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A new grid method for computing the Snell envelope of a function of an Rd-valued simulatable

Markov chain (X k)0<k<n is proposed. (This is a typical nonlinear problem that cannot be solved by

the standard Monte Carlo method.) Every X k is replaced by a ‘quantized approximation’ X̂X k taking its

values in a grid ˆk of size Nk . The n grids and their transition probability matrices form a discrete

tree on which a pseudo-Snell envelope is devised by mimicking the regular dynamic programming

formula. Using the quantization theory of random vectors, we show the existence of a set of optimal

grids, given the total number N of elementary Rd-valued quantizers. A recursive stochastic gradient

algorithm, based on simulations of (X k)0<k<n, yields these optimal grids and their transition

probability matrices. Some a priori error estimates based on the Lp-quantization errors kX k � X̂X kk p
are established. These results are applied to the computation of the Snell envelope of a diffusion

approximated by its (Gaussian) Euler scheme. We apply these results to provide a discretization

scheme for reflected backward stochastic differential equations. Finally, a numerical experiment is

carried out on a two-dimensional American option pricing problem.

Keywords: American option pricing; Markov chains; numerical probability; quantization of random

variables; reflected backward stochastic differential equation; Snell envelope

1. Introduction

Since the 1940s, the theory of Markov processes and stochastic calculus have provided a

probabilistic interpretation for the solutions of linear partial differential equations (PDEs)

based on the Feynman–Kac formula. One of its most striking applications is the emergence

of the Monte Carlo method as an alternative to deterministic numerical algorithms for

solving linear PDEs. It is widely known that the Monte Carlo method has two advantages:

its rate of convergence does not depend upon the dimension d of the state space and is not

affected by possible degeneracy of the second-order terms of the equation. For d > 4 the

probabilistic approach often remains the only numerical method available.

In the 1990s the theory of backward stochastic differential equations (BSDEs; see
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Pardoux and Peng 1992; El Karoui et al., 1997a; 1997b; Bally et al. 2002a) provided a

probabilistic interpretation for nonlinear problems (semi-linear PDEs, PDEs with obstacle

etc.). For example, let us focus for a while on the problem of semi-linear PDEs with

obstacle (in the weak sense):

max((@ t þ L)uþ f (t, x, u), h(t, x)� u(t, x)) ¼ 0, 0 < t < T , uT ¼ h(T , �), (1)

where f : [0, T ] 3 Rd 3 R! R, h : [0, T ] 3 Rd ! R are Lipschitz continuous and L is a

second-order differential operator defined on twice differentiable functions on Rd by

Lu(x) :¼ hbj=ui(x)þ 1

2
tr(��=2u � )(x)

(b : Rd ! Rd and � : Rd !M(d 3 q) are Lipschitz continuous functions, j � j denotes the

Euclidean norm on Rd , (�j�) for the inner product). The object involved in the probabilistic

interpretation of (1) is the reflected backward stochastic differential equation (RBSDE)

associated with the diffusion process (X t) t2[0,T] solution of the stochastic differential equation

X t ¼ xþ
ð t

0

b(X s)dsþ
ð t

0

� (X s)dBs, (2)

where (Bt) t2[0,T ] is standard Brownian motion on Rq (its completed filtration is denoted by

F :¼ (F t)t2[0,T]). The (solution) of the RBSDE is defined as a triplet (Y , Z, K) of square-

integrable, F -progressively measurable processes satisfying

Yt ¼ h(T , XT )þ
ðT
t

f (s, X s, Ys)dsþ KT � Kt �
ðT
t

ZsdBs, (3)

Yt > h(t, X t) and

ðT
0

(Yt � h(t, X t)) dKt ¼ 0, (4)

where (Kt) t2[0,T ] has non-decreasing continuous paths and K0 :¼ 0.

We wish to solve a BSDE (i.e. (3), but we also require Y to remain larger than the

obstacle h(t, X t)). Then we need a non-decreasing process K to ‘push’ Y upwards. K is

required to be minimal: it pushes in the critical situation Yt ¼ h(t, X t) only. Z is the

strategy to be used so that Yt starts with Y0 at time t ¼ 0 and reaches h(T , XT ) at time T

in a non-anticipative way, although h(T , XT ) depends on the entire information up to T .

The following theorem is due to El Karoui et al. (1997a).

Theorem 1. Assume that the following assumptions hold for some real constant ª0 . 0:

8x, x9 2 Rd , j� (x)� � (x9)j _ jb(X )� b(x9)j < ª0jx� x9j, (5)

8t, t9 2 Rþ, x, x9 2 Rd , y, y9 2 R ,

j f (t, x, y)� f (t9, x9, y9)j < ª0(jt � t9j þ jx� x9j þ jy� y9j), (6)

8t, t9 2 Rþ, x, x9 2 Rd , jh(t, x)� h(t9, x9)j < ª0(jx� x9j þ jt � t9j): (7)

Then the RBSDE (3) has a unique solution (Y , Z, K). Furthermore, the process Y admits the

representation
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Yt ¼ u(t, X t),

where u denotes the unique solution (in the viscosity sense) of (1).

Another approach is developed in Bally et al. (2002a): the function u solves in a

variational sense the PDE with obstacle h, and u is the minimal solution for the

corresponding variational inequality. Then, using the connections between variational

inequalities and optimal stopping theory (see Bensoussan and Lions 1982) leads to the

representation of the above process Y as a Snell envelope:

Proposition 1. If (Yt) t2[0,T ] solves the RBSDE (3), then

Yt ¼ ess sup�2T t
E

ð�
t

f (s, X s, Ys)dsþ h(�, X �)jF t

� �
, (8)

where T t is the set of [t, T ]-valued F -stopping times.

When the function f does not depend upon Yt, equation (8) becomes an alternative

definition of (Yt) t2[0,T] which then appears as the usual Snell envelope of a regular optimal

stopping problem associated with the Brownian diffusion (X t) t2[0,T ]. Then f represents the

instantaneous gain and h the final gain. Of course optimal stopping theory for diffusions is

a classical topic in probability theory, and its numerical aspects have been investigated since

the very beginnings of numerical probability, motivated by a wide range of applications in

engineering; see, for example Kushner (1977) on elliptic diffusions, and Bensoussan and

Lions (1982). However, mathematical finance made it still more strategic in the 1980s:

pricing an American option is in some way an almost generic optimal stopping problem

(with f 
 0, h > 0 and X a non-negative martingale).

In brief, a (vanilla) American option is a contract that gives the right to receive once and

only once h(t, X t) currency units, at a time t chosen between time 0 and the maturity

T . 0 of the contract. The possibly multidimensional (non-negative) process (X t) t2[0,T ] is

called the underlying asset or risky asset process. If one assumes for the sake of simplicity

that the interest rate is 0, classical arguments in the modelling of financial markets show

that the price Yt of such a contract is given at every time t by (8) (setting f 
 0), with

respect to a so-called risk-neutral probability which makes the diffusion (X t) t2[0,T] a

martingale. Among all possible models for the asset dynamics, the geometric Brownian

motion on Rq,

dX t ¼ � X t dBt, X0 ¼ x0 2 Rd
þ, � 2M(d, q),

is widely used. When q ¼ d, it is known as the Black–Scholes model. Another question of

interest is whether, at any time t, there is some optimal stopping strategy for exercising this

right in the future. An answer is provided by the (lowest) optimal stopping time given by

� t� :¼ inffs > tjYs ¼ h(s, X s)g in the sense that � t� satisfies Y� t� ¼ E(h� t� jF t).

Historically, the underlying asset of the first massively traded American option contracts

was one-dimensional (a single stock). However, many American options, mostly traded

‘over the counter’, have a much more complex structure depending on a whole basket of d
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underlying risky assets X t :¼ (X 1
t , . . . , X d

t ). If one thinks, for example, of indices (Dow

Jones, DAX, CAC40, etc.), d is usually greater than 2, 3 or 4.

The usual numerical approach to solving (low-dimensional) optimal stopping problems is

essentially analytic: it consists in solving the variational inequality (1) using standard

techniques of numerical analysis (finite differences, finite elements, finite volumes, etc.). In

spite of the loss of probabilistic interpretation, especially when implicit schemes are used,

these methods are unrivalled in one or two dimensions in terms of their rate of

convergence. This holds similarly for RBSDEs.

However, the autonomous development of mathematical finance, mainly influenced by its

probabilistic background, gave rise to algorithms directly derived from discretizations of the

Snell envelope (8) (when f 
 0). The most famous method is undoubtedly the binomial tree

made very popular in the financial world by its simplicity of implementation and

interpretation. Some very accurate rates of convergence are available for such models in the

case of the vanilla American put option (h(t, x) :¼ max(K � x, 0)) (see Lamberton 1998;

2002; Lamberton and Rogers 2000; Bally and Saussereau 2002).

As the dimension increases, analytic methods become insufficient and the probabilistic

interpretation becomes the key to any numerical approach. Although this paper is concerned

with the more general case of the (h, f )-Snell envelopes embodying the numerical

approximation of solutions of RBSDEs, let us persist with regular optimal stopping for a

while. All probabilistic approaches roughly follow the same three steps:

1. Time discretization. One approximates the F -adapted diffusion process (X t) t2[0,T ] at

times t k ¼ kT=n, k ¼ 0, . . . , n, by an ( ~FF k)0<k<n-Markov chain ~XX ¼ ( ~XX k)0<k<n, where
~FF k ¼ F t k . The chain ~XX is assumed to be easily simulatable on a computer (index k then

stands for absolute time t k). Then one approximates the continuous-time F -Snell envelope

Y of X by the discrete time ~FF -Snell envelope of ~XX defined by

~UUk :¼ ess supfE(h(ŁT=n, ~XXŁ)j ~FF k), Ł 2 ¨kg,

where ¨k denotes the set of fk, . . . , ng-valued stopping times. The approximating process ~XX
will often be chosen to be the Euler scheme (X k)0<k<n (with Gaussian increments) of the

diffusion, but other choices are possible (Milshtein scheme, etc). In one-dimension a binomial

tree can be considered as a weak approximation. When samples (X0, X t1 , . . . , X tn ) of the

diffusion are simulatable, for instance because X t ¼ j(t, Bt) as in the Black–Scholes model,

the best choice is of course to consider ~XX k ¼ X tk. In that case, its ( ~FF k)0<k<n-Snell envelope

will be simply denoted by (Uk)0<k<n. Bally and Pagès (2003) carry out a detailed analysis of

the resulting Lp-error: if assumptions (5)–(7) hold and ~XX k ¼ X k or X tk , then

kYkT=n � ~UUkk p ¼ O(1=
ffiffiffi
n
p

); if, furthermore, ~XXk ¼ X tk and h is semi-convex (see (16) below

for a definition), then kYkT=n � Ukk p ¼ O(1=n).

2. Dynamic programming principle. The discrete-time Snell envelope associated with the

obstacle (h(t k , ~XX k))0<k<n satisfies (see Neveu 1971) the following backward dynamic

programming principle:

~UUn :¼ h(tn, ~XX n), ~UUk :¼ max(h(t k , ~XX k), E( ~UUkþ1j ~FF k)) ¼ max(h(t k , ~XX k), E( ~UUkþ1j ~XX k)):

(9)
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The main feature of this formula is that it involves at each step the computation of

conditional expectations: this is the probabilistic counterpart for nonlinearity which makes

the regular Monte Carlo method fail.

3. Computation of conditional expectations. Numerical methods for the massive

computation of conditional expectations can roughly be divided into three families: spatial

discretization of ~XX k ; regression of (truncated) expansions on a basis of L2( ~XX k) (see

Longstaff and Schwartz, 2001); and representation formulae based on Malliavin calculus (as

in Fournié et al. 1999). The first two approaches are both finite-dimensional. An important

drawback of the last two methods – especially in higher dimensions – is that they directly

depend on the obstacle process (h(t k , �)). A spatial discretization method is ‘obstacle free’

in the sense that it produces a discrete semi-group independently of any obstacle process

and then works for any such obstacle process.

The quantization tree method that we propose and analyse in this paper belongs to the

first family (spatial discretization). A specific characteristic of the method is that it does not

explode, even in higher dimensions. The initial idea is simple and shared by many grid

methods (see Broadie and Glasserman 1997; Chevance 1997; Longstaff and Schwartz 2001).

First, at each time step k (i.e. t k) one projects ~XX k onto a fixed grid ˆk :¼ fxk1 , . . . , xkNk
g

following a closest neighbour rule, that is to say, one sets

X̂X k :¼
X

1<i<Nk

xki 1f ~XX k2Ck
i g,

where (Ck
i )1<i<Nk

is a Borel partition of Rd such that Ck
i �

fuj ju� xki j ¼ min1<‘<Nk
ju� xk‘ jg.

