to mean residual life order. The following result follows on using

Lemma 2.4(i) with T1
d= �1, T2

d= �2, ψ1(x, θ) = ∫ ∞
x F̄θ (u+θ) du and ψ2(x, θ) =∫ ∞

x Ḡθ (u + θ) du, (x, θ) ∈ (0,∞) × (0,∞).

Theorem 3.15. Suppose that �1 ≤lr �2 and that the following assumptions hold:

(i)
∫ ∞
x F̄θ (u + θ) du or

∫ ∞
x Ḡθ (u + θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞) ×

(0,∞);
(ii) For every fixed θ > 0,

∫ ∞
x Ḡθ (u + θ) du/

∫ ∞
x F̄θ (u + θ) du is increasing

(decreasing) in x ∈ (0,∞);
(iii) For every fixed x > 0,

∫ ∞
x Ḡθ (u+ θ) du/

∫ ∞
x F̄θ (u+ θ) du is increasing in

θ ∈ (0,∞).

Then, X�1 ≤mrl (≥mrl) Y�2 .

Remark 3.16. It should be noted here that condition (i) holds true if Xθ has IMRL
(DMRL), ∀ θ > 0 and Xθ1 ≤mrl (≥mrl) Xθ2 , ∀ 0 < θ1 ≤ θ2. In addition, it can be
readily seen that condition (ii) is satisfied if Xθ ≤mrl (≥mrl) Yθ , ∀ θ > 0. As a
consequence, we obtain the following corollary to Theorem 3.15.

Corollary 3.17. Suppose that �1 ≤lr �2 and that the following assumptions
hold:

(i) For every θ > 0, Xθ has IMRL (DMRL) and Xθ1 ≤mrl (≥mrl) Xθ2 , ∀ 0 <

θ1 ≤ θ2 or,
For every θ > 0, Yθ has IMRL (DMRL) and Yθ1 ≤mrl (≥mrl) Yθ2 , ∀ 0 <

θ1 ≤ θ2;
(ii) Xθ ≤mrl (≥mrl) Yθ , ∀ θ > 0;

(iii) condition (iii) of Theorem 3.15 holds.

Then, X�1 ≤mrl (≥mrl) Y�2 .

The following theorem, provides some sufficient conditions for mean residual
life order between X�1 and Y�2 under the assumption of hazard rate (reversed
hazard rate) order between �1 and �2

Theorem 3.18. Suppose that conditions (ii) and (iii) of Theorem 3.15 hold true.
In addition, suppose that either of the following two assumptions are fulfilled:

(i) �1 ≤hr �2 and∫ ∞
x F̄θ (u+ θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is increas-

ing in θ ∈ (0,∞) or,∫ ∞
x Ḡθ (u+ θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is increas-

ing in θ ∈ (0,∞);
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(ii) �1 ≤rh �2 and∫ ∞
x F̄θ (u+ θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is decreas-

ing in θ ∈ (0,∞) or,∫ ∞
x Ḡθ (u+θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is decreas-

ing in θ ∈ (0,∞).

Then, X�1 ≤mrl (≥mrl) Y�2 .

Proof. The proof of the theorem follows from Lemma 2.4(ii) and (iii) with

T1
d= �1, T2

d= �2, ψ1(x, θ) = ∫ ∞
x F̄θ (u+θ) du and ψ2(x, θ) = ∫ ∞

x Ḡθ (u+θ) du,
(x, θ) ∈ (0,∞) × (0,∞). �

Remark 3.19. As discussed in Remark 3.11, there exists a trade-off between con-
ditions of Theorem 3.15 and Theorem 3.18.

Upon applying an argument similar to that used in Theorem 3.15 and Theo-
rem 3.18, an analogue of Corollary 3.12 on the mean residual life order can also
be established.

Corollary 3.20. Assume that Xθ
d= Yθ , ∀ θ > 0. Further, suppose that either of

the following three assumptions are fulfilled:

(i) �1 ≤lr �2 and
∫ ∞
x F̄θ (u + θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞) ×

(0,∞);
(ii) �1 ≤hr �2 and

∫ ∞
x F̄θ (u+θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞)×(0,∞)

and is increasing in θ ∈ (0,∞);
(iii) �1 ≤rh �2 and

∫ ∞
x F̄θ (u+θ) du is T P2 (RR2) in (x, θ) ∈ (0,∞)×(0,∞)

and is decreasing in θ ∈ (0,∞).

