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Abstract. The paper by Kumaraswamy (Journal of Hydrology 46 (1980)
79–88) introduced a probability distribution for double bounded random pro-
cesses which has considerable attention in hydrology and related areas. Based
on this distribution, we propose a generalization of the Kumaraswamy distri-
bution refereed to as the exponentiated Kumaraswamy distribution. We derive
the moments, moment generating function, mean deviations, Bonferroni and
Lorentz curves, density of the order statistics and their moments. We also
present a related distribution, so-called the log-exponentiated Kumaraswamy
distribution, which extends the generalized exponential (Aust. N. Z. J. Stat. 41
(1999) 173–188) and double generalized exponential (J. Stat. Comput. Simul.
80 (2010) 159–172) distributions. We discuss maximum likelihood estima-
tion of the model parameters. In applications to real data sets, we show that
the log-exponentiated Kumaraswamy model can be used quite effectively in
analyzing lifetime data.

1 Introduction

The beta distribution has been utilized extensively in statistical theory and practice
for over one hundred years. The beta distribution is very flexible to model data res-
tricted to any finite interval since it can take an amazingly great variety of forms
depending on the values of the index parameters. Many of the finite range distri-
butions encountered in practice can be easily transformed into the standard beta
distribution. In econometrics, several types of data are modeled by finite range
distributions. The application turns to be more interesting when the interval used
is the standard unit interval (0,1), since the data can be interpreted as rates or
proportions. The beta density is defined by

gB(x;a, b) = 1

B(a, b)
xa−1(1 − x)b−1, x ∈ (0,1),

where its two shape parameters a and b are positive and B(·, ·) is the beta func-
tion. Beta densities are unimodal, uniantimodal, increasing, decreasing or constant
depending on the values of a and b.
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Beta distributions are very versatile and a variety of uncertainties can be usefully
modeled by them. This flexibility encourages its empirical use in a wide range of
applications. On the other hand, Kumaraswamy (1980) argues that the beta distri-
bution does not faithfully fit hydrological random variables such as daily rainfall,
daily stream flow, etc. Also, according to Jones (2009, p. 70) “the beta distribution
is fairly tractable, but in some ways not fabulously so. In particular, its distribution
function is an incomplete beta function ratio and its quantile function the inverse
thereof.” The cumulative distribution function (c.d.f.) of the Kumaraswamy (1980)
distribution, say K(α,β), is given by

GK(x;α,β) = 1 − (1 − xα)β, x ∈ (0,1), (1.1)

where α > 0 and β > 0 are shape parameters. This compares extremely favorably
in terms of simplicity with the beta c.d.f. which is given by the incomplete beta
function ratio. The probability density function (p.d.f.) corresponding to (1.1) is

gK(x;α,β) = αβxα−1(1 − xα)β−1, x ∈ (0,1). (1.2)

The K density is unimodal, uniantimodal, increasing, decreasing or constant de-
pending (in the same way as the beta distribution) on the values of its parameters.
It can be shown that the K distribution has the same basic shape properties of the
beta distribution (Kumaraswamy, 1980): α > 1 and β > 1 (unimodal); α < 1 and
β < 1 (uniantimodal); α > 1 and β ≤ 1 (increasing); α ≤ 1 and β > 1 (decreas-
ing); α = β = 1 (constant). For a detailed survey of the K distribution, the reader
is referred to Jones (2009).

The K distribution does not seem to be very familiar to statisticians and has not
been investigated systematically in much detail before, nor has its relative inter-
changeability with the beta distribution has been widely appreciated. Jones (2009)
explored the background and genesis of the K distribution and, more importantly,
made clear some similarities and differences between the beta and K distributions.
He highlighted several advantages of the K distribution over the beta distribution:
the normalizing constant is very simple; simple explicit formulae for the distribu-
tion and quantile functions which do not involve any special functions; a simple
formula for random variate generation; explicit formulae for moments of order
statistics and L-moments. Further, according to Jones (2009), the beta distribu-
tion has the following advantages over the K distribution: simpler formulae for
moments and moment generating function (m.g.f.); a one-parameter sub-family of
symmetric distributions; simpler moment estimation and more ways of generating
the distribution via physical processes.

In hydrology and related areas, for example, the K distribution has received
considerable interest, see Sundar and Subbiah (1989), Fletcher and Ponnambalam
(1996), Seifi et al. (2000), Ponnambalam et al. (2001) and Ganji et al. (2006).
According to Nadarajah (2008), many papers in the hydrological literature have
used this distribution because it is deemed as a “better alternative” to the beta
distribution, see, for example, Koutsoyiannis and Xanthopoulos (1989).
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It is well-known that both beta and K distributions are special cases of the three-
parameter density function

gGB(x;p,q, δ) = p

B(q, δ)
xqp−1(1 − xp)δ−1, x ∈ (0,1), (1.3)

where p > 0. This is the generalized beta distribution (McDonald, 1984). Beta and
K distributions correspond to the special cases (p, q, δ) = (1, a, b) and (p, q, δ) =
(α,1, β), respectively.

Generalized distributions have been widely studied in statistics and numerous
authors have developed various types of generalizations. In this article, we propose
two new distributions: the exponentiated Kumaraswamy (EK) distribution and its
log-transform. Some mathematical properties of both distributions are derived and
maximum likelihood estimation of their parameters is discussed.

The rest of the paper is organized as follows. In Section 2, we introduce the EK
distribution. We give expansions for the moments and moment generating func-
tion in Sections 3 and 4, respectively. In Section 5, we obtain the mean devia-
tions and Bonferroni and Lorentz curves. Section 6 deals with order statistics and
their moments, L-moments and entropy. In Section 7, we discuss maximum like-
lihood estimation and inference. In Section 8, we introduce the log-exponentiated
Kumaraswamy (log-EK) distribution, which extends the generalized exponential
(Gupta and Kundu, 1999) and double generalized exponential (Barreto-Souza et
al., 2010) distributions, and provide some mathematical properties. In Section 9,
we apply the log-EK distribution to two real data sets to show that it can be used
quite effectively in analyzing lifetime data. Finally, concluding remarks are ad-
dressed in Section 10.

