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Abstract. The sensitivity (Se) and the specificity (Sp) are the two most com-
mon measures of the performance of a diagnostic test, where Se is the proba-
bility of a diseased individual to be correctly identified by the test while Sp is
the probability of a healthy individual to be correctly identified by the same
test. A problem appears when all individuals cannot be verified by a gold stan-
dard. This occurs when there is not a definitive test for detection of the disease
or the verification by a gold standard is an impracticable procedure according
to its cost, accessibility or risks. In this paper we develop a Bayesian analysis
to estimate the disease prevalence, the sensitivity and specificity of screening
tests in the presence of a covariate and in the absence of a gold standard. We
use the Metropolis–Hastings algorithm to obtain the posterior summaries of
interest. We have as motivation for the investigation the LAMS (Latin Ameri-
can Screening) Study, an extensive project designed for comparing screening
tools for cervical cancer in Brazil and Argentina. When applied to the anal-
ysis of data from LAMS Study, the proposed Bayesian method shows to be
a useful alternative to estimate measures of performance of screening tests
in the presence of covariates and when a gold standard is not available. An
advantage of the method is the fact that the number of parameters to be esti-
mated is not limited by the number of observations, as it happens with several
frequentist approaches. However, it is important to point out that the Bayesian
analysis requires informative priors in order for the parameters to be identi-
fiable. The method can be easily extended for the analysis of other medical
data sets.

1 Introduction

The performance of a diagnostic or laboratorial test is usually measured by its
sensitivity (Se) and specificity (Sp). Sensitivity is the probability of a diseased in-
dividual to be correctly identified by the test while specificity is the probability
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of a healthy individual to be correctly identified by the same test. When a refer-
ence test is available, sensitivity and specificity can be estimated directly through
comparing the test results with the reference test. However, it is common to find
situations where a proportion of the sampled individuals cannot be verified on
their real disease status. The problem can occur especially when the reference test
(usually called “gold standard” in health applications) is an invasive and/or risky
procedure and the definitive verification for apparently healthy individuals is thus
neither practical nor ethical. In order to overcome this problem, many studies on
the evaluation of the diagnostic test are carried out by considering only verified
individuals. However, this approach can lead to measures that are usually biased
(Begg (1987)). This bias is called verification bias or workup bias (Ransohoff and
Feinstein (1978)). In this situation, estimators for Se and Sp are introduced by
Begg and Greenes (1983) and Zhou (1983). Studies from the literature that de-
scribe how to estimate performance measures in the presence of the verification
bias was reviewed by Zhou (1998).

Another problem happens when all individuals cannot be verified by a gold
standard. Most likely, this occurs due to a lack of a perfect reference test for the
disease or in situations where the verification by a gold standard is an imprac-
ticable procedure according to its cost, accessibility or risks. Studies related to
the performance estimation of diagnostic and laboratorial tests in the absence of
a gold standard are commons in preventive veterinary medicine, given that the
correct classification of the true status of herds is an important component of ani-
mal disease-control programs (Christensen and Gardner (2000); Greiner and Gard-
ner (2000)). Enøe, Georgiadis and Johnson (2000) review some of the statistical
methods usual in veterinary medicine for estimation of the accuracy of diagnostic
tests when a reference test does not exist, with an illustration of the evaluation of
a nested polymerase chain reaction and microscopic examination of kidney im-
prints for detection of Nucleospora salmonis in rainbow trout. The authors discuss
the estimation of parameters of interest by maximum likelihood method, using
Newton–Raphson and EM algorithm, and present a Bayesian approach based in
Gibbs sampling method. However, Enøe, Georgiadis and Johnson (2000) do not
discuss the presence of covariates in the reviewed models. Toft, Jørgensen and
Højsgaard (2005) discuss the usual assumptions underlying the estimation of sen-
sitivity and specificity in veterinary medicine studies in situations that a gold stan-
dard is not available.