Then, X�1 ≤mrl (≥mrl) X�2 .

As an immediate consequence of Theorem 3.18(ii), we have the following corol-
lary.

Corollary 3.21. Assume that X and �1 are independently distributed, and that Y

and �2 are also independently distributed.

(i) If X or Y has IMRL, X ≤mrl Y , and �1 ≤rh �2, then X�1 ≤mrl Y�2 .

(ii) Let X
d= Y . If X has IMRL (DMRL), and �1 ≤rh �2, then X�1 ≤mrl

(≥mrl)X�2 .

(iii) Let �1
d= �2. If X or Y has IMRL, and X ≤mrl Y , then X� ≤mrl Y�.

Remark 3.22. Misra, Gupta and Dhariyal (2008) and Dewan and Khaledi (2014)
obtained the result of Corollary 3.21(ii) as Theorem 3.2 and Theorem 2.8(d),
respectively. Dewan and Khaledi (2014) also presented the result of Corol-
lary 3.21(iii) as Theorem 2.2(d).
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4 Ageing properties

In this section, we investigate under what conditions the ageing property of Xθ is
preserved for X�1 . In the first place, we discuss a result for DFR property of X�1 .

Theorem 4.1. Suppose that, for every fixed x > 0 and t > 0, F̄θ (θ+x+t)

F̄θ (θ+x)
increases

in θ ∈ (0,∞), Xθ has DFR (IFR), ∀ θ > 0, and Xθ1 ≤hr (≥hr) Xθ2 , ∀ 0 < θ1 ≤ θ2.
Then X�1 has DFR (IFR).

Proof. To prove X�1 has DFR (IFR), we need to show that M̄1(x) is log-convex

(log-concave) on (0,∞), i.e., for every fixed t > 0, M̄1(x+t)

M̄1(x)
increases (decreases)

in x ∈ (0,∞). Consider

ψ2(x) = M̄1(x + t)

M̄1(x)
=

∫ ∞
0 F̄θ (θ + x + t)h1(θ) dθ∫ ∞

0 F̄θ (θ + x)h1(θ) dθ
, x ∈ (0,∞).

Let ψ1(x, θ) = F̄θ (θ +x) and ψ2(x, θ) = F̄θ (θ +x + t), (x, θ) ∈ (0,∞)× (0,∞),

it can be easily observed that, for every θ > 0, ψ2(x,θ)
ψ1(x,θ)

= F̄θ (θ+x+t)

F̄θ (θ+x)
increases (de-

creases) in x ∈ (0,∞), if Xθ has DFR (IFR). Also, it can be easily shown that
F̄θ (θ + x) is T P2 (RR2) in (x, θ) ∈ (0,∞) × (0,∞) if Xθ has DFR (IFR), and
Xθ1 ≤hr (≥hr) Xθ2 , ∀ 0 < θ1 ≤ θ2. From these observations, we can conclude that
the assumptions of Lemma 2.4(i) are satisfied under the assumptions of Theo-
rem 4.1. Hence, ψ2(x) is increasing (decreasing) in x ∈ (0,∞). �

As a consequence, we can obtain the following result immediately on assuming
independence between X and �1 in Theorem 4.1.

Corollary 4.2. Assume that X and �1 are independently distributed and X has
DFR. Then X�1 has DFR.

Remark 4.3. Under the assumption of independence between X and �1, Yue and
Cao (2000) in their Theorem 4.1 showed that, if �1 has DRFR and X has DFR
(IFR), then X�1 also has DFR (IFR). It is apparent that the result of Corollary 4.2
requires no condition on �1.

In what follows, we will present the result on ageing notion of X�1 in terms of
mean residual life function. Applying Lemma 2.4(i) with ψ1(x, θ) = ∫ ∞

x F̄θ (u +
θ) du and ψ2(x, θ) = ∫ ∞

x+t F̄θ (u+ θ) du, (x, θ) ∈ (0,∞)× (0,∞), and employing
arguments similar to that of Theorem 4.1, we have the following result.

