The objective in stochastic filtering is to reconstruct the information about an unobserved (random) process, called the signal process, given the current available observations of a certain noisy transformation of that process.

Usually $X$ and $Y$ are modeled by stochastic differential equations driven by a Brownian motion or a jump (or Lévy) process. We are interested in the situation where both the state process $X$ and the observation process $Y$ are perturbed by coupled Lévy processes. More precisely, $L=(L_{1},L_{2})$ is a $2$-dimensional Lévy process in which the structure of dependence is described by a Lévy copula. We derive the associated Zakai equation for the density process and establish sufficient conditions depending on the copula and $L$ for the solvability of the corresponding solution to the Zakai equation. In particular, we give conditions of existence and uniqueness of the density process, if one is interested to estimate quantities like $\mathbb{P}(X(t)>a)$, where $a$ is a threshold.

## References

*Lévy Processes and Stochastic Calculus*, 2nd ed.

*Cambridge Studies in Advanced Mathematics*. Cambridge: Cambridge University Press.Applebaum, D. (2009).

*Lévy Processes and Stochastic Calculus*, 2nd ed.

*Cambridge Studies in Advanced Mathematics*. Cambridge: Cambridge University Press.

*Fundamentals of Stochastic Filtering. Stochastic Modeling and Applied Probability*

**60**. New York: Springer. MR2454694 1176.62091Bain, A. and Crisan, D. (2009).

*Fundamentals of Stochastic Filtering. Stochastic Modeling and Applied Probability*

**60**. New York: Springer. MR2454694 1176.62091

*Optimal Control of Diffusion Processes*. Harlow, United Kingdom: Longman Group UK Limited. MR1005532 0669.93065Borkar, V. S. (1989).

*Optimal Control of Diffusion Processes*. Harlow, United Kingdom: Longman Group UK Limited. MR1005532 0669.93065

*An International Journal of Probability and Stochastic Processes*

**78**, 13–31. MR2219710 1156.91362 10.1080/17442500500488316Ceci, C. (2006). Risk minimizing hedging for a partially observed high frequency data model.

*An International Journal of Probability and Stochastic Processes*

**78**, 13–31. MR2219710 1156.91362 10.1080/17442500500488316

*Advances in Applied Probability*

**44**, 678–701. 1251.93123 10.1239/aap/1346955260 euclid.aap/1346955260Ceci, C. and Colaneri, K. (2012). Nonlinear filtering for jump diffusion observations.

*Advances in Applied Probability*

**44**, 678–701. 1251.93123 10.1239/aap/1346955260 euclid.aap/1346955260

*Copula Methods in Finance*, 1st ed.

*Wiley Finance Series*. Chichester: John Wiley & Sons Ltd. 1163.62081Cherubini, U., Luciano, E. and Vecchiato, W. (2004).

*Copula Methods in Finance*, 1st ed.

*Wiley Finance Series*. Chichester: John Wiley & Sons Ltd. 1163.62081

*Financial Modeling with Jump Processes*, 1st ed.

*Chapman & Hall/CRC Financial Mathematics Series*. Boca Raton, Florida: Chapman & Hall/CRC. 1052.91043Cont, R. and Tankov, P. (2004).

*Financial Modeling with Jump Processes*, 1st ed.

*Chapman & Hall/CRC Financial Mathematics Series*. Boca Raton, Florida: Chapman & Hall/CRC. 1052.91043

*SIAM Journal on Control and Optimization*

**45**, 1–25. 1110.49033 10.1137/040616267Cont, R. and Tankov, P. (2006). Retrieving Lévy processes from option prices: Regularization of an ill-posed inverse problem.

*SIAM Journal on Control and Optimization*

**45**, 1–25. 1110.49033 10.1137/040616267

*One-Parameter Semigroups for Linear Evolution Equations*, 1st ed. Berlin: Springer. 0952.47036Engel, K. J. and Nagel, R. (2000).

*One-Parameter Semigroups for Linear Evolution Equations*, 1st ed. Berlin: Springer. 0952.47036

*Markov Processes: Characterization and Convergence*. New York: John Wiley & Sons, Inc. MR838085 0592.60049Ethier, S. and Kurtz, T. (1986).

*Markov Processes: Characterization and Convergence*. New York: John Wiley & Sons, Inc. MR838085 0592.60049

*Stochastic Analysis and Applications*

**31**, 381–426.Fernando, B. P. W. and Sritharan, S. S. (2013). Nonlinear filtering of stochastic Navier–Stokes equation with Itô–Lévy noise.

*Stochastic Analysis and Applications*

**31**, 381–426.

*Potential Analysis*

**46**, 1–21. 06680432 10.1007/s11118-016-9570-1Fernando Pani, W., Hausenblas, E. and Razafimandimby, P. A. (2017). Analytic properties of Markov semigroup generated by SDEs driven by Lévy processes.

*Potential Analysis*

**46**, 1–21. 06680432 10.1007/s11118-016-9570-1

*International Journal of Theoretical and Applied Finance*

**4**, 199–210. 1154.91610 10.1142/S021902490100095XFrey, R. and Runggaldier, W. (2001). A nonlinear filtering approach to volatility estimation with a view towards high frequency data.

*International Journal of Theoretical and Applied Finance*

**4**, 199–210. 1154.91610 10.1142/S021902490100095X

*Finance and Stochastics*

**14**, 495–526. 1226.91075 10.1007/s00780-010-0129-5Frey, R. and Runggaldier, W. (2010). Pricing credit derivatives under incomplete information: A nonlinear-filtering approach.