As a second step, one ‘mimics’ the above dynamic programming principle (9) on the tree

formed by the grids 0̂, . . . , ˆn. The process ~XX being simulatable, it is possible to compute

by simulation �k
ij :¼ P( ~XX kþ1 2 Ckþ1

j j ~XX k 2 Ck
i ). Although (X̂X k)0<k<n is not a Markov chain,

one may still define a pseudo-Snell envelope (ÛUk)0<k<n by setting

ÛUn :¼ h(X̂X n), and ÛUk :¼ max(h(X̂X k), E(ÛUkþ1jX̂X k)), 0 < k < n� 1:

Since E(ÛUkþ1jX̂X k ¼ xki ) ¼
PNkþ1

j¼1 �k
ij ûukþ1(xkþ1

j ), a backward induction shows that ÛUk :¼
ûuk(X̂X k), where ûuk satisfies the backward dynamic programming formula

ûun(xni ) ¼ h(xni ), 1 < i < Nn,

ûuk(xki ) ¼ max(h(xki ),
XNkþ1

j¼1

ûukþ1(xkþ1
j )�k

ij), 1 < i < Nk , 0 < k < n� 1, (10)

which we will call the quantization tree algorithm. One may reasonably expect the error
~UUk � ÛUk to be small. Indeed, we are able to prove that, for some specific choices of grid ˆk,

and under some appropriate assumptions on the diffusion coefficients, for every p > 1,

kÛUk � ~UUkk p < Cp

Xn
k¼1

kX̂X k � ~XX kk p ¼ O
n1þ1=d

N 1=d

� �
:

Practical processing of the quantization tree algorithm (10) raises the following questions:
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A. How do we specify the grids ˆk :¼ fxk1 , . . . , xkNk
g? This means two things: first, how

do we choose in an optimal way the sizes Nk of the grids, given that

N0 þ N1 þ . . . þ Nn ¼ N ; and second, how do we choose the points xki to keep

the Lp-quantization errors k ~XX k � X̂X kk p minimal?

B. How do we compute the weights �k
ij?

C. How do we evaluate the error k ~UUk � YkT=nk p (and kUk � YkT=nk p)?
D. What is the complexity of the quantization tree algorithm?

One crucial feature of the problem must be emphasized at this stage: whatever the

methods selected to obtain optimal grids and weights, phases A, B and C are ‘one-shot’:

once the grids are settled, their weights and resulting Lp-quantization errors estimated, the

computation of the pseudo-Snell envelope of (h(t k , X̂X k))0<k<n using the quantization tree

algorithm (10) is almost instantaneous on any computer. The numerical experiments carried

out in Section 6.2 (pricing of American options) indicate that, in fact, the quantization tree

grid optimization phase outlined below in Section 3.3 entails a very reasonable cost (less

than 15 minutes on a on 1 GHz PC computer), given the fact that, once completed, one can

instantly price any American pay-off option in that model. Furthermore, in many

applications, one may rely on the quantization of universal objects such as standard

Brownian motion. In this latter case, the optimization of the quantization amounts by

scaling to that of a normal q-dimensional vector N (0; I q) processed once and stored on a

CD-ROM.

Let us turn now to the optimization phases (A, B and C). Actually this is a very old

story: since the early 1950s people working in signal processing and information theory

have been concerned with the compression of the information contained in a continuous

‘signal’ ( ~XX k) using a finite number of ‘codebooks’ (the points xki ) in an optimal way (see

Section 3.1). Several deterministic algorithms have been designed for this purpose,

essentially one-dimensional signals. Among them, let us mention Lloyd’s Method I (see

Kieffer 1982). Meanwhile, a sound mathematical theory of quantization of probability

distributions has been developed (for a recent monograph, see Graf and Luschgy 2000). In

the 1980s, with the emergence of artificial neural networks, some new algorithmic aspects

of quantization in higher dimensions were investigated, mainly the competitive learning

vector quantization algorithm (and its variants) which appeared as a degenerate setting for

the Kohonen self-organizing maps (see Fort and Pagès 1995; Bouton and Pagès 1997; and

the references therein). This stochastic algorithmic approach will be adapted below to

Markov dynamics. It is based on massive simulations of independent copies of the random

vector to be quantized. Pagès (1997) appears to have made the first attempt to apply

optimal multidimensional quantization to numerical probability.

As mentioned above, after Kushner’s pioneering work, the pricing of American options

led to renewed interest in numerical aspects of optimal stopping: we might mention, among

many others, the analysis of the convergence of the Snell envelope in an abstract

approximation framework (see Lamberton and Pagès 1990) or the rate of convergence of

the premium of a regular American put priced in a binomial tree toward its Black–Scholes

counterpart (see Lamberton 1998; and the references therein).

In higher dimensions, several numerical methods have been designed and analysed in the
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literature of the past ten years to solve optimal stopping problems like those naturally

arising in finance or, more generally, to process massive computations of conditional

expectations. In the class of grid methods, one may cite the algorithm devised by Broadie

and Glasserman (1997) for pricing multiasset American options, and the discretization

scheme for BSDEs proposed by Chevance (1997) – the latter is one-dimensional but easy

to extend to higher dimensions. In both approaches the spatial discretization of discrete-time

approximation ( ~XX k)k consists of N independent copies of ( ~XX k)0<k<n which form a grid of

size N at every time step k ¼ 1, . . . , n. In Broadie and Glasserman (1997), the transition

between these grids is based on the likelihood ratios between ~XX k and ~XX kþ1. A convergence

theorem is established without rate of convergence. In Chevance (1997), ( ~XX k)0<k<n is in

fact the Euler scheme of a diffusion and at every time step the grid is uniformly weighted

by 1=N. The transition weights are based on an empirical frequency approach based on a

Monte Carlo simulation as well. Some a priori L1-error bounds are proposed for functions h

having finite variations. Longstaff and Schwartz (2001) develop a regression method based

on truncated expansions in L2( ~XX k). They introduce a dual dynamic programming principle

for the lowest stopping time �� and then compute E(h(��, X ��)) by a Monte Carlo

simulation. The ‘Malliavin calculus’ method was introduced by Fournié et al. (1999) and

then developed in Fournié et al. (2001) and Lions and Régnier (2002). These papers point

out the importance of a localization procedure for variance reduction purposes. Optimal

localization is investigated in one-dimension in Kohatsu-Higa and Petterson (2002) and

extended to d dimensions in Bouchard-Denize and Touzi (2002).

For a weak convergence approach to RSBDE discretization, see Ma et al. (2002) as well

as Briand et al. (2001; 2002) (the latter two are less directly focused on numerical aspects).

Before outlining the structure of the paper, we list some notation:

• For any Lipschitz continuous function j : Rd ! R, we denote by [j]Lip its Lipschitz

coefficient [j]Lip :¼ supx 6¼ yjj(x)�j( y)
x� y

j.
• The set M(d 3 q, R) of matrices with d rows, q columns and real-valued entries will

be endowed with the norm kMk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr(MM�)

p
, where M� denotes the transpose of

M .

• For every finite set A, we denote by jAj its cardinality.

• �x, y denotes the usual Kronecker delta.

• For every x 2 R, [x] :¼ maxfn 2 Zjn < xg and dxe :¼ minfn 2 Zjn > xg.

Section 2 is devoted to the computation of the Snell envelope of a discrete-time Rd-

valued homogeneous Markov chain using a quantization tree. We start with an example, the

discretization of an RBSDE, in Section 2.1, to introduce the (h, f )-Snell envelope. In

Section 2.2 we propose the (backward) quantization tree algorithm and derive some a priori

Lp-error bounds using the Lp-quantization error. Section 3 is devoted to optimal

quantization from a theoretical point of view. Then the extension of the competitive

learning vector quantization algorithm to Markov chains is presented to process the

numerical optimization of the grids and the computation of their transition weights. Section

4 briefly recalls some error bounds concerning the Monte Carlo estimation of the transition

weights (for a fixed, possibly not optimal, quantization tree and in the linear case f 
 0).

These are established in Bally and Pagès (2003). In Section 5 a first comparison with the
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finite-element method is carried out. In Section 6, the above results are applied to the

discretization of RBSDEs, with some a priori error bounds, when the diffusion is uniformly

elliptic. We conclude with a numerical illustration: the pricing of American style exchange

options.

2. Quantization of the Snell envelope of a Markov chain

Before dealing with the general case, let us look more precisely at the case of the RBSDE

presented in the Introduction.

2.1. Time discretization of an RBSDE by an (h, f )-Snell envelope

We follow the notation introduced in the Introduction for RBSDEs. It is natural to derive a

discretization scheme for the solution of an RBSDE from the representation formula (8)

following the approach described in the Introduction. Let t k :¼ kT=n, k ¼ 0, . . . , n, denote

the discretization epochs. One just needs to add a discretization term for the integralÐ T
t
f (s, X s, Ys) ds.

One first considers the homogeneous Markov chain (X tk )0<k<n. Its transition is given by

PT=n(x, dy), where Pt(x, dy) denotes the transition of the diffusion X . The discrete-time

(F t k )0<k<n-(h, f )-Snell envelope (Uk)0<k<n of (X tk )0<k<n is defined by

Uk :¼ ess sup E h Ł
T

n
, XŁT=n

� �
þ T

n

XŁ
i¼kþ1

f (ti, X ti , Ui)jF t k

 !
, Ł 2 ¨k

( )
, (11)

where ¨k denotes the set of fk, . . . , ng-valued (F t k )0<k<n-stopping times (the index k

stands for absolute discrete time in this formulation). When samples (X t1 , . . . , X tn ) can

easily be simulated, (Uk)0<k<n becomes the quantity of interest. When one is dealing with

the Snell envelope of the Euler scheme, (Un) remains a tool in the error analysis.

The Gaussian Euler scheme with general step ˜ . 0 (here ˜ ¼ T=n) is recursively

defined by X
˜
0 :¼ X0 and,

8k 2 N, X
˜
kþ1 :¼ X

˜
k þ ˜b(X

˜
k )þ � (X

˜
k )

ffiffiffiffĩp
�kþ1, (12)

where �k :¼ (Bk˜ � B(k�1)˜)=
ffiffiffiffĩp

, k > 1, are i.i.d. N (0, I q)-distributed. The sequence

(X
˜
k )0<k<n is a homogeneous Markov chain with transition given on bounded Borel

functions by

P˜( f )(x) ¼
ð
Rq

f (xþ ˜b(x)þ
ffiffiffiffĩp
� (x):u)e�juj

2=2 du

(2�)q=2
: (13)

The discrete-time (F t k )0<k<n-(h, f )-Snell envelope (Uk)0<k<n of (X
˜
k )0<k<n is

Uk :¼ ess sup E h(Ł˜, XŁ)þ T

n

XŁ
i¼kþ1

f (ti, X i, Ui)=F t k

 !
, Ł 2 ¨k

( )
: (14)
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One crucial fact for our purpose is that both transitions of interest P˜(x, dy) and P˜(x, dy)

are Lipschitz in the sense of the following definition.

Definition 1. A transition (P(x, dy))x2Rd is K-Lipschitz if,

8g : Rd ! R , Lipschitz continuous, [Pg]Lip < K[g]Lip: (15)

Proposition 2. Assume that the drift b : Rd ! Rd and the diffusion coefficient

� : Rd !M(d 3 q) of the diffusion X are Lipschitz continuous. Set ˜ :¼ T=n.

(a) Euler scheme. Then P˜ is Lipschitz with ratio

KEuler
˜ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ˜ª0(2þ ª0(1þ ˜))

p
¼ 1þ ˜ª0(1þ ª0=2)þ O(˜2):

If, furthermore, b and � satisfy the so-called ‘asymptotic flatness’ assumption,

9a . 0, 8x, y 2 Rd ,
1

2
k� (x)� � (y)k2 þ (x� yjb(x)� b(y)) < �ajx� yj2,

then KEuler
˜ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a˜þ ˜2ª2

0

p
¼ 1� a˜þ O(˜2).

(b) Diffusion. The transition P˜ is Lipschitz with ratio

Kdiff
˜ ¼ exp(ª0(1þ ª0=2)˜):

If furthermore, the asymptotic flatness assumption holds, then

Kdiff
˜ ¼ exp(�a˜):

Proof. (a) Let g : Rd ! R be a Lipschitz continuous function. Then, for every x, y 2 Rd,

jP˜(g)(x)� P˜(g)(y)j2 < E(jg(xþ ˜b(x)þ
ffiffiffiffĩp
� (x)�1)� g(yþ ˜b(y)þ

ffiffiffiffĩp
� (y)�1)j2)

< [g]2
LipE(jxþ ˜b(x)þ

ffiffiffiffĩp
� (x)�1 � (yþ ˜b(y)þ

ffiffiffiffĩp
� (y)�1)j2)

< [g]2
Lip(jx� yj2 þ ˜k� (x)� � (y)k2 þ 2˜(x� yjb(x)� b(y))

þ ˜2jb(x)� b(y)j2)

< [g]2
Lip(1þ ˜ª2

0 þ 2˜ª0 þ ˜2ª2
0)jx� yj2:

The ‘asymptotically flat’ case is established similarly.

(b) Itô’s formula implies (with obvious notation) that

Solving multidimensional discrete-time optimal stopping problems 1011



jX x
t � X

y
t j2 ¼ jx� yj2 þ 2

ð t
0

((X x
s � X y

s jb(X x
s)� b(X y

s ))þ 1

2
tr(� (X x

s)

� � (X y
s ))(� (X x

s)� � (X y
s ))�)ds

þ
ð t

0

(X x
s � X y

s j(� (X x
s)� � (X y

s ))dBs) (true martingale)

EjX x
t � X

y
t j2 < jx� yj2 þ ª0(2þ ª0)

ð t
0

EjX x
s � X y

s j2ds:

Gronwall’s lemma finally leads to EjX x
t � X

y
t j2 < jx� yj2 exp (ª0(2þ ª0)t).

