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Abstract. The problem of reducing the bias of maximum likelihood estima-
tor in a general multivariate elliptical regression model is considered. The
model is very flexible and allows the mean vector and the dispersion ma-
trix to have parameters in common. Many frequently used models are special
cases of this general formulation, namely: errors-in-variables models, nonlin-
ear mixed-effects models, heteroscedastic nonlinear models, among others. In
any of these models, the vector of the errors may have any multivariate ellipti-
cal distribution. We obtain the second-order bias of the maximum likelihood
estimator, a bias-corrected estimator, and a bias-reduced estimator. Simula-
tion results indicate the effectiveness of the bias correction and bias reduction
schemes.

1 Introduction

It is well known that, under some standard regularity conditions, maximum-like-
lihood estimators (MLEs) are consistent and asymptotically normally distributed.
Hence, their biases converge to zero when the sample size increases. However, for
finite sample sizes, the MLEs are in general biased and bias correction plays an
important role in the point estimation theory.

A general expression for the term of order O(n−1) in the expansion of the bias
of MLEs was given by Cox and Snell (1968). This term is often called second-
order bias and can be useful in actual problems. For instance, a very high second-
order bias indicates that other than maximum-likelihood estimation procedures
should be used. Also, corrected estimators can be formulated by subtracting the
estimated second-order biases from the respective MLEs. It is expected that these
corrected estimators have smaller biases than the uncorrected ones, especially in
small samples.

Cox and Snell’s formulae for second-order biases of MLEs were applied in
many models. Cordeiro and McCullagh (1991) use these formulae in general-
ized linear models; Cordeiro and Klein (1994) compute them for ARMA mod-
els; Cordeiro et al. (2000) apply them for symmetric nonlinear regression models;
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Vasconcellos and Cordeiro (2000) obtain them for multivariate nonlinear Student t

regression models. More recently, Cysneiros, Cordeiro and Cysneiros (2010) study
the univariate heteroscedastic symmetric nonlinear regression models (which are
an extension of Cordeiro et al., 2000) and Patriota and Lemonte (2009) obtain
a general matrix formula for the bias correction in a multivariate normal model
where the mean and the covariance matrix have parameters in common.

An alternative approach to bias correction was suggested by Firth (1993). The
idea is to adjust the estimating function so that the estimate becomes less bi-
ased. This approach can be viewed as a “preventive” method, since it modifies
the original score function, prior to obtaining the parameter estimates. In this pa-
per, estimates obtained from Cox and Snell’s approach and Firth’s method will
be called bias-corrected estimates and bias-reduced estimates, respectively. Firth
showed that in generalized linear models with canonical link function the pre-
ventive method is equivalent to maximizing a penalized likelihood that is easily
implemented via an iterative adjustment of the data. The bias reduction proposed
by Firth has received considerable attention in the statistical literature. For models
for binary data, see Mehrabi and Matthews (1995); for censored data with expo-
nential lifetimes, see Pettitt, Kelly and Gao (1998). In Bull, Mak and Greenwood
(2002) bias reduction is obtained for the multinomial logistic regression model. In
Kosmidis and Firth (2009) a family of bias-reducing adjustments was developed
for a general class of univariate and multivariate generalized nonlinear models. The
bias reduction in cumulative link models for ordinal data was studied in Kosmidis
(2014). Additionally, Kosmidis and Firth (2011) showed how to obtain the bias-
reducing penalized maximum likelihood estimator by using the equivalent Poisson
log-linear model for the parameters of a multinomial logistic regression.

It is well-known and was noted by Firth (1993) and Kosmidis and Firth (2009)
that the reduction in bias may sometimes be accompanied by inflation of variance,
possibly yielding an estimator whose mean squared error is bigger than that of the
original one. Nevertheless, published empirical studies such as those mentioned
above show that, in some frequently used models, bias-reduced and bias-corrected
estimators can perform better than the unadjusted maximum likelihood estimators,
especially when the sample size is small.

Our goal in this paper is to obtain bias correction and bias reduction to the
maximum likelihood estimators for the general multivariate elliptical model. We
extend the work of Patriota and Lemonte (2009) to the elliptical class of distribu-
tions defined in Lemonte and Patriota (2011). We focus on analytical methods only,
because simulations for a general multivariate normal model suggests that analyt-
ical bias corrections outperforms the computationally intensive bootstrap methods
(Lemonte, 2011).

In order to illustrate the ampleness of the general multivariate elliptical model,
we mention some of its submodels: multiple linear regression, heteroscedas-
tic multivariate nonlinear regressions, nonlinear mixed-effects models (Patriota,
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2011), heteroscedastic errors-in-variables models (Patriota, Bolfarine and de Cas-
tro, 2009; Patriota and Lemonte, 2009), structural equation models, multivariate
normal regression model with general parametrization (Lemonte, 2011), simulta-
neous equation models and mixtures of them. It is important to note that the usual
normality assumption of the error is relaxed and replaced by the assumption of
elliptical errors. The elliptical family of distributions includes many important dis-
tributions such as multivariate normal, Student t , power exponential, contaminated
normal, Pearson II, Pearson VII, and logistic, with heavier or lighter tails than the
normal distribution; see Fang, Kotz and Ng (1990).

The paper is organized as follows. Section 2 presents the notation and gen-
eral results for bias correction and bias reduction. Section 3 presents the model
and our main results, namely the general expression for the second-order bias of
MLEs, in the general multivariate elliptical model. Section 4 applies our results in
four important special cases: heteroscedastic nonlinear (linear) model, nonlinear
mixed-effects models, multivariate errors-in-variables models and log-symmetric
regression models. Simulations are presented in Section 5. Applications that use
real data are presented and discussed in Section 6. Finally, Section 7 concludes the
paper. Technical details are collected in one Appendix.

2 Bias correction and bias reduction

Let θ be the p-vector of unknown parameters and θr its r th element. Also, let U(θ)

be the score function and Ur(θ) = Ur its r th element. We use the following tensor
notation for the cumulants of the log-likelihood derivatives introduced by Lawley
(1956):

κrs = E

(
∂Ur

∂θs

)
, κr,s = E(UrUs), κrs,t = E

(
∂Ur

∂θs

Ut

)
,

κrst = E

(
∂2Ur

∂θs ∂θt

)
, κ(t)

rs = ∂κrs

∂θt

, κr,s,t = E(UrUsUt),

and so on. The indices r , s and t vary from 1 to p. The typical (r, s)th element of
the Fisher information matrix K(θ) is κr,s and we denote by κr,s the corresponding
element of K(θ)−1. All κ’s refer to a total over the sample and are, in general,
of order n. Under standard regular conditions, we have that κrs = −κr,s , κrs,t =
κ

(t)
rs − κrst and κr,s,t = 2κrst − κ

(t)
rs − κ

(s)
rt − κ

(r)
st . These identities will be used to

facilitate some algebraic operations.
Let Bθ̂ (θ) be the second-order bias vector of θ̂ whose j th element is Bθ̂j

(θ), j =
1,2, . . . , p. It follows from the general expression for the multiparameter second-
order biases of MLEs given by Cox and Snell (1968) that

Bθ̂j
(θ) =

p∑
r,s,t=1

κj,rκs,t

{
1

2
κrst + κrs,t

}
. (2.1)
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The bias corrected MLE is defined as

θ̂BC = θ̂ − Bθ̂ (θ̂).