A literature review of the frequentist methods developed to estimate the sen-
sitivity and specificity of screening tests without a gold standard was conducted
by Hui and Zhou (1998). Hui and Walter (1980) derived equations that compute
maximum likelihood estimates and standard errors of sensitivity, specificity and
prevalence, without considering a reference test. Under the assumption that the
tests are conditionally independents, Joseph, Gyorkos and Coupal (1985) intro-
duced a Bayesian model using latent variables, and Dendukuri and Joseph (2001)
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extended this method to account for conditional dependence between the diag-
nostic tests. A software that yields maximum-likelihood estimates of sensitivity,
specificity and disease prevalence in the absence of a gold standard was intro-
duced by Pouillot, Gerbier and Gardner (2002). The program uses two estimation
methods, a Newton–Raphson procedure and an expectation–maximization (EM)
procedure. Other interesting contributions were provided by Faraone and Tsuang
(1994), Qu, Tan and Kutner (1996), Hadgu and Qu (1998), Martinez, Achcar and
Louzada-Neto (2005, 2006) and Stamey, Boese and Young (2008).

The objective of the present study is to propose a Bayesian approach for the
problem of estimating the sensitivities and specificities of multiple diagnostic tests,
considering that part of the sampled individuals was not verified by a gold stan-
dard. We also consider the presence of covariates in our statistical model. We have
as motivation for the investigation, the LAMS (Latin American Screening) study,
where PAP smear/liquid-based cytology and screening colposcopy were compared
with three optional screening tools (visual inspection with acetic acid or Lugol’s
iodine and cervicography) and with Hybrid Capture II (HC II) from conventional
samples and from self-samples in women at different risk for cervical cancer in
three Brazilian arms (São Paulo, Campinas and Porto Alegre) and one Argentine
arm (Buenos Aires). Readers interested in more details about the LAMS study can
find them in Syrjänen et al. (2005), Sarian et al. (2005) and Gontijo et al. (2007).
Here, we considered the data from Campinas, collected in 2002.

In the next section, we present a description of the method of Joseph, Gyorkos
and Coupal (1985) for estimating Se and Sp related to two diagnostic tests in the
absence of a gold standard. We also introduce in this section the methodology for
estimating Se and Sp in the presence of a covariate. The application of the proposed
methodology on the analysis of the data set is presented in Section 3. Concluding
remarks are given in Section 4.

2 The model

We will consider k diagnostic tests, where Tm = 1 denotes a positive result for the
test m and Tm = 0 denotes a negative result for the same test, for m = 1, . . . , k.
Let Sem and Spm be the sensitivity and the specificity of the test m, respectively,
and let g be an observation of a binary latent variable G, introduced in the model
aiming to simulate a nonobservable gold standard (Tanner and Wong (1987)). If we
assume that the set of the observations and the latent variable for the ith individual
is denoted by xi = {t1i

, t2i
, . . . , tki

, gi}, where tm is an observation of Tm and the
joint density function is given by

f (xi) = pgi (1 − p)1−gi

k∏
m=1

S
tmi

gi

em (1 − Sem)(1−tmi
)gi S

(1−tmi
)(1−gi)

pm

× (1 − Spm)tmi
(1−gi).
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We are assuming that the test results are independents. Note that we have 2k +1
parameter to be estimated, or say, k pairs (Sem, Spm), and the prevalence p. The
likelihood function L(θ) is given by

L(θ) = p
∑n

i=1 gi (1 − p)n−∑n
i=1 gi

×
k∏

m=1

S

∑n
i=1 tmi

gi

em (1 − Sem)
∑n

i=1(1−tmi
)gi (2.1)

× S

∑n
i=1(1−tmi

)(1−gi)
pm (1 − Spm)

∑n
i=1 tmi

(1−gi),

where θ = (Sem, Spm,p :m = 1, . . . , k). The latent variable G has a Bernoulli dis-
tribution with success probability given by an application of Bayes’ rule, that is,

Gi |θ , t1i
, . . . , tki

∼ Bernoulli

(
p

k∏
m=1

S
tmi
em (1 − Sem)1−tmi

/(
p

k∏
m=1

S
tmi
em (1 − Sem)1−tmi (2.2)

+ (1 − p)

k∏
m=1

S
1−tmi
pm (1 − Spm)tmi

))
.