In the ‘asymptotically flat’ case, one verifies that t 7! EjX x
t � X

y
t j2 is differentiable and

satisfies

d

dt
EjX x

t � X
y
t j2 < �a EjX x

t � X
y
t j2,

whence the result claimed. h

Remark 1. The result of the above proposition still holds if one considers an Euler scheme

where the increments �k are simply square-integrable, centred and normalized.

Remark 2. The simplest ‘asymptotically flat’ transitions are the Euler scheme of the

Ornstein–Uhlenbeck process dYt :¼ �1
2
Yt dt þ �dBt for which the property holds with a ¼ 1

4
.

Bally and Pagès (2003) carry out an analysis of the Lp-error induced by considering the

discrete-time (h, f )-Snell envelopes (Uk)0<k<n and (Uk)0<k<n instead of the process

(Yt) t2[0,T ]. The main result is summed up in the proposition below.

Proposition 3. Assume that (5)–(7) hold and that X 0 ¼ x 2 Rd .

(a) Lipschitz continuous setting. Let p > 1. Then

8k 2 f0, . . . , ng, kYtk � Ukk p þ kYtk � Ukk p < CpeC pT (1þ jxj) 1ffiffiffi
n
p ,

where Cp is a positive real constant depending upon p, b, � , f and h (by means of ª0).

(b) Semi-convex setting. Assume, furthermore, that f is C1,2,2
b (the set of C1,2,2 functions f

whose existing partial derivatives are all bounded.) and that h is semi-convex in

following sense:

8t 2 [0, T ], 8x, y 2 Rd , h(t, y)� h(t, x) > (�h(t, x)jy� x)� rjx� yj2, (16)

where �h is a bounded function on [0, T ] 3 Rd and r > 0. Then, the (h, f )-Snell

envelope of the discretized diffusion (X tk )0<k<n satisfies, for every p > 1,

8k 2 f0, . . . , ng, kYtk � Ukk p < CpeC pT (1þ jxj) 1

n
:

(The real constant Cp is a a priori different from that in the Lipschitz continuous case.)
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Remark 3. The semi-convexity assumption is a generalization of convexity which embodies

smooth enough functions. This notion seems to have been introduced in Caverhill and

Webber (1990) for pricing one-dimensional American options. See also Lamberton (2002) for

recent developments in finance.

Remark 4. If h(t, �) is convex for every t 2 [0, T ] with a bounded spatial derivative �h(t, �)
(in the distribution sense), then h is semi-convex with r ¼ 0. Thus, it embodies most

American style pay-off functions used in mathematical finance for options pricing like those

involving the positive part of linear combinations or extrema of the underlying traded asset).

Remark 5. If h(t, �) is C1 for every t 2 Rþ and @h(t, x)=@x is r-Lipschitz in x, uniformly in

t, then h is semi-convex (with �h(t, x) :¼ @h(t, x)=@x).

2.2. Quantization of the (h, f )-Snell envelope of a Lipschitz Markov

chain

Let (X k)k2N be a homogeneous Rd-valued (F k)k2N-Markov chain with transition P(x, dy).

Motivated by the Section 2.1, one is interested in computing the following (h, f )-Snell

envelope (Uk)0<k<n related to a finite horizon n and to some functions h :¼ (hk)0<k<n and

f :¼ ( f k)0<k<n defined on f0, . . . , ng3 Rd and f0, . . . , ng3 Rd 3 Rd, respectively:

Uk :¼ ess sup E hŁ(XŁ)þ
XŁ
i¼kþ1

f i(X i, Ui)jF k

 !
, Łfk, . . . , ng-valued F l-stopping time

( )
:

(17)

In fact, the (h, f )-Snell envelope is simply connected with the regular Snell envelope

appearing in optimal stopping theory: one verifies that Vk :¼ Uk þ
Pk

i¼1 f i(X i, Ui) is the

standard Snell envelope of the F k-adapted sequence Zk :¼ hk(X k)þ
Pk

i¼1 f i(X i, Ui).

Hence, following Neveu (1971), for example, V is the Snell envelope of Z, that is, it

satisfies the backward dynamic programming principle

Vn ¼ Zn and Vk ¼ max(Zk , E(Vkþ1jF k)):

(Uk)0<k<n is found to satisfy the dynamic programming principle

Un :¼ hn(X n),

Uk :¼ max(hk(X k), E(Ukþ1 þ f kþ1(X kþ1, Ukþ1)jF k)), 0 < k < n� 1: (18)

It is thus the (h, f )-Snell envelope of X . Henceforth E(�jF k) will be written simply as Ek(�).
At this stage, a straightforward induction using the Markov property shows that, for every

k 2 f0, . . . , ng, Uk ¼ uk(X k), where, uk is recursively defined by

un :¼ hn,

uk :¼ max(hk , P(ukþ1 þ f kþ1(�, ukþ1))), 0 < k < n� 1: (19)
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Example. The time discretization of an RBSDE corresponds to functions

f k(x, u) :¼ T

n
f

kT

n
, x, u

� �
and hk(x) :¼ h

kT

n
, x

� �
, 0 < k < n: (20)

1.2.1. The quantization tree algorithm: a pseudo-Snell envelope

The starting point of the method is to discretize at every step k 2 f0, . . . , ng the random

vector X k using a � (X k)-measurable random vector X̂X k that takes finitely many values. The

random variable X̂X k is called a quantization of X k . One may always associate with X̂X k a

Borel function qk : Rd ! Rd such that X̂X k ¼ qk(X k). The function qk is often called a

quantizer (this terminology comes from signal processing and information theory; see

Section 3.1). It will be convenient to call the finite subset ˆk :¼ qk(R
d) ¼ X̂X k(�) a

quantization grid, or simply grid. The size of a grid ˆk will be denoted by Nk. The

elements of a quantization grid are called elementary quantizers. We will denote by

N :¼ N0 þ N1 þ . . . þ Nn the total number of elementary quantizers used to quantize all

the X k , 0 < k < n.

We now wish to approximate the Snell envelope (Uk)0<k<n by a sequence (ÛUk)0<k<n

formally defined by a dynamic programming algorithm similar to (18), except that the

random vector X k is replaced by its quantization X̂X k , for every k 2 f0, . . . , ng, and the

conditional expectation Ek (i.e the past of the filtration F up to time k) is replaced by

the conditional expectation given X̂X k i.e. E(�jX̂X k). Henceforth, for the sake of simplicity,

E(�jX̂X k) will denoted ÊEk(�).
Assume temporarily that, for every k 2 f0, 1, . . . , ng, we have access to an appropriate

quantization X̂X k ¼ qk(X k) of X k . The optimal choice of the grid ˆk and the quantizer qk

that yield the best possible approximation will be investigated in Section 3.1.

Thus, the pseudo-Snell envelope is defined by mimicking the original one (18) as follows:

ÛUn :¼ hn(X̂X n),

ÛUk :¼ max(hk(X̂X k), ÊEk(ÛUkþ1 þ f kþ1(X̂X kþ1, ÛUkþ1)), 0 < k < n� 1: (21)

The main reason for considering conditional expectation with respect to X̂X k is that the

sequence (X̂X k)k2N does not satisfy the Markov property. The quantization tree algorithm then

simply consists in rewriting the pseudo-Snell envelope in distribution.

Proposition 4 (Quantization tree algorithm). For every k 2 f0, . . . , ng, let ˆk :¼
fxk1 , . . . , xkNk

g denote a quantization grid of the distribution L(X k) and qk its quantizer.

For every k 2 f0, . . . , n� 1g, i 2 f1, . . . , Nkg, j 2 f1, . . . , Nkþ1g

�k
ij :¼ P(X̂X kþ1 ¼ xkþ1

j jX̂X k ¼ xki ): (22)

One defines the functions ûuk by the backward induction
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ûun(x
n
i ) :¼ hn(x

n
i ), i 2 f0, . . . , Nng,

ûuk(x
k
i ) :¼ max hk(x

k
i ),
XNkþ1

j¼1

�k
ij ûukþ1(xkþ1

j )þ f kþ1(xkþ1
j , ûukþ1(xkþ1

j ))

 �0

@
1
A, (23)

k 2 f0, . . . , n� 1g, i 2 f1, . . . , Nkg:

Then ûuk(X̂X k) ¼ ÛUk , 0 < k < n, is the pseudo-Snell envelope defined by (21).

Note that if L(X0) :¼ �x
0
, then ûu0(X̂X0) ¼ ûu0(x0) is deterministic, otherwise

E ûu0(X̂X0) ¼
XN0

i¼1

p0
i ûu0(x0

i ) with p0
i :¼ P(X̂X0 ¼ x0

i ), 1 < i < N0:

Implementing procedure (23) on a computer raises two questions. The first is how to estimate

numerically the above coefficients �k
ij. The second is whether the complexity of the

quantization tree algorithm is acceptable.

As far as practical implementation is concerned, the ability to compute the �k
ij (and the

p0
i ) at a reasonable cost is the key to the whole method. The most elementary solution is

simply to process a wide-scale Monte Carlo simulation of the Markov chain (X k)0<k<n (see

Section 3.3). The estimation of the coefficients is based on the representation formula (22)

of �k
ij as expectations of simple functions of (X k , X kþ1). Furthermore, the a priori error

bounds for kUk � ÛUkk p that will be derived in Theorem 2 below all rely on the Lp-

quantization errors kX k � X̂X kk p, 0 < k < n, which can be simultaneously approximated.

So, the parameters of interest can be evaluated provided that independent paths of the

Markov chain (X k)0<k<n can be simulated at a reasonable cost. This amounts to the

efficient simulation of some P(x, dy)-distributed random vectors for every x 2 Rd.

We will see in Section 3.3.1 that this first approach can be improved by combining this

Monte Carlo simulation with the grid optimization procedure.

Turning now to the complexity of the algorithm, a quick look at the structure of the

quantization tree algorithm (23) shows that going from layer k þ 1 down to layer k requires

kNkNkþ1 elementary computations (where k . 0 denotes the average number of

computations per link ‘i! j’). Hence, the cost of completing the tree descent is

Complexity ¼ k(N0N1 þ . . . þ NkNkþ1 þ . . . þ Nn�1Nn),

so that

k
n

(nþ 1)2
N 2 < Complexity < k

N 2

4
:

The lower bound holds for Nk ¼ N=(nþ 1), 0 < k < n, the upper one for

N0 ¼ N1 ¼ N=2, Nk ¼ 0, 2 < k < n, which is clearly unrealistic. The optimal dispatching

(see, for example, the practical comments in Section 6.1) leads to a complexity close to the

lower bound.

However this is a very pessimistic analysis of the complexity. In fact, in most examples –
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such as the Euler scheme – the Markov transition P(x, dy) is such that, at each step k,

most coefficients of the quantized transition matrix [�k
ij] are so small that their estimates

produced by the Monte Carlo simulation turn out to be 0. This is taken into account to

speed up the computer procedure so that the practical complexity of the algorithm is O(N ).

This can be compared to the complexity of a Cox-Ross-Rubinstein one-dimensional

binomial tree with
ffiffiffiffiffiffiffi
2N
p

time steps which contains approximately N points.

2.2.2. Convergence and rate

The aim now is to provide some a priori Lp-error bounds for kUk � ÛUkk p, 0 < k < n,

based on the Lp-quantization errors kX k � X̂X kk p, 0 < k < n (keeping in mind that these

quantities can simply be estimated during the Monte Carlo simulation of the chain).

The main necessary assumption on the Markov chain here is that its transition P(x, dy) is

Lipschitz (see Definition 1). This assumption is natural, as emphasized by the above

Proposition 2: the transitions of a diffusion and of its Euler scheme are both Lipschitz if its

coefficients are Lipschitz continuous. The first task is to evaluate the Lipschitz regularity of

the functions uk defined by (19) in that setting.

Proposition 5. Assume that the functions h and f are Lipschitz continuous, uniformly with

respect to k, that is, for every k 2 f0, . . . , ng,

8x, x9 2 Rd , jhk(x)� hk(x9)j < [h]Lipjx� x9j, (25)

8x, x9 2 Rd , 8 u, u9 2 R , j f k(x, u)� f k(x9, u9)j < [ f ]Lip(jx� x9j þ ju� u9j) (26)

If the transition P is K-Lipschitz, then the functions uk defined by (19) are Lipschitz

continuous. Furthermore, setting L :¼ K(1þ [ f ]Lip), one obtains

[uk]Lip <

Ln�k [h]Lip þ
K

L� 1
[ f ]Lip

� �
, if L . 1,

[h]Lip þ (n� k)[ f ]Lip if L ¼ 1,

max [h]Lip,
K

1� L
[ f ]Lip

� �
, if L , 1:

8>>>>>><
>>>>>>:

Remark 6. If f 
 0 (i.e. regular optimal stopping), the above inequalities read as follows

[uk]Lip < (K _ 1)n�k[h]Lip:

For practical applications, for example to the Euler scheme or to simulatable diffusions,

L � 1þ c=n so the coefficient Ln�k does not explode as the number n of time steps goes to

infinity.

