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Some upper bounds for the rate of convergence of penalized
likelihood context tree estimators
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Abstract. We find upper bounds for the probability of underestimation and
overestimation errors in penalized likelihood context tree estimation. The
bounds are explicit and applies to processes of not necessarily finite mem-
ory. We allow for general penalizing terms and we give conditions over the
maximal depth of the estimated trees in order to get strongly consistent esti-
mates. This generalizes previous results obtained in the case of estimation of
the order of a Markov chain.

1 Introduction

In this paper we obtain an exponential upper bound for the underestimation of
the context tree of a variable memory process by penalized likelihood (PL) cri-
teria and a subexponential upper bound for the overestimation event. Our result
applies to processes of not necessarily finite memory that satisfies some continuity
requirements, generalizing the bound obtained in Dorea and Zhao (2006) for the
estimation of the order of a Markov chain by similar methods (EDC criterion).

The concept of context tree was first introduced by Rissanen (1983) to denote
the minimum set of sequences that are necessary to predict the next symbol in
a finite memory stochastic chain. A particular case of context tree is the set of all
sequences of length k, representing a Markov chain of order k. For that reason,
context trees allow a more detailed and parsimonious representation of processes
than finite order Markov chains do.

In the statistical literature, the processes allowing a context tree representa-
tion are called Variable Length Markov Chains [Bühlmann and Wyner (1999)].
This class of models has shown to be useful in real data modeling as, for exam-
ple, for the case of protein classification into families [Bejerano and Yona (2001),
Leonardi (2006)].

Historically, the estimation of the context tree of a process has been addressed
by different versions of the algorithm Context, introduced by Rissanen in its semi-
nal paper. This algorithm was proven to be weak consistent in the case of bounded
memory [Bühlmann and Wyner (1999)] and also in the case of unbounded mem-
ory [Ferrari and Wyner (2003), Duarte, Galves and Garcia (2006)]. Recently, in
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Galves, Maume-Deschamps and Schmitt (2008) it was obtained an upper bound
for the rate of convergence of the algorithm Context in the case of bounded mem-
ory processes. A generalization of this result to the case of unbounded memory
processes was given in Galves and Leonardi (2008).

The estimation of context trees by PL criteria had not been addressed in the
literature until the recent work by Csiszár and Talata (2006). The reason for that
was the exponential cost of the estimation, due to the number of trees that had
to be considered in order to find the optimal one. In their article, Csiszár and Ta-
lata showed that the Bayesian Information Criterion (BIC), which is a particular
case of the PL estimators (using a penalizing term growing logarithmically), is
strongly consistent and can be computed in linear time, using a suitable version of
the Context Tree Weighting method of Willems, Shtarkov and Tjalkens [Willems,
Shtarkov and Tjalkens (1995), Willems (1998)]. Their result applies to unbounded
memory processes and the depth of the estimated tree is allowed to grow with the
sample size as a sublogarithmic function. This last condition was proven to be un-
necessary in the case of finite memory processes, as proven in Garivier (2006). An
explicit bound on the rate of convergence of the PL context tree estimators had
remained until now as an open question.

The paper is organized as follows. In Section 2 we introduce some definitions
and state the main result. In Section 3 we present the proofs and in Section 4 we
do some final remarks. Finally, the Appendix contains some results needed in our
proofs and obtained elsewhere in the literature.

2 Definitions and results

In what follows A will represent a finite alphabet of size |A|. Given two integers
m ≤ n, we will denote by wn

m the sequence (wm, . . . ,wn) of symbols in A. The
length of the sequence wn

m is denoted by �(wn
m) and is defined by �(wn

m) = n −
m + 1. Any sequence wn

m with m > n represents the empty string and is denoted
by λ. The length of the empty string is �(λ) = 0. In the sequel Aj will denote the
set of all sequences of length j over A.

Given two sequences v = vk
j and w = wn

m, we will denote by vw the sequence
of length �(v)+ �(w) obtained by concatenating the two strings, with the symbols
in v preceding the symbols in w. In particular, λw = wλ = w. The concatena-
tion of sequences is also extended to the case in which v denotes a semi-infinite
sequence, that is, v = (. . . , v−2, v−1), denoted by v = v−1−∞.

