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Partitioning measure of quasi-symmetry for square
contingency tables
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Abstract. For the analysis of square contingency tables, we propose the
Kullback–Leibler information type measure to represent the degree of de-
parture from the quasi-symmetry (QS) model. We introduce the global quasi-
symmetry (GQS) model, and show that the QS model holds if and only if both
the GQS and extended quasi-symmetry (EQS) models hold. Furthermore, we
propose a measure of departure from each of the GQS and the EQS models,
and show that the value of measure of QS is equal to the sum of the value of
measure of GQS and that of EQS.

1 Introduction

Consider an R × R square contingency table with same row and column classifi-
cations. Let pij denote the probability that an observation will fall in the ith row
and the j th column of the table (i = 1, . . . ,R; j = 1, . . . ,R). Caussinus (1966)
proposed the quasi-symmetry (QS) model defined by

pij = αiβjψij for i = 1, . . . ,R; j = 1, . . . ,R,

where ψij = ψji . A special case of this model obtained by putting {αi = βi} is
the symmetry model (Bowker, 1948; Bishop, Fienberg and Holland, 1975, p. 282).
We note that the symmetric association model proposed by Goodman (1979) is
equivalent to the QS model.

Denote the odds ratio for rows i and j (> i), and columns s and t (> s) by
θij ;st = (pispjt )/(pjspit ). Using odds ratios, the QS model is expressed as, for
example,

θij ;jk = θjk;ij for i < j < k. (1.1)

This indicates the symmetry of odds ratios with respect to the main diagonal of the
table. From equation (1.1), the QS model is further expressed as

Dijk = Dkji for i < j < k, (1.2)

where Dijk = pijpjkpki and Dkji = pkjpjipik . See Caussinus (1966) for more
details about the QS model.
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Tomizawa (1984) considered the extended quasi-symmetry (EQS) model de-
fined by

Dijk = γDkji for i < j < k.

A special case of this model obtained by putting γ = 1 is the QS model. If the QS
model holds, then the EQS model holds; but the converse does not hold. Therefore,
we are interested in seeing what structure is necessary for obtaining the QS model
in addition to the structure of EQS. The decomposition of the QS model into two
models may be useful for seeing the reason for the poor fit of the QS model when
the QS model does not hold for the given data.

Some topics related to quasi-symmetry are described in many articles (e.g.,
Kateri and Papaioannou, 1997; Caussinus, 2002; Tomizawa and Tahata, 2007). For
instance, some models that are extension of quasi-symmetry have been proposed
in Tahata and Tomizawa (2006) and Tomizawa et al. (2007).

Consider the data in Table 1, taken from Tominaga (1979, p. 130). These data
describe the cross-classification of Japanese father’s and his son’s academic back-
ground which were examined in 1955 and 1975. Note that category (1) is elemen-
tary school; (2) junior high school; (3) high school; and (4) university. We denote
the move to the son’s level j from his father’s level i by “i → j .” For Table 1, the
QS model indicates that for a given order i < j < k, the probability that i → j ,
j → k and k → i (we shall call the probability for right circulation for conve-
nience), is equal to the probability that k → j , j → i and i → k (we shall call the
probability for left circulation). Namely, the QS model states that for a given order
i < j < k, the probability that for each of two father–son pairs the son’s level is

Table 1 Cross-classification of Japanese father’s and his son’s academic background; taken from
Tominaga (1979, p. 130)

Son’s educational level

Father’s educational level (1) (2) (3) (4) Total

(a) Examined in 1955
(1) 374 602 170 64 1210
(2) 18 255 139 71 483
(3) 4 23 42 55 124
(4) 2 6 17 53 78

Total 398 886 368 243 1895

(b) Examined in 1975
(1) 161 569 386 107 1223
(2) 11 262 318 112 703
(3) 2 43 168 144 357
(4) 0 8 55 128 191