Proof. As un ¼ hn, [un]Lip < [h]Lip. Then, using the inequality

jmax(a, b)�max(a9, b9)j < max(ja� a9j, jb� b9j),
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it easily follows from the dynamic programming equality (19) that

[uk]Lip < max([h]Lip, [P(ukþ1 þ f kþ1(�, ukþ1))]Lip)

< max([h]Lip, K([ukþ1]Lip þ [ f ]Lip(1þ [ukþ1]Lip)))

< max([h]Lip, L[ukþ1]Lip þ K[ f ]Lip):

By induction,

[uk]Lip < L�k max
k<i<n

(Li[h]Lip þ (Lk þ . . . þ Li�1)[ f ]Lip)

< max
0< j<n�k

(Lj[h]Lip þ
Lj � 1

L� 1
K[ f ]Lip) (if L 6¼ 1),

and we are done. h

We now move on to the main result of this section: some a priori estimates for

kUk � ÛUkk p as a function of the quantization error kX k � X̂X kk p.

Theorem 2. Assume that the transition (P(x, dy))x2Rd is K-Lipschitz and that the functions h

and f satisfy the Lipschitz assumptions (25) and (26). Then,

8 p > 1, 8 k 2 f0, . . . , ng, kUk � ÛUkk p <
1

(1þ [ f ]Lip)k

Xn
i¼k

di kX i � X̂X ik p,

with

di :¼ ([h]Lip þ [ f ]Lip þ (2� �2, p)K(([uiþ1]Lip þ 1)([ f ]Lip þ 1)� 1))(1þ [ f ]Lip)i,

0 < i < n� 1,

dn :¼ ([h]Lip þ [ f ]Lip)(1þ [ f ]Lip)n: (27)

Proof. Set �k :¼ P(ukþ1 þ f kþ1(:, ukþ1)), k ¼ 0, . . . , n� 1, and �n 
 0 so that

E(Ukþ1 þ f kþ1(X kþ1, Ukþ1)jX k) ¼ �k(X k). Define �̂�k similarly by the equality

�̂�k(X̂X k) :¼ ÊEk(ÛUkþ1 þ f kþ1(ÛUkþ1, X̂X kþ1)) and �̂�n 
 0. Then

jUk � ÛUk j < jhk(X k)� hk(X̂X k)j þ j�k(X k)� �̂�k(X̂X k)j

< [h]LipjX k � X̂X k j þ j�k(X k)� ÊEk(�k(X k))j þ jÊEk(�k(X k))� �̂�k(X̂X k)j:

Now

j�k(X k)� ÊEk�k(X k)j < j�k(X k)��k(X̂X k)j þ ÊEk j�k(X k)� ÊEk(�k(X̂X k))j

< [�k]Lip(jX k � X̂X k j þ ÊEk jX k � X̂X k j):

(Note that X̂X k is F k-measurable.) Hence,
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k�k(X k)� ÊE�k(X k)k p < 2[�k]LipkX k � X̂X kk p:
When p ¼ 2, one may drop the factor 2 since the very definition of the conditional

expectation as a projection in a Hilbert space implies that

k�k(X k)� ÊE�k(X k)k2 < k�k(X k)��k(X̂X k)k2 < [�k]LipkX k � X̂X kk2:

On the other hand, coming back to the definition of �k(X k) and �̂�k(X̂X k), one obtains, using

the fact that ÊEk � Ek ¼ ÊEk and that conditional expectation is an Lp-contraction,

jÊEk(�k(X k))� �̂�k(X̂X k)j < ÊEk jUkþ1 þ f kþ1(X kþ1, Ukþ1)� ÛUkþ1 � f kþ1(X̂X kþ1, ÛUkþ1)j

kÊEk(�k(X k))� �̂�k(X̂X k)k p < kUkþ1 þ f kþ1(X kþ1, Ukþ1)� ÛUkþ1 � f kþ1(X̂X kþ1, ÛUkþ1)k
p

< (1þ [ f ]Lip)kUkþ1 � ÛUkþ1k p þ [ f ]LipkX kþ1 � X̂X kþ1k p:

Finally, for every k 2 f0, . . . , n� 1g,

kUk � ÛUkk p < [h]LipkX k � X̂X kk p þ k�k(X k)� ÊEk(�k(X k))k p þ k�k(X k)� �̂�k(X̂X k)k p

< (1þ [ f ]Lip)kUkþ1 � ÛUkþ1k p þ ([h]Lip þ (2� � p,2)[�k]Lip)kX k � X̂X kk p

þ [ f ]LipkX kþ1 � X̂X kþ1k p:

Using the inequality kUn � ÛUnk p < [h]LipkX n � X̂X nk p, standard computations yield

kUk � ÛUkk p
<
Xn
i¼k

[h]Lip þ (2� � p,2)[�i]Lip þ
[ f ]Lip

1þ [ f ]Lip

� �
(1þ [ f ]Lip)i�kkX i � X̂X ik p

� [ f ]LipkX k � X̂X kk p

<
1

(1þ [ f ]Lip)k

Xn
i¼k

(1þ [ f ]Lip)i [h]Lip þ
[ f ]Lip

1þ [ f ]Lip

þ (2� � p,2)[�i]Lip

� �

3 kX i � X̂X ik p:

Finally, the definition of �i and the Lipschitz property of P(x, dy) imply that

[�i]Lip ¼ [P(uiþ1 þ f iþ1(�, uiþ1))]Lip < K(1þ [ f ]Lip)[uiþ1]Lip þ K[ f ]Lip, 1 < i < n� 1:

h

2.2.3. Approximation of the (lowest) optimal stopping time

The second quantity of interest in optimal stopping theory is the (set of) optimal stopping

time(s). A stopping time �opt is optimal for the (h, f )-Snell envelope if

U0 ¼ E0 h�opt
(X �opt

)þ
X�opt

i¼1

f i(X i, Ui)

 !
:
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We know (see, Neveu, 1971) that the lowest optimal stopping time is given by

�� :¼ minfkjUk ¼ hk(X k)g:
In the case of non-uniqueness of the optimal stopping times, �� plays a special role because

it turns out to be the easiest to approximate. Thus when dealing with quantization of Markov

chains, it is natural to introduce its counterpart for the quantized process, that is,

�̂�� :¼ min kjûuk(X̂X k) ¼ hk(X̂X k)
� �

:

In fact, the estimation of the error k�� � �̂��k p seems out of reach, essentially because it

is quite difficult to bound these stopping times from below. Nevertheless, we will be able to

approximate �� (in probability). Let � . 0. Set

�� :¼ min kjuk(X k) < hk(X k)þ �f g,

�̂�� :¼ min kjûuk(X̂X k) < hk(X̂X k)þ �g:
�

Proposition 6. (a) For every � . 0, �� > ��, �̂�� > �̂��. Furthermore
��#�� and �̂��#�̂�� as �#0:

(These stopping times being integer-valued, �� and �̂�� are eventually equal to their limit.)

(b) For every � . 0,

P(�̂�� =2 [�3�=2, ��=2]) < 1
�

Xn
k¼0

(kd k þ [h]Lip)kX̂X k � X kk1:

Proof. Part (a) is an obvious corollary of the definitions of �� and �̂��.

(b) Set Zk :¼ uk(X k)� ûuk(X̂X k)þ hk(X̂X k)� hk(X k). Then, we may write

�̂�� ¼ min kjuk(X k) < hk(X k)þ �þ Zkf g
so that, on the event fmax0<k<njZk j < �=2g, �3�=2 < �̂�� < ��=2. Subsequently,

P(�̂�� =2 [�3�=2, ��=2]) < P( max
0<k<n

jZk j . j
�

2
Þ < 2

�
Emax
<k<n

jZk j:

Now, using the notation of Theorem 2, one has

jZk j < jÛUk � Uk j þ [h]LipjX̂X k � X k j

and thus

E max
0<k<n

jZk j <
Xn
k¼0

kÛUk � Ukk1 þ [h]LipkX̂X k � X kk1

<
Xn
k¼0

(kd k þ [h]Lip)kX̂X k � X kk1:

h
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3. Optimization of the quantization

After some brief background material on optimal quantization of a Rd-valued random

vector, this section is devoted to the optimal quantization method of a Markov chain. For a

modern and rigorous overview of quantization of random vectors, see Graf and Luschgy

(2000) and the references therein.

3.1. Optimal quantization of a random vector X

Let X 2 L
p

Rd (�, A, P). Following the terminology introduced in Section 2.2.1, the Lp-

quantization (p > 1) consists in studying the best possible Lp-approximation of X by a

random vector X̂X :¼ q(X ), where q : Rd ! Rd is a Borel function (quantizer) taking at

most N values called elementary quantizers. Set the quantization grid ˆ :¼ q(Rd) :¼
fx1, . . . , xNg, x1, . . . , xN 2 fRgd . Minimizing the Lp-quantization error kX � q(X )k p
consists in two phases:

1. Having set a grid ˆ � (Rd)N , jˆj < N, find a/the ˆ-valued quantizer qˆ that

minimizes kX � pˆ(X )k p among all ˆ-valued quantizers q (if any).

2. Find a grid ˆ of size jˆj < N which achieves the infimum of kX � qˆ(X )k p among

all the grids having at most N points (if any).

The solution to phase 1 is provided by any Voronoi quantizer of the grid ,̂ also called a

projection following the closest-neighbour rule and defined by

qˆ :¼
X
xi2ˆ

xi1Ci(ˆ),

where (Ci(ˆ))1<i<N is a Borel partition of Rd called a Voronoi tessellation, satisfying

Ci(ˆ) � f	 2 Rd jjxi � 	j ¼ min
1< j<N

j	� xjjg:

A given grid of size N > 2 clearly has infinitely many Voronoi tessellations, essentially due

to median hyperplanes. However, all the Ci(ˆ) have the same convex closure and boundary,

included in at most N � 1 hyperplanes. If the distribution of X weights no hyperplane, that

is, P(X 2 H) ¼ 0 for any hyperplane H , then the Voronoi tessellation is P-essentially

unique.

The Voronoi ˆ-quantization, denoted by X̂X ˆ :¼ qˆ(X ), induces an Lp-quantization error

kX � X̂X ˆk p (in information theory kX � X̂X ˆk pp is called Lp-distortion) given by

kX � X̂X ˆk pp ¼
X
xi2ˆ

E 1Ci(ˆ)jX � xij p
� 


¼ E min
1<i<N

jX � xij p

 �

¼
ð
Rd

min
1<i<N

j	� xij p PX (d	):

(28)

Notice that the quantization error only depends on the distribution of X , whereas the

Voronoi quantizer qˆ only depends on ˆ (and the Euclidean norm). Equality (28) will be

the key to the numerical optimization of the grid. Finally, one can easily show that
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kX � X̂X ˆk p ¼ min kX � Yk p, Y : �! ˆ, jY (�)j < N
� �

: (29)

To carry out phase 2 (grid optimization), one derives from (28) that the quantization error

kX � X̂X ˆk p behaves as symmetric Lipschitz continuous function of the components of the

grid ˆ :¼ fx1, . . . , x
N
g (with the temporary convention that some elementary quantizers xi

may be ‘stuck’ so that jˆj < N ). One shows (see Abaya and Wise 1992; Pagès 1997; Graf

and Luschgy 2000) that

ˆ 7! kX � X̂X ˆk p, jˆj < N , always reaches a minimum

at some grid ˆ� which takes its values in the convex hull of the support of P
X
. One proceeds

by induction. If N ¼ 1, the existence of a minimum is obvious by convexity; then, one may

assume without loss of generality that jX (�)j > N . Then fˆj jjX � X̂X ˆk p < mN�1 � �,

jˆj < Ng, with mN�1 :¼ minfkX � X̂X ˆk p, jˆj < N � 1g ¼ kX � X̂X ˆ�,N�1k p, is a non-

empty compact set for small enough � . 0 since it contains ˆ�,N�1 [ f	g for some

appropriate 	 2 X (�)nˆ�,N�1. This implies the existence of an optimal grid ˆ�,N . Then,

following (29), X̂X ˆ�,N is the best Lp-approximation of X over the random vectors taking at

most N values, that is,

kX � X̂X ˆ�,N k p ¼ min kX � Yk p, Y : �! Rd , jY (�)j < N

n o
: (30)

As an example, an optimal L2-quantization of the normal distribution is given in Figure 1.

We will need the following properties (see Pagès 1997; Graf and Luschgy 2000; and

references therein).

Property 1. If P
X
has an infinite support, any ‘N-optimal’ grid ˆ� has N pairwise distinct

components, P
X
([N

i¼1@Ci(ˆ
�)) ¼ 0 and N 7! minjˆj<NkX � X̂X ˆk

p
is decreasing.

Property 2. If the support of P
X
is everywhere dense in its convex hull HX , any N -optimal

grid lies in HX and any locally N -optimal grid lying in HX has exactly N distinct

components.