We say that the sequence s is a suffix of the sequence w if there exists a se-
quence u, with �(u) ≥ 1, such that w = us. In this case we write s ≺ w. When
s ≺ w or s = w we write s � w.

Definition 2.1. A set T of finite or semi-infinite sequences is a tree if no sequence
s ∈ T is a suffix of another sequence w ∈ T . This property is called the suffix
property.
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We define the height of the tree T as

h(T ) = sup{�(w) :w ∈ T }.
In the case h(T ) < +∞ we say that T is bounded and we denote by |T | the

number of sequences in T . On the other hand, if h(T ) = +∞ we say that the
tree T is unbounded.

Given a tree T and an integer K we will denote by T |K the tree T truncated to
level K , that is,

T |K = {w ∈ T :�(w) ≤ K} ∪ {w :�(w) = K and w ≺ u for some u ∈ T }.
The expression Int(T ) will denote the set of all sequences that are suffixes of some
u ∈ T , that is,

Int(T ) = {w :w ≺ u for some u ∈ T }.
We will say that a tree T is irreducible if no w ∈ T can be replaced by a suffix

without violating the suffix property. On the other hand, a tree T will be complete
if for every semi-infinite sequence w−1−∞ there exists a sequence s ∈ T such that
s � w−1−∞.

Consider a stationary ergodic stochastic chain {Xt : t ∈ Z} over A. Given a se-
quence w ∈ Aj we denote by

p(w) = P(X
j
1 = w)

the stationary probability of the cylinder defined by the sequence w. If p(w) > 0
we write

p(a|w) = P(X0 = a|X−1
−j = w).

In the sequel we will use the simpler notation Xt for the process {Xt : t ∈ Z}.
Definition 2.2. A sequence w ∈ Aj is a context for the process Xt if it satisfies:

(a) For any semi-infinite sequence x−1−∞ having w as a suffix

P(X0 = a|X−1−∞ = x−1−∞) = p(a|w) for all a ∈ A.

(b) No suffix of w satisfies (a).

An infinite context is a semi-infinite sequence w−1−∞ such that none of its suffixes
w−1

−j , j = 1,2, . . . is a context.

Definition 2.2 implies that the set of all contexts (finite or infinite) satisfies the
suffix property and hence it is a tree. This tree is called the context tree of the
process Xt and will be denoted by T0.

Remark 2.3. In this paper we will also consider i.i.d. processes. We assume that
these processes have as context tree the set T0 = {λ}.
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Define the sequence {αk}k∈N as

α0 := inf
x−1−∞,a∈A

{p(a|x−1−∞)},

αk := inf
u∈Ak

∑
a∈A

inf
x−1−∞

p(a|x−1−∞u), k ≥ 1.

It is important to note that {αk}k∈N is a nondecreasing sequence such that
0 ≤ αk ≤ 1 for all k. Moreover, if the tree T0 is bounded, that is h(T0) = K for
some K ∈ N, then αk = 1 for all k ≥ K . In the unbounded case we will assume the
sequence {αk} converges to 1 sufficiently fast. This is related to the loss of mem-
ory of a process of infinite order [see Comets, Fernández and Ferrari (2002) and
Galves and Leonardi (2008) for more details].

Assumption 1. From now on we will assume the process Xt satisfies the follow-
ing conditions:

1. α0 > 0 and
2. α := ∑

k∈N(1 − αk) < +∞.

The positivity assumption over α0 implies that the context tree of the process Xt

is complete, that is, any semi-infinite sequence w−1−∞ either belongs to T0 or has a
suffix that belongs to T0.

In what follows we will assume x1, x2, . . . , xn is a sample of the process Xt . Let
d(n) < n be a function taking integer values and growing to infinity with n. This
will denote the maximal height of the estimated context trees (and will be denoted
simply by d). Then, given a sequence w, with 1 ≤ �(w) ≤ d , and a symbol a ∈ A

we denote by Nn(w,a) the number of occurrences of symbol a preceded by the
sequence w, starting at d + 1, that is,

Nn(w,a) =
n∑

t=d+1

1
{
xt−1
t−�(w) = w,xt = a

}
.