*Finance and Stochastics*

**14**, 495–526. 1226.91075 10.1007/s00780-010-0129-5

*Finance and Stochastics*

**16**, 105–133. 1259.91055 10.1007/s00780-011-0153-0Frey, R. and Schimdt, T. (2012). Pricing and hedging of credit derivatives via the innovation approach to nonlinear filtering.

*Finance and Stochastics*

**16**, 105–133. 1259.91055 10.1007/s00780-011-0153-0

*SIAM Journal on Numerical Analysis*

**51**, 2036–2062. 1274.60129 10.1137/110837395Frey, R., Schimdt, T. and Xu, L. (2013). On Galerkin approximations for the Zakai equation with diffusive and point process observations.

*SIAM Journal on Numerical Analysis*

**51**, 2036–2062. 1274.60129 10.1137/110837395

*Seminaire de Probabilities IX. Lecture Notes in Mathematics*

**465**. Berlin: Springer. 0321.60056Getoor, R. K. (1975). On the construction of kernels. In

*Seminaire de Probabilities IX. Lecture Notes in Mathematics*

**465**. Berlin: Springer. 0321.60056

*Electronic Journal of Probability*

**10**, 1496–1546. MR2191637 1109.60048 10.1214/EJP.v10-297 euclid.ejp/1464816847Hausenblas, E. (2005). Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure.

*Electronic Journal of Probability*

**10**, 1496–1546. MR2191637 1109.60048 10.1214/EJP.v10-297 euclid.ejp/1464816847

*Stochastic Analysis and Applications*

**26**, 98–119. 1153.60035 10.1080/07362990701673047Hausenblas, E. and Seidler, J. (2008). Stochastic convolutions driven by martingales: Maximal inequalities and exponential integrability.

*Stochastic Analysis and Applications*

**26**, 98–119. 1153.60035 10.1080/07362990701673047

*Osaka Journal of Mathematics*

**35**, 798–820. 0922.47045 euclid.ojm/1200788343Hoh, W. (1998). A symbolic calculus for pseudo-differential operators generating Feller semigroups.

*Osaka Journal of Mathematics*

**35**, 798–820. 0922.47045 euclid.ojm/1200788343

*Pseudo Differential Operators and Markov Processes—II: Generators and Their Potential Theory*, 2nd ed. London: Imperial College Press.Jacob, N. (2002).

*Pseudo Differential Operators and Markov Processes—II: Generators and Their Potential Theory*, 2nd ed. London: Imperial College Press.

*Foundations of Modern Probability*, 2nd ed.

*Probability and Its Applications*. New York: Springer. 0996.60001Kallenberg, O. (2002).

*Foundations of Modern Probability*, 2nd ed.

*Probability and Its Applications*. New York: Springer. 0996.60001

*Annals of Mathematical Statistics*

**39**, 785–801. 0174.22102 10.1214/aoms/1177698311 euclid.aoms/1177698311Kallianpur, G. and Striebel, C. (1968). Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors.

*Annals of Mathematical Statistics*

**39**, 785–801. 0174.22102 10.1214/aoms/1177698311 euclid.aoms/1177698311

*Journal of Multivariate Analysis*

**97**, 1551–1572. MR2275419 1099.62048 10.1016/j.jmva.2005.11.001Kallsen, J. and Tankov, P. (2006). Characterization of dependence of multidimensional Lévy processes using Lévy copulas.

*Journal of Multivariate Analysis*

**97**, 1551–1572. MR2275419 1099.62048 10.1016/j.jmva.2005.11.001

*IEEE Transaction on Information Theory*

**36**, 1415–1425. 0721.93072 10.1109/18.59936Kliemann, W. H., Koch, G. and Marchetti, F. (1990). On the un-normalized solution of the filtering problem with counting process observations.

*IEEE Transaction on Information Theory*

**36**, 1415–1425. 0721.93072 10.1109/18.59936

*Extreme Financial Risks from Dependence to Risk Management*. Berlin: Springer. 1093.62098Malevergne, Y. and Sornette, D. (2006).

*Extreme Financial Risks from Dependence to Risk Management*. Berlin: Springer. 1093.62098

*An Introduction to Copulas*, 2nd ed.

*Springer Series in Statistics*. New York: Springer. 1152.62030Nelsen, R. (2006).

*An Introduction to Copulas*, 2nd ed.

*Springer Series in Statistics*. New York: Springer. 1152.62030

*The Annals of Mathematical Statistics*

**36**, 1302–1305. 0132.38001 10.1214/aoms/1177700004 euclid.aoms/1177700004Robertson, T. (1965). A note on the reciprocal of the conditional expectation of a positive random variable.

*The Annals of Mathematical Statistics*

**36**, 1302–1305. 0132.38001 10.1214/aoms/1177700004 euclid.aoms/1177700004

*Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations*. Berlin: De Gruyter. 0873.35001Runst, T. and Sickel, W. (1996).

*Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations*. Berlin: De Gruyter. 0873.35001

*Pseudodifferential Operators and Spectral Theory*, 1st ed. Berlin, Heidelberg: Springer. 0980.35180Shubin, M. A. (2001).

*Pseudodifferential Operators and Spectral Theory*, 1st ed. Berlin, Heidelberg: Springer. 0980.35180

*Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Mathematical Series*

**43**. Monographs in Harmonic Analysis, III. Princeton, New Jersey: Princeton University Press.Stein, E. M. (1993).

*Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Mathematical Series*

**43**. Monographs in Harmonic Analysis, III. Princeton, New Jersey: Princeton University Press.