Property 3. The minimal L p-quantization error goes to 0 as N !1:

lim
N

min
jˆj<N

kX � X̂X ˆk p ¼ 0:

As a matter of fact, set
N̂
:¼ fz1, . . . , z

N
g where (zk)k2N is everywhere dense in Rd. Then,

minjˆj<NkX � X̂X ˆk p < kX � X̂X N̂ k p goes to 0 by the Lebesgue dominated convergence

theorem.

The rate of this convergence to zero turns out to be a much more challenging problem.

The solution, often referred to as Zador’s theorem, was completed by several authors (Zador

1982; Bucklew and Wise 1982; Graf and Luschgy 2000).

Theorem 3 (Asymptotics). If EjX j pþ� , þ1 for some � . 0, then
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lim
N

N p=d min
jˆj<N

kX � X̂X ˆk pp
� �

¼ J p,d

ð
jgjd=(dþ p)(u) du

� �1þ p=d

, (31)

where P
X
(du) ¼ g(u):ºd(du)þ �, � ? ºd (ºd Lebesgue measure on Rd). The constant J p,d

corresponds to the case of the uniform distribution on [0, 1]d.

Little is known about the true value of the constant J p,d except in one-dimension, where

J p,1 ¼ 1
2 p( pþ1)

and in two-dimensions, where, for example, J2,2 ¼ 5

18
ffiffi
3
p (see Gersho and Gray

Figure 1. Optimal L2-quantization of the normal distribution N (0, I2) with a 500-tuple and its

Voronoi tessellation
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1982; Graf and Luschgy 2000). Nevertheless some bounds are available, based on the

introduction of random quantization grids (see Zador 1982; Cohort 2003). Thus, as d !1,

J p,d � (d=2�e) p=2 (see Graf and Luschgy 2000).

Theorem 3 says that minjˆj<NkX � X̂X ˆk p ¼ O(N�1=d): this means that optimal

quantization of a distribution P
X

produces (for every grid size N ) some grids with the

same rate as that obtained with uniform lattice grids (when N ¼ md) for U ([0, 1]d)

distributions (in fact, even then, uniform lattice grids are never optimal if d > 2).

Example (Numerical integration). On the one hand, for every p > 1,

kX � X̂X ˆk pp ¼ max

ð
Rd

jj� j � q
ˆ
j pdP

X
, j Lipschitz continuous , [j]Lip < 1

� �

(the equality stands for the function j : 	 7! minxi2ˆj	� xij). This induces a propagation of

the Lp-quantization error by Lipschitz functions (already used in the proof of Theorem 2).

On the other hand, from a numerical viewpoint,

jEj(X̂X ˆ)� Ej(X )j < [j]LipkX � X̂X ˆk
1
< [j]LipkX � X̂X ˆk p: (32)

with

Ej(X̂X ˆ) ¼
ð
Rd

j dqˆ (P
X
) ¼

XN
i¼1

P(X 2 Ci(ˆ))j(xi): (33)

(The parameter of interest is mainly p ¼ 2, for algorithmic reasons.) The numerical

computation of Ej(X̂X ˆ) for any (known) function j relies on the grid ˆ ¼ fx1, . . . , x
N
g and

its ‘Voronoi P
X
-weights’ (P

X
(Ci(ˆ)))1<i<N , whereas the error evaluation relies on

kX � X̂X ˆk p. See Pagès (1997) and Fort and Pagès (2002) for further numerical integration

formulae (Hölder, C2, locally Lipschitz continuous functions).

3.2. How to obtain optimal quantization

As far as numerical applications of optimal quantization of a random vector X are

concerned, it has been emphasized above that we need an algorithm which produces an

optimal (or at least a suboptimal) grid ˆ� :¼ fx�1 , . . . , x�Ng, the P
X
-mass of its Voronoi

tessellation (P
X
(Ci(ˆ

�)))1<i<N , and the resulting Lp-quantization error kX � X̂X ˆ�k p.

3.2.1. One-dimensional quadratic setting (d ¼ 1, p ¼ 2)

In one-dimension, an algorithm, known as Lloyd’s Method I, appears as a by-product of the

uniqueness problem for optimal grids (in fact stationary grids, see (36) below): for every

grid ˆ of size N , one sets

T (ˆ) ¼
ð
Ci(ˆ)

	P
X
(d	)jPX (Ci(ˆ))

 !
1<i<N

:
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The grid T (ˆ) has size N and satisfies kX � X̂X T (ˆ)k2 < kX � X̂X ˆk2. If PX has a log-

concave density function, then T is contracting (see Kieffer 1982; Lloyd 1982; Trushkin

1982). Its unique fixed point ˆ� is clearly an optimal grid and the resulting (deterministic)

iterative algorithm, ˆ tþ1 ¼ T (ˆ t), converges exponentially fast towards ˆ�.

3.2.2.Multidimensional setting (d > 2)

Lloyd’s Method I formally extends to higher dimensions. Since there are always several

suboptimal quantizers, T can no longer be contracting, although it still converges to some

stationary quantizer (see (36) below), usually not optimal, even locally. Its major drawback

is that it involves at each step several integrals
Ð
Ci(ˆ)

j dPX (another is that it only works

for p ¼ 2). This suggests randomizing Lloyd’s Method I by computing these integrals using

Monte Carlo simulations of PX -distributed randomvectors.

There is another randomized procedure that can be called upon to find the critical points

of a function when its gradient admits an integral representation with respect to a

probability distribution: stochastic gradient descent (the stochastic counterpart of

deterministic gradient descent). Let us recall briefly what this procedure is.

Let V be a differentiable potential function V : RM ! R such that

limj yj!þ1 V (y) ¼ þ1, j=V j2 ¼ O(V ), =V is Lipschitz continuous, f=V ¼ 0g is locally

finite, and =V has an integral representation =V (y) ¼ E= y v(y, X ), where X is an RL-

valued random vector. Let (ªt) t>1 be a sequence of positive gain parameters satisfyingP
tªt ¼ þ1 and

P
tª

2
t , þ1. Classical stochastic approximation theory says that the

recursive algorithm

Y tþ1 ¼ Y t � ª tþ1= yv(Y t, 	 tþ1), 	 t i:i:d:, 	1�L X , (34)

converges almost surely towards some critical point y� 2 f=V ¼ 0g of V (for various results

in this direction, see Duflo 1997; Kusher and Yin 1997). Under some additional assumptions,

one shows that y� is necessary a local minimum (see Pemantle 1990; Lazarev 1992;

Brandière and Duflo 1996).

Let us return to our optimal quantization problem. We have already noticed that equation

(28) defines a symmetric continuous function on (Rd)N , namely

D
X , p
N (x1, . . . , xN ) :¼ kX � X̂X fx1,...,xNgk pp ¼ E(d

X , p
N (x, X )),

with

d
X , p
N (x1, . . . , xN , 	) :¼ min

1<i<N
j	� xij p, (x1, . . . , xN ) 2 (Rd)N , 	 2 Rd :

D
X , p
N and d

X , p
N are called distortion and local distortion functions, respectively. One can show

for p ¼ 2, see Graf and Luschgy 2000; otherwise, see Pagès 1997 that for every p . 1, D
X , p
N

is continuously differentiable at every N-tuple x :¼ (x1, . . . , xN ) 2 (Rd)N such that xi 6¼ xj,

i 6¼ j and PX (
SN

i¼1 @Ci(x)) ¼ 0. The gradient =D
X , p
N (x) is given by a formal differentiation,
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=D
X , p
N (x) :¼ E(=xd

X , p
N (x, X )) ¼

ð
Rd

@dX , p
N (x, 	)

@xi
PX (d	)

 !
1<i<N

, (35)

with

@dX , p
N

@xi
(x, 	) :¼ p1Ci(x)jxi � 	j p�1 xi � 	

jxi � 	j , 1 < i < N

(set ~00=k~00k :¼~00). Equality (35) still holds when p ¼ 1 if PX is continuous. A grid

fx1, . . . , x
N
g (with N pairwise distinct components and PX -negligible Voronoi tessellation

boundaries) is

a stationary grid if =D
X , p
N (x1, . . . , xN ) ¼ 0: (36)

Then, following Property 1, any optimal grid is stationary.

Setting V :¼ D
X , p
N and plugging the above formula for =xd

X , p
N into the abstract stochastic

gradient procedure (34) yields (reverting to the grid notation ˆ t ¼ fX t
1, . . . , X t

Ng)

ˆ tþ1 ¼ ˆ t � ª tþ1

p
=xd

X , p
N (ˆ t, 	 tþ1), ˆ0 � Rd , jˆ0j ¼ N , 	 t i:i:d:, 	1 � PX , (37)

where the step sequence (ªt) t>1 is (0, 1)-valued and satisfies, as usual,
P

tªt ¼ þ1 andP
tª

2
t , þ1. The fact that ªt 2 (0, 1) for every t 2 N ensures that jˆ tj ¼ N .

Unfortunately, the assumptions that make the stochastic gradient descent almost surely

converge are never satisfied by the Lp-distortion function D
X , p
N which is not a true potential

function for at least two reasons. First, the gradient =D
X , p
N does not exist at N -tuples of

(Rd)N having stuck components (although it remains locally bounded). So, it cannot be

Lipschitz or even Hölder continuous. Second, the Lp-distortion D
X , p
N (x) does not go to

infinity as jxj :¼ jx1j þ . . . þ jxN j ! þ1 (only if min1<i<N jxij ! þ1).

However, D
X , p
N turns out to be a fairly good potential function for practical

implementation, especially in the quadratic case p ¼ 2 (see Figures 1 and 3 and the

CLVQ algorithm below). One does not observe in simulations some components of ˆ t

becoming asymptotically stuck in (37) when t! þ1 in spite of the structure of the

potential function. Although many stationary grids exist, it does converge toward a grid ˆ�,
apparently close to optimality.

This quadratic case corresponds to a very commonly implemented procedure in automatic

classification called Competitive Learning Vector Quantization (CLVQ), also known as the

Kohonen algorithm with 0 neighbour. As we are motivated by numerical applications, we

need to compute the target grid ˆ� with great accuracy. This usually means that

significantly more iterations of the stochastic optimization procedure (37) are required than

in other applications. When p ¼ 2, the recursive procedure (37) can be described in a more

geometric way. Set ˆ t :¼ fX t
1, . . . , X t

Ng.
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1. Competitive phase. Select i(t þ 1) 2 argminijX t
i � 	 tþ1j (closest neighbour).

2. Learning phase. Set

X tþ1
i( tþ1) :¼ X t

i( tþ1) � ª tþ1(X t
i( tþ1) � 	 tþ1),

X tþ1
i :¼ X t

i , i 6¼ i(t ¼ 1):

Concerning numerical implementations of the algorithm, notice that, at each step the grid

ˆ tþ1 lives in the convex hull of ˆ t and 	 tþ1 since the learning phase is simply a homothety

centred at 	 tþ1 with ratio 1� ª tþ1 . 0 (see Figure 2). This has a stabilizing effect on the

procedure, which explains why one verifies in simulations that the CLVQ algorithm does

behave better than its non-quadratic counterparts. Finally, one often ‘refines’ the CLVQ by

processing a randomized Lloyd’s I method (see Pagès and Printems 2003).

Figure 3 shows some planar quantizations obtained using the CLVQ algorithm for some

simulations in the quadratic case, see Pagès and Printems 2003).

The main drawback of the CLVQ algorithm is that it is slow: roughly speaking, like most

recursive stochastic algorithms, its rate of convergence is ruled by a central limit theorem

(CLT) at rate 1=
ffiffiffiffi
ªt
p

(cf. Duflo 1997). Moreover, at each iteration, the computation of the

winning index i0 in the learning phase is time-consuming if N is large. Speeding up the

algorithm requires both these aspects to be addressed. First, one may use some deterministic

sequences with low discrepancy instead of pseudo-random numbers to implement the

algorithm (see Lapeyre et al. 1990) or call upon some averaging methods which reduce the

variance in the CLT theorem (see Pelletier 2000, and the references therein). To cut down

Xt
i

Xt
i0

�t�1 Hom(� t�1; 1 � γt�1)

Xt
j

X t
1

Figure 2. Competitive Learning Vector Quantization
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the winning index search time, one may implement some fast (approximate) search

procedures. For recent developments, see Gersho and Gray (1992, pp. 332 and 479).

The last practical question of interest is the choice of the starting grid ˆ0. This question

is clearly connected with the existence of several local minima for the distortion. One way

is to start from a random N -grid obtained by simulation. An alternative is to process a

so-called splitting method: one progressively adds some (optimal) quantizers with smaller

size to the current state grid: the heuristic idea is that if an N -grid ˆ�N (almost) achieves the

the minimal distortion, then the (N þ �)-grid (�� N ) ˆ�N [ ˆ�� is likely to be inside the

attracting basin of the absolute minimum of the (N þ �)-distortion. These computational

aspects are developed in Pagès and Printems (2003) in the important framework of Gaussian

distributions.

Finally, one can polish up the converging phase of the grid produced by the CLVQ

stochastic gradient by processing a randomized Lloyd’s Method I procedure.