On the other hand, Nn(w) will denote the sum
∑

a∈A Nn(w,a).

Definition 2.4. We will say that the tree T is feasible if it is irreducible, h(T ) ≤ d ,
Nn(w) ≥ 1 for all w ∈ T and any string w′ with Nn(w

′) ≥ 1 either belongs to T ,
is a suffix of some w ∈ T or has a suffix w that belongs to T .

We will denote by F d(xn
1 ) the set of all feasible trees and, given a sequence w,

we will denote by F d
w(xn

1 ) the set of trees T ′ such that T ′ = T ∩ {u :u � w}, with
T ∈ F d(xn

1 ). Then, given a tree T ∈ F d(xn
1 ) and a family of transition probabil-

ities associated to T , that is a set q = {q(a|w) :a ∈ A,w ∈ T }, we have that the
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likelihood of the sequence x1, . . . , xn given T and q (conditioned on the first d

symbols x1, . . . , xd ) is given by

L(T ,q)(x
n
1 ) = ∏

w∈T

∏
a∈A

q(a|w)Nn(w,a). (2.1)

We are interested in the family q of transition probabilities that maximizes
L(T ,q)(x

n
1 ) for a given context tree T . Then, maximizing (2.1) subject to the re-

strictions
∑

a∈A p(a|w) = 1 for all w ∈ T we obtain that the family of maximum
likelihood estimators of the transition probabilities is given by

p̂n(a|w) = Nn(w,a)

Nn(w)
, w ∈ T , a ∈ A.

Note that by Definition 2.4, as Nn(w) ≥ 1 for any w ∈ T , it is not necessary to give
an extra definition of p̂n(a|w) in the case Nn(w) = 0. Therefore, the maximum
likelihood of the sequence x1, . . . , xn (conditioned on x1, . . . , xd ) is given by

P̂ML,T (xn
1 ) = ∏

w∈T

∏
a∈A

p̂n(a|w)Nn(w,a). (2.2)

Here and in the sequel we use the convention 00 = 1, for example, in the case of
Nn(w,a) = 0 in expression (2.2).

Given a sequence w, with Nn(w) ≥ 1, we will denote by

P̂ML,w(xn
1 ) = ∏

a∈A

p̂n(a|w)Nn(w,a).

Hence, we have

P̂ML,T (xn
1 ) = ∏

w∈T
P̂ML,w(xn

1 ).

Let f (n) be any positive function such that f (n) → +∞, when n → +∞, and
n−1f (n) → 0, when n → +∞. This function will represent the generic penalizing
term of our estimator, replacing the function |A|−1

2 logn in the classical definition
of BIC [Csiszár and Talata (2006)]. A function satisfying these conditions will be
called penalizing term.

Definition 2.5. Given a penalizing term f (n), the PL context tree estimator is
given by

T̂ (xn
1 ) = arg min

T ∈F d (xn
1 )

{− log P̂ML,T (xn
1 ) + |T |f (n)}.

Remark 2.6. Here and throughout the rest of the paper, we will assume the loga-
rithm is taken to the base 2.
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As can be seen, the computation of the estimated context tree using its raw
definition would imply a search for the optimal tree on the set of all feasible trees.
This was the biggest drawback of this approach, because the size of this set grows
extremely fast as a function of the maximal height d . Fortunately, there is a way
of computing the PL estimator without exploring the set of all trees, as shown by
Csiszár and Talata (2006). The details of this algorithm are given in the Appendix
and will be used in the proof of our main result.

Let K ∈ N. Define the underestimation event with respect to the truncated tree
T0|K by

UK
n = ⋃

w∈Int(T0|K)

{w ∈ T̂n(x
n
1 )}

and the overestimation event by

OK
n = ⋃

vw∈T0,�(w)<K

{v ∈ T̂n(x
n
1 )}.

We are ready to present the main result in this paper. It establishes upper bounds
for the probability of occurrence of the underestimation and overestimation events.