The bias-corrected estimator θ̂BC is expected to have smaller bias than the uncor-
rected estimator, θ̂ .

Firth (1993) proposed an alternative method to partially remove the bias of
MLEs. The method replaces the score function by its modified version

U∗(θ) = U(θ) − K(θ)Bθ̂ (θ),

and a modified estimate, θ̂BR, is given as a solution to U∗(θ) = 0. It is notice-
able that, unlike Cox and Snell’s approach, Firth’s bias reduction method does not
depend on the finiteness of θ̂ .

3 Model and main results

We shall follow the same notation presented in Lemonte and Patriota (2011). The
elliptical model as defined in Fang, Kotz and Ng (1990) follows. A q × 1 random
vector Y has a multivariate elliptical distribution with location parameter μ and a
definite positive scale matrix � if its density function is

fY (y) = |�|−1/2g
(
(y − μ)��−1(y − μ)

)
, (3.1)

where g : [0,∞) → (0,∞) is called the density generating function, and it is
such that

∫ ∞
0 u

q
2 −1g(u)du < ∞. We will denote Y ∼ Elq(μ,�,g) ≡ Elq(μ,�).

It is possible to show that the characteristic function is ψ(t) = E(exp(it�Y)) =
exp(it�μ)ϕ(t��t), where t ∈ R

q and ϕ : [0,∞) → R. Then, if ϕ is twice differ-
entiable at zero, we have that E(Y ) = μ and Var(Y ) = ξ�, where ξ = ϕ′(0). We
assume that the density generating function g does not have any unknown parame-
ter, which implies that ξ is a known constant. From (3.1), when μ = 0 and � = Iq ,
where Iq is a q × q identity matrix, we obtain the spherical family of densities.
A comprehensive exposition of the elliptical multivariate class of distributions can
be found in Fang, Kotz and Ng (1990). Table 1 presents the density generating
functions of some multivariate elliptical distributions.

Let Y1, Y2, . . . , Yn be n independent random vectors, where Yi has dimension
qi ∈ N, for i = 1,2, . . . , n. The general multivariate elliptical model (Lemonte and
Patriota, 2011) assumes that

Yi = μi(θ, xi) + ei, i = 1, . . . , n,

with ei
ind∼ Elqi

(0,�i(θ,wi)), where “
ind∼” means “independently distributed as”, xi

and wi are mi × 1 and ki × 1 nonstochastic vectors of auxiliary variables, respec-
tively, associated with the ith observed response Yi , which may have components
in common. Then,

Yi
ind∼ Elqi

(μi,�i), i = 1, . . . , n, (3.2)
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Table 1 Generating functions of some multivariate elliptical distributions

Distribution Generating function g(u)

Normal 1
(
√

2π)q
e−u/2

Cauchy

(

1+q
2 )


( 1
2 )

π−q/2(1 + u)−(1+q)/2

Student t

(

ν+q
2 )


( ν
2 )

π−q/2ν−q/2(1 + u
ν )−(ν+q)/2, ν > 0

Power exponential
λ
(

q
2 )


(
q
2λ

)
2−q/(2λ)π−q/2e−uλ/2, λ > 0

where μi = μi(θ, xi) is the location parameter and �i = �i(θ,wi) is the definite
positive scale matrix. Both μi and �i have known functional forms and are twice
differentiable with respect to each element of θ . Additionally, θ is a p-vector of
unknown parameters (where p < n and it is fixed). Since θ must be identifiable in
model (3.2), the functions μi and �i must be defined to accomplish such restric-
tion.

Several important statistical models are special cases of the general formula-
tion (3.2), for example, linear and nonlinear regression models, homoscedastic or
heteroscedastic measurement error models, and mixed-effects models with normal
errors. It is noteworthy that the normality assumption for the errors may be relaxed
and replaced by any distribution within the class of elliptical distributions, such
as the Student t and the power exponential distributions. The general formulation
allows a wide range of different specifications for the location and the scale pa-
rameters, coupled with a large collection of distributions for the errors. Section 4
presents four important particular cases of the main model (3.2) that show the ap-
plicability of the general formulation.

For the sake of simplifying the notation, let zi = Yi − μi and ui = z�
i �−1

i zi .
The log-likelihood function associated with (3.2), is given by

(θ) =
n∑

i=1

i(θ), (3.3)

where i(θ) = −1
2 log |�i | + logg(ui). It is assumed that g(·), μi and �i are such

that (θ) is a regular log-likelihood function (Cox and Hinkley, 1974, Ch. 9) with
respect to θ . To obtain the score function and the Fisher information matrix, we
need to derive (θ) with respect to the unknown parameters and to compute some
moments of such derivatives. We assume that such derivatives exist. Thus, we de-
fine

ai(r) = ∂μi

∂θr

, ai(sr) = ∂2μi

∂θs ∂θr

, Ci(r) = ∂�i

∂θr

, Ci(sr) = ∂2�i

∂θs ∂θr

and

Ai(r) = −�−1
i Ci(r)�

−1
i ,
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for r, s = 1, . . . , p. We make use of matrix differentiation methods (Magnus and
Neudecker, 2007) to compute the derivatives of the log-likelihood function. The
score vector and the Fisher information matrix for θ can be shortly written as

U(θ) = F�Hs and K(θ) = F�H̃F, (3.4)

respectively, with F = (F�
1 , . . . ,F�

n )�, H = block-diag{H1, . . . ,Hn}, s =
(s�

1 , . . . , s�
n )�, H̃ = HMH and M = block-diag{M�

1 , . . . ,M�
n }, wherein

Fi =
(
Di

Vi

)
, Hi =

[
�i 0
0 2�i ⊗ �i

]−1

, si =
[

vizi

−vec
(
�i − viziz

�
i

)] ,

where the “vec” operator transforms a matrix into a vector by stacking the
columns of the matrix, Di = (ai(1), . . . , ai(p)), Vi = (vec(Ci(1)), . . . ,vec(Ci(p))),
vi = −2Wg(ui) and Wg(u) = d logg(u)/du. Here, we assume that F has rank p

(i.e., μi and �i must be defined to hold such condition). The symbol “⊗” indi-
cates the Kronecker product. Following Lange, Little and Taylor (1989) we have,
for the q-variate Student t distribution with ν degrees of freedom, tq(μ,�, ν), that
Wg(u) = −(ν + q)/{2(ν + u)}. Following Gómez, Gómez-Villegas and Martín
(1998) we have, for the q-variate power exponential PEq(μ, δ, λ) with shape pa-
rameter λ > 0 and u �= 0, that Wg(u) = −λuλ−1/2, λ �= 1/2. In addition, we have

Mi =
⎡⎣4ψi(2,1)

qi

�i 0

0 2ci�i ⊗ �i

⎤⎦ + (ci − 1)

[
0 0
0 vec(�i)vec(�i)

�

]
,

where ci = 4ψi(2,2)/{qi(qi + 2)}, ψi(2,1) = E(W 2
g (ri)ri) and ψi(2,2) =

E(W 2
g (ri)r

2
i ), with ri = ||Li ||2, Li ∼ Elqi

(0, Iqi
). Here, we assume that g(u) is

such that ψi(2,1) and ψi(2,2) exist and are finite for all i = 1, . . . , n. One can ver-
ify these results by using standard differentiation techniques and some standard
matrix operations.

