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Abstract. Missing data are common in survey data sets. Enrolled subjects
do not often have data recorded for all variables of interest. The inappropri-
ate handling of them may negatively affect the inferences drawn. Therefore,
special attention is needed when analysing incomplete data. The multivariate
normal imputation (MVNI) and the multiple imputation by chained equations
(MICE) have emerged as the best techniques to deal with missing data. The
former assumes a normal distribution of the variables in the imputation model
and the latter fills in missing values taking into account the distributional
form of the variables to be imputed. This study examines the performance
of these methods when data are missing at random on unordered categorical
variables treated as predictors in the regression models. First, a survey data
set with no missing values is used to generate a data set with missing at ran-
dom observations on unordered categorical variables. Then, the two methods
are separately used to impute the missing values of the generated data set.
Their performance is compared in terms of bias and standard errors of the
estimates from the regression models that determine the association between
the woman’s contraceptive methods use status and her marital status, control-
ling for the region of origin. The baseline data used is the 2007 Demographic
and Health Survey (DHS) data set from the Democratic Republic of Congo.
The findings indicate that although the MVNI relies on the statistical para-
metric theory, it produces more accurate estimates than MICE for nonordered
categorical variables.

1 Introduction

Missing data are common in survey research. Enrolled subjects do not often have
data recorded for all variables of interest. This is due, for instance, to data entry
errors or ineligibility or refusal by the respondents to answer some items from
a survey. As a result, missing values are created in data sets, and if they are not
modelled properly, it can lead to incorrect inferences. A common way of handling
missing values is to discard them from the analysis, a technique that is provided
by default in many statistical packages such as SPSS, STATA, and SAS amongst
others. This approach is referred to as case deletion or complete case analysis
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and can lead to low power of the statistical test and biased parameter estimates
when the proportion of missing values is high and data are missing in a systematic
manner or at random (Graham, 2009).

To reduce these problems, various methods of rescuing missing data have been
developed (Schafer and Graham, 2002; Tsikriktsis, 2005; Graham, 2009). Items
with no observations at all are directly discarded from the analysis because they
do not provide any particular information about the data. However, if data are
partially missing on variables of interest, the latter should not be discarded as they
still contain some information that can be used to draw useful inferences.

Estimating a model without doing any kind of processing when data are missing
is difficult. For example, if a linear regression has to be run, say Y as a function of
X1 and X2, but some of the values of X1 and X2 are missing, it is still possible to
fit regression coefficients to the independent variables. One way of doing this is to
get rid of the missing information and use the available data, which is sometimes
problematic as previously stated. But when the researcher is forced to use the data
set with missing data without discarding cases, it has to be done in a way that
minimizes the damage to the inferences to be drawn.

The first thing to do is to identify the missingness mechanisms in the data set or
the reasons why data are missing. These include the missing completely at random
(MCAR), missing at random (MAR) and missing not at random (MNAR) mech-
anisms. Data are MCAR if the probability that a particular value is missing is not
related to the value itself or any other observed values in the data set. When the
probability that a particular value is missing depends on observed values in the
data set, the missing mechanism is referred to as MAR data. These two mecha-
nisms are termed ignorable, because conditional on the observed data set, one can
draw valid inferences. If missingness is related to unobserved values in the data
set, the missing mechanism is called nonignorable. In this case, even conditioning
on observed data does not lead to valid inferences. Data sets with such missing
mechanism is known as not missing at random or NMAR (Schafer and Graham,
2002; Graham, 2009).

If not fixed, all these missingness mechanisms may lead to serious conse-
quences. Discarding cases with missing data from the analysis, for instance, leads
to the lack of efficiency or greater variability in the obtained results. Not mod-
elling MAR and NMAR data lead to bias and efficiency problems. When mod-
elling MCAR and MAR data to look like nonmissing data, observed data are used
to impute missing values. As a result, bias and efficiency problems are reduced.

A number of methods have been developed to model MAR and MCAR data.
These include single-based imputation methods such as the mean imputation,
regression imputation, interpolation (for panel data), multiple imputation based
methods such as the multivariate normal imputation (MVNI) and the multiple im-
putation by chained equations or MICE (Raghunathan et al., 2001; Van Buuren,
2007).
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These last two multiple imputation-based methods are increasingly being used
and have been made popular in almost all the main statistical software packages
such as SAS, STATA, etc. These methods are considered the best as they account
for the statistical uncertainty in the imputations, which is not the case when single-
based imputation methods are used (Lee and Carlin, 2010).