Theorem 2.7. Let x1, x2, . . . be a sample of the stationary ergodic stochastic pro-
cess Xt having context tree T0 and satisfying Assumption 1. For any constant
K ∈ N there exist an integer n0 and positive constants c1, c2, c3 and c4 depending
on the process Xt such that:

(a) P[UK
n ] ≤ c1|A|Ke−c2(n−d) for all n ≥ n0;

(b) P[OK
n ] ≤ c3|A|d+Ke−c4f (n)α2d

0 /(d+1) for all n ≥ 1.

Corollary 2.8. Let f (n) be a penalizing term and d(n) be a function such that for
any constant c > 0,

∑
n∈N

|A|d(n) exp
[
−f (n)cd(n)

d(n)

]
< +∞. (2.3)

Then, for almost every infinite sample x1, x2, . . . we have that T̂n(x
n
1 )|K = T0|K for

any n sufficiently large.

3 Proof of Theorem 2.7

Using Definition A.3 and Lemma A.5 we see that the tree in (2.5) can be written
as

T̂ (xn
1 ) =

{
w ∈

d⋃
j=1

Aj : Xw(xn
1 ) = 0, Xv(x

n
1 ) = 1 for all v ≺ w

}
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if Xλ(x
n
1 ) = 1 and T̂ (xn

1 ) = {λ} if Xλ(x
n
1 ) = 0. Then we have

UK
n ⊂ ⋃

w∈Int(T0|K)

{Xw(xn
1 ) = 0}

and

OK
n ⊂ ⋃

w∈T0,�(w)<K

{Xw(xn
1 ) = 1}.

To prove (a) let w ∈ Int(T0|K). Then, as w is not a context there must exists a finite
complete tree T such that

δT (w) = ∑
a∈A

[ ∑
u∈Tw

p(ua) logp(a|u) − p(wa) logp(a|w)

]

= ∑
u∈Tw

D
(
p(·|u) ‖ p(·|w)

)
> 0,

where Tw = T ∩ {u :u � w} �= {w} and D is the Kullback–Leibler divergence be-
tween the two distributions p(·|u) and p(·|w) over A (see the Appendix). Then,
using Definition A.2 we have that

P[Xw(xn
1 ) = 0] ≤ P

[ ∏
a∈A

Vaw(xn
1 ) ≤ e−f (n)

P̂ML,w(xn
1 ), Tw ∈ F d

w(xn
1 )

]

+ P[Tw /∈ F d
w(xn

1 )]
and by Lemma A.4, for any a ∈ A

Vaw(xn
1 ) = max

T ′∈F d
aw(xn

1 )

∏
s∈T ′

e−f (n)
P̂ML,s(x

n
1 ).

Notice that if Tw ∈ F d
w(xn

1 ), then Taw ∈ F d
aw(xn

1 ) for all a ∈ A, because Tw �= {w}
and it is complete. Therefore,∏

u∈Tw

e−f (n)
P̂ML,u(x

n
1 ) = ∏

a∈A

∏
s∈Taw

e−f (n)
P̂ML,s(x

n
1 ) ≤ ∏

a∈A

Vaw(xn
1 )

and

P

[ ∏
a∈A

Vaw(xn
1 ) ≤ e−f (n)

P̂ML,w(xn
1 ), Tw ∈ F d

w(xn
1 )

]

≤ P

[ ∏
u∈Tw

e−f (n)
P̂ML,u(x

n
1 ) ≤ e−f (n)

P̂ML,w(xn
1 ), Tw ∈ F d

w(xn
1 )

]

= P

[ ∑
u∈Tw

log P̂ML,u(x
n
1 ) − log P̂ML,w(xn

1 ) ≤ (|Tw| − 1)f (n),

Tw ∈ F d
w(xn

1 )

]
.



328 F. Leonardi

Dividing by n − d and subtracting on both sides the term δT (w) we have that, for
all n ≥ n0 we can bound above the last expression by

P

[
|Ln(w)| > δT (w)

4
,Nn(w) ≥ 1

]
+ ∑

u∈Tw

P

[
|Ln(u)| > δT (w)

4|Tw| ,Nn(u) ≥ 1
]
,

where for any finite sequence s

Ln(s) = ∑
a∈A

p(sa) logp(a|s) − Nn(s, a)

n − d
log p̂n(a|s)

and n0 is a sufficiently large integer such that h(Tw) ≤ d(n) and for all n ≥ n0,

|Tw|f (n)

n − d
≤ |Tw|f (n0)

n0 − d
<

δT (w)

2
.