Considering beta prior densities Beta(αθ , βθ ) for all parameters in θ , where αθ

and βθ generically denotes fixed hyperparameters and combining the likelihood
function for θ (2.1) with the prior densities, we use the Gibbs sampling algorithm
(Gelfand and Smith (1990); Gelfand (2000)) to simulate samples for the posterior
distribution for θ . A prior beta distribution is appropriated in this model because all
parameters in θ can be interpreted as proportions (varies from 0 to 1) and due to its
flexibility. The posterior samples are simulated from the full conditional posterior
distributions for p, Sem and Spm , m = 1, . . . , k. Following equations (2.1) and (2.2)
and considering k diagnostic tests, the conditional posterior distributions for the
components of θ needed for the Gibbs sampling algorithm are given by

p|X, αp,βp ∼ Beta

(
n∑

i=1

gi + αP ;n −
n∑

i=1

gi + βP

)
,

Sem |X, αSem
, βSem

∼ Beta

(
n∑

i=1

tmi
gi + αSem

;
n∑

i=1

(1 − tmi
)gi + βSem

)
and

Spm |X, αSpm
,βSpm

∼ Beta

(
n∑

i=1

(1 − tmi
)(1 − gi) + αSpm

;
n∑

i=1

tmi
(1 − gi) + βSpm

)
,

for m = 1, . . . , k. This model is analogous to the model proposed by Joseph, Gy-
orkos and Coupal (1985). However, the method of Joseph, Gyorkos and Coupal
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(1985) does not consider the presence of covariates, which are very common on
data from diagnostic test studies.

Let wi be a sample observation of Wi , a vector of L covariates. For the sake of
simplicity and without lack of generality, we assume that Ti is a random variable
(with observation ti) related to the result of only one diagnostic test, with Bernoulli
distribution with success probability piSei

+ (1−pi)(1−Spi
), i = 1, . . . , n. In the

presence of a vector of covariates, let us assume the logit links for Sei
, Spi

and
pi , given by θli = exp(

∑L
j=0 βljwji)[1 + exp(

∑L
j=0 βljwji)]−1, where l = 1,2,3,

W0i = 1, θ1i = Sei
, θ2i = Spi

, θ3i = pi , for i = 1, . . . , n. In this way, we have a
vector of parameters given by β = (β1,β2,β3), where βl = (βl0, βl1, . . . , βlL),
l = 1,2,3. We are using a logit link function to relate the covariates linearly to the
screening performance measures, but it is possible to use other link functions in
place of the logit function, according to the nature of the data. Assuming prior inde-
pendence among the parameters, we consider as prior densities for βlj , normal dis-
tributions with fixed hyperparameters alj (means) and b2

lj (variances), l = 1,2,3,
j = 0,1, . . . ,L. The likelihood function for β is given by

L(β) = exp

[
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,

where g is an observation of the latent variable G, given by (2.2). Combining the
prior distributions with L(β), we have the conditional posterior distributions for β

given by

π
(
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−
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and
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where j = 0,1, . . . ,L, and β(β10)
is the vector of all parameters except β10 (for

example). Observe that we should simulate samples for all parameters considering
the Metropolis–Hastings algorithm since their conditional distributions are diffi-
cult to sample. In each cycle of the algorithm is generated a new value for the
latent variable G as (2.2).

In studies of the performance of two or more independent diagnostic tests ap-
plied to a selected group of individuals, where none of these tests can be considered
the gold standard, a straightforward extension of this model can be used. Consid-
ering the three diagnostic tests, the vector of unknown parameters is now given by
β = (β1, . . . ,β7), where β l = (βl0, βl1, . . . , βlL), l = 1, . . . ,7, are vectors of pa-
rameters related to the sensitivity and the specificity of each test and the prevalence
of cervical lesions. Let Tmi

be a random variable with observation tmi
related to

test m, m = 1,2,3. Using a logit link function to relate the vector Wi of L covari-
ates to the screening performance measures, i = 1, . . . , n, the likelihood function
for β is now given by

L(β) = exp
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.