Despite the popularity of these methods, there is still no clear guidance on which
method to choose between the two when the multiple imputation needs to be done
on continuous, binary and categorical (polytomous with more than two categories)
variables containing missing values.

The MVNI was initially designed to handle missing data of continuous and nor-
mally distributed variables, but it was later used to impute missing values of cate-
gorical data which do not assume normality (Allison, 2001). On the other hand, the
MICE, also known as imputation by fully conditional specification (Van Buuren
and Knook, 1999), conditional model (Carpenter and Kenward, 2012) or sequen-
tial regression multiple imputation (Raghunathan et al., 2001; Van Buuren, 2007),
fills in missing values sequentially, taking into account the distributional form of
the variables to be imputed. Details about this method are also given in Van Buuren
(2007), Royston and White (2011) and Kropko et al. (2014) amongst others.

Several studies have compared these two techniques in terms of parameter es-
timation and standard errors and have indicated that these two methods produce
approximately the same results when data are missing on continuous and normally
distributed data (Raghunathan et al., 2001; Karangwa and Kotze, 2013; Kropko
et al., 2014). The multivariate normal imputation outperformed the multiple im-
putation by chained equations when data were missing on ordinal data (Lee and
Carlin, 2010; Finch, 2010) and on binary variables (Lee and Carlin, 2010). As sug-
gested by these two authors, an empirical study is still needed to determine the per-
formance of these two methods when data are missing on nonordered or nominal
categorical variables. Kropko et al. (2014) attempted to compare the performance
of these methods when data were missing at random on continuous, binary, ordinal
and unordered categorical variables that were used as outcome variables in the re-
gression models. Their findings indicated that MICE performed better than MVNI
in terms of regression coefficients’ accuracy.

This study considers the suggestion by Finch (2010) and Lee and Carlin (2010)
to examine the performance of these methods when data are missing at random
on nonordered categorical variables treated as predictors in the regression models.
Simulated data sets with missing at random (MAR) observations on nominal vari-
ables with more than two categories are used to assess the performance of these
methods.

The remainder of the paper is as follows. In Section 2, some single based im-
putation methods are reviewed. In Section 3, the theory behind the multiple impu-
tation method is revised with a particular emphasis on the MVNI and MICE. In
Section 4, the methodology to be used is highlighted. In Section 5, the results and
discussion are provided. The last section (Section 6) provides the conclusion and
recommendations for further research.
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2 Single-based imputation methods

2.1 Mean imputation

The mean imputation replaces missing values with the observed mean of the avail-
able data on the variable containing missing data. With this technique, the effi-
ciency problem is solved but standard errors of the estimates are underestimated
(Schafer, 1997; Carpenter and Kenward, 2013). In addition, the estimate of the
mean is treated as true whereas it is not the case. However, imputing missing val-
ues using the mean of the observed data is a good guess, better than not doing
anything at all if there are no other options or the researcher does not have any
knowledge about other missing data methods.

2.2 Regression imputation

Regression imputation consists of using some selected prediction of a missing
value on a variable of interest. For instance, to predict a missing value for the
variable say, X1, use this variable as a function of other variables, say, X2 and X3,
in a model that could even include the dependent variable, say Y . As an illustration,
suppose that the initial model is as follows:

Y = β0 + β1X1 + β2X2 + β3X3 + ε, ε ∼ N
(
0, σ 2

ε

)
. (1)

To get the best guess of X1, the following prediction is proposed:

X1 = φ̂0 + φ̂1X2 + φ̂2X3 + φ̂3Y + ε1, ε1 ∼ N
(
0, σ 2

ε1

)
. (2)

Just like the mean imputation, the uncertainty is not incorporated very well because
the estimates are random variables. Therefore, there is uncertainty in φ̂ that should
be incorporated in the model of Y . That is, if the estimated X1 is substituted in
the model of Y , the uncertainty on how the φ̂ coefficients were obtained should fit
into uncertainty in β . However, the problem of this method is that it yields small
standard errors (Carpenter and Kenward, 2013).

