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Abstract. In this article we propose a generalized negative binomial distri-
bution, which is constructed based on an extended Poisson process (a gener-
alization of the homogeneous Poisson process). This distribution is intended
to model discrete data with presence of zero-inflation and over-dispersion.
For a dataset on animal abundance which presents over-dispersion and a high
frequency of zeros, a comparison between our extended distribution and other
common distributions used for modeling this kind of data is addressed, sup-
porting the fitting of the proposed model.

1 Introduction

Although the Poisson distribution is very usual for modeling discrete data, it may
provide a poor fit in the presence of over-dispersion. Thus, in that case, the nega-
tive binomial (NB) distribution [e.g., Bliss and Fisher (1953), Greenwood and Yule
(1920)] is a frequently used model. Besides over-dispersion, data may present a
high frequency of zeros and neither the Poisson nor the negative binomial distri-
butions achieve a good fit. So, we propose a generalization of the negative bino-
mial distribution based on an extended Poisson process, hereafter GNB, which can
handle data with both over-dispersion and high frequency of zeros. Although the
inclusion of covariates is a very important issue for practical proposes it is out of
the scope of this paper.

Several authors [e.g., Ridout, Hinde and Demétrio (2001), Yau, Wang and Lee
(2003), Lewsey and Thomson (2004)] have considered zero inflated Poisson (ZIP)
or zero inflated negative binomial (ZINB) model to handle data in presence of
over-dispersion and high frequency of zeros. For these models, the underlying data
generating process can be interpreted as a two-stage process. In the first stage, we
choose from either a distribution that only generates zeros or a distribution that can
generate any count (e.g., Poisson, negative binomial, etc.). In the second stage, an
observation is generated from the chosen distribution. So, a zero count can arise
from any of the two distributions. Although, this data-generating process may be
adequate in many situations, the assumption that some observed units only pro-
vide zeros (structural zeros) may not be realistic. For instance, in insurance claim
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frequency studies this assumption would mean that some policy holders cannot
produce any accidents. However, the model proposed in this article does not rely
on such assumptions. Indeed, the data-generation mechanism is a counting pro-
cess, such that the probability of a new occurrence may depend on the accumulated
number of occurrences. As we shall see later, the modeling idea considered here is
similar to that of the hurdle models, which models separately the zero and nonzero
occurrences, but in the usual instances with no covariates the model obtained is
just a reparametrization of the zero-inflated one. A very good work comparing
different modeling approaches to data with many zeros can be found in Ridout,
Demétrio and Hinde (1998).

The remainder of this paper is organized as follow. In Section 2, we define the
extended Poisson process and show how one can find the probability function for
the GNB model. In Section 3, we present the expressions for the likelihood and
log-likelihood function and comment on how maximum likelihood estimates are
obtained. In Section 4, we consider a dataset on animal abundance and find the
maximum likelihood estimates for the NB and GNB models. We also fit Poisson,
ZIP and ZINB models and compare them by means of the AIC [Akaike (1973)]
and BIC [Schwarz (1978)] criteria. Finally, in Section 5, we give some closing
comments.

2 Probabilistic model

Faddy (1997) constructed discrete models based on an extended Poisson pro-
cess allowing for over and under-dispersion relative to the Poisson distribution.
A homogeneous continuous-time Markov chain {X(t); t ≥ 0} with state space
N = {0,1,2, . . .} is called an extended Poisson process (or a pure birth process)
if the following conditions hold:

1. X(0) = 0;
2. if s < t , then X(s) ≤ X(t);
3. P {X(t + h) = n + 1|X(t) = n} = λ(n)h + o(h);
4. P {X(t + h) > n + 1|X(t) = n} = o(h);

for all s, t ≥ 0, h > 0, n ∈ N.
Interpreting t as time, the random variable X(t) represents the number of oc-

currences of an event until the instant t . From conditions 3 and 4 above we can
conclude that transition probabilities may depend on the current state n of the pro-
cess, that is, the cumulative number of the event occurrences. Also, note that the
homogeneous Poisson process is a particular case of this process when transition
rates are constant.