Total 174 882 927 491 2474



Partitioning measure of quasi-symmetry 355

higher than his father’s level (i.e., i → j and j → k), and for one pair the son’s
level is lower than his father’s level (i.e., k → i), is equal to the probability that
for each of two pairs the son’s level is lower than his father’s level (i.e., k → j

and j → i), and for one pair the son’s level is higher than his father’s level (i.e.,
i → k). Also, the EQS model indicates that for a given order i < j < k, the prob-
ability that i → j , j → k and k → i is γ times higher than the probability that
k → j , j → i and i → k. Namely, the EQS model states that for any three father–
son pairs, the probability that for each of two pairs the son’s level is higher than his
father’s level, and for one pair the son’s level is lower than his father’s level, is γ

times higher than the probability that for each of two pairs the son’s level is lower
than his father’s level, and for one pair the son’s level is higher than his father’s
level. Therefore, as the value of γ approaches the infinity (or zero), the stochastic
circular structure tends to arise stronger among any three father–son pairs, where
the stochastic circular structure means that the probability of left circulation is
greater (or less) than that of right circulation. When the QS model holds, there is
not the stochastic circular structure in the table in a sense that the probability of
left circulation is equal to that of right circulation.

When the QS model does not hold, we may be interested in a measure to rep-
resent the degree of departure from QS. Similarly, when the EQS model does
not hold, we are interested in measuring what degree the departure from EQS
is. The QS model further may be expressed as Qijk = Qkji for i < j < k where
Qijk = pc

ijp
c
jkp

c
ki and Qkji = pc

kjp
c
jip

c
ik with pc

st = pst/(pst + pts) for s �= t .
Tahata, Miyamoto and Tomizawa (2004) considered the measure to represent the
degree of departure from QS (see Appendix A). This is the power-divergence type
measure and is expressed as a function of {Qlmn}. Since the QS model also is
expressed as (1.2), we are interested in a measure to represent the degree of de-
parture from QS as a function of {Dlmn}, namely, in a measure to represent the
degree of departure from the equality of the probability for right circulation and
the probability for left circulation for any three row-column pairs of observations.

The purpose of this paper is (i) to introduce the global quasi-symmetry (GQS)
model, (ii) to consider the decomposition of QS model, and (iii) to propose the
measures that represent the degree of departure from each of the QS, the GQS and
the EQS models.

Section 2 describes the decomposition of the QS model. Section 3 proposes the
measures to represent the degree of departure from each of the QS, the GQS and
the EQS models. Moreover, Section 4 shows that the value of measure of QS is
equal to the sum of the value of measure of GQS and that of EQS. The measures
of departure from symmetry and decompositions of model have been proposed by,
for example, Tahata et al. (2004) and Tomizawa (1984). However, we point out that
using these methods we cannot decompose the QS model and measure the degree
of departure from QS and EQS.
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2 Decomposition of quasi-symmetry model

Consider the global quasi-symmetry (GQS) model defined by
∑

i<j<k

Dijk = ∑
i<j<k

Dkji .

This indicates that the sum of the probabilities for right circulation is equal to
the sum of the probabilities for left circulation (although, for some i < j < k the
probability for right circulation would be greater than that for left circulation, and
for the others the probability for right circulation would be less than that for left
circulation). We note that (i) the QS model indicates that the probability for right
circulation is equal to that for left circulation for all i < j < k, and (ii) the EQS
model indicates that the probability for right circulation is γ times higher than
that for left circulation for all i < j < k. Namely, (i) when the QS model holds,
the GQS model holds, and (ii) when the EQS model with γ �= 1 holds, the GQS
model does not hold. We obtain the following theorem.

Theorem 1. The QS model holds if and only if both the EQS and GQS models
hold.

Proof. If the QS model holds, then the EQS and GQS models hold. Assume that
both the EQS and GQS models hold. Then we see

∑
i<j<k

Dijk − ∑
i<j<k

Dkji = (γ − 1)
∑

i<j<k

Dkji = 0.

Thus, we obtain γ = 1 because
∑

i<j<k Dkji �= 0. Therefore, the QS model holds.
The proof is completed. �

3 Measures for three quasi-symmetric models

3.1 Measure for quasi-symmetry

We shall define a measure that represents the degree of departure from the QS
model. Note that it is different from the measure proposed by Tahata et al. (2004).