Theorem 4.4. Suppose that, for every fixed x > 0 and t > 0,
∫ ∞
x+t F̄θ (u+θ) du∫ ∞
x F̄θ (u+θ) du

in-

creases in θ ∈ (0,∞), Xθ has IMRL (DMRL), ∀ θ > 0 and Xθ1 ≤mrl (≥mrl) Xθ2 ,
∀ 0 < θ1 ≤ θ2. Then X�1 has IMRL (DMRL).
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Yue and Cao (2000) assumed that X and �1 are independently distributed, and
showed that if �1 has DRFR and X has DMRL (IMRL), then X�1 also has DMRL
(IMRL). In the following corollary, which follows from Theorems 4.4, we obtain
the same result without imposing any condition on �1.

Corollary 4.5. Assume that X and �1 are independently distributed and X has
IMRL. Then, X�1 has IMRL.

5 Examples

To illustrate the usefulness of results derived in this paper, we present below ex-
amples that cannot be dealt with existing results in the literature, but where our
results can be applied.

Example 5.1. For θ > 0, let the r.v.s Xθ and Yθ follow Gamma distributions with
p.d.f.s,

fθ (x) =
⎧⎪⎨
⎪⎩

(1 + θ2)α

θα�α
e−( 1+θ2

θ
)xxα−1, if x > 0,

0, otherwise,

and

gθ (x) =
⎧⎨
⎩

1

θα�α
e− x

θ xα−1, if x > 0,

0, otherwise,

respectively, where α ∈ (0,1) is a fixed shape parameter. For 0 < x1 ≤ x2 < ∞,

gθ (x2 + θ)

gθ (x1 + θ)
= e−(x2−x1)

c
θ

(
x2 + θ

x1 + θ

)α−1

increases in θ > 0. Thus, gθ (x + θ) is T P2 in (x, θ) ∈ (0,∞)× (0,∞). Also, note
that for θ > 0,

gθ (x + θ)

fθ (x + θ)
= 1

(1 + θ2)α
eθ(x+θ)

increases in x > 0 and θ > 0. Hence, the conditions of Theorem 3.1 are satisfied
for any pair of r.v.s �1 and �2 such that �1 ≤lr �2.

Example 5.2. Suppose that the joint density of (X,�1) is

g1(x, θ) =
⎧⎪⎨
⎪⎩

1

θα

1

�α�β1
e−( x

θ
+θ)xα−1θβ1−1, if x > 0,

0, otherwise,
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and the joint density of (Y,�2) is

g2(x, θ) =
⎧⎪⎨
⎪⎩

1

θα

1

�α�β2
e−( x

θ
+θ)xα−1θβ2−1, if x > 0,

0, otherwise,

where α ∈ (0,1) and 0 < β1 < β2 < ∞ are fixed shape parameters. Clearly, for

every θ > 0, Xθ
d= Yθ , Xθ has p.d.f.

fθ (x) = 1

θα�α
e− x

θ xα−1, x > 0

and p.d.f. of r.v. �i , i = 1,2 is

gi(θ) = 1

�βi

e−θ θβi−1, θ > 0.

It can be seen that for 0 < x1 ≤ x2 < ∞,

fθ (x2 + θ)

fθ (x1 + θ)
= e(

x1−x2
θ

)

(
x2 + θ

x1 + θ

)α−1

increases in θ ∈ (0,∞), ∀ α ∈ (0,1). Also,

h2(θ)

h1(θ)
= �β1

�β2
θ(β2−β1)

increases in θ > 0, ∀ β2 > β1. Thus, �1 ≤lr �2 and conditions of Corollary 3.4
are satisfied.

Now, we state the following example to illustrate applications of Corollary 3.12.

Example 5.3.

(i) For θ > 0, let the random variable Xθ follow Exponential Distribution with
survival function

F̄θ (x) = e− x
θ , x > 0

It can be easily seen that F̄θ (x + θ) is T P2 in (x, θ) ∈ (0,∞) × (0,∞) and is also
increasing in θ > 0. Thus, the conditions of Corollary 3.12(ii) are satisfied for any
pair if r.v.s �1 and �2 such that �1 ≤hr �2.

(ii) For θ > 0, let the random variable Xθ follow Exponential Distribution with
survival function

F̄θ (x) = e−θx, x > 0

It can be easily seen that F̄θ (x + θ) is RR2 in (x, θ) ∈ (0,∞) × (0,∞) and is also
decreasing in θ > 0. Thus, the conditions of Corollary 3.12(iii) are satisfied for
any pair if r.v.s �1 and �2 such that �1 ≤rh �2.
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