The transition probabilities are defined by

pi,n(t) = P {X(s + t) = n|X(s) = i},
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where t > 0, s ≥ 0, i, n ∈ N, can be expressed for the extended Poisson process,
using the Chapman–Kolmogorov forward differential equations [Feller (1971)], as

p′
i,i(t) = −λ(i)pi,i(t), (2.1)

p′
i,n(t) = −λ(n)pi,n(t) + λ(n − 1)pi,n−1(t), n > i, (2.2)

with initial conditions pi,i(0) = 1 and pi,n(0) = 0 for n > i.
From equations (2.1) and (2.2), we can find the following recursive solution,

pi,i(t) = e−λ(i)t , (2.3)

pi,n(t) = λ(n − 1)e−λ(n)t
∫ t

0
eλ(n)spi,n−1(s) ds, n > i. (2.4)

Taking i = 0 on (2.3) and (2.4), we also obtain a recursive solution for the
probabilities pn(t) = P {X(t) = n}, n = 0,1,2, . . . , which is given by

p0(t) = e−λ(0)t , (2.5)

pn(t) = λ(n − 1)e−λ(n)t
∫ t

0
eλ(n)spn−1(s) ds, n > 0. (2.6)

As shown by Faddy (1997), an interesting feature of probabilities pn(t) is
that for any discrete probability distribution (π0, π1, π2, . . .) on N, a sequence
(λ(0), λ(1), λ(2), . . .) of transition rates can be found such that for some fixed t ,
pn(t) = πn, for all n ∈ N.

It is important to note that not all sequence of transition rates give rise to a honest
process, that is, a process with

∑∞
n=0 pn(t) = 1, for all t > 0. A necessary and

sufficient condition for this process to be honest is that the series
∑∞

j=0(λ(j))−1

diverges [Feller (1971)].
Faddy (1997) also showed that if {X(t); t ≥ 0} is an extended Poisson process

with transition rates

λ(n) = a(b + n), (2.7)

with a > 0, b > 0, n ∈ N, then the random variable X(t) has NB distribution with
parameters b and e−at , that is,

P {X(t) = n} = fNB(n;b, e−at ) =
(

b + n − 1
n

)
e−abt (1 − e−at )n, (2.8)

where fNB(n; r,p) is the probability distribution function at n ∈ N of a NB distri-
bution with parameters r and p.

A generalization of this process is obtained by considering an extended Poisson
process {Y(t); t ≥ 0} with transition rates given by

λ(n) =
{

λ0, if n = 0,
a(b + n), if n ≥ 1,

(2.9)
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where λ0 > 0, a > 0 and b > −1. Note that if λ0 = ab and b > 0, we have the
same rates given in (2.7) and also, in this case, the probability distribution function
of Y(t) is the NB distribution given by (2.8). The proposed GNB model is defined
as the probability distribution of Y(t).

To obtain the probability distribution of Y(t), consider a random variable T0
denoting the holding time of the process at state 0, that is, the time of the first oc-
currence of the event. The time T0 is exponentially distributed with parameter λ0,
since P {T0 ≤ t} = 1 − P {Y(t) = 0} and from (2.5) and (2.9) we have

P {Y(t) = 0} = e−λ0t . (2.10)

Hence, the probability distribution of Y(t) can be obtained as

P {Y(t) = n} =
∫ ∞

0
P {Y(t) = n|T0 = τ }fT0(τ ) dτ

(2.11)
=

∫ ∞
0

P {Y(t) = n|T0 = τ }λ0e
−λ0τ dτ, n ∈ N.

For n ≥ 1, the conditional probability in (2.11) is given by

P {Y(t) = n|T0 = τ }
=

{
0, if τ > t ,
P {Y(t) = n|[Y(s) = 0,∀s < τ ], Y (τ ) = 1}, if τ ≤ t ,

which, from the Markovian property [Cox and Miller (1965)], implies that

P {Y(t) = n|T0 = τ } =
{

0, if τ > t ,
p1,n(t − τ), if τ ≤ t . (2.12)

Replacing (2.12) in (2.11), it follows that, for n ≥ 1,

P {Y(t) = n} =
∫ t

0
p1,n(t − τ)λ(0)e−λ(0)τ dτ. (2.13)

From (2.1) and (2.2) with i = 1, we have the following differential equations

p′
1,1(x) = −λ(1)p1,1(x),

p′
1,n(x) = −λ(n)p1,n(x) + λ(n − 1)p1,n−1(x), n ≥ 2.