Using part (c) of Corollary A.7 we can bound above this expression by

3e1/e|A|2(1+|Tw|) exp
[
−(n − d)min(1, (δT (w)/4|Tw|)2)α

2(h(Tw)+1)
0

64e|A|3(α + α0) log2 α0(h(Tw) + 1)

]
, (3.1)

by noticing that p(w) ≥ p(u) ≥ α
h(Tw)
0 for any u ∈ Tw . On the other hand, using

part (a) of Corollary A.7 we obtain that

P[Tw /∈ F d
w(xn

1 )] ≤ P

[ ⋃
u∈Tw

{Nn(u) = 0}
]

(3.2)

≤ e1/e|A||Tw| exp
[
− (n − d)α

2h(Tw)+1
0

8e(α + α0)|A|2(h(Tw) + 1)

]
.

We conclude the proof of part (a) by observing that we only have a finite number
of sequences w ∈ Int(T0|K), so we can sum (3.1) and (3.2) and take

c1 = 4e1/e|A|2
(
1 + max

w∈Int(T0|K)
|Tw|

)
and

c2 = min
w∈Int(T0|K)

{
min(1, (δT (w)/4|Tw|)2)α

2(h(Tw)+1)
0

64e|A|3(α + α0) log2 α0(h(Tw) + 1)

}
.

To prove part (b) observe that for any w ∈ T0 with �(w) < K

P[Xw(xn
1 ) = 1] = P

[ ∏
a∈A

Vaw(xn
1 ) > e−f (n)

P̂ML,w(xn
1 )

]
. (3.3)

Using Lemma A.4 we have that∏
a∈A

Vaw(xn
1 ) = ∏

u∈Tw(xn
1 )

e−f (n)
P̂ML,u(x

n
1 ).
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Then, applying the logarithm function the probability (3.3) is equal to

P

[ ∑
u∈Tw(xn

1 )

log e−f (n)
P̂ML,u(x

n
1 ) > log e−f (n)

P̂ML,w(xn
1 )

]

= P

[
log P̂ML,w(xn

1 ) − ∑
u∈Tw(xn

1 )

log P̂ML,u(x
n
1 ) (3.4)

<
(
1 − |Tw(xn

1 )|)f (n)

]
.

We know, by the maximum likelihood estimators of the transition probabilities that

P̂ML,w(xn
1 ) ≥ ∏

a∈A

p(a|w)Nn(w,a).

Therefore, we can bound above the right-hand side of (3.4) by

P

[∑
a∈A

Nn(w,a) logp(a|w) − ∑
u∈Tw(xn

1 )

log P̂ML,u(x
n
1 ) <

(
1 − |Tw(xn

1 )|)f (n)

]

= P

[
− ∑

a∈A

∑
u∈Tw(xn

1 )

Nn(u, a) log
p̂n(a|u)

p(a|u)
<

(
1 − |Tw(xn

1 )|)f (n)

]
.

This equality follows by substituting Nn(w,a) by
∑

u∈Tw(xn
1 ) Nn(u, a) and the fact

that p(a|u) = p(a|w) for all u ∈ Tw(xn
1 ), remembering that w ∈ T0. Observe that

∑
a∈A

∑
u∈Tw(xn

1 )

Nn(u, a) log
p̂n(a|u)

p(a|u)
= ∑

u∈Tw(xn
1 )

Nn(u)
∑
a∈A

p̂n(a|u) log
p̂n(a|u)

p(a|u)

= ∑
u∈Tw(xn

1 )

Nn(u)D
(
p̂n(·|u) ‖ p(·|u)

)
.