3 Application to data from the LAMS study

LAMS is an ongoing, cross-sectional, multi-centre study sponsored by the Euro-
pean Commission (see details in Sarian et al. (2005)). In this study, consecutive
women from the cities of Campinas (Brazil), São Paulo (Brazil), Porto Alegre
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Table 1 Results of cervical cytology, visual inspection with acetic acid (VIA) and Second-
Generation Hybrid Capture (HC II)

Cervical cytology + Cervical cytology −
HC II + HC II − HC II + HC II − Total

VIA + 9 2 15 35 61
VIA − 21 19 87 621 748
Total 30 21 102 656 809

(Brazil) and Buenos Aires (Argentina) were recruited to undergo gynecological
consultations and examination with conventional Pap smear, VIA and VILI (vi-
sual inspection with acetic acid or Lugol’s iodine), cervicography, screening col-
poscopy and Second-Generation Hybrid Capture (HC II). In assessing the accuracy
of cervical cancer screening tests, it is not straightforward to define an ideal gold
standard. In many studies, the gold standard for evaluating the accuracy of screen-
ing tests in detecting true positive lesions is the histopathology. If biopsies are not
obtained, colposcopy is accepted as the final diagnosis. However, colposcopy can
give many false negative results when used to discriminate between normal and
abnormal tissues (see, e.g., Mitchell et al. (1998) and Hopman, Kenemans and
Helmerhorst (1998)). In the present study, let us consider the data from the LAMS
Study collected in Campinas. Thus, we use a sample of 809 women with test re-
sults for cervical cytology, VIA and HC II. Table 1 shows the results of the three
tests for the 809 available cases.

In a first step, we estimate the sensitivity and specificity of cervical cytology
(T1), VIA (T2) and HC II (T3) to detect cervical preneoplasic or neoplasic lesions
by the Bayesian approach proposed by Joseph, Gyorkos and Coupal (1985). Seven
parameters were estimated, including the prevalence of preneoplasic or neopla-
sic lesions and the sensitivity and specificity pairs relative to the three diagnostic
methods under evaluation.

The prior information about the sensitivity and the specificity of cervical cy-
tology was based on the systematic review of Nanda et al. (2000), who presented
sensitivity for atypical squamous cells of undetermined significance (ASC-US) or
worse being ranged from 29 percent to 56 percent and specificity from 97 percent
to 100 percent. The studies of Belinson et al. (2001) and of the University of Zim-
babwe and JHPIEGO Cervical Cancer Project (1999) were used as references for
the choice of the prior information about the sensitivity and the specificity for the
VIA. In these studies, the sensitivity of VIA for at least CIN II was estimated in
55 percent and 64 percent, respectively, and the specificity was estimated as 76 per-
cent and 67 percent, respectively. The prior information of the accuracy measures
of HC II test was based on the studies of Schiffman et al. (2000) and Wright et al.
(2000), who estimated sensitivities by 88.4 percent and 81.3 percent (at 1 RLU cut-
off), respectively, and specificities by 89.0 percent and 84.5 percent, respectively.



Performance measures of screening tests 75

Table 2 Bayesian estimates for sensitivities and specificities for each screening test, and for the
prevalence of cervical lesions (CI: credible interval)

Test % 95% CI

Cervical cytology sensitivity (Se1 ) 53.8 42.6 65.1
specificity (Sp1 ) 97.0 95.4 98.4

Visual inspection with acetic-acid sensitivity (Se2 ) 53.0 43.4 62.3
specificity (Sp2 ) 93.0 91.0 94.7

Hybrid Capture II sensitivity (Se3 ) 90.3 76.5 98.6
specificity (Sp3 ) 88.7 85.9 91.4

Prevalence (p) 6.3 3.9 9.1

However, the choice of informative prior distributions based only in a summary of
previous studies can be a complex task, since each study has elements of subjec-
tivity, error-proneness and possible potential for bias. Thus, a panel of experts on
cervical cancer was asked to provide their best estimate for the sensitivities and
specificities of the tests, and the prior distributions that summarise the information
provided by the literature review corrected by the experts were derived. The as-
sessment of beta distribution priors for each test parameter considered the method
presented by Joseph, Gyorkos and Coupal (1985), where the hyperparameters are
defined by matching the center of a range of plausible values of sensitivity and sen-
sitivity with the mean of the beta distribution and matching the standard deviation
of the beta distribution with one quarter of the total range. We considered a vague
prior distribution for the prevalence of precursor cervical lesions (a Beta distribu-
tion with hyperparameters 0.5 and 0.5; see Box and Tiao (1992)) motivated by a
little background knowledge about this parameter.