The values of ψi(l,k) are obtained from solving the following one-dimensional
integrals (Lange, Little and Taylor, 1989):

ψi(l,k) =
∫ ∞

0
Wg

(
s2)lg(s2)rqi+2k−1cqi

ds, (3.5)

where cqi
= 2π

qi
2 /
(

qi

2 ) is the surface area of the unit sphere in R
qi and 
(a)

is the well-known gamma function. One can find these quantities for many dis-
tributions simply solving (3.5) algebraically or numerically. Table 2 shows these
quantities for the normal, Cauchy, Student t and power exponential distributions.

It is important to remark that the ψi(l,k)’s may involve unknown quantities (for
instance, the degrees of freedom ν of the Student t distribution and the shape
parameter λ of the power exponential distribution). One may want to estimate these
quantities via maximum likelihood estimation. Here, we consider these as known
quantities for the purpose of keeping the robustness property of some distributions.
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Table 2 Functions ψi(2,1), ψi(2,2), ψi(3,2), ψi(3,3) for normal, Cauchy, Student t and power ex-
ponential (P.E.) distributions

ψi(2,1) ψi(2,2) ψi(3,2) ψi(3,3)

Normal qi
4

qi (qi+2)
4 − qi (qi+2)

8 − qi (qi+2)(qi+4)
8 qi ≥ 1

Cauchy qi (qi+1)
4(qi+3)

qi (qi+2)(qi+1)
4(qi+3)

− qi (qi+2)(qi+1)2

8(qi+3)(qi+5)
− qi (qi+2)(qi+4)(qi+1)2

8(qi+3)(qi+5)
qi ≥ 1

Student t
qi (qi+ν)

4(qi+ν+2)
qi (qi+2)(qi+ν)

4(qi+ν+2)
− qi (qi+2)(qi+ν)2

8(qi+2+ν)(qi+4+ν)
− qi (qi+2)(qi+4)(qi+ν)2

8(qi+2+ν)(qi+4+ν)
qi ≥ 1

P.E.
λ2
( 4λ−1

2λ
)

21/λ
( 1
2λ

)

2λ+1
4 −λ3
( 6λ−1

2λ
)

21/λ
( 1
2λ

)
− (2λ+1)(4λ+1)

8 qi = 1, λ > 1
4

P.E.
λ2
(

qi−2
2λ

+2)

21/λ
(
qi
2λ

)

qi (2λ+qi )
4 −λ3
(

qi−2
2λ

+3)

21/λ
(
qi
2λ

)
− qi (2λ+qi )(4λ+qi )

8 qi ≥ 2, λ > 0

Lucas (1997) shows that the protection against “large” observations is only valid
when the degrees of freedom parameter is kept fixed for the Student t distribution.
Therefore, the issue of estimating these quantities is beyond of the main scope of
this paper. In practice, one can use model selection procedures to choose the most
appropriate values of such unknown parameters.

Notice that, in the Fisher information matrix K(θ), the matrix M carries all the
information about the adopted distribution, while F and H contain the information
about the adopted model. Also, K(θ) has a qquadratic form that can be computed
through simple matrix operations. Under the normal case, vi = 1, M = H−1 and
hence H̃ = H .

The Fisher scoring method can be used to estimate θ by iteratively solving the
equation(

F (m)�H̃ (m)F (m))θ(m+1) = F (m)�H̃ (m)s∗(m), m = 0,1, . . . , (3.6)

where the quantities with the upper index “(m)” are evaluated at θ̂ , m is the itera-
tion counter and

s∗(m) = F (m)θ(m) + H−1(m)M−1(m)s(m).

Each loop, through the iterative scheme (3.6), consists of an iterative re-weighted
least squares algorithm to optimize the log-likelihood (3.3). Thus, (3.4) and (3.6)
agree with the corresponding equations derived in Patriota and Lemonte (2009).
Observe that, despite the complexity and generality of the postulated model, ex-
pressions (3.4) and (3.6) are very simple and friendly.

Now, we can give the main result of the paper.

Theorem 3.1. The second-order bias vector Bθ̂ (θ) under model (3.2) is given by

Bθ̂ (θ) = (
F�H̃F

)−1
F�H̃ ξ, (3.7)

where ξ = (�1, . . . ,�p)vec((F�H̃F )−1), �r = (��
1(r), . . . ,�

�
n(r))

�, and �i(r)

is given in the Appendix.
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Proof. See the Appendix. �

We shall emphasize that Theorem 3.1 is only valid under the assumption that no
extra unknown parameter is estimated along with θ . For instance, for the Student t
distribution, ν is assumed to be fixed. If extra unknown parameters were to be con-
sidered, cumulants of the log-likelihood function with respect to these parameters
would appear in (3.7).

In many models the location vector and the scale matrix do not have parameters
in common, that is, μi = μi(θ1, xi) and �i = �i(θ2,wi), where θ = (θ�

1 , θ�
2 )�.

Therefore, F = block-diag{Fθ1,Fθ2} and the parameter vectors θ1 and θ2 will be
orthogonal (Cox and Reid, 1987). This happens in mixed models, nonlinear mod-
els, among others. However, in errors-in-variables and factor analysis models or-
thogonality does not hold. Model (3.2) is general enough to encompass a large
number of models even those that do not have orthogonal parameters.

Corollary 3.1. When μi = μi(θ1, xi) and �i = �i(θ2,wi), where θ = (θ�
1 , θ�

2 )�
the second-order bias vector of θ̂1 and θ̂2 are given by

Bθ̂1
(θ) = (

F�
θ1

H̃1Fθ1

)−1
F�

θ1
H̃1ξ1

and

Bθ̂2
(θ) = (

F�
θ2

H̃2Fθ2

)−1
F�

θ2
H̃2ξ2,

respectively. The quantities Fθ1 , Fθ2 , H̃1, H̃2, ξ1 and ξ2 are defined in the Appendix.