Turning to theoretical aspects of the CLVQ algorithm, some rigorous almost sure

convergence results have been established in Pagès (1997), only for compactly supported

distributions PX on Rd . When d > 2 this convergence only holds in the Kushner–Clark (or

conditional) sense, whereas standard almost sure convergence towards a true N -grid holds

in one dimension (see the Appendix for details).

As a conclusion, the CLVQ and its Lp-counterparts compress the information on PX

provided by the sequence (	 t) t2N� : it appears to be a compressed Monte Carlo method.

We now turn to the estimation of the companion parameters. The proposition below

shows that the weight vector (PX (Ci(ˆ
�)))1<i<N and the induced Lp-quantization error

kX � X̂X ˆ�k p can be obtained on-line for free as a by-product of the CLVQ stochastic

gradient descent as soon as ˆ t converges to ˆ� (this holds true for any p > 1).

Proposition 7. Let p > 1. Assume that X 2 Lpþ�, � . 0, and P
X
weights no hyperplane. Set,

for every t > 1,

Figure 3. Planar quantizations obtained by CLVQ: (a) PX ¼ U ([0, 1]2); (b) PX :¼ E(1=2)�2; (c)

PX :¼ N 0
1

ffiffiffi
2
p

=2ffiffiffi
2
p

=2 1

" # !
.
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pt
i :¼
jf1 < s < tj	 s 2 Ci(ˆs�1)gj

t
,

the empirical frequency of the 	 s falling in the ith tessellation Ci(ˆs�1) of the (moving)

Voronoi tessellation of ˆs�1 up to time t (i ¼ 1, . . . , N ). Also set

D�, t :¼ 1

t

Xt

s¼1

min
1<i<N

j	 s � X s�1
i j�, � 2 (0, pþ �),

the average of the lowest distance of 	 s (to the power �) to the moving quantization grid

ˆs�1 ¼ fX s�1
1 , . . . , X s�1

N g, 1 < s < t.

Let ˆ� be a (stationary) grid (see (36)) and let Aˆ� :¼ fˆ t ! ˆ�g be the set of

convergence of ˆ t towards ˆ�. Then, on the event Aˆ� ,

8i 2 f1, . . . , ng, pt
i �!

a:s:
pi :¼ PX (Ci(ˆ

�)) as t! þ1,

8� 2 (0, p), D�, t �!a:s: DX ,�
N (ˆ�) as t! þ1:

Remark 7. The above quantities pt and D�, t obviously satisfy the recursive procedures

pt
i ¼ pt�1

i � 1

t
( pt�1

i � 1f	 t2Ci(X t�1)g), D�, t ¼ D�, t�1 � 1

t
D�, t�1 � min

1<i<N
jX t�1

i � 	 tj�

 �

:

(38)

In fact, the conclusion of Proposition 7 still holds if (1=t) t>1 is replaced in (38) by any

positive sequence (~ªª t) t>1 satisfying
P

t~ªª t ¼ þ1 and
P

t~ªª
( pþ�)=�
t

, þ1. Natural choices for

~ªª t are 1=t or the original step ªt used in the learning phase of the CLVQ algorithm,

depending on the range of the simulation (see Pagès and Printems 2003).

Proof. For notational convenience, a generic N -tuple x ¼ (x1, . . . , xN ) 2 (Rd)N will be

denoted by its grid notation ˆ ¼ fx1, . . . , xNg. Let � : (Rd)N 3 Rd ! R be a Borel function

satisfying j�(ˆ, 	)j < M j	j� for some real constants M . 0 and 0 < � , pþ �, and such

that the function defined by j(ˆ) :¼
Ð
Rd �(ˆ, 	)PX (d	) is bounded and continuous at ˆ�.

One verifies that (�(ˆ t, 	 tþ1)� j(ˆ t)) t>0 is an L( pþ�)=�-bounded sequence of martingale

increments. Now the Chow theorem (see Duflo 1997, p. 22) and
P

t>1 t
�( pþ�)=� , þ1 imply

that the martingale
P

1<s< t(�(ˆs�1, 	 s)� j(ˆs�1))=s converges almost surely towards a

finite random variable Z1. In turn, the Kronecker lemma finally implies that

1

t

Xt

s¼1

�(ˆs�1, 	 s)� j(ˆs�1)�!a:s: 0:

Finally, the continuity of j at ˆ� yields

1

t

Xt

s¼1

�(ˆs�1, 	 s)�!a:s: j(ˆ�) on Aˆ� :
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One first applies this result to the indicator functions �i(ˆ, 	) :¼ 1
Ci (ˆ)

(	), 1 < i < n; the

associated j functions are continuous at ˆ� because PX weights no hyperplane.

Then set

�(ˆ, 	) :¼ r(ˆ) min
1<i<N

k	� xik�

where r is a continuous [0, 1]-valued function with compact support on (Rd)N satisfy-

ing r(ˆ�) ¼ 1. j(ˆ) :¼ r(ˆ)D
X ,�
N (ˆ) is continuous and, on Aˆ� , �(ˆs, 	 sþ1) ¼

min1<i<Nk	 sþ1 � X s
ik� for large enough s. h

3.3. Optimal quantization of a simulatable Markov chain

Let us now move on to the optimal quantization of an Rd-valued Markov chain (X k)0<k<n

with transition P(x, dy) and initial distribution �0 ¼ L(X 0). Assume that, for every x 2 Rd,

the distributions P(x, dy) can be easily simulated on a computer, as well as �0. A typical

example is the Gaussian Euler scheme of a diffusion (see Section 2.1). Assume that, for

every k ¼ 0, . . . , n, X k 2 Lpþ� (� . 0), and that

the distribution of X k weights no hyperplane in Rd : (39)

3.3.1. The extended CLVQ algorithms for Markov chain optimal quantizations

The principle is to modify the Monte Carlo simulation briefly outlined in Section 2.2.1 by

processing a CLVQ algorithm at each step k. One starts from a large-scale Monte Carlo

simulation of the Markov chain (X k)0<k<n that we will denote by 	0 :¼ (	0
0, . . . , 	0

n),

	1 :¼ (	1
0, . . . , 	1

n), . . . , 	 t :¼ (	 t
0, . . . , 	 t

n), . . . . Our aim is to produce for every

k 2 f0, . . . , ng some optimal grids ˆk :¼ fxk1 , . . . , xkNk
g with size Nk , their transition

kernels [�k
ij] and their Lp-quantization errors. Note that, if one sets

pk
i :¼ P(X k 2 Ci(ˆk)), pk

ij :¼ P(fX kþ1 2 C j(ˆkþ1)g \ fX k 2 Ci(ˆk)g),

then

�k
ij :¼ P(X̂X kþ1 ¼ xkþ1

j jX̂X k ¼ xki ) ¼
pk
ij

pk
i

,

i ¼ 1, . . . , Nk , j ¼ 1, . . . , Nkþ1, k ¼ 0, . . . , n� 1:

In the quadratic case (p ¼ 2), the extended CLVQ algorithm proceeds as follows:

1. Initialization phase.

• Initialize the nþ 1 starting grids ˆ0
k :¼ fx

0,k
1 , . . . , x0,k

Nk
g, k ¼ 0, . . . , n, of the nþ 1

CLVQ algorithms that will quantize the distributions �k .

• Initialize the ‘marginal counter’ vectors Æk,0
i :¼ 0, i ¼ 1, . . . , Nk , for every

k ¼ 0, . . . , n.
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• Initialize the ‘transition counters’ �k,0
ij :¼ 0, i ¼ 1, . . . , Nk , j ¼ 1, . . . , Nkþ1,

k ¼ 0, . . . , n� 1.

2. Updating t �! t þ 1. At step t, the nþ 1 grids ˆ t
k , k ¼ 0, . . . , n, have been

obtained. We now use the sample 	 tþ1 to carry on the optimization process, building

up the grids ˆ tþ1
k as follows. For every k ¼ 0, . . . , n:

• Simulate 	 tþ1
k (using 	 tþ1

k�1 if k > 1).

• Select the ‘winner’ in the k th CLVQ algorithm, that is, the only index

i tþ1
k 2 f1, . . . , Nkg satisfying

	 tþ1
k 2 Citþ1

k
(ˆ t

k):

• Update the k th CLVQ algorithm:

8i 2 f1, . . . , Nkg, ˆ tþ1
k,i ¼ ˆ t

k,i � ª tþ11fi¼i tþ1
k
g(ˆ

t
k,i � 	 tþ1

k ):

• Update the k th marginal counter vector Æk, t :¼ (Æk, t
i )1<i<Nk

:

8i 2 f1, . . . , Nkg, Æk, tþ1
i :¼ Æk, t

i þ 1fi¼i tþ1
k
g:

• Update the (quadratic) distortion estimator Dk, t:

Dk, tþ1 :¼ Dk, t þ 1

t þ 1
(jˆ t

k,i tþ1
k

� 	 tþ1j2 � Dk, t):

• Update the transition counters �k, t :¼ (�k, t
ij )1<i<Nk�1,1< j<Nk

(k > 1):

8i 2 f1, . . . , Nk�1g, 8 j 2 f1, . . . , Nkg, �k�1, tþ1
ij :¼ �k�1, t

ij þ 1fi¼i tþ1
k�1

, j¼i tþ1
k
g:

• Update the transition kernels (�k, t
ij )1<i<Nk�1,1< j<Nk

(k > 1):

�k, tþ1
ij :¼

�k, tþ1
ij

Æk, tþ1
i

(possibly only once at the end of the simulation process!):

Following Proposition 7 one has, on the event fˆ t
k ! ˆ�k g, Dk, t �!t!þ1

D
X k ,2
Nk

(ˆ�k ) and

Æk, t

t
�!t!þ1

( p�,k
i )1<i<Nk

¼ (P(X k 2 Ci(ˆ
�
k )))1<i<Nk

(thanks to (39)):

The same martingale approach shows that, on the event fˆ t
k ! ˆ�k g \ fˆ t

kþ1 ! ˆ�kþ1g,

�k, t

t
�!t!þ1

p
�,k
ij ¼ (P(X k 2 Ci(ˆ

�
k ), X kþ1 2 C j(ˆ

�
kþ1)))1<i<Nk ,1< j<Nkþ1

so that, on the event fˆ t
k �!
t!þ1

ˆ�k , k ¼ 0, . . . , ng, for every k 2 f1, . . . , ng,

�k, t
ij �!

t!þ1
��,k
ij , 1 < i < Nk , 1 < j < Nkþ1:

The main features of this algorithm are essentially those of the original CLVQ algorithm.

Moreover, note that the forward optimization of the grids and the weight computation are not

recursive in k, so there is no deterioration of the optimization process as k increases.
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When p 6¼ 2 we employ an Lp-optimization procedure (extended Lp-CLVQ) by using the

general Lp-formula (37) in the grid updating phase.

3.3.2.A priori optimal dispatching of optimal quantizer sizes

The above grid optimization procedures for Markov chains (extended CLVQ and its Lp-

variants) produce optimal grids ˆk for a given dispatching of their sizes Nk . This raises the

optimization problem of how to dispatch a priori the sizes N0, . . . , Nn of the quantization

grids, assumed to be Lp-optimal, if one wishes to use at most N > N0 þ . . . þ Nn

elementary quantizers.

Let p > 1. Formula (27) in Theorem 2 provides some positive real coefficients

d0, d1, . . . , dn such that, for any sequence of quantizations (X̂X k)0<k<n,

ku0(X0)� ûu0(X̂X 0)k p <
Xn
i¼0

dikX i � X̂X ik p: (40)

Then, the best we can do is to specify the sizes Nk that minimize the right-hand side of (40)

when all the quantization vectors X̂X k’s are Lp-optimal, that is,

min
(N0þ...þNn<N )

Xn
i¼0

di 3 kX i � X̂X ik p with kX i � X̂X ik p ¼ min
jˆj<Ni

kX i � X̂Xˆ
i k p, 0 < i < n:

This will also produce an asymptotic bound for the resulting Lp-error

kûu0(X̂X0)� u0(X0)k p. The key is Theorem 3, which says that N
1=d
k minjˆj<Nk

kX k � X̂Xˆ
kk p

converges to some positive constant as Nk ! þ1.

Proposition 8. Assume that all the distributions L(X k) have an absolutely continuous part

jk , 0 < k < n. Let N 2 N�. Set, for every i 2 f0, . . . , ng,

Ni :¼ [riN ] and ri :¼
aiP

0< j<n a j

with ai :¼ kjik1= p
d=(dþ p)

di


 �
d=(dþ1), 0 < i < n:

(41)

Assume that all the quantizations X̂X k of the X k are L p-optimal with size Nk . Then,

lim
N

N1=d max
0<i<n

kui(X i)� ûu
(Ni)
i (X̂X i)k p < J

1= p
p,d

Xn
i¼0

ai

 !1þ1=d

(42)

where J p,d is defined in Theorem 3.

The following simple lemma solves the ‘continuous bit allocation’ problem.