2.3 Imputation using interpolation

In panel data, interpolation is used to impute missing values (Norazian et al., 2008).
For instance, suppose that a variable X is measured at times t = 1, 2, 3 (X1, X2

and X3) and some of the values are missing at time = 2 (X2). With this method,
the quantity X2 = X1+X3

2 is computed and then substituted into the missing values.
As highlighted by Norazian et al. (2008), this technique creates bias and large
confidence intervals.
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3 Multiple imputation

Single-based imputation methods mentioned earlier constitute an improvement
over the case deletion method, but they do not account for uncertainty in the im-
putations as imputed values are treated as true rather than estimates of the missing
values. This leads to the underestimation of the variance of the estimates and the
distortion of relationships among variables (Stuart et al., 2009).

Currently, many researchers view the multiple imputation as a better way of
doing imputation (Schafer and Graham, 2002; Azur et al., 2011). The goal of this
method is to impute missing values in such a way that the uncertainty in the im-
puted values is accounted for. That is, imputed values are estimates rather than
known values of missing observations, thus leading to the appropriate standard
errors of the estimates.

This method uses a selected model such as the regression model to predict miss-
ing values based on observed data. Instead of picking one value for the missing
value, many values are chosen and the uncertainty is represented in the variance
covariance matrix (VCV) of β estimates used to predict missing values. As an ex-
ample, suppose that a regression model of Y on X1 and X2 is run but the variable
X1 contains missing values. The following imputation model is specified:

X1 = φ1 + φ2X2 + φ3Y + ε2, ε2 ∼ N
(
0, σ 2

ε2

)
. (3)

In this case, there is a VCV matrix of the φi estimates that incorporates and mea-
sures uncertainty in extent to which Y and X2 can be used to plug in the values
of X1. This can be done by just picking many copies of φ from its asymptotic
distribution (e.g., a multivariate normal distribution for this regression model), and
use the estimates of φ and the VCV(�) to fill in the mean and VCV of the distri-
bution �(φ̂, �̂).

Suppose that the main model is the following:

Y = β0 + β1X1 + β2X2 + ε3, ε3 ∼ N
(
0, σ 2

ε3

)
. (4)

The values of X1 are imputed using the imputation model in (3) and m copies
of φ̂ are drawn from the asymptotic distribution of φ̂. Now m copies of the data
that gives m copies of the β estimates are created when those m data sets are
plugged back into the original model of Y . Therefore, m estimates of β for each
data set are obtained, and from there, the final estimate of β̂ is calculated. In other
words, all the estimates of β are combined by taking the mean of the m estimates
of β . The variance Vβ of the new (combined) estimate of β is a function of the
within (W ) data set variance, S2

m, which is an ordinary least square (OLS) estimate
of the normal σ 2, and B is the between data set variance, which is a variance
due to uncertainty in the imputation of X1. The above mentioned quantities can
be technically presented as: β̂ = ∑M

m=1 β̂m, Vβ = W + (1 + 1
m

)B where W =
1
m

∑M
m=1 S2

m and B = 1
m−1

∑M
m=1(β̂m − β̂)2. The factor (1 + 1

m
)B corresponds to
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the inflation in the standard errors (SEs) of β̂ which is done in order to correct for
imputation (Rubin, 1987).

These quantities are not computed manually; many statistical software packages
do that. The multivariate normal imputation or MVNI and multiple imputation by
chained equations or MICE are among the best ways of combining these estimates
or implementing these procedures. A brief description of these methods is given in
the next two sections of this paper.

3.1 Description of multivariate normal imputation

As previously stated, the multivariate normal imputation or MVNI assumes that
all the variables in the imputation model are normally distributed. The Markov
chain Monte Carlo procedure is used to obtain imputed values from the estimated
multivariate distribution, allowing appropriately for uncertainty in the estimated
model parameters, which is a requirement for proper imputation (Rubin, 1987).

Assuming multivariate normally distributed data, at the t th iteration one needs
to draw missing values Y

(t+1)
mis from p(Ymis|Yobs, θ

(t)) which is the distribution of
missing data given the observed data Yobs and the model parameters θ(t) (such as
regression coefficients and covariance matrix) of the previous iteration, and then
draw new model parameters θ(t+1) from p(θ |Yobs, Y

t+1
mis , θ (t)); the posterior dis-

tribution of the unknown parameters given the observed data, the estimated miss-
ing values and previously estimated model parameters. The resulting sequence
forms a Markov chain {Y 1

mis, θ
1;Y 2

mis, θ
2; . . . ;Y t+1

mis , θ t+1}, which must converge
to the conditional distribution p(Ymis|Yobs, θ) and is used to impute missing values
(Jackman, 2000; Horton and Lipsitz, 2001).