Proof. See the Appendix. �

Formula (3.7) says that, for any particular model of the general multivariate
elliptical class of models (3.2), it is always possible to express the bias of θ̂ as
the solution of an weighted least-squares regression. Also, if zi ∼ Nqi

(0,�i) then
ci = −ω̃i = 1, η1i = 0, η2i = −2, H̃ = H ,

Ji(r) =
(

0
2(Iqi

⊗ ai(r))Di

)
,

and formula (3.7) reduces to the one obtained by Patriota and Lemonte (2009).
Theorem 3.1 implies that all one needs to compute bias-corrected and bias-

reduced MLEs in the general elliptical model is: (i) the first and second derivatives
of the location vector μi and the scale matrix �i with respect to all the parameters;
(2) the derivatives Wg(u); (3) some moments involving the chosen elliptical distri-
bution (these moments are given in Table 2 for some elliptical distributions). With
these quantities, the matrices in (3.7) can be computed and the bias vector can be
computed through an weighted least-squares regression.
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4 Special models

In this section, we present four important particular cases of the main model (3.2).
All special cases presented in Patriota and Lemonte (2009) are also special cases
of the general multivariate elliptical model defined in this paper.

4.1 Heteroscedastic nonlinear models

Consider the univariate heteroscedastic nonlinear model defined by

Yi = f (xi, α) + ei, i = 1,2, . . . , n,

where Yi is the response, xi is a column vector of explanatory variables, α is
a column vector p1 × 1 of unknown parameters and f is a nonlinear func-
tion of α. Assume that e1, e2, . . . , en are independent, with ei ∼ El(0, σ 2

i ). Here
σ 2

i = σ 2
i (γ ) = h(ω�

i γ ), where γ is a p2 × 1 vector of unknown parameters. Then

Yi
ind∼ El

(
f (xi, α), σ 2

i

)
,

which is a special case of (3.2) with θ = (α�, γ �)�, μi = f (xi, α) and �i = σ 2
i .

Here El stands for El1. Notice that for the heteroscedastic linear model f (xi, α) =
x�
i α.

The second-order bias vector Bθ̂ (θ) comes from (3.7), which depends on deriva-
tives of f (xi, α) and σ 2

i with respect to the parameter vector θ . Also, it depends on
the quantities ψi(2,1),ψi(2,2),ψi(3,2), ψi(3,3) (see Table 2) and Wg(ui) containing
information about the adopted distribution.

4.2 Nonlinear mixed-effects model

One of the most important examples is the nonlinear mixed-effects model intro-
duced by Lange, Little and Taylor (1989) and studied under the assumption of a
Student t distribution. Let

Yi = μi(xi, α) + Zibi + ui,

where Yi is the qi × 1 vector response, μi is a qi -dimensional nonlinear function
of α, xi is a vector of nonstochastic covariates, Zi is a matrix of known constants,
α is a p1 ×1 vector of unknown parameters and bi is an r ×1 vector of unobserved
random regression coefficients. Assume that,(

bi

ui

)
∼ Elr+qi

([
0
0

]
,

[
�b(γ1) 0

0 Ri(γ2)

])
,

where γ1 is a p2-dimensional vector of unknown parameters and γ2 is a p3 × 1
vector of unknown parameters. Furthermore, the vectors (b1, u1)

�, (b2, u2)
�,

. . . , (bn, un)
� are independent. Therefore, the marginal distribution of the ob-

served vector is

Yi ∼ Elqi

(
μi(xi, α);�i(Zi, γ )

)
, (4.1)
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where γ = (γ �
1 , γ �

2 )� and �i(Zi, γ ) = Zi�b(γ1)Z
�
i + Ri(γ2). Equation (4.1) is

a special case of (3.2) with θ = (α�, γ �)�, μi = μi(xi, α) and �i = �i(Zi, γ ).
From (3.7), one can compute the bias vector Bθ̂ (θ).

4.3 Errors-in-variables model

Consider the model

x1i = β0 + β1x2i + qi, i = 1, . . . , n,

where x1i is a v×1 latent response vector, x2i is a m×1 latent vector of covariates,
β0 is a v × 1 vector of intercepts, β1 is a v × m matrix of slopes, and qi is the
equation error having a multivariate elliptical distribution with location vector zero
and scale matrix �q . The variables x1i and x2i are not directly observed, instead
surrogate variables X1i and X2i are measured with the following additive structure:

X1i = x1i + δx1i
and X2i = x2i + δx2i

. (4.2)

The random quantities x2i , qi , δx1i
and δx2i

are assumed to follow an elliptical
distribution given by⎛⎜⎜⎝

x2i

qi

δx1i

δx2i

⎞⎟⎟⎠ ind∼ El2v+2m

⎡⎢⎢⎣
⎛⎜⎜⎝

μx2

0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
�x2 0 0 0

0 �q 0 0
0 0 τx1i

0
0 0 0 τx2i

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

where the matrices τxi and τzi are known for all i = 1, . . . , n. These “known” ma-
trices may be attained, for example, through an analytical treatment of the data
collection mechanism, replications, machine precision, etc. (Kulathinal, Kuulas-
maa and Gasbarra (2002)).

Therefore, the observed vector Yi = (X�
1i ,X

�
2i)

� has marginal distribution given
by

Yi
ind∼ Elv+m

(
μ(θ),�i(θ)

)
(4.3)

with

μ(θ) =
(
β0 + β1μx2

μx2

)
and �i(θ) =

(
β1�x2β

�
1 + �q + τx1i

β1�x2

�x2β
�
1 �x2 + τx2i

)
,

where θ = (β�
0 ,vec(β1)

�,μ�
x2

,vech(�x2)
�,vech(�q)�)�, “vech” operator trans-

forms a symmetric matrix into a vector by stacking into columns its diagonal and
superior diagonal elements. The mean vector (θ) and the covariance-variance ma-
trix �i(θ) of observed variables have the matrix β1 in common, that is, they share
mv parameters. Kulathinal, Kuulasmaa and Gasbarra (2002) study the linear uni-
variate case (v = 1, m = 1).

Equation (4.3) is a special case of (3.2) with qi = v + m, θ = (α�, γ �)�, μi =
μi(θ) and �i = �i(θ). In this case, a programming language or software that
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can perform operations on vectors and matrices, for example, Ox (Doornik, 2013)
and R (Ihaka and Gentleman, 1996), can be used to obtain the bias vector Bθ̂ (θ)

from (3.7).

4.4 Log-symmetric regression models

Let T be a continuous positive random variable with probability density function

fT (t;η,φ,g) = 1√
φt

g

(
log2

[(
t

η

) 1√
φ
])

, η > 0, φ > 0, (4.4)

where g is the density generating function of a univariate elliptical distribution,
and we write T ∼ LS(η,φ, g). Vanegas and Paula (2016) called the class of dis-
tribution in (4.4) the log-symmetric class of distributions. It includes log-normal,
log-Student t , log-power-exponential distributions, among many others, as special
cases. It is easy to verify that log(T ) has a univariate elliptical distribution (i.e.,
symmetric distribution) with location parameter μ = log(η) and scale parameter
φ. The parameter η is the median of T , and φ can be interpreted as a skewness or
relative dispersion parameter.

Vanegas and Paula (2015) defined and studied semi-parametric regression mod-
els for a set T1, T2, . . . , Tn with Ti ∼ LS(ηi, φi, g) with ηi > 0 and φi > 0 follow-
ing semi-parametric regression structures. Here we assume parametric specifica-
tion for ηi and φi as ηi = ηi(xi, α) and φi = φi(ωi, γ ).