We generated 220,000 samples using the MCMC procedure, sampling every 20
to assure that successive samples were independent. We removed the first 20,000
samples in the chain to avoid including any generated values that might have been
sampled before convergence of the Markov chain. For each parameter of interest,
the arithmetic mean of these Gibbs samples is a natural Bayesian estimator. These
arithmetic means are showed in Table 2, with the respective 95 percent credible
intervals.

The results suggest a low sensitivity for cervical cytology to detect ASC-US or
worse (53.8 percent) as well as for VIA (53 percent), but indicate a high sensitivity
for the HC II (90.3 percent). All screening methods presented relatively high speci-
ficities: 97.0 percent for cervical cytology, 93.0 percent for VIA and 88.7 percent
for the HC II.

In a second instance, we introduced in the model the age of the women (X)
as a continuous covariate. Under the notation introduced in Section 2, the covari-
ate W1 is given by (X − x)/10, where x is the sample mean of X. The quotient
10 is only considered for avoiding numerical instability related to large values
in exponential functions present in the conditional posterior densities of interest.
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We also introduced in the model the variable W2, a dichotomous variable that
denotes whether or not the woman is actually pregnant (1 if pregnant and zero oth-
erwise). Firstly, we considered the interaction between W1 and W2 in the model.
However, all interaction parameters were estimated to be close to zero (ranged
from −0.031 to 0.009) and were excluded from the final model. In the expres-
sion (2.3), the vectors of parameters β1, β2 and β3 are related to the sensitivities
of the cervical cytology, VIA and HC II, respectively; β4, β5 and β6 are related
to the specificities of the cervical cytology, VIA and HC II, respectively; and the
vector β7 is related to the prevalence of cervical lesions. We consider the prior
densities for βlj with normal distribution with fixed hyperparameters alj (means)
and b2

lj (variances), l = 1, . . . ,7, j = 0,1, . . . ,L. Combining the prior distribu-
tions with L(β), we obtain the conditional posterior distributions for β and the
Metropolis–Hastings algorithm is used to generate samples from the each param-
eter.

From the conditional densities for the parameters in β given in Section 2, we
generated 220,000 Gibbs samples. From this chain, we discarded the first 20,000
(regarded as burn-in samples). The convergence of the Gibbs samples was mon-
itored by standard existing methods (Geweke (1992)). The convergence was ob-
served for all parameters. Prior distributions for the intercept parameters β10 to
β70 were assumed with fixed hyperparameters based in estimates obtained in
the previous analysis without covariates. For example, we noted that the esti-
mated sensitivity of the cervical cytology was 0.536 (see Table 2), and consid-
ering the inverse of the logit function, the hyperparameter a10 is thus given by
log(0.536/(1 − 0.536)). All the other hyperparameter values were chosen to have
noninformative priors. Thus, we used an empirical Bayesian modelling approach
(Carlin and Louis (2000)). For each parameter, we considered every 50th draw
to assure that successive samples were independent. Considering that a logit link
was used, the regression coefficients in β are interpreted as being the logarithm
of the odds ratios (OR). These odds ratios represent an association measure be-
tween the variables W1 and W2 and the operating characteristics of the screening
tests.