This method works properly under the MAR assumption and can handle both
continuous and categorical missing data although the latter do not assume normal-
ity (see Allison, 2001; Graham, 2009). Given, for instance, a binary or a two-level
categorical variable coded as 1 and 0, the proportion of responses with 1s will be
the same as the mean of that variable. Therefore, unbiased estimates for the vari-
ables are obtained even if multiple imputation-based models that assume normality
are used. When a two-level categorical variable is used as a covariate or indepen-
dent variable in regression analysis, the imputed values should be used without
rounding. If this variable is to be used in the analysis as a discrete binary vari-
able, then rounding should be done to the nearest value (0 or 1) as suggested by
Bernaards, Belin and Schafer (2007). For categorical variables with more than two
levels, these need to be dummy-coded first and k − 1 (where k is the number of
categories) dummy variables are included in the imputation model (Allison, 2001).
For example, if a variable such as marital status with six categories (never married,
married, divorced, widow, living together and not living together) contains missing
values and therefore needs to be imputed, it has to be dichotomized to obtain dum-
mies for never married, married, divorced, widow and living together respectively.
The imputation is done with only these five variables and filled-in values are used
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to produce final coding, while the sixth category (not living together) is treated as
a reference category.

3.2 Description of multiple imputation by chained equations

As any other imputation method, the MICE technique discards observations with
no information at all. This makes sense because if there is no information provided
on the variables to be used, regression coefficients, for instance, cannot be fitted.
However, when information is partially missing on these variables, the procedure
works as follows: (1) For all missing observations in the data set, missing values
are filled in with random draws from the observed values first or a simple impu-
tation such as the mean imputation is done for every missing value in a data set
(Azur et al., 2011). (2) By moving through the columns of variables, a single vari-
able imputation is performed using a method such as regression imputation. The
obtained new guess is temporally used to fill in the missing value of the variable on
which the regression was performed. Note that as we go along, previous guesses
are used in the regressions of other variables to be imputed until the whole data set
is imputed. (3) The new fitted values are used as replacements to the original in-
puts in stage (1). (4) The process is repeated until a certain number of cycles have
been completed or until convergence is attained (or until the distribution of param-
eters governing the imputations becomes stable). By repeating steps 1–4 above m

times, m imputed data sets are generated and analyzed using simple rules (Little
and Rubin, 2002). According to (Raghunathan et al., 2001), ten cycles are gener-
ally performed. However, as suggested by (Azur et al., 2011), research is needed to
determine the best possible number of cycles required to impute data under differ-
ent conditions. On the other hand, the number of m imputed data sets depends on
the size of the data set and the amount of missing information in the data set. When
generating imputations, a linear regression is used for continuous data, a logistic
regression is applied for binary variables, multinomial logistic and Poisson regres-
sions are utilised for polytomous and count variables respectively, etc. In fact, the
choice of a regression model depends on the nature of the variable to be imputed.

Another approach that is considered to be the best is the MICE Bayesian data
augmentation (see Rubin, 1987). It can be compared to a Markov chain that works
as follow: (1) start with imputation values (obtained from the mean imputation
for example) and update each imputation based on the state of the rest of the im-
puted values. For instance, consider variables Y , X1, X2 and X3 with initial values
chosen randomly. To impute X3 the values of Y , X1 and X2 are used to generate
imputation values. To impute X2, the imputed values of X3 are used together with
the values of Y and X1 and so on. This is in fact how the Markov chain is updated
using the Gibbs sampling method (Geman and Geman, 1984; Gelfand and Smith,
1990). In other words, the previous states of the Markov chain are utilised plus any
update that was already made about this particular iteration to create a new link in
the chain for the variable of interest.



528 I. Karangwa, D. Kotze and R. Blignaut

As this method is compared to a Markov chain, the aim is to build Markov
chains as part of the Bayesian estimates to draw samples from the posterior distri-
bution in order to derive some inferences about that posterior. To build a missing
data model that fits the Bayesian approach, missing values are treated as other pa-
rameters to estimate by drawing them from their posterior distribution. The model
is as follows:

f (β,Ymis|Yobs) ∝ f (Yobs|β,Ymis)f (β,Ymis), (5)

where β denotes the model parameters, Ymis and Yobs are the missing part and ob-
served data respectively. Equation (5) says that f (β,Ymis) is a function of the data
at hand rather than f (β). It is written as f (β,Ymis|Yobs) and is proportional to the
distribution of observed data conditional on model parameters β and the missing
values, Ymis, times some prior about β and Ymis. This proportional relationship be-
tween the right and the left of the equation (5) constitutes a key to the Bayes law
(Rubin, 1987). In this case, what is done (which is an augmentation process) is
sampling not only the model parameters β , but also the missing values, Ymis, out
of the posterior distribution using the Markov chain Monte Carlo procedure. By
doing so, many samples of Ymis and β are obtained. The draws or samples of Ymis
serve as imputations or filled in missing values.