2 Exponentiated Kumaraswamy distribution

The construction of the exponentiated distribution is rather simple and is based
on the observation that by raising an arbitrary c.d.f. G(x) to an arbitrary power
γ > 0, a new c.d.f. F(x) = G(x)γ emerges with one additional parameter. The
parameter γ characterizes the skewness, kurtosis and tails of the F distribution. In
this construction, G(x) is the baseline distribution and F(x) may be refereed to as
the exponentiated G distribution. The relation between the corresponding density
functions is f (x) = γG(x)γ−1g(x). We note that for γ > 1 and γ < 1 and for
larger values of x, the multiplicative factor γG(x)γ−1 is greater and smaller than
one, respectively. The reverse assertion is also true for smaller values of x. The
latter immediately implies that the ordinary moments associated with the density
f (x) are strictly larger (smaller) than those associated with the density g(x) when
γ > 1 (γ < 1).

Since 1995, the exponentiated distributions have been widely studied in statis-
tics and numerous authors have developed various classes of these distributions.
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Mudholkar et al. (1995) proposed the exponentiated Weibull distribution. Its prop-
erties have been studied in more detail by Mudholkar and Hutson (1996) and
Nassar and Eissa (2003). Gupta and Kundu (1999) introduced the exponenti-
ated exponential distribution as a generalization of the standard exponential dis-
tribution. Nadarajah and Kotz (2006) proposed, based on the same idea, four
more exponentiated type distributions to extend the standard gamma, standard
Weibull, standard Gumbel and standard Fréchet distributions. Barreto-Souza and
Cribari-Neto (2009) developed the exponentiated exponential-Poisson distribu-
tion, whereas Silva et al. (2010) proposed the exponentiated exponential-geometric
distribution. More recently, Lemonte and Cordeiro (2011) introduced the exponen-
tiated generalized inverse Gaussian distribution. Here, in the same way, we gener-
alize the K distribution.

A random variable X has the EK distribution with parameters α,β and γ , say
EK(α,β, γ ), if its cumulative function is

FEK(x;α,β, γ ) = [1 − (1 − xα)β]γ , x ∈ (0,1), (2.1)

where α, β and γ are positive shape parameters. Clearly, if γ = 1, the EK dis-
tribution reduces to the K distribution. The EK density function can be written
as

fEK(x;α,β, γ ) = αβγ xα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1,
(2.2)

x ∈ (0,1).

The distribution (2.2) provides more options for analyzing data restricted to the
interval (0,1). Plots of the EK density for selected choices of the parameters α, β ,
γ are given in Figure 1.

The inverse of the distribution function (2.1) yields a very simple quantile func-
tion

Q(y) = {1 − (1 − y1/γ )1/β}1/α, y ∈ (0,1),

which facilitates ready quantile-based statistical modeling (Gilchrist, 2001). In ad-
dition, Q(y) gives a trivial random variable generation. If U ∼ U (0,1), then X ∼
EK(α,β, γ ) is given by

X = {1 − (1 − U1/γ )1/β}1/α.

This compares extremely favorably with the sophisticated algorithms preferred to
generate random variates from the beta distribution (see, e.g., Jones, 2009).

The EK density (2.2) can be written as a linear combination of K densities. For
a > 0 real noninteger, a series representation for (1−z)a−1 which holds for |z| < 1
is

(1 − z)a−1 =
∞∑

j=0

(−1)j�(a)

�(a − j)j !z
j , (2.3)
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Figure 1 EK densities for selected values of γ : (a) α = 5 and β = 2; (b) α = 2 and β = 2.5;
(c) α = 0.5 and β = 0.5; (d) α = 1 and β = 3.

where �(·) is the gamma function. For γ > 0 real noninteger, using the series
expansion (2.3) in (2.2), yields

fEK(x;α,β, γ ) =
∞∑

j=0

(−1)j�(γ + 1)

�(γ − j)(j + 1)!gK
(
x;α,β(j + 1)

)
. (2.4)

If γ > 0 is an integer, the index j in the above sum stops at γ − 1. Equation (2.4)
means in turn that the EK density is an infinite (or finite) linear combination of
K densities and, therefore, some of its mathematical properties can be obtained
directly from those of the K distribution, as for example, ordinary, inverse and
factorial moments, m.g.f., characteristic function, etc.

Equation (2.4) (and others expansions in this article) can be computed numer-
ically in software such as MAPLE (Garvan, 2002), MATLAB (Sigmon and Davis,
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2002) and MATHEMATICA (Wolfram, 2003). These symbolic software have cur-
rently the ability to deal with analytic expressions of formidable size and com-
plexity. In numerical applications, a large natural number, N say, can be used in
the sums instead of infinity.