Lemma 1. Let a0, . . . , an be some positive real numbers. Then the function

r :¼ (r0, . . . , rn) 7!
Pn

i¼0air
�1=d
i defined on the set fr0 þ . . . þ rn ¼ 1, ri > 0,

0 < i < ng reaches its minimum at
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r :¼ a
d=(dþ1)
i

a
d=(dþ1)
0 þ . . . þ a

d=(dþ1)
n

 !
0<i<n

so that

Xn
i¼0

air�1=d
i
¼

Xn
i¼0

a
d=(dþ1)
i

 !1þ1=d

:

Note that this minimum value is non-decreasing as a function of the ai and that

Xn
j¼0

a
d=(dþ1)
j

 !1þ1=d

< (nþ 1)1=d
Xn
i¼0

ai:

Proof of Proposition 8. First, rewrite (40) as follows:

N1=dku0(X 0)� ûu
(N0)
0 (X̂X0)k p <

Xn
i¼0

di

Ni

N

� ��1=d

(N
1=d
i kX i � X̂X ik pÞ,

keeping in mind that every X̂X k is Lp-optimal with size Nk . Then,

lim
N

N1=d max
0<i<n

kui(X i)� ûu
(Ni)
i (X̂X i)k p <

Xn
i¼0

di lim
N

N

Ni

� �1=d

N
1=d
i kX i � X̂X ik p


 �( )

¼
Xn
i¼0

dir�1=d
i

lim
N

N
1=d
i kX i � X̂X ik p


 �
:

Now, as Ni ! þ1 for every i 2 f0, . . . , ng, Theorem 3 implies that

limN N
1=d
i kX i � X̂X ik p ¼ (J p,dkjikd=(dþ p))

1= p. Then

lim
N

N 1=d max
0<i<n

kui(X i)� ûu
(Ni)
i (X̂X i)k p < J

1= p
p,d

Xn
i¼0

dikjik1= p
d=dþ p

r�1=d
i

< J
1= p
p,d

Xn
i¼0

kjikd=( p(dþ1))

d=(dþ p)
d
d=(dþ1)
i

 !1þ1=d

:

and the theorem is proved. h

Remark 8. The above asymptotic bound (42) is not fully satisfactory: if one wishes to

optimize the number n of time steps as a function of the number N of elementary quantizers,

one needs some a priori error bounds for a given couple (n, N ). To this end we will need to

control the distributions of the X k , namely to ‘dominate’ them by a fixed distribution up to

some affine time scaling. This can be done, for example, with some uniformly elliptic

diffusions (X tk )0<k<n (see Section 6.1) or with their Doléans exponentials (see Bally et al.

2002b).
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4. Weight estimation in the quantization tree: statistical error

In this short section we summarize some results developed in Bally and Pagès (2003). First,

although the question of the rate of convergence of the quantization grid optimization and

the companion parameter estimation is natural, one must keep in mind that this is a one-

shot phase of the process.

We will not discuss rigorously the error induced on the coefficients �k
ij by the on-line

estimation procedure (38): it would lead us too far, given the partial results available on the

rate of convergence of the CLVQ algorithm. However, let us mention that, under some

appropriate assumptions (see Duflo 1997, p. 52), one can show that a recursive stochastic

algorithm like (34) with step ªt satisfies a CLT with rate 1=
ffiffiffiffi
ªt
p

as t! þ1. Thus, if

ªt � ª=t (with ª large enough), a ‘standard’ CLT holds as for the regular Monte Carlo

method (for more details concerning the rate of convergence of the CLVQ algorithm in one

dimension, see Pagès and Printems 2003).

A less ambitious but still challenging problem is the following. Consider some fixed grids

0̂, . . . , ˆn, their companion parameters and the related quantization tree algorithm (23).

What is the error induced by the use of Monte Carlo estimated weights ~��k
ij instead of the

true weights �k
ij? This third type of error – the statistical error – is extensively investigated

in Bally and Pagès (2003), but let us summarize the situation (a CLT is given in Bally

2002).

This error strongly depends on the structure of the nonlinearity. In the linear case (no

reflection: h(t, �) :¼ �1 if t 6¼ T , and f : 
 0), the composition of the empirical frequency

matrices (~��k
ij)0<k<n yields ~ÆÆn

i ¼ (1=M)
PM

‘¼11f X̂X ‘
n¼xni g

so that ~UUn ¼ (1=M)
PM

‘¼1h(T , X̂X ‘
n).

This is but a standard Monte Carlo method for computing Eh(T , XT ), ruled by the regular

CLT: the statistical error is O(1=
ffiffiffiffiffi
M
p

). In the nonlinear case, the empirical frequencies

cannot be composed. In Bally and Pagès (2003) we focus on the regular Snell envelope of

(h(X k))0<k<n where h is a bounded Lipschitz continuous function ( f 
 0) and X k stands

either for the diffusion X kT=n (with Lipschitz continuous coefficients) or for its Euler

scheme X k , k ¼ 0, . . . , n. Then the statistical error depends on the regularity of the

obstacle h as follows:

Ej~uu0(x0)� ûu0(x0)j < Cb,�,h,T

ffiffiffiffiffiffiffi
nN
p Pn

k¼1kX k � X̂X kk2
þ rn,N ,Mffiffiffiffiffi

M
p , Cb,�,h,T . 0, (43)

where rn,N ,M ¼
ffiffiffi
n
p þ N 2=

ffiffiffiffiffi
M
p

if h is semi-convex and X k is the diffusion X kT=n, and

rn,N ,M ¼ n3=4 þ N2=
ffiffiffiffiffiffiffiffi
nM
p

otherwise. Optimality of the quantizations X̂X k is not required.

5. Finite-element method versus quantization: a first
comparison

A quick comparison of the finite-element method, on the one hand, and the quantization

method, on the other, shows that there is a strong analogy between them: in both cases one

computes the approximation of the solution at a finite number of points using a weighted
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sum, starting from a final condition also evaluated at a finite number of points. The aim of

this short section is to obtain a slightly deeper insight into this analogy. In order to compare

the two methods we will use the simplest possible example, the heat equation

(@ t þ 1
2
˜)u ¼ 0, uT ¼ f : (44)

Let hjjłi :¼
Ð
Rd j(x)ł(x)dx denote the inner product of L2(Rd , ºd). The weak form of (44)

is given by

h f jji � hutjji �
1

2

ðT
t

Xd
i¼1

@us
@xi

				 @j@xi
* +

ds ¼ 0,

for every t 2 [0, T ] and every test function � 2 C2
c(R

d , ºd). The first step of both approaches

is the time discretization. Let n 2 N� and t k ¼ kh, h :¼ T=n (we temporarily abandon the

notation ˜ for the step because of the Laplacian). Then, we consider the discrete problem

h f j�i � hut k0
j�i � h

2

Xn
k¼k0

Xd
i¼1

@ut k

@xi

				 @�xi
* +

¼ 0:

We use the dynamic programming principle in order to solve this problem by induction: we

put un :¼ f and define uk to be the solution of the elliptic problem

hukþ1j�i � huk , �i � h

2

Xd
i¼1

@uk

@xi

				 @�@xi
* +

¼ 0: (45)

Equation (45) can be seen either as a Dirichlet problem on the whole of Rd with condition

zero at infinity or as a problem restricted to a large enough ball. This is a technical point

which requires some special treatment (an additional error appears if we restrict to a ball),

but this is of no interest here.

At this stage, one calls upon the finite-element method (or the quantization) in order to

solve (45). In both cases, one builds up a grid ˆ :¼ fx1, . . . , xNg � Rd and looks for some

weights �k
ij in order to approximate uk by

ûuk(xi) ¼
X

1< j<N

�k
ij ûukþ1(xj): (46)

5.1. The finite-element method

In the finite-element method, one tries to find the grid which best fits in the geometry of the

problem. The same aim appears in the quantization method when we look for an optimal

quantization. The simplest grid used in the finite-element method is based on triangles.

Each xi is the vertex of several triangles and we may consider it as the centroid of the

polygon completed by these triangles. We denote by N i :¼ fxi1 , . . . , xikg the vertices of

this polygon, that is, the points which are vertices of a triangle having xi as a vertex. These

are the neighbours of xi.
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Now, having defined a grid ˆ, we focus on the construction of the weights �k
ij and on

their significance. We begin with the finite-element method. One constructs the trials

Ti, 1 < i < N , in the following way. One sets Ti(xi) :¼ 1 and Ti(xj) :¼ 0 for every

xj 2 N i. Then one sets Ti to be linear on each triangle – so we obtain a pyramid centred at

xi whose basis is the polygon. The trial is null outside the polygon. The idea is to replace

(45) by a finite-dimensional problem to be solved in the space SN spanned by Ti,

1 < i < N . Note that the trials are not orthogonal. In any case, each function U 2 SN may

be written as U (x) :¼
PN

i¼1Ui Ti(x) (we use lower-case letters for general functions in L2

and capital letters for functions in SN ): Note also that Ui ¼ U (xi) and that

@U

@xi
(x) ¼

XN
j¼1

U j

@T j

@xi
(x):

There are two ways of solving the finite-dimensional problem, leading to the same result. The

first one is the Galerkin method based on the weak form of the PDE and the second one is

the Riesz–Reilich method based on the Dirichlet principle. We use the second here. The

solution of (45) is given by the function u 2 H1
0(Rd) which minimizes the energy

e(u) ¼:
ð
Rd

h

2

Xd
i¼1

				 @u@xi (x)

				
2

� u(x)ukþ1(x)

 !
dx:

The discretization consists in solving the above minimum problem in SN : Since each

function in this space may be identified with the vector U :¼ (U1, . . . , UN ), one may write

the discrete problem as follows. Let

E(U ) :¼ h

2

XN
i, j¼1

Ui Kij U j �
XN
i¼1

Ui U
kþ1
i

where Kij :¼
P

1<r<N h@Ti=@xpj@T j=@xri and U kþ1
i :¼ ûukþ1(xi), that is, the coefficients of

ûukþ1. Note that ukþ1 has been changed into ûukþ1: the hat stresses that we are working with

the approximation computed at the step k þ 1 of the dynamic principle algorithm. Now we

have a finite-dimensional problem

ûuk(xi) ¼
X

1< j<N

�k
ij ûukþ1(xj), with �k

ij :¼
2

h
(K)�1

ij

(see (46)), whose solution is given by U k ¼ 2h�1K�1U kþ1:

5.2. Quantization method

We turn now to the quantization method where �k
ij ¼ P(X kþ1 2 C j(ˆkþ1)jX k 2 Ci(ˆk)).

Writing Ph(x, dy) :¼ P(X kþ1 2 dyjX k ¼ x), then

�k
ij ¼

ð
Ci(ˆk )

Ph(1C j(ˆkþ1))(	)dP � X�1
k (d	) � 1

h
Ph(1C j(ˆkþ1))(xi):
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So the part of the trial Ti in the finite-element method is played here by the indicator function

of the Voronoi tessellation of xi: Both h�1Ti and h�11Ci
are approximations of the Dirac

mass at xi. Finally, we note thatX
1< j<N

ûukþ1(xj)�
k
ij � Phûukþ1(xi):

The Feynman–Kac formula shows that ûuk is the solution of (45) with final condition ûukþ1.

5.3. Conclusion

In both methods the first step is a time discretization. Then, as a second step, both of them

solve the same PDE problem (45) using a space approximation procedure. The finite-

element method relies on the variational principle, whereas the quantization method is based

on the probabilistic interpretation of the PDE. In the finite-element method this leads to a

linear system. Solving it amounts to inverting the sparse matrix K (only neighbours yield

non-null entries). In the quantization method, we directly obtain the solution of the system:

the weights are computed using the Monte Carlo method. Once again, the matrix K is

sparse, numerically speaking, since the Brownian motion does not go too far in one time

step: many weights �k
ij will be close to 0 except for the neighbours.

Finally, note that formula (46), however it arises, reads as a finite-difference scheme built

on a grid which is no longer uniform with weights which are no longer h�1. It looks like a

finite-difference scheme adapted to the geometry of the problem.

Beyond these similarities, it appears that in the finite-element method one projects the

function to be computed as an expectation, whereas in the quantization method one projects

the underlying process X involved in the Feynman–Kac formula.

From a numerical point of view, there is a connection between the conditioning of the

matrix K to be inverted in the finite-element method and the asymptotic variance term in the

CLT that – heuristically – gives the rate of convergence of the CLVQ algorithm: when K has

a small eigenvalue, the variance of the CLVQ is large i:e: it converges more slowly.

6. Applications to RBSDEs and American option pricing

6.1. RBSDEs and optimal stopping of Brownian diffusions

In Section 2.1 we pointed out that (h, f )-Snell envelopes (Uk)0<k<n and (Uk)0<k<n of the

sampled diffusion (X kT=n)0<k<n or its Euler scheme (X k)0<k<n each provide natural

discretization schemes for the RBSDE (according to the ability to simulate the diffusion).

For a time discretization step T=n, these Snell envelopes are both related to the functions

f k(x, u) :¼ (T=n) f (t k , x, u) and hk(x) :¼ h(t k , x), k ¼ 0, . . . , n. They satisfy

Un :¼ h(T , XT ), Uk :¼ max(hk(X kT=n), E(Ukþ1 þ f k(X (kþ1)T=n, Ukþ1)jF kT=n)),

0 < k < n� 1, (47)
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Un :¼ h(T , X n), Uk :¼ max(hk(X k), E(Ukþ1 þ f k(X kþ1, Ukþ1)jF kT=n)),

0 < k < n� 1: (48)

Throughout this section, we denote by u
(n)
k the function satisfying Uk :¼ u

(n)
k (X k).