Hence,

Yi = log(Ti)
ind∼ El

(
μi(xi, α),φi(ωi, γ )

)
, (4.5)

where μi(xi, α) = log(η(xi, α)). Therefore, (4.5) is a special case of the general
elliptical model (3.2), and formula (3.7) applies.

5 Simulation results

In this section, we shall present the results of Monte Carlo simulation experiments
in which we evaluate the finite sample performances of the original MLEs and
their bias-corrected and bias-reduced versions. The simulations are based on the
univariate nonlinear model without random effects (Section 4.1) and the errors-in-
variables model presented in Section 4.2, when Yi follows a normal distribution, a
Student t distribution with ν degrees of freedom, or a power exponential distribu-
tion with shape parameter λ. For all the simulations, the number of Monte Carlo
replications is 10,000 (ten thousand) and they have been performed using the Ox
matrix programming language (Doornik, 2013).

First, consider the model described in (4.1) with qi = 1, Zi = 0, �i = σ 2 and

μi(α) = μi(xi, α) = α1 + α2

1 + α3x
α4
i

, i = 1, . . . , n. (5.1)
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Here the unknown parameter vector is θ = (α1, α2, α3, α4, σ
2)�. The values of

xi were obtained as random draws from the uniform distribution U(0,100). The
sample sizes considered are n = 10,20,30,40 and 50. The parameter values are
α1 = 50, α2 = 500, α3 = 0.50, α4 = 2 and σ 2

i = 200. For the Student t distribution,
we fixed the degrees of freedom at ν = 4, and for the power exponential model the
shape parameter is fixed at λ = 0.8.

Tables 3–4 present the bias, and the root mean squared errors (
√

MSE) of the
maximum likelihood estimates, the bias-corrected estimates and the bias-reduced
estimates for the nonlinear model with normal and Student t distributed errors,
respectively. To save space, the corresponding results for the power exponential

Table 3 Biases and
√

MSE of the maximum likelihood estimate and its adjusted versions; nonlinear
model; normal distribution

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√

MSE Bias
√

MSE Bias
√

MSE

10 α1 −0.29 6.69 −0.13 6.67 −0.01 6.67
α2 2.16 20.07 0.70 19.40 −0.27 19.06
α3 0.01 0.13 0.00 0.12 0.00 0.12
α4 0.03 0.30 0.01 0.29 −0.00 0.29
σ 2 −80.05 106.44 −32.06 103.32 9.09 128.72

20 α1 −0.08 4.07 −0.01 4.07 0.01 4.07
α2 0.66 17.94 −0.08 17.84 −0.27 17.82
α3 0.00 0.09 0.00 0.09 −0.00 0.09
α4 0.02 0.21 0.01 0.20 0.00 0.20
σ 2 −40.07 69.73 −8.09 68.95 0.86 72.02

30 α1 −0.10 3.11 −0.04 3.10 −0.02 3.10
α2 0.71 17.24 −0.05 17.15 −0.18 17.13
α3 0.00 0.09 −0.00 0.09 −0.00 0.09
α4 0.02 0.20 0.00 0.19 0.00 0.19
σ 2 −26.41 55.26 −3.26 55.11 0.82 56.32

40 α1 −0.08 2.69 −0.02 2.69 −0.01 2.69
α2 0.83 16.80 0.09 16.70 0.01 16.69
α3 0.00 0.09 0.00 0.09 0.00 0.09
α4 0.02 0.19 0.00 0.18 −0.00 0.18
σ 2 −20.04 47.26 −2.04 47.13 0.33 47.74

50 α1 −0.08 2.39 −0.03 2.38 −0.02 2.38
α2 1.07 14.25 0.30 14.12 0.23 14.11
α3 0.00 0.08 0.00 0.08 0.00 0.08
α4 0.01 0.19 0.00 0.18 −0.00 0.18
σ 2 −15.93 41.41 −1.21 41.30 0.36 41.67
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Table 4 Biases and
√

MSE of the maximum likelihood estimate and its adjusted versions; nonlinear
model; Student t distribution

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√

MSE Bias
√

MSE Bias
√

MSE

10 α1 −0.51 8.66 −0.31 8.63 −0.20 8.56
α2 3.34 28.47 1.39 27.34 2.05 27.67
α3 0.01 0.17 0.00 0.16 0.01 0.16
α4 0.06 0.42 0.03 0.39 −0.01 0.38
σ 2 −93.18 127.60 −54.24 130.73 −17.40 170.35

20 α1 −0.17 5.03 −0.07 5.02 −0.04 5.01
α2 2.01 25.64 0.91 25.11 1.29 24.98
α3 0.01 0.14 0.01 0.14 0.01 0.13
α4 0.04 0.29 0.01 0.28 0.00 0.27
σ 2 −41.24 85.51 −12.30 89.41 −4.55 93.08

30 α1 −0.10 3.81 −0.01 3.80 0.01 3.82
α2 2.25 25.75 1.13 25.34 1.61 25.41
α3 0.01 0.14 0.01 0.14 0.01 0.14
α4 0.04 0.29 0.01 0.27 0.00 0.26
σ 2 −27.15 70.02 −6.15 72.64 −1.78 107.53

40 α1 −0.10 3.27 −0.02 3.26 −0.01 3.26
α2 1.82 24.94 0.75 24.67 1.18 24.78
α3 0.01 0.12 0.00 0.12 0.01 0.12
α4 0.03 0.26 0.01 0.25 0.00 0.25
σ 2 −20.38 60.43 −4.01 62.21 −1.82 62.98

50 α1 −0.13 2.86 −0.05 2.85 −0.03 2.85
α2 1.48 18.86 0.38 18.59 0.24 18.46
α3 0.01 0.11 0.00 0.11 0.00 0.11
α4 0.02 0.24 0.00 0.23 0.00 0.23
σ 2 −15.40 53.99 −1.94 55.56 −0.43 56.11

model are not shown.1 We note that the bias-corrected estimates and the bias-
reduced estimates are less biased than the original MLE for all the sample sizes
considered. For instance, when n = 20 and the errors follow a Student t distribu-
tion (see Table 4) the estimated biases of σ̂ 2 are −41.24 (MLE), −12.30 (bias-
corrected) and −4.55 (bias-reduced). For the normal case with n = 10 (see Ta-
ble 3), the estimated biases of α̂2 are 2.16 (MLE), 0.70 (bias-corrected) and −0.27
(bias-reduced). We also observe that the bias-reduced estimates are less biased
than the bias-corrected estimates in most cases. As n increases, the bias and the
root mean squared error of all the estimators decrease, as expected. Additionally,
we note that the MLE of α2 has

√
MSE larger than those of the modified versions.

1All the omitted tables in this paper are presented in a supplement available from the authors upon
request.
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For the estimation of σ 2,
√

MSE is smaller for the original MLE. In other cases,
we note that the estimators have similar root mean squared errors.