3 Moments

We hardly need to emphasize the necessity and importance of the moments in
any statistical analysis especially in applied work. Some of the most important
features and characteristics of a distribution can be studied through moments (e.g.,
tendency, dispersion, skewness and kurtosis). Let X be a random variable with den-
sity (2.2). The r th moment of the EK distribution is E(Xr) = αβγ

∫ 1
0 xr+α−1(1 −

xα)β−1[1 − (1 − xα)β]γ−1 dx. Setting t = 1 − (1 − xα)β in the integral, yields
E(Xr) = γ

∫ 1
0 [1 − (1 − t)1/β ]r/αtγ−1 dt . For r/α > 0 real noninteger, we obtain

from expansion (2.3)

E(Xr) = γ�

(
1 + r

α

) ∞∑
j=0

(−1)jB(γ,1 + j/β)

�(1 + r/α − j)j ! . (3.1)

For r/α > 0 integer, the index j in the above sum stops at r/α. If γ = 1, equa-
tion (3.1) reduces to E(Xr) = βB(1 + r/α,β), which agrees with the r th moment
of the K distribution; see, for example, equation (3.5) in Jones (2009). An alter-
native expansion to (3.1) follows from the linear combination (2.4) (for γ real
noninteger) given by

E(Xr) = β�(γ + 1)

∞∑
j=0

(−1)jB(1 + r/α,β(j + 1))

�(γ − j)j ! . (3.2)

If γ is a positive integer, the upper limit in the above sum is γ − 1. This result
shows a useful application of the infinite linear combination for the EK density.
Plots of the skewness and kurtosis of the EK distribution as a function of γ for
selected values of α and β = 1.2 are given in Figure 2.

4 Moment generating function

Let X ∼ EK(α,β, γ ). The m.g.f. of X, M(t) say, and characteristic function
(c.h.f.), φ(t) say, are given by M(t) = ∑∞

r=0
t r

r! E(Xr) and φ(t) = ∑∞
r=0

(it)r

r! E(Xr),
respectively, where i = √−1 and E(Xr) is obtained from (3.1) or (3.2). We now
derive new representations for M(t) and φ(t). The m.g.f. of X can be expressed
from equation (2.4) as

M(t) =
∞∑

j=0

(−1)j�(γ + 1)

�(γ − j)(j + 1)!MK
(
t;α,β(j + 1)

)
, (4.1)



The exponentiated Kumaraswamy distribution and its log-transform 37

Figure 2 Plots of the skewness and kurtosis of the EK distribution as a function of γ for some
values of α and β = 1.2.

where MK is the m.g.f. of the K distribution. It comes from equation (1.2) as

MK(t) = MK(t;α,β) = αβ

∫ 1

0
exp(tx)xα−1(1 − xα)β−1 dx.

Using the representation (2.3), the last equation can be further expanded as

MK(t) = αβ

∞∑
s=0

(−1)s�(β)

�(β − s)s!
∫ 1

0
exp(tx)xα(s+1)−1 dx. (4.2)

However, the m.g.f. of the beta distribution with parameters (α(s + 1),1) is just
given by the above integral divided by the beta function B(α(s + 1),1). From this
fact we conclude, after some algebra, that

MK(t) = αβ

∞∑
s=0

(−1)s�(β)

�(β − s)α(s + 1)!1F1
(
α(s + 1), α(s + 1) + 1; t),

where 1F1 is the confluent hypergeometric function defined by

1F1(a, b; t) =
∞∑

m=0

(a)m

(b)m

tm

m! ,

and (a)m is the Pochhammer symbol given by

(a)m = a(a + 1) · · · (a + m − 1) = �(a + m)

�(a)
= (−1)m�(1 − a)

�(1 − a − m)
.

By combining equations (4.1) and (4.2), M(t) can be expressed as

M(t) = αβ

∞∑
j,s=0

(−1)j+s�(γ + 1)�(β(j + 1))

�(γ − j)�(β(j + 1) − s)αj !(s + 1)!
(4.3)

× 1F1
(
α(s + 1), α(s + 1) + 1; t).
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The m.g.f. of the EK distribution is then a double infinite series of confluent hy-
pergeometric functions. Equation (4.3) is the main result of this section. Setting
γ = 1, we obtain the m.g.f. of the K distribution, which seems not to be known in
the literature. Its c.h.f. of the EK distribution follows from (4.3) by substituting t

by it .

5 Mean deviations and Bonferroni and Lorentz curves

The amount of scatter in a population is evidently measured to some extent
by the totality of deviations from the mean and median. If X has the EK dis-
tribution with c.d.f. F(x), we can derive the mean deviations about the mean
ν = E(X) and about the median m from the relations δ1 = ∫ ∞

0 |x − ν|f (x)dx and
δ2 = ∫ ∞

0 |x − m|f (x)dx, respectively. The median is m = [1 − (1 − 2−γ )1/β ]1/α .
Defining the integral I (a) = ∫ a

0 xf (x)dx, these measures can be calculated from
δ1 = 2νF (ν) − 2I (ν) and δ2 = ν − 2I (m), where F(ν) = [1 − (1 − να)β]γ .

We now derive a formula to obtain the integral I (a). From equation (2.4) and
using (1.2) and (2.3), we obtain for γ > 0 real noninteger

I (a) = αβ

∞∑
r,j=0

(−1)j+r�(γ + 1)�(β(j + 1))aα(r+1)+1

j !r!�(γ − j)�(β(j + 1) − r)(α(r + 1) + 1)
. (5.1)

If γ is a positive integer, the index j in the above sum stops at γ − 1. The mean
deviations for the K distribution follow from equation (5.1) with γ = 1.

Bonferroni and Lorenz curves have applications not only in economics to study
income and poverty, but also in other fields like reliability, demography, insurance
and medicine. They are defined by B(p) = I (q)/(pν) and L(p) = I (q)/ν, respec-
tively, where ν = E(X) and q = F−1(p) = Q(p) = {1 − (1 −p1/γ )1/β}1/α . These
measures can be calculated immediately from equation (5.1) evaluated at a = q .

6 Order statistics, L-moments and entropy

We now give the density of the ith order statistic Xi:n, say fi:n(x), in a random
sample of size n from the EK distribution. From equations (2.1) and (2.2), we can
write fi:n(x) as

fi:n(x) = αβγ xα−1(1 − xα)β−1{1 − [1 − (1 − xα)β]γ }n−i

B(i, n + 1 − i){1 − (1 − xα)β}1−γ i
.