Despite the growing popularity of MICE, it lacks theoretical justification
(Raghunathan et al., 2001). One concern is the probable incompatibility among the
conditional models; that is, the possibility that there is no joint distribution with
the conditionals of the assumed forms (He et al., 2010). However, as suggested by
Brand (1999) and Schafer and Graham (2002), this should not be a big problem in
applied settings. A number of researchers continuously use this technique as they
believe that it is the right method to handle any missing data given its flexibility
and capability to be used in a broad range of settings (Azur et al., 2011; Hughes
et al., 2014; Twisk et al., 2013; Lee and Carlin, 2010).

MICE works under the assumption that data are missing at random (MAR) and
unbiased results can only be obtained when this assumption is met.

4 Methodology

4.1 Description of the data sets used

The 2007 Demographic and Health Survey (DHS) data set conducted in the Demo-
cratic Republic of Congo (DRC) was used for the analysis. It consists of a house-
hold and women’s questionnaire, where a sample of women of reproductive age
(15–49 years old) were interviewed regardless of their marital status, in each sam-
pled household. Data were collected on fertility and family planning in addition
to socio-demographic and economic data. The sample considered in the analy-
sis included only women with the characteristics mentioned earlier, who were not
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pregnant at the time the interview was conducted and who were sexually active.
Respondents were asked about their knowledge and use of contraceptive meth-
ods, etc. Information on whether they have ever used any contraceptive method
was first obtained and then the types of contraceptive methods used were asked.
Contraceptive methods used included the modern (i.e., pill, injections and other),
traditional (i.e., abstinence and other) and folkloric (i.e., herbal plant and other)
methods. The dependent variable considered for the analysis was the women’s
contraceptive use status measured as any contraceptive method used by including
all women who reported using modern, traditional and folkloric methods coded as
1 and 0 to represent women who have never used any contraceptive method. The
objective was to determine the impact of marital status on contraceptive methods
status use, controlling for the region where the respondent resides.

To assess the performance of the multiple imputation using the MICE and joint
model or MVNI techniques, a completely observed data set or data set with no
missing data was used as a baseline. Based on this data set, a data set with values
missing at random (MAR) was created in such a way that missingness (missing
or present) was related to variables of interest in the data set. This assumption
is more practical than MCAR, as missing values must be connected to some of
the variables in the data sets. Therefore, to obtain the data set with missing val-
ues according to this assumption, values were deleted such that the bias could be
corrected with the observed data at hand. As the study baseline example is to de-
termine the impact of marital status on the contraceptive methods use status of
the women of reproductive age, controlling for the region of origin, values (about
30%) were deleted at random on variables marital status and region for women
who were not using any contraceptive method. This allowed missingness to be as-
sociated with the contraceptive method use status, which is a requirement of the
MAR assumption.

4.2 Analysis method

4.2.1 Imputation of missing values. Existing multiple imputation-based methods
assume that data are MAR, but as suggested by Rubin (1987), MNAR and MCAR
missing mechanisms can also be assumed if the objective is to compare the per-
formance of the multiple imputation-based methods. This study compares the per-
formance of the multivariate normal model (MVNI) and the multiple imputation
by chained equations (MICE) in terms of bias and standard errors’ estimates when
data are MAR.

The multiple imputation method normally replaces each missing value by an
array of m > 1 pseudo random values generated by a computer algorithm (Rubin,
1987) included in many statistical software packages such as SPSS, STATA, SAS,
etc. As highlighted by White, Royston and Wood (2011), many studies on mul-
tiple imputations say that 3 to 5 imputations are enough. However, according to
Wood et al. (2005), larger numbers of imputations are required if the objective
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is to compare imputation methods. To obtain sufficient accuracy while comparing
these methods, 100 imputations were used, which resulted in 100 different imputed
simulated versions of complete data sets. Each imputed data set was analysed sep-
arately using standard statistical techniques and the point estimates and standard
errors were recorded and then combined (averaged) to produce single estimates
that account for uncertainty due to missing data (Rubin, 1987). To avoid bias in the
analysis model, all the variables in the regression analysis model were included in
the imputation model as suggested by (White, Royston and Wood, 2011).