Let

� = ∑
i<j<k

(Dijk + Dkji),

and let for i < j < k,

D
(1)
ijk = Dijk

�
, D

(2)
ijk = Dkji

�
.
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Assuming that {Dijk + Dkji �= 0}, consider the measure defined by

�QS = 1

log 2
minimum
{E(1)

ijk,E
(2)
ijk}

I1,

where

I1 = ∑
i<j<k

[
D

(1)
ijk log

(D
(1)
ijk

E
(1)
ijk

)
+ D

(2)
ijk log

(D
(2)
ijk

E
(2)
ijk

)]
,

∑
i<j<k

(
E

(1)
ijk + E

(2)
ijk

) = 1, E
(1)
ijk > 0, E

(2)
ijk > 0, E

(1)
ijk = E

(2)
ijk.

This measure indicates, essentially, the minimum value of Kullback–Leibler infor-
mation between {D(1)

ijk,D
(2)
ijk} and an arbitrary {E(1)

ijk,E
(2)
ijk} with the structure of QS.

Subject to
∑

i<j<k(E
(1)
ijk + E

(2)
ijk) = 1 and E

(1)
ijk = E

(2)
ijk , we consider minimiz-

ing I1. Then we can obtain {E(1)
ijk = E

(2)
ijk = (D

(1)
ijk + D

(2)
ijk)/2}. Thus, the measure

may be expressed as

�QS = 1

log 2

∑
i<j<k

[
D

(1)
ijk log

(D
(1)
ijk

Cijk

)
+ D

(2)
ijk log

(D
(2)
ijk

Cijk

)]
,

where Cijk = (D
(1)
ijk + D

(2)
ijk)/2. We see that {D(1)

ijk = D
(2)
ijk = Cijk} when the QS

model holds. The quantities {Cijk,Cijk} minimize the value of Kullback–Leibler

information between {D(1)
ijk,D

(2)
ijk} and an arbitrary {E(1)

ijk,E
(2)
ijk} with the structure

of QS.
We see that 0 ≤ �QS ≤ 1 because 0 ≤ I1 ≤ log 2. If the QS model holds, then

I1 = 0 since {D(1)
ijk = D

(2)
ijk = Cijk}. Also, if I1 = 0, then {D(1)

ijk = D
(2)
ijk = Cijk} hold

(i.e., the QS model holds). Therefore, we can obtain that �QS = 0 if and only if
the QS model holds. On the other hand, if D

(1)
ijk = 0 (then D

(2)
ijk > 0) or D

(2)
ijk = 0

(then D
(1)
ijk > 0), then I1 = log 2 holds, and the converse is also true. So, we can

obtain that �QS = 1 if and only if the degree of departure from QS is the largest in
a sense that D

(1)
ijk = 0 (then D

(2)
ijk > 0) or D

(2)
ijk = 0 (then D

(1)
ijk > 0).

We shall call the structure, which for some (or all) i < j < k, the probability
for right circulation is zero (and then the probability for left circulation is not
zero), and for the others (or all) the probability for left circulation is zero (and then
the probability for right circulation is not zero), the strongest stochastic circular
structure. Namely, the strongest stochastic circular structure arises when �QS = 1.
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3.2 Measure for global quasi-symmetry

We shall consider a measure to represent the degree of departure from the GQS
model. Let

D(1) = ∑
i<j<k

D
(1)
ijk, D(2) = ∑

i<j<k

D
(2)
ijk.

The GQS model can be expressed as

D(1) = D(2)(= 1
2

)
.

Assuming that {Dijk + Dkji �= 0}, consider the measure defined by

�GQS = 1

log 2

{
D(1) log

(
D(1)

1/2

)
+ D(2) log

(
D(2)

1/2

)}
.

This is obtained by the similar manner to Section 3.1. We see that (i) 0 ≤ �GQS ≤
1, (ii) �GQS = 0 if and only if the GQS model holds, and (iii) �GQS = 1 if and only
if the degree of departure from GQS is the largest in a sense that D(1) = 0 (then
D(2) = 1) or D(2) = 0 (then D(1) = 1). Namely, when �GQS = 1, the strongest
stochastic circular structure arises because the probability for right circulation is
zero (and then the probability for left circulation is not zero) for all i < j < k or the
probability for left circulation is zero (and then the probability for right circulation
is not zero) for all i < j < k.