We now consider the errors-in-variables model described in (4.2). The sample
sizes considered are n = 15,25,35 and 50. The parameter values are β0 = 0.70
1v×1, β1 = 0.40 1v×m, μx2 = 70 1m×1, �q = 40 Iv×1 and �x2 = 250 Im×1. Here,
1r×s is as r × s matrix of ones and Ir×s is the identity matrix with dimension r × s.
For the Student t distribution, we fixed the degrees of freedom at ν = 4 and, for
power exponential model, the shape parameter was fixed at λ = 0.7. We consider
v ∈ {1,2} and m = 1.

In Tables 5–6, we present the MLE, the bias-corrected estimates, the bias-
reduced estimates, and corresponding estimated root mean squared errors for the
Student t and power exponential distributions, for the errors-in-variables model.
The results for the normal distribution are not shown to save space. We observe
that, in absolute value, the biases of the bias-corrected estimates and bias-reduced
estimates are smaller than those of the original MLE for different sample sizes.
Furthermore, the bias-reduced estimates are less biased than the bias-corrected es-
timates in most cases. This can be seen for example, in Table 6 when v = 1, m = 1,

Table 5 Biases and
√

MSE of the maximum likelihood estimate and its adjusted versions; errors-
in-variables model; v = 1 and m = 1; Student t distribution

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√

MSE Bias
√

MSE Bias
√

MSE

15 β0 −0.00 9.90 0.01 9.90 0.01 9.89
β1 0.00 0.14 0.00 0.14 0.00 0.14
μx2 0.05 4.82 0.05 4.82 0.05 4.82
�x2 5.18 129.34 2.91 128.12 2.66 127.86
�q −3.64 19.52 −0.68 20.72 −0.42 20.85

25 β0 −0.02 7.14 −0.01 7.14 −0.01 7.14
β1 0.00 0.10 0.00 0.10 0.00 0.10
μx2 0.03 3.69 0.03 3.69 0.03 3.69
�x2 3.61 97.32 2.25 96.76 2.17 96.69
�q −2.31 14.87 −0.47 15.41 −0.38 15.44

35 β0 −0.02 5.93 −0.02 5.93 −0.02 5.93
β1 0.00 0.08 0.00 0.08 0.00 0.08
μx2 −0.01 3.12 −0.01 3.12 −0.01 3.12
�x2 1.94 79.78 0.98 79.45 0.94 79.44
�q −1.65 12.63 −0.31 12.96 −0.26 12.97

50 β0 −0.01 4.92 −0.01 4.92 −0.01 4.92
β1 0.00 0.07 0.00 0.07 0.00 0.07
μx2 0.01 2.59 0.01 2.59 0.01 2.59
�x2 1.04 65.50 0.37 65.33 0.36 65.33
�q −1.18 10.53 −0.24 10.78 −0.21 10.79
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Table 6 Biases and
√

MSE of the maximum likelihood estimate and its adjusted versions; errors-
in-variables model; v = 1 and m = 1; power exponential distribution

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√

MSE Bias
√

MSE Bias
√

MSE

15 β0 −0.12 9.25 −0.11 9.25 −0.11 9.24
β1 0.00 0.13 0.00 0.13 0.00 0.13
μx2 −0.02 6.47 −0.02 6.47 −0.02 6.47
�x2 −9.27 103.32 0.52 107.51 0.82 107.64
�q −4.92 15.67 −0.66 17.55 −0.17 17.76

25 β0 0.02 6.83 0.03 6.83 0.03 6.83
β1 0.00 0.09 −0.00 0.09 −0.00 0.09
μx2 −0.02 4.98 −0.02 4.98 −0.02 4.98
�x2 −5.60 80.20 0.36 81.95 0.47 81.99
�q −3.04 12.94 −0.36 13.49 −0.18 13.54

35 β0 0.01 5.59 0.02 5.58 0.02 5.58
β1 −0.00 0.08 −0.00 0.08 −0.00 0.08
μx2 −0.04 4.21 −0.04 4.21 −0.04 4.21
�x2 −3.53 68.01 0.77 69.10 0.82 69.12
�q −2.14 11.11 −0.18 11.46 −0.08 11.49

50 β0 0.03 4.67 0.03 4.67 0.03 4.67
β1 −0.00 0.06 −0.00 0.06 −0.00 0.06
μx2 −0.03 3.52 −0.03 3.52 −0.03 3.52
�x2 −2.83 56.89 0.18 57.51 0.21 57.52
�q −1.51 9.21 −0.12 9.41 −0.07 9.42

Yi follows a power exponential distribution and n = 15. In this case, the bias of the
MLE, the bias-corrected estimate and the bias-reduced estimate of �q are −4.92,
−0.66 and −0.17, respectively. When Yi follows a Student t distribution, n = 15,
v = 1 and m = 1 we observe the following biases of the estimates of �x2 : 5.18
(MLE), 2.91 (bias-corrected) and 2.66 (bias-reduced); see Table 5. We note that
the root mean squared errors decrease with n.

For the sake of saving space, the simulation results for the normal, Student t

and power exponential errors-in-variable models with v = 2 and m = 1 are not
presented. Overall, our findings are similar to those reached for the other models.

6 Applications

6.1 Radioimmunoassay data

Tiede and Pagano (1979) present a dataset, referred here as the radioimmunoassay
data, obtained from the Nuclear Medicine Department at the Veterans Administra-
tion Hospital, Buffalo, New York. Lemonte and Patriota (2011) analyzed the data
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Table 7 Estimates and standard errors (given in parentheses); radioimmunoassay data

θ MLE Bias-corrected MLE Bias-reduced MLE

Normal distribution
α1 0.44 (0.80) 0.65 (0.99) 1.03 (1.06)

α2 7.55 (0.95) 7.34 (1.16) 6.91 (1.25)

α3 0.13 (0.06) 0.13 (0.06) 0.13 (0.08)

α4 0.96 (0.24) 0.93 (0.28) 0.95 (0.34)

σ 2 0.31 (0.12) 0.40 (0.15) 0.50 (0.19)

Student t distribution
α1 0.90 (0.12) 0.91 (0.13) 0.90 (0.15)

α2 7.09 (0.17) 7.08 (0.19) 7.07 (0.22)

α3 0.09 (0.01) 0.09 (0.01) 0.09 (0.02)

α4 1.31 (0.08) 1.31 (0.09) 1.29 (0.10)

σ 2 0.02 (0.01) 0.02 (0.01) 0.03 (0.01)

to illustrate the applicability of the elliptical models with general parameteriza-
tion. Following Tiede and Pagano (1979), we shall consider the nonlinear regres-
sion model (5.1), with n = 14. The response variable is the observed radioactivity
(count in thousands), the covariate corresponds to the thyrotropin dose (measured
in micro-international units per milliliter) and the errors follow a normal distribu-
tion or a Student t distribution with ν = 4 degrees of freedom. We assume that the
scale parameter is unknown for both models. In Table 7 we present the maximum
likelihood estimates, the bias-corrected estimates, the bias-reduced estimates, and
the corresponding estimated standard errors are given in parentheses. We note that
all the estimates present smaller standard errors under the Student t model than
under the normal model (Table 7).