As this study example is to examine the impact of the marital status of a woman
of reproductive age on contraceptive method used controlling for her region of ori-
gin, only the dependent variable (contraceptive method use status) was included
in the imputation model. The variable marital status is a 6-level categorical vari-
able (never married, married, living together, widowed, divorced and not living
together) with missing at random values on it, whereas the variable region con-
tains 11 levels (Kinshasa, Bas Kongo, Bandundu, Equateur, Orientale, Nord Kivu,
Maniema, Sud Kivu, Katanga, Kasai Occidental and Kasai Oriental). To impute
these variables using MVNI, the Allison (2001) approach was used. That is, they
were first dichotomized before being imputed. Therefore, five dummy variables
(married, living together, widowed, divorced and not living together) were created
for marital status and included in the imputation model, treating the first category
(never married) as a reference category. Ten dummies (Bas Kongo, Bandundu,
Equateur, Orientale, Nord Kivu, Maniema, Sud Kivu, Katanga, Kasai Occidental
and Kasai Oriental) were also formed and included in the imputation model treat-
ing the first category (Kinshasa) as a reference. As suggested by several authors,
variables with binary outcomes can be imputed using parametric-based imputation
methods such as MVNI. These include Catellier et al. (2005) and Efron (1994).
Therefore, after dichotomisation, the variables considered in this study were im-
puted taking into account the suggestions of these authors. The rounding of the di-
chotomized variables was not needed as these variables were used as independent
variables in regression analysis. Dummy variables were included in the regression
model of interest to estimate parameters of interest.

The MVNI was performed using Stata’s implementation of Schafer’s NORM
program (Galati and Carlin, 2008) while the imputation using MICE was carried
out using a multinomial logistic regression to fill in missing values of nominal
variables (marital status and region variables in our case). The MICE command
in Stata was used to perform imputation with MICE (see Van Buuren and Knook,
1999).

4.2.2 Model development and computation of the performance measures. The
regression model with the baseline data set or data set with no missing values
was first estimated to get the values of the regression coefficients and their corre-
sponding standard errors. Then regression models with the imputed data sets using
MVNI and MICE were estimated and the results (in terms of slopes and standard
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errors) were recorded. To judge the performance of the multiple imputation meth-
ods of interest (MVNI and MICE), the bias was first computed based on the values
of the estimated coefficients for each data set. Then the MVNI and MICE tech-
niques were compared in terms of bias and standard errors to assess their perfor-
mance when data are missing at random (MAR) on unordered or nominal variables
with more than two levels or categories.

4.2.3 Imputation models’ diagnostics. The convergence check is normally done
through the Markov Chain Monte Carlo (MCMC) sequence, which must converge
to the desired distribution. This process is always accompanied by the investigation
of the serial dependence among the MCMC draws to obtain independent imputa-
tions. In fact, at each iteration, say T t , for instance, the imputation model is first
estimated using the observed data and the imputed data from the previous iteration,
say T t−1 and so on. New imputed values are then drawn from their distributions.
Consequently, each iteration is correlated with the previous imputation. The first
iteration is normally known to be atypical or different from other iterations and
because iterations are correlated, it can make other following iterations atypical
too. To avoid this problem, the algorithm of the multiple imputation methods goes
through the 10 first iterations and save only the results of the 10th iteration. The
first 9 iterations are referred to as the burn-in, say b, and to attain this period, the
number of imputations should be increased (Schafer, 1997).

Convergence is always examined using the series of parameter estimates rather
than the series of imputations. It is frequently examined visually from the trace
plots, which are plots of estimated parameters (summaries of the distribution such
as means, standard deviations, quantiles, etc.) against iteration numbers, and auto-
correlation plots of the estimated parameters. Long-term trends in trace plots and
a high serial dependence in autocorrelation plots indicate a slow convergence to
stationarity.