Using the binomial expansion, the density of the ith order statistic can be expressed
as a finite linear combination of EK densities

fi:n(x) = 1

B(i, n + 1 − i)

n−i∑
k=0

(−1)k
(n−i

k

)
k + i

fEK
(
x;α,β, γ (k + i)

)
. (6.1)
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Additionally, the c.d.f. of the ith order statistic Xi:n, say Fi:n(x), is a finite linear
combination of EK cumulative functions

Fi:n(x) = 1

B(i, n + 1 − i)

n−i∑
k=0

(−1)k
(n−i

k

)
k + i

FEK
(
x;α,β, γ (k + i)

)
.

The density of the ith order statistic Xi:n can be represented as an infinite linear
combination of K densities

fi:n(x) =
∞∑

j=0

n−i∑
k=0

(−1)(k+j)
(n−i

k

)
�(γ (k + i) + 1)

(k + i)�(γ (k + i) − j)(j + 1)!
gK(x;α,β(j + 1))

B(i, n + 1 − i)
. (6.2)

Using equation (6.2), we can provide some mathematical characteristics of the EK
order statistics directly as linear functions of similar characteristics of K distribu-
tions.

From equations (3.2) and (6.1), the r th moment of the ith order statistic Xi:n is
given by

E(Xr
i:n) = β

∞∑
j=0

n−i∑
k=0

(−1)j+k
(n−i

k

)
�(γ (k + i) + 1)

�(γ (k + i) − j)(k + i)j !
B(1 + r/α,β(j + 1))

B(i, n + 1 − i)
. (6.3)

The L-moments (Hosking, 1990) are analogous to the ordinary moments but can
be estimated by linear combinations of order statistics. They are linear functions
of expected order statistics defined by

τr+1 = (r + 1)−1
r∑

k=0

(−1)k

(
r

k

)
E(Xr+1−k:r+1), r = 0,1,2, . . . .

The first four L-moments are: τ1 = E(X1:1), τ2 = 1
2E(X2:2 − X1:2), τ3 =

1
3E(X3:3 − 2X2:3 + X1:3) and τ4 = 1

4E(X4:4 − 3X3:4 + 3X2:4 − X1:4). The L-
moments have the advantage that they exist whenever the mean of the distribution
exists, even though some higher moments may not exist, and are relatively robust
to the effects of outliers. From equation (6.3), we can obtain expansions for the
L-moments of the EK distribution.

The entropy of a random variable is a measure of uncertainty variation. The
Rényi entropy is defined as IR(δ) = (1 − δ)−1 log{∫

R
f δ(x)dx}, where δ > 0 and

δ �= 1. For δ(γ − 1) + 1 > 0 real noninteger (if integer, we consider the binomial
expansion), using the series representation (2.3), we can write

f δ
EK(x) = (αβγ )δxδ(α−1)

∞∑
j=0

(−1)j�(δ(γ − 1) + 1)

�(δ(γ − 1) + 1 − j)j !(1 − xα)δ(β−1)+βj .

The density f δ
EK(x) can be expressed as an infinite (a finite) mixture of generalized
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beta densities as defined in equation (1.3)

f δ
EK(x) = (βγ )δαδ−1

∞∑
j=0

(−1)j�(δ(γ − 1) + 1)

�(δ(γ − 1) + 1 − j)j !

× gGB(x;α, δ(1 − 1/α) + 1/α, δ(β − 1) + βj + 1)

[B(δ(1 − 1/α) + 1/α, δ(β − 1) + βj + 1)]−1 .

Under these conditions, the Rényi entropy of the EK distribution follows as

IR(δ) = 1

1 − δ
log

{
(βγ )δαδ−1

∞∑
j=0

(−1)j�(δ(γ − 1) + 1)

�(δ(γ − 1) + 1 − j)j !

× B
(
δ(1 − 1/α) + 1/α, δ(β − 1) + βj + 1

)}
.

For furthers details, see Song (2001).

7 Estimation and inference

The estimation of the model parameters is investigated by the method of maximum
likelihood. Let x = (x1, . . . , xn)

� be a random sample of the EK distribution with
unknown parameter vector θ = (α,β, γ )�. The log-likelihood function 
(θ) for θ
is


(θ) = n log(αβγ ) + (α − 1)

n∑
i=1

log(xi) + (β − 1)

n∑
i=1

log(1 − xα
i )

+ (γ − 1)

n∑
i=1

log{1 − (1 − xα
i )β}.

The components of the score vector U(θ) = (Uα,Uβ,Uγ )� are

Uα = n

α
+

n∑
i=1

log(xi) + (1 − β)

n∑
i=1

xα
i log(xi)

1 − xα
i

+ β(γ − 1)

n∑
i=1

xα
i (1 − xα

i )β−1 log(xi)

1 − (1 − xα
i )β

,

Uβ = n

β
+

n∑
i=1

log(1 − xα
i ) + (1 − γ )

n∑
i=1

(1 − xα
i )β log(1 − xα

i )

1 − (1 − xα
i )β

and

Uγ = n

γ
+

n∑
i=1

log{1 − (1 − xα
i )β}.
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Setting these expressions to zero, U(θ) = 0, and solving them simultaneously
yields the maximum likelihood estimate (MLE) θ̂ = (α̂, β̂, γ̂ )� of the three param-
eters. These equations cannot be solved analytically and statistical software can
be used to solve them numerically via iterative techniques such as the Newton–
Raphson algorithm.