Now, considering the transformations

gn(x) = p1,n+1(x), n = 0,1,2, . . . ,

ξ(n) = λ(n + 1), n = 0,1,2, . . . ,

we obtain the following system of differential equations for the functions
{gn(x), n = 0,1, . . .},

g′
0(x) = −ξ(0)g0(x), (2.14)

g′
n(x) = −ξ(n)gn(x) + ξ(n − 1)gn−1(x), n ≥ 1, (2.15)
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where ξ(n) = λ(n + 1) = a(b + n + 1), for n ≥ 0. The functions {gn(x), n =
0,1, . . .} can be thought as the solution of the Chapman–Kolmogorov differen-
tial equations with transition rates ξ(n), n ≥ 0, that are linearly increasing. So,
from the previous commented result proved by Faddy (1997), the solution of the
system of differential equations (2.14) and (2.15) is given by

gn(x) = fNB(n;b + 1, e−ax), n = 0,1,2, . . . ,

which implies that,

p1,n(x) = gn−1(x)

= fNB(n − 1;b + 1, e−ax) (2.16)

=
(

b + n − 1
n − 1

)
(e−ax)b+1(1 − e−ax)n−1 for n ≥ 1.

Replacing (2.16) in (2.13), for n ≥ 1, we have

P {Y(t) = n}
=

∫ t

0

(
b + n − 1

n − 1

)[
e−a(t−τ)]b+1[

1 − e−a(t−τ)]n−1
λ0e

−λ0τ dτ

=
(

b + n − 1
n − 1

)
λ0

∫ t

0
e−a(b+1)(t−τ)e−λ0τ

[
1 − e−a(t−τ)]n−1

dτ,

and substituting x = t − τ in the last integral, follows that

P {Y(t) = n}
=

(
b + n − 1

n − 1

)
λ0e

−λ0t
∫ t

0
e[λ0−a(b+1)]x[1 − e−ax]n−1 dx (2.17)

=
(

b + n − 1
n − 1

)
λ0e

−λ0t
∫ t

0
(e−ax)b+1−λ0/a[1 − e−ax]n−1 dx.

Finally, considering y = e−ax in the integral of (2.17), it follows, for n ≥ 1, that

P {Y(t) = n}
(2.18)

=
(

b + n − 1
n − 1

)
λ0e

−λ0t

a

∫ 1

e−at
yb−λ0/a[1 − y]n−1 dy.

Hence, the probability distribution function of the GNB model is determined by
(2.10) and (2.18). Also, note that if λ0 = ab and b > 0 in (2.10) and (2.18), we
obtain the probability distribution function of the NB model given in (2.8).
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3 Estimation and inference

Considering Y1, Y2, . . . , Yn a random sample of Y(1), whose distribution is given
by (2.10) and (2.18) with t = 1, the likelihood function is calculated as

L(λ0, a, b) =
n∏

i=1

P {Yi = yi}

= ∏
i:yi=0

P {Yi = yi}
∏

i:yi>0

P {Yi = yi}

= ∏
i:yi=0

e−λ0
∏

i:yi>0

(
b + yi − 1

yi − 1

)
λ0e

−λ0

a

∫ 1

e−a
xb−λ0/a[1 − x]yi−1 dx

= e−n0λ0λ
(n−n0)
0 e−(n−n0)λ0

an−n0

× ∏
i:yi>0

(
b + yi − 1

yi − 1

)∫ 1

e−a
xb−λ0/a[1 − x]yi−1 dx

= λ
(n−n0)
0 e−nλ0

an−n0

∏
i:yi>0

(
b + yi − 1

yi − 1

)∫ 1

e−a
xb−λ0/a[1 − x]yi−1 dx,

where y1, . . . , yn are the observed values of Y(1), n0 = ∑n
j=1 I{0}(yj ) is the num-

ber of zeros in the sample, λ0 > 0, a > 0, and b > −1.
Thus, the log-likelihood function is obtained as

l(λ0, a, b) = −nλ0 + (n − n0)
(
log(λ0) − log(a)

)
+ ∑

i:yi>0

log
{(

b + yi − 1
yi − 1

)∫ 1

e−a
xb−λ0/a(1 − x)yi−1 dx

}
.

