We derive a perturbation expansion for general self-interacting random walks, where steps are made on the basis of the history of the path. Examples of models where this expansion applies are reinforced random walk, excited random walk, the true (weakly) self-avoiding walk, loop-erased random walk, and annealed random walk in random environment. In this paper we show that the expansion gives rise to useful formulae for the speed and variance of the random walk, when these quantities are known to exist. The results and formulae of this paper have been used elsewhere by the authors to prove monotonicity properties for the speed (in high dimensions) of excited random walk and related models, and certain models of random walk in random environment. We also derive a law of large numbers and central limit theorem (with explicit error terms) directly from this expansion, under strong assumptions on the expansion coefficients. The assumptions are shown to be satisfied by excited random walk in high dimensions with small excitation parameter, a model of reinforced random walk with underlying drift and small reinforcement parameter, and certain models of random walk in random environment under strong ellipticity conditions.

## References

*Probab. Theory Related Fields*

**141**, 625–645. MR2391167 10.1007/s00440-007-0096-8Basdevant, A.-L. and Singh, A. (2008). On the speed of a cookie random walk.

*Probab. Theory Related Fields*

**141**, 625–645. MR2391167 10.1007/s00440-007-0096-8

*Ann. Inst. H. Poincaré Probab. Statist.*

**39**(3), 527–555.Bolthausen, E., Sznitman, A.-S. and Zeitouni, O. (2003). Cut points and diffusive random walks in random environment.

*Ann. Inst. H. Poincaré Probab. Statist.*

**39**(3), 527–555.

*Commun. Math. Phys.*

**97**, 125–148. MR782962 10.1007/BF01206182 euclid.cmp/1103941982 Brydges, D. C. and Spencer, T. (1985). Self-avoiding walk in 5 or more dimensions.

*Commun. Math. Phys.*

**97**, 125–148. MR782962 10.1007/BF01206182 euclid.cmp/1103941982

*Large Deviations Techniques and Applications*, 2nd ed.

*Applications of Mathematics (New York)*

**38**. New York: Springer-Verlag.Dembo, A. and Zeitouni, O. (1998).

*Large Deviations Techniques and Applications*, 2nd ed.

*Applications of Mathematics (New York)*

**38**. New York: Springer-Verlag.

*Probab. Theory Related Fields*

**122**(4), 567–592. MR1902191 10.1007/s004400100179Durrett, R., Kesten, H. and Limic, V. (2002). Once edge-reinforced random walk on a tree.

*Probab. Theory Related Fields*

**122**(4), 567–592. MR1902191 10.1007/s004400100179

*J. Statist. Phys.*

**99**(5–6), 1075–1168.Hara, T. and Slade, G. (2000a). The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents.

*J. Statist. Phys.*

**99**(5–6), 1075–1168.

*J. Math. Phys.*

**41**(3), 1244–1293.Hara, T. and Slade, G. (2000b). The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion.

*J. Math. Phys.*

**41**(3), 1244–1293.

*Probab. Theory Related Fields*

**119**(3), 311–349.van der Hofstad, R. (2001). The lace expansion approach to ballistic behaviour for one-dimensional weakly self-avoiding walks.

*Probab. Theory Related Fields*

**119**(3), 311–349.

*Probab. Theory Related Fields*

**111**(2), 253–286.van der Hofstad, R., den Hollander, F. and Slade, G. (1998). A new inductive approach to the lace expansion for self-avoiding walks.

*Probab. Theory Related Fields*

**111**(2), 253–286.

*Electron. J. Probab.*

**9**, 710–769 (electronic).van der Hofstad, R. and Sakai, A. (2004). Gaussian scaling for the critical spread-out contact process above the upper critical dimension.

*Electron. J. Probab.*

**9**, 710–769 (electronic).

*Electron. J. Probab.*

**15**, 801–894.van der Hofstad, R. and Sakai, A. (2010). Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension: The higher-point functions.

*Electron. J. Probab.*

**15**, 801–894.

*Ann. Inst. H. Poincaré Probab. Statist.*

**39**(3), 413–485.van der Hofstad, R. and Slade, G. (2003). Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions.

*Ann. Inst. H. Poincaré Probab. Statist.*

**39**(3), 413–485.

*Analysis and Stochastics of Growth Processes and Interface Models*(P. Mörters et al., eds.) 55–79. Oxford Univ. Press.Ioffe, D. and Velenik, Y. (2008). Ballistic phase of self-interacting random walks. In

*Analysis and Stochastics of Growth Processes and Interface Models*(P. Mörters et al., eds.) 55–79. Oxford Univ. Press.