3.3 Measure for extended quasi-symmetry

We shall define a measure that represents the degree of departure from the EQS
model.

Assuming that D(1) �= 0, D(2) �= 0 and {D(1)
ijk +D

(2)
ijk �= 0}, consider the measure

defined by

�EQS = 1

log 2
minimum
{E(1)

ijk,E
(2)
ijk}

I2,

where

I2 = ∑
i<j<k

[
D

(1)
ijk log

(D
(1)
ijk

E
(1)
ijk

)
+ D

(2)
ijk log

(D
(2)
ijk

E
(2)
ijk

)]
,

∑
i<j<k

(
E

(1)
ijk + E

(2)
ijk

) = 1, E
(1)
ijk > 0, E

(2)
ijk > 0,

E
(1)
ijk

E
(2)
ijk

= γ.

This measure indicates, essentially, the minimum value of Kullback–Leibler in-
formation between {D(1)

ijk,D
(2)
ijk} and an arbitrary {E(1)

ijk,E
(2)
ijk} with the structure of

EQS.
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Subject to
∑

i<j<k(E
(1)
ijk + E

(2)
ijk) = 1 and E

(1)
ijk = γE

(2)
ijk , we consider minimiz-

ing I2. Then we can obtain {E(1)
ijk = D(1)(D

(1)
ijk + D

(2)
ijk)} and {E(2)

ijk = D(2)(D
(1)
ijk +

D
(2)
ijk)}. Thus, the measure �EQS may be expressed as

�EQS = 1

log 2

∑
i<j<k

[
D

(1)
ijk log

(D
(1)
ijk

G
(1)
ijk

)
+ D

(2)
ijk log

(D
(2)
ijk

G
(2)
ijk

)]
,

where

G
(1)
ijk = D(1)(D(1)

ijk + D
(2)
ijk

)
, G

(2)
ijk = D(2)(D(1)

ijk + D
(2)
ijk

)
.

The quantities {G(1)
ijk,G

(2)
ijk} minimize the value of Kullback–Leibler information

between {D(1)
ijk,D

(2)
ijk} and an arbitrary {E(1)

ijk,E
(2)
ijk} with the structure of EQS. We

see that (i) 0 ≤ �EQS ≤ 1, (ii) �EQS = 0 if and only if the EQS model holds, and
(iii) �EQS = 1 if and only if the degree of departure from EQS is the largest in
a sense that D

(1)
ijk = 0 (then D

(2)
ijk > 0) or D

(2)
ijk = 0 (then D

(1)
ijk > 0) and D(1) =

D(2) = 1/2; namely, although the sum of the probabilities for right circulation is
equal to the sum of the probabilities for left circulation, the strongest stochastic
circular structure arises for each i < j < k.

4 Relationships between the measures

Assuming that D(1) �= 0, D(2) �= 0 and {D(1)
ijk + D

(2)
ijk �= 0}, we obtain the following

theorem.

Theorem 2. The value of �QS is equal to the sum of the value of �GQS and the
value of �EQS.

Proof. We see

�GQS + �EQS

= 1

log 2

∑
i<j<k

[
D

(1)
ijk log

(
D(1)

1/2

)
+ D

(2)
ijk log

(
D(2)

1/2

)

+ D
(1)
ijk log

(D
(1)
ijk

G
(1)
ijk

)
+ D

(2)
ijk log

(D
(2)
ijk

G
(2)
ijk

)]

= 1

log 2

∑
i<j<k

[
D

(1)
ijk log 2 + D

(2)
ijk log 2
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+ D
(1)
ijk log

( D
(1)
ijk

D
(1)
ijk + D

(2)
ijk

)
+ D

(2)
ijk log

( D
(2)
ijk

D
(1)
ijk + D

(2)
ijk

)]

= 1

log 2

∑
i<j<k

[
D

(1)
ijk log

(D
(1)
ijk

Cijk

)
+ D

(2)
ijk log

(D
(2)
ijk

Cijk

)]
.