To improve the performance of the maximization algorithm used to obtain the
maximum likelihood estimates, we consider the following reparametrization: l0 =
log(λ0), la = log(a), lb = log(b + 1), which has no constraints.

Hence, the log-likelihood function for the new parametrization is expressed as

l(l0, la, lb)

= −nel0 + (n − n0)(l0 − la) (3.1)

+ ∑
i:yi>0

log
{(

elb + yi − 2
yi − 1

)∫ 1

exp(−ela )
xelb−el0−la −1(1 − x)yi−1 dx

}
.

For a given dataset, maximum likelihood estimates can be obtained by direct
maximization of the expression (3.1), since no major simplifications are possible.
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For model comparison, we shall consider the AIC and BIC criteria, which are
defined, respectively, by −2 log(L(θ̂)) + 2p and −2 log(L(θ̂)) + p log(n), where
θ̂ is the maximum likelihood estimate, p is the number of parameters estimated,
and n is the sample size.

4 Data analysis

As an example, we consider the count data of Macoma liliana, a small clam, ob-
served in four sites. Faddy (1997) investigated the counts of site A, that presents
over-dispersion and a high frequency of zeros. For these data, the maximum likeli-
hood and the standard deviation estimates (in brackets) for the NB and GNB mod-
els were obtained by direct maximization of (3.1). The calculations involved were
carried out using the R statistical software [R Development Core Team (2007)]
and are presented in Table 1.

Table 2 displays a comparison between observed and expected frequencies for
Poisson (PO), NB, ZIP, ZINB and GNB models as well as the AIC and BIC crite-
rion values for each model.

Table 1 Maximum likelihood estimates

NB GNB

l0 0.4007 (0.1931)

la 0.8318 (0.1311) −0.8068 (0.9675)

lb 0.6223 (0.1310) 3.3058 (1.1784)

Table 2 Observed and expected frequency distribution

Counts Observed PO NB ZIP ZINB GNB

0 9 0.02 5.50 9.00 9.00 8.99
1 2 0.14 4.27 0.01 0.72 1.26
2 1 0.53 3.58 0.07 1.21 1.37
3 2 1.36 3.07 0.24 1.65 1.50
4 1 2.62 2.67 0.60 1.99 1.62
5 1 4.05 2.34 1.19 2.21 1.75
6 0 5.21 2.05 1.98 2.32 1.86
7 4 5.75 1.81 2.82 2.33 1.96
8 1 5.56 1.60 3.51 2.26 2.03
9 4 4.77 1.42 3.89 2.14 2.06

10 1 3.68 1.26 3.88 1.97 2.04
11 3 2.59 1.12 3.51 1.79 1.98

≥12 11 3.72 9.29 9.28 10.41 11.57

AIC 386.08 252.25 273.20 241.49 238.75
BIC 387.77 255.63 276.58 246.56 243.81
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We observe that the dataset presents a high frequency of zeros that cannot be
accommodated neither by the PO nor by the NB model, but the ZIP, ZINB and
GNB models achieve a good fit at this count (see Table 2). Strong evidence in favor
of the GNB model when compared to the NB model is observed when carrying out
a likelihood ratio test of the hypothesis H0 :λ0 = ab, that provides a p-value equal
to 8.22 × 10−5. Also, both selection criterion (AIC and BIC) lead to the choice of
the GNB model in comparison to the other models.

5 Final remarks

We argue that the generalized distribution GNB is useful to handle data with pres-
ence of over-dispersion and a high frequency of zeros, which cannot be accommo-
dated, for instance, by the usual NB distribution.

For the count data considered in Section 4, we observed a better fit of the GNB
model in comparison to the PO and NB in the light of observed and expected
frequencies. Also, both selection criteria (AIC and BIC) indicate a better fitting of
the proposed model when compared to the other usual models. This fact can be
explained by the over-dispersion and the large number of zeros in the sample.
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