For interval estimation of α,β and γ , and tests of hypotheses on these parame-
ters, we obtain the observed information matrix, since the expected information
matrix is very complicated and requires numerical integration. The 3 × 3 ob-
served information matrix J(θ) is obtained in the form J(θ) = −∂2
(θ)/∂θ ∂θ�,
whose elements are given in Appendix A. The multivariate normal N3(0,J(̂θ)−1)

distribution can be used to construct approximate confidence intervals and con-
fidence regions for the parameters. In fact, asymptotic 100(1 − η)% confidence
intervals for α, β and γ are given, respectively, by α̂ ± zη/2 × [v̂ar(α̂)]1/2,
β̂ ±zη/2 ×[v̂ar(β̂)]1/2 and γ̂ ±zη/2 ×[v̂ar(γ̂ )]1/2, where var(·) is the diagonal ele-
ment of J(̂θ)−1 corresponding to each parameter, and zη/2 is the quantile (1−η/2)

of the standard normal distribution.
The likelihood ratio (LR) statistic is useful for testing the goodness-of-fit of

the EK model and for comparing it with the K model. We can easily check if
the fit using the EK model is statistically “superior” to a fit using the K model
for a given data set by computing w = 2{
(α̂, β̂, γ̂ ) − 
(α̃, β̃,1)}, where α̂, β̂ and
γ̂ are the unrestricted MLEs and α̃ and β̃ are the restricted estimates. Also, w

is asymptotically distributed under the null model as χ2
1 . The LR test rejects the

null hypothesis if w > ξη, where ξη denotes the upper 100η% point of the χ2
1

distribution.

8 The log-EK distribution

For the first time, we introduce the log-exponentiated Kumaraswamy (log-EK)
distribution which can be useful to model lifetime data. If X ∼ EK(α,β, γ ), we
define the standard log-EK distribution by Y = − log(1 − X). Its density function
is

glog-EK(y;α,β, γ ) = αβγ
e−y(1 − e−y)α−1[1 − (1 − e−y)α]β−1

{1 − [1 − (1 − e−y)α]β}1−γ
,

(8.1)
y > 0.

The corresponding c.d.f. and hazard rate function are, respectively,

Glog-EK(y;α,β, γ ) = {1 − [1 − (1 − e−y)α]β}γ
and

h(y) = αβγ
e−y(1 − e−y)α−1[1 − (1 − e−y)α]β−1{1 − [1 − (1 − e−y)α]β}γ−1

1 − {1 − [1 − (1 − e−y)α]β}γ .
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Figure 3 Plots of the density and hazard rate functions of the standard log-EK distribution.

We introduce a scale parameter σ > 0 in the density (8.1) using the scale trans-
formation Z = σY . We say that Z has the log-EK distribution and denote by
Z ∼ log-EK(σ,α,β, γ ). The log-EK distribution is very flexible and it contains
the following special sub-models:

• Double generalized exponential (DGE) distribution (Barreto-Souza et al., 2010)
for γ = 1;

• Generalized exponential (GE) distributions (Gupta and Kundu, 1999), namely
GE(σ−1, αβ), GE(σ−1β,γ ) and GE(σ−1, α) for the choices γ = 1, α = 1 and
β = γ = 1, respectively.

Plots of the density and hazard rate functions of the standard log-EK distribution
for selected parameter values are given in Figure 3.

8.1 Order statistics

Here, we demonstrate that the log-EK density can be expressed as an infinite (or
finite) linear combination of beta generalized exponential (BGE) densities. The
BGE distribution was first introduced and studied by Barreto-Souza et al. (2010).
It is denoted by BGE(a, b, λ,α) (for a, b,λ,α > 0) for which the density function
is

fBGE(w;a, b,λ,α)

= αλ

B(a, b)
e−λz(1 − e−λw)αa−1{1 − (1 − e−λw)α}b−1, w > 0.

For γ > 0 real noninteger, we use equation (2.3) to obtain

{1 − [1 − (1 − e−y)α]β}γ−1 =
∞∑

j=0

(−1)j�(γ )

�(γ − j)j ! [1 − (1 − e−y)α]βj .
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Hence, the density (8.1) can be expressed as an infinite (or finite) linear combina-
tion of BGE densities

glog-EK(y;α,β, γ ) =
∞∑

j=0

(−1)j�(γ + 1)

�(γ − j)(j + 1)!fBGE
(
y;1, β(j + 1),1, α

)
, (8.2)

with y > 0. If γ > 0 is integer, the upper limit in the above sum is γ − 1. So,
a treatment of some mathematical properties of the log-EK distribution can be
easily derived from similar properties of the BGE distribution.

Let Y1, . . . , Yn be a random sample following the log-EK distribution with pa-
rameters α,β, γ > 0. The density of the ith order statistic is given by

gi:n(y) = αβγ e−y(1 − e−y)α−1[1 − (1 − e−y)α]β−1{1 − [1 − (1 − e−y)α]β}γ i−1

/
(
B(i, n + i − 1)

{
1 − {1 − [1 − (1 − e−y)α]β}γ }i−n)

,

with y > 0, for i = 1, . . . , n. From the binomial expansion, we obtain

{
1 −{1 −[1 − (1 − e−y)α]β}γ }n−i =

n−i∑
k=0

(−1)k

(
n − i

k

)
{1 −[1 − (1 − e−y)α]β}γ k.

Thus, the density of the ith order statistic can be rewritten as a finite linear combi-
nation of log-EK densities

gi:n(y) = 1

B(i, n + 1 − i)

n−i∑
k=0

(−1)k

k + i

(
n − i

k

)
glog-EK

(
y;α,β, γ (k + i)

)
, (8.3)

where y > 0.
Alternatively, combining equations (8.2) and (8.3), the density of the log-EK

order statistics can be rewritten as an infinite linear combination of BGE densities

gi:n(y) =
∞∑

j=0

n−i∑
k=0

(−1)k+j�(γ (k + i) + 1)
(n−i

k

)
(k + i)�(γ (k + i) − j)(j + 1)!

(8.4)

× fBGE(y;1, β(j + 1),1, α)

B(i, n + 1 − i)
.

Some of the results for the BGE distribution (Barreto-Souza et al., 2010) are
readily applicable to the distributions of the log-EK order statistics using equa-
tion (8.4).