This is equal to �QS. The proof is completed. �

From Theorem 2, we obtain �EQS = �QS − �GQS. Therefore, the measure
�EQS also would indicate the degree of departure from the QS model excluding
the influence of degree of departure from the GQS model.

Since the value of �EQS is greater than or equal to zero, we also obtain the
following theorem.

Theorem 3. The value of �QS is greater than or equal to the value of �GQS. The
equality holds if and only if there is a structure of EQS in the R × R table.

From 0 ≤ �QS ≤ 1 and 0 ≤ �GQS < 1 (note that �GQS �= 1 because D(1) > 0
and D(2) > 0 being the assumption), we see that 0 ≤ �EQS ≤ 1. Moreover, from
Theorems 2 and 3, (i) �EQS = 0 if and only if �QS = �GQS; namely, this indicates
that the degree of departure from QS is equal to the degree of departure from
GQS, (ii) �EQS = 1 if and only if �QS = 1 and �GQS = 0; namely, the degree
of departure from QS is the largest and there is a structure of GQS. Note that
�EQS = 1 indicates that Dijk/Dkji = ∞ for some i < j < k and Dijk/Dkji = 0
for the other i < j < k, and

∑
i<j<k Dijk = ∑

i<j<k Dkji .

5 Approximate confidence interval and model fitting

Let nij denote the observed frequency in the ith row and j th column of the table
(i = 1, . . . ,R; j = 1, . . . ,R) with n = ∑∑

nij . Assume that {nij } have a multino-
mial distribution. We shall consider the approximate confidence intervals for the
measures �QS, �GQS and �EQS (say, �) using the delta method as described by,
for example, Bishop et al. (1975, Section 14.6). The sample version of �, that
is, �̂, is given by � with {pij } replaced by {p̂ij }, where p̂ij = nij /n. Using the
delta method,

√
n(�̂ − �) has asymptotically (as n → ∞) a normal distribution

N(0, σ 2). The variances are given in Appendix B. Let σ̂ 2 denote σ 2 with {pij }
replaced by {p̂ij }. Then σ̂ /

√
n is an estimated approximate standard error for �̂.

Thus, we obtain the approximate confidence intervals for the measures. Note that
the approximate confidence intervals for the measures should be referred when the
sample size is large.
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The maximum likelihood estimates of expected frequencies under the models
described in this paper could be obtained using the iterative procedures, for ex-
ample, using the Newton–Raphson method to the log-likelihood equations. Each
model can be tested for goodness of fit by, for example, the likelihood ratio chi-
squared statistic with the corresponding degrees of freedom. Also, Lawal (2003,
Chap. 11) discussed on model fitting with SAS and SPSS.

6 Example

Consider the data in Table 1 again. We are interested in seeing how strongly there
is the stochastic circular structure in Tables 1(a) and 1(b) by using the proposed
measures. From Table 2, we can infer that the stochastic circular structure arises
because the confidence interval do not contain zero for �QS applied to the data
in Table 1(a). On the other hand, since the confidence interval for �QS applied to
the data in Table 1(b) contains zero, these may indicate that the stochastic circular
structure does not arise, or if it is not so, that the stochastic circular structure arises
very little. Also, the degrees of departure from QS for Tables 1(a) and 1(b) are
estimated to be 34.1 percent and 6.4 percent of the maximum degree of departure
from QS, respectively. When the degrees of departure from QS in Tables 1(a) and
1(b) are compared using the estimated measure, it is greater for Table 1(a) than for
Table 1(b). Since the data in Table 1(a) rather than in Table 1(b) is estimated to be
close to the strongest stochastic circular structure, we can see that the educational
mobility for any three father–son pairs in 1955 is greater than that in 1975.