For all parameters, the original MLEs are very close to the bias-corrected MLE
and the bias-reduced MLE when the Student t model is used. However, under the
normal model, significant differences in the estimates of α1 are noted. The esti-
mates for α1 are 0.44 (MLE), 0.65 (bias-corrected MLE) and 1.03 (bias-reduced
MLE).

6.2 Fluorescent lamp data

Rosillo and Chivelet (2009) present a dataset referred here as the fluorescent lamp
data. The authors analyze the lifetime of fluorescent lamps in photovoltaic systems
using an analytical model whose goal is to assist in improving ballast design and
extending the lifetime of fluorescent lamps. Following Rosillo and Chivelet (2009),
we shall consider the nonlinear regression model (4.1) with qi = 1, Zi = 0, �i =
σ 2, θ = (α�, σ 2)� = (α0, α1, α2, α3, σ

2)� and

μi(α) = 1

1 + α0 + α1xi1 + α2xi2 + α3x
2
i2

, i = 1, . . . ,14,
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Table 8 Estimates and standard errors (given in parentheses); fluorescent lamp data

θ MLE Bias-corrected MLE Bias-reduced MLE

Normal distribution
α0 29.49 (5.21) 28.54 (5.66) 28.25 (5.84)

α1 9.99 (4.69) 9.68 (5.21) 9.62 (5.42)

α2 −56.33 (10.10) −54.45 (10.93) −53.86 (11.26)

α3 26.53 (4.89) 25.61 (5.28) 25.31 (5.43)

σ 2 1.40 × 10−2 (5.00 × 10−3) 1.80 × 10−2 (7.00 × 10−3) 1.90 × 10−2 (7.00 × 10−3)

Student t distribution
α0 30.66 (4.64) 29.94 (5.05) 29.85 (5.20)

α1 8.48 (4.00) 8.24 (4.42) 8.46 (4.57)

α2 −58.20 (8.94) −56.79 (9.71) −56.67 (10.00)

α3 27.27 (4.30) 26.58 (4.66) 26.55 (4.80)

σ 2 7.30 × 10−3 (3.60 × 10−3) 9.20 × 10−3 (4.60 × 10−3) 9.80 × 10−3 (4.90 × 10−3)

where the response variable is the observed lifetime/advertised lifetime (Y ), the co-
variates correspond to a measure of gas discharge (x1) and the observed voltage/ad-
vertised voltage (measure of performance of lamp and ballast – x2) and the errors
are assumed to follow a normal distribution. Here we also assume a Student t

distribution with ν = 4 degrees of freedom for the errors.
In Table 8, we present the maximum likelihood estimates, the bias-corrected

estimates, the bias-reduced estimates, and the corresponding estimated standard
errors. As in the previous application, the estimates present smaller standard errors
under the Student t model than under the normal model.

The original MLEs for α0 and α3 are bigger than the corresponding corrected
and reduced versions by approximately one unit (normal and Student t models).
The largest differences are among the estimates of α2; for example, for the normal
model we have −56.33 (MLE), −54.45 (bias-corrected MLE) and −53.86 (bias-
reduced MLE).

We now use the Akaike Information Criterion (AIC, Akaike, 1974), the Schwarz
Bayesian criterion (BIC, Schwarz, 1978) and the finite sample AIC (AICC ,
Hurvich and Tsai, 1989) to evaluate the quality of the normal and Student t fits.
For the normal model we have AIC = −9.98, BIC = −6.79 and AICC = −2.48.
For the t model we have AIC = −11.24, BIC = −8.04 and AICC = −3.74. There-
fore, the t model presents the best fit for this dataset, since the values of the AIC,
BIC and AICC are smaller.

Let

D̂ =
14∑

j=1

(Ŷ − Ŷ(j))
�(Ŷ − Ŷ(j)),
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where Ŷ and Ŷ(j) are the vectors of predicted values computed from the model
fit for the whole sample and the sample without the j th observation, respec-
tively. The quantity D̂ measures the total effect of deleting one observation in
the predicted values. For a fixed sample size, it tends to be high if a single
observation can highly influence the prediction of new observations. We have
D̂ = 0.119,0.120, and 0.123 (normal model) and D̂ = 0.101,0.100, and 0.095
(Student t model) when using the MLE, the bias-corrected estimate, and the bias-
reduced estimate, respectively. Notice that D̂ is smaller for the Student t model
regardless of the estimate used. This is evidence that the Student t model is more
suitable than the normal model for predicting lifetime of fluorescent lamps in this
study.

6.3 WHO MONICA data

We now turn to a dataset from the WHO MONICA Project that was considered in
Kulathinal, Kuulasmaa and Gasbarra (2002). This dataset was first analyzed under
normal distributions for the marginals of the random errors (Kulathinal, Kuulas-
maa and Gasbarra, 2002; Patriota, Bolfarine and de Castro, 2009). Thereafter, it
was studied under a scale mixture of normal distributions for the marginals of the
random errors (Cao, Lin and Zhu, 2012). The approach used in the present paper
is different from the others because here we consider a joint elliptical distribution
for the vector of random errors. The other authors assumed that the distributions
of the errors were independent, while we assume that they are uncorrelated but not
independent. For our proposal, the errors will only be independent under normal-
ity.

The dataset considered here corresponds to the data collected for men (n = 38).
As describe in Kulathinal, Kuulasmaa and Gasbarra (2002), the data are trends of
the annual change in the event rate (y) and trends of the risk scores (x). The risk
score is defined as a linear combination of smoking status, systolic blood pressure,
body mass index, and total cholesterol level. A follow-up study using proportional
hazards models was employed to derive its coefficients, and provides the observed
risk score and its estimated variance. Therefore, the observed response variable,
X1, is the average annual change in event rate (%) and the observed covariate,
X2, is the observed risk score (%). We use the heteroscedastic model (4.2) with
v = m = 1 and zero covariance between the errors δx1i

and δx2i
.

Table 9 gives the MLE and the bias-corrected/reduced estimates (standard errors
are given in parentheses). We considered the full sample (n = 38) and randomly
chosen sub-samples of n = 10,20 and 30 observations.