In Table 3, we have the posterior summaries for the exponential function of the
parameters of interest in β , interpreted as odds ratios. We observe that the 95%
credible intervals for the parameters eβ11 to eβ71 included the value 1, suggesting
that there is no evidence for the effect of pregnancy in Se and Sp measures for all
tests. The parameters eβ22 and eβ52 were estimated in 2.033 and 1.615, respectively,
and its credible interval does not include the value 1. This result suggests that the
sensitivity and the specificity of VIA increases as the age of the women increases.
In fact, in the medical literature several authors have described that methods for
detection of precursor lesions of cervical cancer have different performances ac-
cording to the age of women (see University of Zimbabwe (1999), Koss (2000)
and Shlay et al. (2000)). The prevalence of cervical lesions, as expected, tends to
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Table 3 Posterior odds ratios as association measures between pregnancy and age and the per-
formance measures of the cervical cytology, VIA and HC II (SD: standard deviation; CI: credible
interval)

Parameter Measure Mean SD 95% CI

eβ11 effect of pregnancy on Se1 1.142 0.566 0.420 2.496
eβ21 effect of pregnancy on Se2 1.079 0.502 0.400 2.291
eβ31 effect of pregnancy on Se3 1.214 0.667 0.413 2.864
eβ41 effect of pregnancy on Sp1 1.105 0.528 0.416 2.384
eβ51 effect of pregnancy on Sp2 1.626 0.710 0.670 3.425
eβ61 effect of pregnancy on Sp3 0.840 0.343 0.381 1.692
eβ71 effect of pregnancy on p 1.168 0.509 0.479 2.451
eβ12 effect of age on Se1 0.973 0.318 0.481 1.694
eβ22 effect of age on Se2 2.033 0.699 1.013 3.737
eβ32 effect of age on Se3 0.914 0.364 0.393 1.856
eβ42 effect of age on Sp1 0.804 0.202 0.469 1.239
eβ52 effect of age on Sp2 1.615 0.282 1.131 2.272
eβ62 effect of age on Sp3 1.422 0.238 0.996 1.925
eβ72 effect of age on p 0.483 0.109 0.313 0.738

increase as the age of the women increases (OR estimated in 0.483, and the re-
spective 95% credible interval do not include the value 1). This effect of age on
the prevalence is well known in the medical literature since the disease is more
incident in sexually active women.

4 Concluding remarks

The contribution of the present study is to provide an extension of the Bayesian
method proposed by Joseph, Gyorkos and Coupal (1985) for estimating the perfor-
mance measures of screening tests introducing a vector of covariates. For this pur-
pose, we introduced a Bayesian approach based on a Markov chain Monte Carlo
(MCMC) algorithm. The lack of a gold standard is counterbalanced by the intro-
duction of a latent variable G (2.2) that best describe the data simulating a refer-
ence test. This latent variable has a Bernoulli distribution with success probability
given in function of the performance screening measures and its subjectiveness
from the respective prior distributions. An advantage of the proposed methodol-
ogy is the fact that the number of parameters to be estimated is not limited by
the number of observations as it happens when we use the method introduced by
Hui and Walter (1980). Even when the sample size is not large, the number of
parameters to be estimated is not limited. However, the problem of identifiability
is not fully avoided, given that the proposed Bayesian model is very sensitive to
choice of the hyperparameters of the prior distributions. This can be demonstrated
by a brief sensitivity analysis, and evidences that plausible results would be given
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if we incorporate reasonable prior distributions based on prior knowledgement of
clinical experts.

The choice of the prior distribution specification of the parameters in the pro-
posed model was based in articles from the literature, followed by a revision by
a panel of experts (authors of this article with clinical education). This proce-
dure explicitly incorporates subjective views, and any conclusions drawn from the
Bayesian analysis will potentially be sensitive to the choice of prior distribution.
Although eliciting and quantifying the prior opinions of clinicians is a difficult
task, researchers should be able to choose the prior distributions with thorough-
ness. A careful verification of the prior information and a subsequent analysis of
its changes in the outcomes can result in reasonable estimates for the tests perfor-
mance measures.

The major shortcoming of the Bayesian estimating method resides in the neces-
sary presumption that the diagnostic tests are statistically and conditionally inde-
pendent. This presupposition might not be invariably true (Brenner (1996)), and
alternative methods were proposed by Espeland and Handelman (1989), Yang
and Becker (1997) and Dendukuri and Joseph (2001) to address those situations.
However, all of these approaches address situations in which the correlation be-
tween two screening tests is considered, and extensions for three or more tests
are not found in the literature. Bayesian models that include the conditional de-
pendence between multiple screening tests should be considered in future stud-
ies.
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