Then, using Lemma A.1 and dividing by n − d we have that

P

[
− ∑

u∈Tw(xn
1 )

Nn(u)D
(
p̂n(·|u) ‖ p(·|u)

)
<

(
1 − |Tw(xn

1 )|)f (n)

]

≤ P

[
− ∑

u∈Tw(xn
1 )

Nn(u)

n − d

∑
a∈A

[p̂n(a|u) − p(a|u)]2

p(a|u)
<

(1 − |Tw(xn
1 )|)f (n)

n − d

]
.

As Xw(xn
1 ) = 1 it follows that |Tw(xn

1 )| ≥ 2. On the other hand, 1 ≤ Nn(u) ≤ n−d

for any u ∈ Tw(xn
1 ). Therefore, we can bound above the right-hand side of the last

expression by

∑
u∈Tw(xn

1 )

∑
a∈A

P

[∣∣p̂n(a|u) − p(a|u)
∣∣ >

√
f (n)p(a|u)

2|A|(n − d)
,Nn(u) ≥ 1

]
.
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Hence, using part (b) of Corollary A.7 we can bound above this expression by

e1/e(|A| + 1)|A|d+1 exp
[
− f (n)α

2(d+1)
0

64e(α + α0)|A|3(d + 1)

]
.

This finishes the proof of Theorem 2.7, by taking

c3 = 2e1/e|A|2 and c4 = α2
0

64e(α + α0)|A|3 .

Proof of Corollary 2.8. It follows from the Borel–Cantelli lemma and Theo-
rem 2.7, by noting that

P[T̂ (xn
1 )|K �= T0|K ] ≤ P[UK

n ] + P[OK
n ]

and the right-hand side is summable in n when condition (2.3) is satisfied. �

4 Final remarks

The present paper presents upper bounds for the rate of convergence of penalized
likelihood context tree estimators. We obtain an exponential bound for the under-
estimation event and an under-exponential bound in the case of the overestimation
event. These results generalizes the previous work by Dorea and Zhao (2006),
who obtained similar bounds in the case of the estimation of the order of a Markov
chain, using also penalized likelihood criteria. One question that still remains open
is if these bounds are optimal, as in the case of an estimator introduced in Finesso,
Liu and Narayan (1996) for the estimation of the order of a Markov chain. They
prove that in the case of their estimator, the constant appearing in the underestima-
tion bound is optimal, and that the overestimation bound cannot be exponential if
the estimator is universal, as in our case. The answer to these questions are impor-
tant subjects for future work in this area.

Appendix

A.1 The context tree maximizing principle

The following definitions and results were taken from Csiszár and Talata (2006)
and were included for completeness. Definitions A.2 and A.3 and Lemmas A.4
and A.5 were originally proven for the usual penalizing term f (n) = |A|−1

2 logn,
but can be adapted in a straightforward way to our setting.

Given two probability distributions p and q over A, the Kullback–Leibler diver-
gence is defined by

D(p ‖ q) = ∑
a∈A

p(a) log
p(a)

q(a)
,
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where, by convention, p(a) log p(a)
q(a)

= 0 if p(a) = 0 and p(a) log p(a)
q(a)

= +∞ if
p(a) > q(a) = 0. Using Jensen’s inequality it can be seen that D(p ‖ q) ≥ 0 for
all p and q and D(p ‖ q) = 0 if and only if p(a) = q(a) for all a ∈ A.

Lemma A.1. If p and q are two probability distributions over A then

D(p ‖ q) ≤ ∑
a∈A

[p(a) − q(a)]2

q(a)
.

Proof. See Csiszár and Talata (2006), Lemma 6.3. �

Assume we have a sample x1, . . . , xn of the process Xt . Consider the full
tree Ad , and let Sd denote the set of all sequences of length at most d , that is
Sd = ⋃d

j=0 Aj .