8.2 Moments

Consider the random variable Y ∼ log-EK(α,β, γ ), with γ and β real non-
integers. We now provide expansions for the moments and m.g.f. of a random
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variable following the standard log-EK distribution. Using (8.2) and the results by
Barreto-Souza et al. (2010), the m.g.f. of Y can be expressed as

E(etY ) = αβ�(γ + 1)

∞∑
k,j=0

(−1)j+k�(β(j + 1))B(1 − t, k + 1)

�(γ − j)�(β(j + 1) − k)j !k! (8.5)

for t < 1. Hence, the r th moment of the standard log-EK distribution can be ob-
tained from E(Y r) = drE(etY )/dt r |t=0. Thus, it follows for γ > 0 and β > 0 real
nonintegers that

E(Y r) = αβ�(γ + 1)
(8.6)

×
∞∑

k,j=0

(−1)j+k+r�(β(j + 1))

�(γ − j)�(β(j + 1) − k)j !k!
drB(p,α(k + 1))

dpr

∣∣∣∣
p=1

.

If γ > 0 is integer, the index j in the sums (8.5) and (8.6) stops at γ −1. If β > 0 is
integer, for each j , the index k in the sums (8.5) and (8.6) k stops at β(j + 1) − 1.
Plots of the skewness and kurtosis of the standard log-EK distribution are given in
Figure 4 for selected parameter values.

Expressions for the m.g.f. and moments of the ith order statistic from a random
sample of the log-EK distribution can be easily obtained from equation (8.3) and
some results of this section. For example, the r th moment of the ith order statistic
is given by

E(Y r
i:n) = αβ

B(i, n + 1 − i)

∞∑
j,k=0

n−i∑
k=0

(−1)l+j+k+r
(n−i

k

)
�(γ (l + i) + 1)

�(γ (l + i) − j)�(β(j + 1) − k)

× �(β(j + 1))

(k + i)j !k!
drB(p,α(k + 1))

dpr

∣∣∣∣
p=1

.

Figure 4 Plots of the skewness and kurtosis of the standard log-EK distribution as a function of γ

for selected values of α and β = 1.2.
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8.3 Rényi entropy

The log-EK density, if δ(γ − 1) + 1 > 0 is real noninteger (if integer, we use the
binomial expansion), has the series representation

gδ
log-EK(y) = (αβγ )δ

∞∑
j=0

(−1)j�(δ(γ − 1) + 1)

�(δ(γ − 1) + 1 − j)j !
× e−δy(1 − e−y)δ(α−1)[1 − (1 − e−y)α](β−1)δ+βj .

Setting y = − log(1 − u), the Rényi entropy of the standard log-EK distribution
reduces to

IR(δ) = (1 − δ)−1 log

{
(αβγ )δ

∞∑
j=0

(−1)j�(δ(γ − 1) + 1)

�(δ(γ − 1) + 1 − j)j !cj (α,β, δ)

}
.

Here, cj (α,β, δ) = ∫ 1
0 (1 − uα)δ(β−1)+βjuδ(α−1)(1 − u)δ−1 du. We can easily cal-

culate cj (α,β, δ) from the integral of the beta distribution. We have

cj (α,β, δ) = �
(
δ(β − 1) + βj + 1

) ∞∑
r=0

(−1)rB(δ(α − 1) + rα + 1, δ)

�(δ(β − 1) + βj + 1 − r)r! ,

and then we obtain the Rényi entropy as desired. If δ(β −1)+βj +1 is an integer,
the index r in the above sum stops at δ(β − 1) + βj + 1.

8.4 Maximum likelihood estimation

Let z = (z1, . . . , zn)
� be a random sample of the log-EK distribution with un-

known parameter vector θ = (σ,α,β, γ )�. The log-likelihood function for θ is


(θ) = n log
(

αβγ

σ

)
+ (α − 1)

n∑
i=1

log(1 − e−zi/σ ) − 1

σ

n∑
i=1

zi

+ (β − 1)

n∑
i=1

log
(
1 − (1 − e−zi/σ )α

)

+ (γ − 1)

n∑
i=1

log
{
1 − (

1 − (1 − e−zi/σ )α
)β}

.

The components of the score vector U(θ) = (Uσ ,Uα,Uβ,Uγ )� are

Uσ = − n

σ
+ 1

σ 2

n∑
i=1

zi − (α − 1)

σ 2

n∑
i=1

zie−zi/σ

1 − e−zi/σ

+ α(β − 1)

σ 2

n∑
i=1

zie−zi/σ (1 − e−zi/σ )α−1

1 − (1 − e−zi/σ )α
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− αβ(γ − 1)

σ 2

n∑
i=1

zie−zi/σ (1 − e−zi/σ )α−1[1 − (1 − e−zi/σ )α]β−1

1 − [1 − (1 − e−zi/σ )α]β ,

Uα = n

α
+

n∑
i=1

log(1 − e−zi/σ ) + (1 − β)

n∑
i=1

(1 − e−zi/σ )α log(1 − e−zi/σ )

1 − (1 − e−zi/σ )α

+ β(γ − 1)

n∑
i=1

(1 − e−zi/σ )α(1 − (1 − e−zi/σ )α)β−1 log(1 − e−zi/σ )

1 − (1 − (1 − e−zi/σ )α)β
,

Uβ = n

β
+

n∑
i=1

log
(
1 − (1 − e−zi/σ )α

)

+ (1 − γ )

n∑
i=1

(1 − (1 − e−zi/σ )α)β log(1 − (1 − e−zi/σ )α)

1 − (1 − (1 − e−zi/σ )α)β

and

Uγ = n

γ
+

n∑
i=1

log
{
1 − (

1 − (1 − e−zi/σ )α
)β}

.

