Open Access
November 2014 A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
M. Kelbert, Yu. Suhov, A. Yambartsev
Braz. J. Probab. Stat. 28(4): 515-537 (November 2014). DOI: 10.1214/13-BJPS222

Abstract

We consider infinite random causal Lorentzian triangulations emerging in quantum gravity for critical values of parameters. With each vertex of the triangulation we associate a Hilbert space representing a bosonic particle moving in accordance with the standard laws of Quantum Mechanics. The particles interact via two-body potentials decaying with the graph distance. A Mermin–Wagner type theorem is proven for infinite-volume reduced density matrices related to solutions to DLR equations in the Feynman–Kac (FK) representation.

Citation

Download Citation

M. Kelbert. Yu. Suhov. A. Yambartsev. "A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins." Braz. J. Probab. Stat. 28 (4) 515 - 537, November 2014. https://doi.org/10.1214/13-BJPS222

Information

Published: November 2014
First available in Project Euclid: 30 July 2014

zbMATH: 1303.82011
MathSciNet: MR3263063
Digital Object Identifier: 10.1214/13-BJPS222

Keywords: Causal Lorentzian triangulations , compact Lie group action , FK-DLR equations , Invariance , quantum bosonic system with continuous spins , reduced density matrix , size-biased critical Galton–Watson branching process , the Feynman–Kac representation

Rights: Copyright © 2014 Brazilian Statistical Association

Vol.28 • No. 4 • November 2014
Back to Top