Definition A.2. Given a sequence w ∈ Sd with Nn(w) ≥ 1, we define recursively,
starting from the sequences of the full tree Ad , the value

Vw(xn
1 ) =

⎧⎪⎪⎨
⎪⎪⎩

max
{
e−f (n)

P̂ML,w(xn
1 ),

∏
a∈A

Vaw(xn
1 )

}
, if 0 ≤ �(w) < d,

e−f (n)
P̂ML,w(xn

1 ), if �(w) = d

and the indicator

Xw(xn
1 ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if 0 ≤ �(w) < d and
∏
a∈A

Vaw(xn
1 ) > e−f (n)

P̂ML,w(xn
1 ),

0, if 0 ≤ �(w) < d and
∏
a∈A

Vaw(xn
1 ) ≤ e−f (n)

P̂ML,w(xn
1 ),

0, if �(w) = d.

Definition A.3. Given w ∈ Sd with Nn(w) ≥ 1, the maximizing tree assigned to
the sequence w is the tree

Tw(xn
1 ) = {u ∈ Sd : Xu(x

n
1 ) = 0, Xv(x

n
1 ) = 1 for all w � v ≺ u}

if Xw(xn
1 ) = 1 and Tw(xn

1 ) = {w} if Xw(xn
1 ) = 0.

Lemma A.4. For any w ∈ Sd with Nn(w) ≥ 1,

Vw(xn
1 ) = max

T ∈F d
w(xn

1 )

∏
u∈T

e−f (n)
P̂ML,u(x

n
1 ) = ∏

u∈Tw(xn
1 )

e−f (n)
P̂ML,u(x

n
1 ).

Moreover, if Xw(xn
1 ) = 1 then∏

a∈A

Vaw(xn
1 ) = ∏

u∈Tw(xn
1 )

e−f (n)
P̂ML,u(x

n
1 ).
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Proof. The first two equalities follows directly from Csiszár and Talata (2006),
Lemma 4.4. To prove the last equality it is sufficient to observe that, by Defini-
tion A.3, if Xw(xn

1 ) = 1 we have

Tw(xn
1 ) = ⋃

a∈A

Taw(xn
1 )

and this union is disjoint. �

Lemma A.5. The context tree estimator T̂ (xn
1 ) in (2.5) equals the maximizing tree

assigned to the empty string λ, that is,

T̂ (xn
1 ) = Tλ(x

n
1 ).

Proof. See Csiszár and Talata (2006), Proposition 4.3. �

From this result it follows that in order to obtain the tree maximizing the penal-
ized maximum likelihood criteria it is sufficient to assign to each sequence w ∈ Sd ,
with Nn(w) ≥ 1, the indicator Xw(xn

1 ) and then to get the maximizing tree Tλ(x
n
1 ).

The computational cost of this algorithm is linear in n if d(n) = o(logn), as proven
by Csiszár and Talata (2006).

A.2 Exponential inequalities for empirical probabilities

The following result was proven in Galves and Leonardi (2008); we omit its proof
here.

Theorem A.6. Assume the process Xt satisfies Assumption 1, then for any finite
sequence w, any symbol a ∈ A and any t > 0 the following inequality holds:

P
(|Nn(w,a) − (n − d)p(wa)| > t

) ≤ e1/e exp
[ −t2C

(n − d)�(wa)

]
,

where

C = α0

8e(α + α0)
.

As a consequence of Theorem A.6 we obtain the following corollary.

Corollary A.7. For any finite sequence w and any t > 0 the following inequalities
hold:

(a) For any n > t
p(w)

+ d ,

P
(
Nn(w) ≤ t

) ≤ e1/e|A| exp
[
−(n − d)(p(w) − t/(n − d))2C

|A|2(�(w) + 1)

]
;
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(b) For any a ∈ A,

P
(∣∣p̂n(a|w) − p(a|w)

∣∣ > t,Nn(w) ≥ 1
)

≤ e1/e(|A| + 1) exp
[
−(n − d)t2p(w)2C

4|A|2(�(w) + 1)

]
;

(c) Let Ln(w) = ∑
a∈A p(wa) logp(a|w) − Nn(w,a)

n−d
log p̂n(a|w). Then,

P[|Ln(w)| > t,Nn(w) ≥ 1] ≤ 3e1/e|A|2 exp
[
−(n − d)min(t, t2)p(w)2α0C

8|A|3 log2 α0(�(w) + 1)

]
.