Moreover, we consider the data in Table 1 for more detail. We can decompose
the value of �QS into the values of �GQS and �EQS from Theorem 2. From Ta-
ble 2, we see that �̂GQS = 0.311 and �̂EQS = 0.030 for Table 1(a). Thus, we would
say that the degree of departure from QS for Table 1(a) strongly depends on the
degree of departure from GQS. Namely, we can conjecture that the data in Table 1

Table 2 Estimates of �QS, �GQS and �EQS, their approximate standard errors and 95% confi-
dence intervals, applied to Tables 1(a) and 1(b)

Measure Estimated measure Standard error Confidence interval

(a) For Table 1(a)
�QS 0.341 0.149 (0.049, 0.632)
�GQS 0.311 0.146 (0.024, 0.597)
�EQS 0.030 0.031 (−0.030, 0.089)

(b) For Table 1(b)
�QS 0.064 0.092 (−0.117, 0.245)
�GQS 0.034 0.066 (−0.096, 0.164)
�EQS 0.030 0.033 (−0.035, 0.094)
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is close to the structure that the probability for right circulation is zero for all three
father–son pairs or the probability for left circulation is zero for all three father–
son pairs. Consequently, it may be inferred that for any three father–son pairs the
educational mobility that for each of two father–son pairs the son’s level is higher
than his father’s level and for one pair the son’s level is lower than his father’s level
rather than the reverse educational mobility arises.

We see that �̂GQS = 0.034 and �̂EQS = 0.030 for Table 1(b). Thus, we would
say that the degree of departure from GQS is nearly equal to that from EQS.

7 Concluding remarks

We note that �QS is invariant under arbitrary permutations of row and column
categories, but �GQS and �EQS are not. Thus, it is suitable to use �GQS and �EQS
for analyzing the data on an ordinal scale. Also, it may be possible to use �QS for
analyzing the data on an ordinal scale when we may not use the information about
category ordering. Similarly, it is suitable to use the GQS and EQS models for
analyzing the data on an ordinal scale, and it may be possible to use the QS model
for analyzing the data on an ordinal scale by ignoring the ordering of categories.

Consider the artificial data in Tables 3(a) and 3(b). From Table 4(a), the value
of �̂QS for Table 3(a) is close to that for Table 3(b). We see that (i) for Ta-
ble 3(a), the value of �̂GQS is large but the value of �̂EQS is small; on the other
hand, (ii) for Table 3(b), the value of �̂GQS is small but the value of �̂EQS is
large. Let D̂ijk (D̂kji) be given by Dijk (Dkji) with {pij } replaced by {p̂ij }.
Since for Table 3(a) the values of D̂ijk/D̂kji for all i < j < k are greater than
1 (Table 4(b)), the probability for right circulation is estimated to be greater
than the probability for left circulation for all i < j < k. On the other hand,
for Table 3(b), D̂123/D̂321 = 15.10 and D̂234/D̂432 = 16.13 are greater than 1
but D̂124/D̂421 = 0.13 (thus (D̂124/D̂421)

−1 = 7.69) and D̂134/D̂431 = 0.14 (thus
(D̂134/D̂431)

−1 = 7.14) are less than 1. These (Table 4(b)) indicate that (1) for Ta-

Table 3 Artificial data (n is sample size)

(a) n = 883
10 211 64 32
43 20 106 18
12 8 30 186
23 5 75 40

(b) n = 1022
10 63 54 72
93 20 86 28

112 8 30 6
120 245 35 40
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Table 4 Values of �̂QS, �̂GQS and �̂EQS, and values of D̂ijk/D̂kji applied
to Tables 3(a) and 3(b)

(a) Estimated measures

Table �̂QS �̂GQS �̂EQS

3(a) 0.578 0.577 0.001
3(b) 0.533 0.082 0.451

(b) {D̂ijk/D̂kji}
(i, j, k)

Table (1,2,3) (1,2,4) (1,3,4) (2,3,4)

3(a) 12.19 12.70 9.51 9.13
3(b) 15.10 0.13 0.14 16.13

ble 3(a), it is likely that there is the structure of EQS but it is unlikely that there is
the structure of GQS, and (2) for Table 3(b), it is unlikely that there is the structure
of EQS but it is somewhat likely that there is the structure of GQS.