The original MLEs for β0, β1 and μx2 are practically the same as their bias-
corrected and bias-reduced versions for all sample sizes. The largest differences
are among the estimates of �q ; for example, for n = 10 we have 6.17 (MLE),
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Table 9 Estimates and standard errors (given in parentheses); WHO MONICA data

n θ MLE Bias-corrected MLE Bias-reduced MLE

10 β0 −2.58 (1.34) −2.58 (1.44) −2.45 (1.47)

β1 0.05 (0.60) 0.05 (0.63) 0.07 (0.64)

μx2 −1.54 (0.58) −1.54 (0.61) −1.53 (0.62)

�x2 2.89 (1.50) 3.22 (1.65) 3.29 (1.69)

�q 6.17 (3.99) 8.14 (4.93) 8.81 (5.25)

20 β0 −2.68 (0.65) −2.69 (0.68) −2.69 (0.69)

β1 0.48 (0.30) 0.47 (0.31) 0.43 (0.31)

μx2 −1.29 (0.44) −1.29 (0.46) −1.29 (0.46)

�x2 3.53 (1.25) 3.73 (1.31) 3.76 (1.32)

�q 3.00 (1.66) 3.59 (1.87) 3.73 (1.92)

30 β0 −2.22 (0.54) −2.22 (0.55) −2.20 (0.55)

β1 0.43 (0.24) 0.43 (0.25) 0.42 (0.25)

μx2 −0.77 (0.42) −0.77 (0.42) −0.77 (0.42)

�x2 4.71 (1.34) 4.88 (1.39) 4.89 (1.39)

�q 4.36 (1.86) 4.89 (2.01) 4.88 (2.01)

38 β0 −2.08 (0.53) −2.08 (0.54) −2.08 (0.54)

β1 0.47 (0.23) 0.47 (0.24) 0.46 (0.24)

μx2 −1.09 (0.36) −1.09 (0.36) −1.09 (0.36)

�x2 4.32 (1.10) 4.44 (1.13) 4.45 (1.13)

�q 4.89 (1.78) 5.34 (1.89) 5.30 (1.88)

8.14 (bias-corrected MLE) and 8.81 (bias-reduced MLE). In general, as expected,
larger sample sizes correspond to smaller standard errors.

7 Concluding remarks

We studied bias correction and bias reduction for a multivariate elliptical model
with a general parameterization that unifies several important models (e.g., lin-
ear and nonlinear regressions models, linear and nonlinear mixed models, errors-
in-variables models, among many others). We extend the work of Patriota and
Lemonte (2009) to the elliptical class of distributions defined in Lemonte and Pa-
triota (2011). We express the second order bias vector of the maximum likelihood
estimates as an weighted least-squares regression.

As can be seen in our simulation results, corrected-bias estimators and reduced-
bias estimators form a basis of asymptotic inferential procedures that have better
performance than the corresponding procedures based on the original estimator.
We further note that, in general, the bias-reduced estimates are less biased than
the bias-corrected estimates. Computer packages that perform simple operations
on matrices and vectors can be used to compute bias-corrected and bias-reduced
estimates.
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Appendix

Lemma A.1. Let zi ∼ Elqi
(0,�i, g), and ci and ψi(2,1) as previously defined.

Then,

E(vizi) = 0,

E
(
v2
i ziz

�
i

) = 4ψi(2,1)

qi

�i,

E
(
v2
i vec

(
ziz

�
i

)
z�
i

) = 0,

E
(
v2
i vec

(
ziz

�
i

)
vec

(
ziz

�
i

)�) = ci

(
vec(�i)vec(�i)

� + 2�i ⊗ �i

)
,

E
(
v3
i vec

(
ziz

�
i

)
vec

(
ziz

�
i

)�) = −c∗
i

(
vec(�i)vec(�i)

� + 2�i ⊗ �i

)
,

E
(
v3
i z

�
i Ai(t)ziz

�
i Ai(s)ziz

�
i Ai(r)zi

) = −8ω̃i

(
tr{Ai(t)�i} tr{Ai(s)�i} tr{Ai(r)�i}

+ 2 tr{Ai(t)�i} tr{Ai(s)�iAi(r)�i}
+ 2 tr{Ai(s)�i} tr{Ai(t)�iAi(r)�i}
+ 2 tr{Ai(r)�i} tr{Ai(t)�iAi(s)�i}
+ 8 tr{Ai(t)�iAi(s)�iAi(r)�i}),

where c∗
i = 8ψi(3,2)/{qi(qi + 2)}, ψi(3,2) = E(W 3

g (ri)r
2
i ), ω̃i = ψi(3,3)/{qi(qi +

2)(qi + 4)} and ψi(3,3) = E(W 3
g (ri)r

3
i ).

Proof. The proof can be obtained by adapting the results of Mitchell (1989) for a
matrix version. �

From Lemma A.1, we can find the cumulants of the log-likelihood derivatives
required to compute the second-order biases.

Proof of Theorem 3.1. Following Cordeiro and Klein (1994), we write (2.1) in
matrix notation to obtain the second-order bias vector of θ̂ in the form

Bθ̂ (θ) = K(θ)−1W vec
(
K(θ)−1), (A.1)

where W = (W(1), . . . ,W(p)) is a p × p2 partitioned matrix, each W(r), referring
to the r th component of θ , being a p×p matrix with typical (t, s)th element given
by

w
(r)
ts = 1

2
κtsr + κts,r = κ

(r)
ts − 1

2
κtsr = 3

4
κ

(r)
ts − 1

4

(
κt,s,r + κ(t)

sr + κ
(s)
rt

)
.

Because K(θ) is symmetric and the t th element of W vec(K(θ)−1) is w
(1)
t1 κ1,1 +

(w
(1)
t2 + w

(2)
t1 )κ1,2 + · · · + (w

(s)
tr + w

(r)
ts )κs,r + · · · + (w

(p−1)
tp + w

(p)
t (p−1))κ

p−1,p +
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w
(p)
tp κp,p , we may write

w
(r)
ts = 1

2

(
w

(s)
tr + w

(r)
ts

) = 1

4

(
κ

(r)
ts + κ

(s)
tr − κ(t)

sr − κt,s,r

)
. (A.2)

Comparing (A.1) and (3.7), we note that for the proof of this theorem it suffices to
show that F�H̃ ξ = W vec((F�H̃F )−1), that is,

W = F�HMH(�1, . . . ,�p).

Notice that

κsr =
n∑

i=1

{
ci

2
tr{Ai(r)Ci(s)} − 4ψi(2,1)

qi

a�
i(s)�

−1
i ai(r)

(A.3)

− (ci − 1)

4
tr{Ai(s)�i} tr{Ai(r)�i}

}
.

The quantities ψi(2,1) and ψi(2,2) do not depend on θ and hence, the derivative of
(A.3) with respect to θt is

κ(t)
sr =

n∑
i=1

{
ci

2
tr{Ai(t)�iAi(s)Ci(r) + Ai(s)�iAi(t)Ci(r) + Ci(ts)Ai(r)
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.

Therefore,
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.
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Now, the only quantity that remains to obtain is κt,s,r = E(UtUsUr). Noting
that zi is independent of zj for i �= j , we have

κt,s,r = 1

8
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Then, by using Lemma A.1 and from (A.2), we have, after lengthy algebra, that

W(r) =
n∑

i=1

F�
i HiMiHi�i(r), (A.4)

where

�i(r) = −1

2

(
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,

and
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,

with

η1i = c∗
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Using (A.4) and (A.1) the theorem is proved. �

Proof of Corollary 3.1. It follows from Theorem 3.1, eq. (3.7), when

F = block-diag{Fθ1,Fθ2}, H̃ = block-diag{H̃1, H̃2} and ξ = (
ξ�

1 , ξ�
2
)�

,

where Fθj
= [F�

θj (1), . . . ,F
�
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and H̃2(i) = ci(2�i ⊗ �i)
−1 + (ci − 1)vec(�−1
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i )�. Furthermore, ξ1 =
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