When the number of parameters in the imputation model is large, it may not
be possible to examine the convergence of all the individual series. One way to
solve this problem is to find a function of the parameters that would be the slow-
est to converge to stationarity. If the series of this function converges, then it is
a good sign that other functions will converge too, especially, individual parame-
ter series. As suggested by Schafer (1997), the worst linear function (WLF) is a
good choice of that function. It is a scalar function of parameter estimates which is
worse in the sense that its function values converge most slowly among parameters
in the MCMC method. For linear functions of the estimated parameters, a worst
linear function of parameters has the highest rate of missing information. Schafer
(1997) was able to show that when the observed data posterior distribution is ap-
proximately normal, this function becomes one of the slowest to attain stationarity.
The number of iterations needed for the chain to reach stationarity, say b, and the
number of iterations between imputations needed to get independent values of the
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chain, say k, can be also determined by checking the convergence of WLF. Visu-
ally, long-term trends in the estimates of the WLF are an indication that the chain
has attained convergence, whereas autocorrelations in the WLF gives an idea of
how many iterations can be used between imputations to ensure their approximate
independence.

The number of iterations needed for MVNI and MICE to converge to the sta-
tionary distribution depends on, among other things, the proportion of missing
information and initial values. The higher the percentage of missing information
and the farther the initial values are from the type of the posterior distribution
of missing data, the slower the convergence, and thus the larger the number of
iterations required. The existing literature suggests that in many real-world appli-
cations, a number of burn-in iterations sufficient for convergence lies between 5
and 20 iterations (Van Buuren, 2007). In this study, both trace plots and the worst
linear function were used to assess convergence as the number of parameters in the
imputation was large (16 in total).

5 Results and discussion

The primary goal of this paper was to investigate whether MVNI and MICE
produce similar results when data are missing at random on nominal variables
with more than two levels or categories. Previous studies have already compared
these methods under different circumstances and the results were reported. Schafer
(1997), Raghunathan et al. (2001) and Karangwa and Kotze (2013), for instance,
have found that these methods produce similar results when applied to continuous
and normally distributed data containing missing at random values. Finch (2010)
and Lee and Carlin (2010) showed that MVNI yield better estimates than MICE
when data are missing at random on ordinal variables. The performance of these
methods was also investigated when observations were partially missing on bi-
nary variables and their findings indicated that MVNI still outperformed MICE
in terms of parameter estimation and standard errors when data were missing at
random (Lee and Carlin, 2010; Demirtas et al., 2008). Kropko et al. (2014) inves-
tigated the performance of these two methods when data were missing at random
on continuous, binary, ordered and unordered categorical data with more than two
categories that were treated as outcome variables in the regression models. Their
findings revealed that MICE resulted in estimates that were less biased than MVNI
for each type of variable.

As suggested by Finch (2010) and Lee and Carlin (2010), further research was
still needed to determine the performance of these methods when data were miss-
ing at random on unordered or nominal variables. This study assessed the per-
formance of these methods when data were missing at random on nominal vari-
ables used as covariates in the regression models. Under MVNI, the suggestion
by Allison (2001) was taken into consideration. That is, the dichotomization of
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Table 1 Estimates of bias and standard errors (SE) obtained when data are missing at random on
variables marital status and region

Variable MVNI MICE

Marital status
Married −0.013 (0.133) 0.007 (0.137)
Living together −0.038 (0.139) −0.018 (0.143)
Widowed 0.126 (0.180) −0.014 (0.196)
Divorced −0.072 (0.176) −0.039 (0.180)
Not living together −0.026 (0.149) −0.011 (0.153)

Region
Bas Kongo 0.032 (0.062) 0.015 (0.066)
Bandundu 0.049 (0.062) 0.018 (0.064)
Equateur 0.055 (0.064) 0.045 (0.065)
Orientale 0.020 (0.075) 0.018 (0.074)
Nord Kivu 0.025 (0.072) 0.020 (0.073)
Maniema 0.038 (0.067) 0.033 (0.068)
Sud Kivu −0.010 (0.077) −0.011 (0.079)
Katanga 0.019 (0.065) 0.008 (0.066)
Kasai Occidental 0.025 (0.077) −0.008 (0.071)
Kasai Oriental −0.070 (0.073) −0.029 (0.076)

the variables of interest before their imputation. When imputing with MICE, the
multinomial logistic regression was used as the variables to be imputed were poly-
tomous.

The results regarding the performance of these methods are highlighted in this
section. In Table 1, the bias and standard errors obtained after the imputation
of missing values of the variables of interest, marital status and region, using
MVNI and MICE techniques are presented. In Figures 1 and 2, these two mea-
sures are plotted. The plot of bias shows that the MVNI method produces less
biased estimates (estimates of bias are close to zero) of slopes than MICE (see
Figure 1).