Theorem 2 is useful for seeing, e.g., that (1) for Table 3(a) the large departure
from QS would be the influence of large departure from GQS (rather than EQS)
and (2) for Table 3(b) it would be the influence of large departure from EQS (rather
than GQS).

We see from Theorems 2 and 3 that the value of �EQS increases as the dif-
ference between the degree of departure from QS and that from GQS increases
(especially as the degree of departure from QS increases and that from GQS de-
creases). Also, the value of �EQS attains the maximum value (equals 1) when the
degree of departure from QS is maximum and that from GQS is minimum. There-
fore, �EQS would be useful when we want to see what degree the departure from
EQS is toward the complete asymmetry with a structure of GQS when there is not
a structure of EQS in the square table.

Appendix A

Let δ = ∑
i<j<k(Qijk + Qkji), and for i < j < k,

Q∗
ijk = Qijk

δ
, Q∗

kji = Qkji

δ
, C∗

ijk = C∗
kji = 1

2

(
Q∗

ijk + Q∗
kji

)
.

Tahata et al. (2004) proposed the measure as follows: Assuming that Qijk +Qkji �=
0 for i < j < k, the measure is defined by

φ
(λ)
QS = λ(λ + 1)

2λ − 1
I (λ) for λ > −1,
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where

I (λ) = 1

λ(λ + 1)

∑
i<j<k

[
Q∗

ijk

{(Q∗
ijk

C∗
ijk

)λ

− 1
}

+ Q∗
kji

{(Q∗
kji

C∗
kji

)λ

− 1
}]

,

and the value at λ = 0 is taken to be the limit as λ → 0.

Appendix B

Denote the asymptotic variances for �̂QS, �̂GQS and �̂EQS by σ 2
QS, σ 2

GQS and

σ 2
EQS, respectively, divided by n. These are given as follows:

σ 2
QS = ∑

a<b

(
1

pab

(
A

QS
ab

)2 + 1

pba

(
B

QS
ab

)2
)
, (B.1)

where

A
QS
ab = 1

log 2

[ ∑
i<j<k

{
D

(1)
ijk log

(D
(1)
ijk

Cijk

)
(I(i=a,j=b) + I(j=a,k=b))

+ D
(2)
ijk log

(D
(2)
ijk

Cijk

)
I(i=a,k=b)

}
− �QS�

(1)
ab (log 2)

]
,

with

�
(1)
ab = ∑

s<t<u

(
D

(1)
stuI(s=a,t=b) + D

(1)
stuI(t=a,u=b) + D

(2)
stuI(s=a,u=b)

)
,

and where B
QS
ab is defined as A

QS
ab obtained by interchanging D

(1)
ijk and D

(2)
ijk , and

I(·) = 1 if true, 0 if not;

σ 2
GQS = ∑

a<b

(
1

pab

(
A

GQS
ab

)2 + 1

pba

(
B

GQS
ab

)2
)
, (B.2)

where

A
GQS
ab = 1

log 2

[ ∑
i<j<k

{
D

(1)
ijk log

(
D(1)

1/2

)
(I(i=a,j=b) + I(j=a,k=b))

+ D
(2)
ijk log

(
D(2)

1/2

)
I(i=a,k=b)

}
− �GQS�

(1)
ab (log 2)

]
,

and where B
GQS
ab is defined as A

GQS
ab obtained by interchanging D

(1)
ijk and D

(2)
ijk and

interchanging D(1) and D(2);

σ 2
EQS = ∑

a<b

(
1

pab

(
A

EQS
ab

)2 + 1

pba

(
B

EQS
ab

)2
)
, (B.3)
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where

A
EQS
ab = 1

log 2

[ ∑
i<j<k

{
D

(1)
ijk log

(D
(1)
ijk

G
(1)
ijk

)
(I(i=a,j=b) + I(j=a,k=b))

+ D
(2)
ijk log

(D
(2)
ijk

G
(2)
ijk

)
I(i=a,k=b)

}
− �EQS�

(1)
ab (log 2)

]
,

and where B
EQS
ab is defined as A

EQS
ab obtained by interchanging D

(1)
ijk and D

(2)
ijk and

interchanging G
(1)
ijk and G

(2)
ijk .
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