Proof. To prove (a) observe that, if n > t
p(w)

+ d , we have

P
(
Nn(w) ≤ t

) = P

(∑
a∈A

Nn(w,a) − (n − d)p(wa) ≤ t − (n − d)p(w)

)

≤ P

(
|A|max

a∈A
|Nn(w,a) − (n − d)p(wa)| ≥ (n − d)p(w) − t

)

≤ ∑
a∈A

P

(
|Nn(w,a) − (n − d)p(wa)| ≥ (n − d)p(w) − t

|A|
)
.

Using Theorem A.6 we can bound above the last expression by

e1/e|A| exp
[
−(n − d)[p(w) − t/(n − d)]2C

|A|2(�(w) + 1)

]
.

This finishes the proof of (a). To prove (b) observe that

p(a|w) = (n − d)p(wa)

(n − d)p(w)
.

Then, summing and substracting the term Nn(w,a)
(n−d)p(w)

we obtain∣∣∣∣Nn(w,a)

Nn(w)
− (n − d)p(wa)

(n − d)p(w)

∣∣∣∣ ≤ Nn(w,a)

Nn(w)(n − d)p(w)
|(n − d)p(w) − Nn(w)|

+ 1

(n − d)p(w)
|Nn(w,a) − (n − d)p(wa)|.

Therefore we have

P
(∣∣p̂n(a|w) − p(a|w)

∣∣ > t,Nn(w) ≥ 1
)

≤ P

(
|(n − d)p(w) − Nn(w)| > t(n − d)p(w)

2

)

+ P

(
|Nn(w,a) − (n − d)p(wa)| > t(n − d)p(w)

2

)
.
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We can write Nn(w) = ∑
b∈A Nn(w,b) and p(w) = ∑

b∈A p(wb), then the right-
hand side of the last inequality can be bounded above by the sum

∑
b∈A

P

(
|Nn(w,b) − (n − d)p(wb)| > t(n − d)p(w)

2|A|
)

+ P

(
|Nn(w,a) − (n − d)p(wa)| > t(n − d)p(w)

2

)
.

Using Theorem A.6 we can bound above this expression by

e1/e(|A| + 1) exp
[
−(n − d)t2p(w)2C

4|A|2(�(w) + 1)

]
.

Finally, to prove (c) we have that

P[|Ln(w)| > t,Nn(w) ≥ 1]
≤ P

[∣∣∣∣∑
a∈A

logp(a|w)

(
p(wa) − Nn(w,a)

n − d

)∣∣∣∣ >
t

2

]

+ P

[∣∣∣∣∑
a∈A

Nn(w,a)

n − d
log

p̂n(a|w)

p(a|w)

∣∣∣∣ >
t

2
,Nn(w) ≥ 1

]
.

Observe that

P

[∣∣∣∣∑
a∈A

logp(a|w)

(
p(wa) − Nn(w,a)

n − d

)∣∣∣∣ >
t

2

]

≤ ∑
a∈A

P

[
|Nn(w,a) − (n − d)p(wa)| > (n − d)t

2| logp(a|w)||A|
]

and this last expression can be bounded above using Theorem A.6 by

e1/e|A| exp
[ −(n − d)t2C

4|A|2 log2 α0(�(w) + 1)

]
. (A.1)

On the other hand, using the definition of the Kullback–Leibler divergence and
Lemma A.1 we obtain

P

[∣∣∣∣∑
a∈A

Nn(w,a)

n − d
log

p̂n(a|w)

p(a|w)

∣∣∣∣ >
t

2
,Nn(w) ≥ 1

]

≤ P

[
D

(
p̂n(·|w) ‖ p(·|w)

)
>

t

2
,Nn(w) ≥ 1

]

≤ ∑
a∈A

P

[∣∣p(a|w) − p̂n(a|w)
∣∣ >

√
tp(a|w)

2|A| ,Nn(w) ≥ 1
]
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and the last expression can be bounded above using part (b) of this corollary by
the expression

2e1/e|A|2 exp
[
−(n − d)tp(w)2α0C

8|A|3(�(w) + 1)

]
. (A.2)

Summing (A.1) and (A.2) we obtain the bound in part (c) and we conclude the
proof of Corollary A.7. �
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