The plot of standard errors of the data set with no missing values (SE_BD)

and standard errors of the imputed data sets with MVNI (SE_MVNI) and MICE
(SE_MICE) is shown in Figure 2. As indicated, MVNI yields standard errors that
are closer to the standard errors from the model estimated with the data set without
missing data compared to MICE.

To ensure that the imputations converged to the desired distribution, the conver-
gence check was done. The estimates of the WLF were plotted against the iteration
numbers first and then versus the lag numbers for both MVNI and MICE methods.
The results are shown in Figures 3 and 4 for the MVNI approach, and in Figures 5
and 6 for the MICE technique. As indicated, the plots of the estimates of WLF
against the iteration numbers show no visible trend, thus indicating that conver-
gence is assured with the number of iterations used (1000 iterations). On the other
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Figure 1 Plot of bias after imputation of missing at random values using MVNI and MICE on the
variables marital status and region with the numbers 1–15 referring to the estimated coefficients of
variables defined in Table 1.

Figure 2 Plot of standard errors of the slopes obtained after imputation of missing at random
values using MVNI and MICE on the variables marital status and region with the numbers 1–15
referring to the estimated coefficients of variables defined in Table 1.

hand, the plots of WLF’s estimates against the lag numbers show the autocorrela-
tions that die off quickly, which suggest that even a smaller number (of iterations)
than what was used, such as 10 iterations between imputations, can be used to
obtain independent samples.

Considering all the above findings, one can deduce that when data are missing
at random on unordered or nominal variables with more than two levels, MVNI
would be a better approach to impute missing values, as it appears to be less biased
than MICE and produces better standard errors. These results differ from findings
by Kropko et al. (2014) possibly for the following reasons: (1) Unordered data with
missing at random observations considered in the analysis were treated as predic-
tors rather than outcome variables in the regression models. (2) Regression models
used in the analysis considered only unordered or categorical variables predictors,
as we believe that the performance of these two methods can be fully observed
when there is no influence of any other kind of variable. (3) A large number of im-
putations (100 imputations) were used in the imputation algorithm as opposed to
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Figure 3 Convergence of MCMC after MVNI when data are missing at random: plot of the esti-
mates of WLF against the iteration numbers.

Figure 4 Convergence of MCMC after MVNI when data are missing at random: plot of the esti-
mates of WLF versus the lag numbers.

Kropko et al. (2014) who used only 5. As suggested by Wood et al. (2005), when
it comes to comparing missing data methods, the number of imputations should be
increased as much as possible.

6 Conclusion and recommendations

When faced with missing values on nonordered or nominal categorical missing
data, the aim of this study was to assess the performance of the MICE approach
that takes into account the distributional form of the variables to be imputed and
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Figure 5 Convergence of MCMC after MICE when data are missing at random: plot of the esti-
mates of WLF against the iteration numbers.

Figure 6 Convergence of MCMC after MICE when data are missing at random: plot of the esti-
mates of WLF versus the lag numbers.

MVNI which assume a joint multivariate normal distribution of the variables in the
imputation model. When imputing data using MVNI, the Allison (2001) approach
was used. That is, the variables to be imputed were first dichotomised and then
included directly in the imputation model without rounding, treating the first cate-
gories as references. The results obtained after imputation of data sets with MVNI
and MICE techniques were compared to the results obtained using the data set with
no missing data. The findings indicated that although MVNI was initially designed
for parametric variables, it produces more accurate and less biased estimates than
MICE when observations are missing at random. As with any research paper, this
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study has some limitations. First, only unordered variables with missing at random
data were considered in the analysis. In future, we aim to consider missing at ran-
dom data for a mixture of variables types such as continuous, ordinal and nominal
as predictors in the regression models. This study used a DHS data set, which is
a complex survey with a complex sampling design and weighting procedure that
need to be taken into consideration during the analysis. This issue is addressed by
Reiter, Raghunathan and Kinney (2006), Schenker et al. (2006), He et al. (2010)
and Molenberghs et al. (2015) amongst others. However, the results of this study
are based on the regular database (without taking into account the randomization
distribution due to the sample selection procedure) as we believe that this does not
invalidate the findings that aimed to compare the multiple imputation methods of
interest. Therefore, further research is still needed to determine the performance
of MVNI and MICE when this issue is considered.
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