The MLE θ̂ = (σ̂ , α̂, β̂, γ̂ )� of θ = (σ,α,β, γ )� is obtained by solving the non-
linear equations U(θ) = 0. These equations cannot be solved analytically but sta-
tistical software can be used to solve them numerically.

The approximate multivariate normal N4(0,J(̂θ)−1) distribution can be used
to construct confidence intervals for the parameters (see discussion of Section 7).
The elements of the 4 × 4 observed information matrix J(θ) = −∂2
(θ)/∂θ ∂θ�
is given in Appendix B. In addition, we can compare the fits of the log-EK dis-
tribution with its sub-models for a given data set via the LR test. For example, to
test σ = 1, the LR statistic becomes w = 2{
(σ̂ , α̂, β̂, γ̂ ) − 
(1, α̃, β̃, γ̃ )}, where
σ̂ , α̂, β̂ and γ̂ are the unrestricted estimates and α̃, β̃ and γ̃ are the restricted es-
timates. The LR test rejects the null hypothesis if w > ξη, where ξη denotes the
upper 100η% point of the χ2

1 distribution.

9 Applications

In this section, we compare the results of fitting the log-EK(σ,α,β, γ ), DGE(σ,

α,β) and GE(σ,α) distributions to two real data sets. All the computations were
done using the R programming language (R Development Core Team, 2009).

First, we consider the data set consisting of the length of intervals between the
times at which vehicles pass a point on a road. The data are given in Table 1, and
their source is Jørgensen (1982). The MLEs of the model parameters (standard
errors in parentheses) and the values of the AIC (Akaike Information Criterion),
CAIC (Consistent Akaike Information Criterion) and BIC (Bayesian Information
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Table 1 Traffic data

2.50 2.60 2.60 2.70 2.80 2.80 2.90 3.00 3.00 3.10 3.20 3.40
3.70 3.90 3.90 3.90 4.60 4.70 5.00 5.60 5.70 6.00 6.00 6.10
6.60 6.90 6.90 7.30 7.60 7.90 8.00 8.30 8.80 8.80 9.30 9.40
9.50 10.1 11.0 11.3 11.9 11.9 12.3 12.9 12.9 13.0 13.8 14.5

14.9 15.3 15.4 15.9 16.2 17.6 20.1 20.3 20.6 21.4 22.8 23.7
23.7 24.7 29.7 30.6 31.0 34.1 34.7 36.8 40.1 40.2 41.3 42.0
44.8 49.8 51.7 55.7 56.5 58.1 70.5 72.6 87.1 88.6 91.7 119.8

Criterion) are given in Table 2. From the values of these statistics, we note that the
log-EK model is better than the DGE and GE models fitted to these data. The LR
statistic to test the hypotheses H0: DGE against H1: log-EK and H0: GE against
H1: log-EK are 12.606 (p-value: < 0.001) and 16.5324 (p-value: < 0.001), re-
spectively. Thus, we reject the null hypotheses in favor of the log-EK distribution
using any usual significance level. Therefore, the log-EK distribution is signifi-
cantly better than the DGE and GE distributions based on the LR statistic.

As a second application, we analyze a real data set on the active repair times
(hours) for an airborne communication transceiver. The data are given in Table 3,
and their source is Jørgensen (1982). Table 4 gives the MLEs of the model pa-
rameters (standard errors in parentheses) and the values of AIC, CAIC and BIC.
Again, from the values of these statistics, we conclude that the log-EK model pro-
vides a better fit to these data than the DGE and GE models. The LR statistic to
test the hypotheses H0: DGE against H1: log-EK and H0: GE against H1: log-EK
are 6.428 (p-value: 0.011) and 8.3712 (p-value: 0.015), respectively. Thus, the
log-EK distribution is significantly better than the DGE and GE distributions.

Plots of the estimated densities of the log-EK, DGE and GE models fitted for
the data sets corresponding to Table 1 and 3, respectively, are given in Figure 5.
These plots give evidence that the log-EK distribution is superior to the DGE and
GE distributions in terms of model fit.

Table 2 MLEs of the model parameters; traffic data

Estimates Statistic

Distribution σ α β γ AIC CAIC BIC

log-EK 3.2817 7.7912 0.1101 0.4225 675.13 675.64 672.68
(0.1176) (3.2225) (0.0256) (0.0889)

DGE 3.4139 2.0049 0.1759 685.74 686.04 683.04
(0.1071) (0.5296) (0.0209)

GE 20.0627 1.1198 687.67 687.81 685.05
(2.8509) (0.1672)
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Table 3 Active repair times (hours)

0.50 0.60 0.60 0.70 0.70 0.70 0.80 0.80
1.00 1.00 1.00 1.00 1.10 1.30 1.50 1.50
1.50 1.50 2.00 2.00 2.20 2.50 2.70 3.00
3.00 3.30 4.00 4.00 4.50 4.70 5.00 5.40
5.40 7.00 7.50 8.80 9.00 10.20 22.00 24.50

10 Concluding remarks

We have introduced a three parameter distribution, so-called the exponentiated Ku-
maraswamy distribution, as a simple extension of the Kumaraswamy distribution
(Kumaraswamy, 1980). We also proposed a related distribution, refereed to as the
log-exponentiated Kumaraswamy (log-EK) distribution, which extends the gener-
alized exponential (Gupta and Kundu, 1999) and double generalized exponential
(Barreto-Souza et al., 2010) distributions. We provide a mathematical treatment
of both distributions including moments, moment generating function, densities of
the order statistics and their moments. We discuss maximum likelihood estimation
of the parameters and obtain the observed information matrix for both models. Ap-
plications of the log-EK distribution to a real data sets show that this distribution
can yield a better fit than some known models. We hope that this generalization
may attract wider applications in reliability and lifetime analysis.

Appendix A

The elements of the observed information matrix

J(θ) = −
⎛⎝Uαα Uαβ Uαγ

· Uββ Uβγ

· · Uγγ

⎞⎠ ,

Table 4 MLEs of the model parameters; active repair times (hours)

Estimates Statistic

Distribution σ α β γ AIC CAIC BIC

log-EK 0.6667 5.1479 0.1366 0.5072 190.55 191.69 188.10
(0.1653) (2.5172) (0.0397) (0.0209)

DGE 0.7219 1.5906 0.1995 194.97 195.64 192.27
(0.0601) (0.6136) (0.0361)

GE 3.7349 1.1137 194.92 195.24 192.30
(0.7820) (0.2446)
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Figure 5 Fitted densities of the log-EK, DGE and GE distributions for the data sets corresponding
to Tables 1 and 3, respectively.

are given by

Uαα = − n

α2 − (β − 1)

n∑
i=1

xα
i [log(xi)]2

(1 − xα
i )2

+ β(γ − 1)

n∑
i=1

xα
i (1 − xα

i )β−2[log(xi)]2

1 − (1 − xα
i )β

− β2(γ − 1)

n∑
i=1

x2α
i (1 − xα

i )β−2[log(xi)]2

[1 − (1 − xα
i )β ]2 ,

Uαβ = −
n∑

i=1

xα
i log(xi)

1 − xα
i

+ (γ − 1)

n∑
i=1

xα
i (1 − xα

i )β−1 log(xi)

1 − (1 − xα
i )β

+ β(γ − 1)

n∑
i=1

xα
i (1 − xα

i )β−1 log(xi) log(1 − xα
i )

[1 − (1 − xα
i )β]2 ,

Uαγ = β

n∑
i=1

xα
i (1 − xα

i )β−1 log(xi)

1 − (1 − xα
i )β

,

Uββ = − n

β2 + (1 − γ )

n∑
i=1

(1 − xα
i )β(log(1 − xα

i ))2

[1 − (1 − xα
i )β]2 ,

Uβγ = −
n∑

i=1

(1 − xα
i )β log(1 − xα

i )

1 − (1 − xα
i )β

and Uγγ = − n

γ 2 .
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Appendix B

The elements of the observed information matrix

J(θ) = −

⎛⎜⎜⎝
Uσσ Uσα Uσβ Uσγ

· Uαα Uαβ Uαγ

· · Uββ Uβγ

· · · Uγγ

⎞⎟⎟⎠ ,

are given by

Uσσ = n

σ 2 − 2

σ 3

n∑
i=1

zi + 2(α − 1)

σ 3

n∑
i=1

zie−zi/σ

1 − e−zi/σ
− (α − 1)

σ 4

n∑
i=1

z2
i e−zi/σ

(1 − e−zi/σ )2

− 2α(β − 1)

σ 3

n∑
i=1

zie−zi/σ (1 − e−zi/σ )α−1

1 − (1 − e−zi/σ )α

− α2(β − 1)

σ 4
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i=1

z2
i e−2zi/σ (1 − e−zi/σ )α−2

[1 − (1 − e−zi/σ )α]2

+ α(β − 1)

σ 4

n∑
i=1

z2
i e−zi/σ (1 − e−zi/σ )α−2

1 − (1 − e−zi/σ )α

+ 2αβ(γ − 1)

σ 3

n∑
i=1

zie−zi/σ (1 − e−zi/σ )α−1[1 − (1 − e−zi/σ )α]β−1

1 − [1 − (1 − e−zi/σ )α]β

− αβ(γ − 1)

σ 4

n∑
i=1

z2
i e−zi/σ (1 − e−zi/σ )α−2[1 − (1 − e−zi/σ )α]β−1

1 − [1 − (1 − e−zi/σ )α]β

+ α2β(γ − 1)

σ 4
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i=1

z2
i e−2zi/σ (1 − e−zi/σ )α−2[1 − (1 − e−zi/σ )α]β−2

1 − [1 − (1 − e−zi/σ )α]β

− α2β2(γ − 1)

σ 4

×
n∑

i=1

z2
i e−2zi/σ (1 − e−zi/σ )2(α−1)[1 − (1 − e−zi/σ )α]β−2

{1 − [1 − (1 − e−zi/σ )α]β}2 ,

Uσα = − 1

σ 2

n∑
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zie−zi/σ

1 − e−zi/σ
+ (β − 1)

σ 2
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σ 2
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zie−zi/σ (1 − e−zi/σ )α−1[1 − (1 − e−zi/σ )α]β−1

1 − [1 − (1 − e−zi/σ )α]β
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σ 2
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[1 − (1 − e−zi/σ )α]2
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− αβ(γ − 1)

σ 2
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n∑
i=1

(1 − e−zi/σ )α[1 − (1 − e−zi/σ )α]β−1 log(1 − e−zi/σ )

1 − [1 − (1 − e−zi/σ )α]β

+ β(γ − 1)

n∑
i=1

(1 − e−zi/σ )α log(1 − e−zi/σ ) log(1 − (1 − e−zi/σ )α)

{1 − [1 − (1 − e−zi/σ )α]β}2[1 − (1 − e−zi/σ )α]1−β
,

Uαγ = β

n∑
i=1

(1 − e−zi/σ )α[1 − (1 − e−zi/σ )α]β−1 log(1 − e−zi/σ )

1 − [1 − (1 − e−zi/σ )α]β ,

Uββ = − n

β2 + (1 − γ )

n∑
i=1

[1 − (1 − e−zi/σ )α]β[log(1 − (1 − e−zi/σ )α)]2

{1 − [1 − (1 − e−zi/σ )α]β}2 ,
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Uβγ = −
n∑

i=1

[1 − (1 − e−zi/σ )α]β log(1 − (1 − e−zi/σ )α)

1 − [1 − (1 − e−zi/σ )α]β and

Uγγ = − n

γ 2 .
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