Lemma 2 below shows that the Lipschitz coefficients of functions u
(n)
k and u

(n)
k do not

explode as n goes to infinity. Its (easy) proof is left to the reader.

Lemma 2. Assume that (5)–(7) hold.

(a) Diffusion. The (h, f )-Snell envelope (Uk)0<k<n defined by (11) satisfies

Uk ¼ u
(n)
k (X tk ) with

[u
(n)
k ]Lip < K1 exp(K0(T � t k))þ

�n,k

n
,

where

K1 :¼ ª0 þ
1

1þ ª0=2
, K0 :¼ ª0(2þ ª0=2), lim

n
sup

0<k<n

j�n,k j ¼ 0:

If, furthermore, the transition is asymptotically flat with parameter a . ª0, then

[u
(n)
k ]Lip < K2 þ

�n,k

n
: (49)

with K2 :¼ ª0 max(1, 1=(a� ª0)) and limn sup0<k<nj�n,k j ¼ 0. When f does not

depend on u (regular optimal stopping problems) then K2 :¼ ª0 max(1, 1=a) and (49)

holds if the diffusion is asymptotically flat.

(b) Euler scheme. The (h, f )-Snell envelope (Uk)0<k<n defined by (14) satisfies

Uk ¼ u
(n)
k (X k) and the functions u

(n)
k are Lipschitz continuous. The same bounds

as those obtained for the Lipschitz coefficients of u
(n)
k in part (a) hold.

Remark 9. In the asymptotically flat case, the minimal assumption on f is a . [ f ]Lip.

Remark 10. A less precise statement of Lemma 2 could be: there exist real constants
~KK0, ~KK1 . 0 depending only on b, � , h and f , such that,

8n > 1, 8k 2 f0, . . . , n� 1g, [u
(n)
k ]Lip < ~KK1 e

~KK0(T� t k ):

Furthermore, if the diffusion is ‘asymptotically flat’ enough, one may set ~KK0 :¼ 0.

Lemma 2 yields the following bounds for the coefficients d
(n)
i defined by equation (27).

Proposition 9. Let p > 1. For every fixed n and every k 2 f0, . . . , ng,

8 i 2 fk, . . . , ng, d
(n)
i

(1þ T=nª0)k
¼ (ª0 þ (2� �2, p)K1 eK0(T� ti))eª0( t i� t k ) þ �i,k,n

n

where
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lim
n

max
0<k<i<n

j�i,k,nj ¼ 0

so that

d1 :¼ sup
n>1

max
0<i<n

d
(n)
i , þ1:

We use the notation for RBSDEs introduced in Section 1. The aim here is to derive some

a priori error bounds for kYtk � ûuk(X̂X k)k p
as a function of the total number N of

elementary quantizers and of the number n of time steps, all real constants depending on b,

� , h and T . To this end, we will need some precise estimates for the probability densities

of the diffusion process (X t) t2[0,T ] in the uniformly elliptic case. Assume that diffusion

parameters b and � satisfy the assumptions

��� > �0 I d , �0 . 0 (uniform ellipticity),

(b, � 2 C1b (Rd)) or (b, � Lipschitz continuous and bounded):
(50)

Then, there exist two real constants Æ, � . 0 such that the diffusion process (X x
t ) t2[0,T ]

starting at x has a probability density function pt(x, y) at every time t 2 [0, T ] satisfying

pt(x, y) <
Æ

(2�t)d=2
exp � jy� xj2

2�t

 !
: (51)

The bounded Lipschitz setting is due to Friedman (1975, Theorems 4.5 and 5.4), the smooth

sublinear setting follows from Kusuoka and Stroock (1985). When the diffusion is only

hypoelliptic and satisfies a non-degeneracy Hormander type assumption, it is also established

in Kusuoka and Stroock (1985) that (51) holds with exponent d9 > d=2. This could lead to

different dispatching rules (provided that d9 is known). An alternative approach could be to

rely on similar results established by Bally and Talay (1996) for an ‘excited’ version of the

Euler scheme.

Theorem 4. Assume (5)–(7) hold, that the diffusion (X t) t2[0,T ] satisfies (50) and X0 ¼ x. For

N > nþ 1, assign

Nk :¼
�

t
d=(2(dþ1))
k N

t
d=(2(dþ1))
1 þ . . . þ t

d=(2(dþ1))
n

�
> 1

elementary quantizers to the optimal quantization grid ˆk of X k or X t k, 1 < k < n, and set

N0 ¼ 1. (Note that in fact N < N0 þ . . . þ Nn < N þ nþ 1.)

(a) Diffusion. Let X̂X k denote the optimal L p-quantization of the diffusion X tk . Then,

8 p > 1, max
0<k<n

kYtk � uk(X̂X k)k p < Cp eC pT
n1þ1=d

N1=d
þ 1þ jxj

nŁ

� �
, (52)

where Ł ¼ 1 if h is semi-convex and f is C1,2,2
b , and Ł ¼ 1

2
otherwise.

(b) Euler scheme. Let X̂X k denote the optimal L p-quantization of the Euler scheme X k .

Then, the above error bound holds with Ł ¼ 1
2
.
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Some practical comments about the dispatching are in order. First, one verifies using

t k ¼ kT=n that

Nk �
3d þ 2

2(d þ 1)

k

n

� �d=(2(dþ1))
N

n
as n! þ1, N ! þ1, with n ¼ o(N ):

Note that the optimized ratio Nk=N of the elementary quantifiers assigned to time t k
marginally depends upon the dimension d since

Nk

N
� 3

2n

ffiffiffi
k

n

r
when d becomes ‘large’ (say d > 5): (53)

Then the (theoretical) complexity of the algorithm is approximately 9N2k=(8n), which is

close to the lowest possible (see (24)). Note that, for example in the Lipschitz continuous

setting, if N :¼ dn1þ3d=2e,

max
0<k<n

kYt k � ûuk(X̂X k)k p
<

Cp eC pT (1þ jxj)ffiffiffi
n
p :

Proof of Theorem 4. (a) One derives from Proposition 3 and Theorem 2 applied to the

diffusion (X tk )0<k<n that, for every p > 1,

max
0<k<n

kYtk � Ukk p <
Cp(x)

nŁ

with Cp(x) :¼ Cp eC pT (1þ jxj), Cp . 0, and

max
0<k<n

kUk � ÛUkk p <
Xn
k¼0

d
(n)
k kX tk � X̂X kk p

:

Proposition 9 shows that, for every n > 1 and every k 2 f0, . . . , ng,

d
(n)
k ¼ ª0(1þ Cb,�, p e(ª0þCb,� )(T� t k ))eª0 t k þ �k,n

n
< Cª0,T , p þ

j�k,nj
n

with

Cª0,T , p :¼ ª0 eª0T 1þ (2� �2, p)(1þ Cª0
)

Cª0

e(ª0þCª0
)T

 !
, Cª0

:¼ ª0(1þ ª0=2),

and

lim
n

max
0<k<n

j�k,nj ¼ 0:

First, set X̂X0 :¼ X 0 ¼ x. Setting �n :¼ max0<k<nj�k,nj, one has
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N 1=d max
0<k<n

kYtk � ûuk(X̂X k)k p < Cª0,T , p þ
�n
n

� �Xn
k¼0

N

Nk

� �1=d

3 N
1=d
k min
jˆj<Nk

kX tk � X̂ t kX t k
ˆk p þ

Cp(x)

nŁ
:

Now, the Gaussian domination inequality (51) implies that, for every k 2 f1, . . . , ng,

8 x, y 2 Rd , pt k (x, y) < Æ�d=2�
xþ

ffiffiffiffiffiffi
� t k

p
Z
(y),

where Z �L N (0, I d) and �
Y
(x) is for the probability density function of a random vector Y.

Hence, for every k 2 f1, . . . , ng, Nk > 1, and every grid ˆ :¼ fv1, . . . , vNk
g � Rd of size

Nk ,

kX tk � X̂Xˆ
t k
k p < Æ�d=2k min

1<‘<Nk

jv‘ � x�
ffiffiffiffiffiffiffi
�t k

p
Zj k p, (54)

¼ Æ�d=2
ffiffiffiffiffiffiffi
�t k

p
kZ � ẐZ (ˆ�x)=

ffiffiffiffiffiffi
� t k
p
k p:

Hence

min
ˆ,jˆj<Nk

kX tk � X̂Xˆ
t k
k

p
< Æ�d=2

ffiffiffiffiffiffiffi
�t k

p
min
jˆj<Nk

kZ � ẐZˆk p: (55)

Applying Theorem 3 to Z (i.e. to the normal distribution N (0, I d) on Rd) yields

min
jˆj<Nk

kZ � ẐZˆk p < (1þ �N )1= p ~JJ p,d k�Zk1= p
d=(dþ p)

¼ (1þ �N )1= p ~JJ p,d (1þ p=d)(dþ p)=2 p
ffiffiffiffiffiffi
2�
p

:

(56)

where ~JJ p,d :¼ J
1= p
p,d and limN� N ¼ 0. Combining (55) and (56) yields

N
1=d
k min
jˆj<Nk

kX tk � X̂Xˆ
t k
k p < Æ�(dþ1)=2 ~JJ p,d(1þ �Nk

)1= p(1þ p)(dþ p)=2 p
ffiffiffiffiffiffiffiffiffiffi
2�t k

p
,

k 2 f0, . . . , ng:

N1=d max
0<k<n

kYtk � ûuk(X̂X k)k p < Cª0,T , p þ
�n
n

� �
1þ max

1<k<n
�Nk

� � ffiffiffiffiffiffi
2�
p

~JJ p,d 1þ p

d

� �(dþ p)=2 p

3 �(dþ1)=2
Xn
k¼1

N

Nk

� �1=d ffiffiffiffiffi
t k
p
þ Cp(x)N1=d

nŁ

< Cn,ª0,T , p,d

X
1<k<n

r�1=d
k

ffiffiffiffiffi
t k
p
þ Cp(x)N 1=d

nŁ
,

where rk / t
d=(2(dþ1))
k , 1 < k < n, r1 þ . . . þ rn ¼ 1 and Nk :¼ drk Ne > 1, and Cn,ª0,T , p,d

is bounded as n!1 by a real constant Cª0,T , p,d . Following Lemma 1,
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N 1=d max
0<k<n

kYtk � ûuk(X̂X k)k p < Cª0,T , p,d

Xn
k¼1

t
d=(2(dþ1))
k

 !1þ1=d

þ Cp(x)N 1=d

nŁ
:

Now, Jensen’s inequality implies that
P

1<k<n t
d=(2(dþ1))
k < T d=(2(dþ1)) n. Setting

C p :¼ Td=(2(dþ1))Cª0,T , p,d yields the bound (52) by setting Cp at the appropriate value.

(b) The main modification lies in the above inequality (54). With the same notation,

kX k � �̂XX�XX
ˆ
kk p ¼ k min

1<‘<Nk

jv‘ � X k j jj p

< k min
1<‘<Nk

jv‘ � X tk j pk p þ kX tk � X kk p

< kX tk � X̂Xˆ
t k
k p þ Cp eC pT (1þ jxj) 1ffiffiffi

n
p ,

using classical Lp-error bounds for the Euler scheme. The rest of the proof is as before.h

One can easily derive an optimized choice for the number n of time steps.

Corollary 1. (a) Lipschitz setting (quantization of the Euler scheme or of the diffusion). The

optimal number n of time steps and the resulting error bound satisfy

n � 2d

d þ 1
Cp(x)

� �2=(3dþ2)

N2=(3dþ2) and ju0(x)� ûu0(x)j ¼ O(N�1=(3dþ2)) ¼ O
1ffiffiffi
n
p
� �

,

where Cp(x) < Cp eC pT (1þ jxj).
(b) Semi-convex setting (quantization of the diffusion). The optimal number n of time

steps and the resulting error bound satisfy

n � d

d þ 1
Cp(x)

� �d=(2dþ1)

N1=2(dþ1) and ju0(x)� ûu0(x)j ¼ O(N�1=(2dþ1)) ¼ O
1

n

� �
:

6.2. Numerical pricing of American exchange options by quantization

6.2.1. The test model

One considers two risky assets, a stock S1 with a geometric dividend rate º and a stock S2

without dividend. The interest rate r is deterministic and constant. Assume that (S1, S2)

follows a Black–Scholes dynamics, so that, under the risk-neutral probability P, one has

d1
t ¼ S1

t ((r � º) dt þ �1dB1
t ), S1

0 :¼ s1
0 . 0,

d2
t ¼ S2

t (r dt þ �2dB2
t ), S2

0 :¼ s2
0 . 0,

where (B1, B2) is a two-dimensional Brownian motion with covariance hB1, B2i t ¼ r t,

r 2 [�1, 1]. One can verify that the discounted traded assets

Solving multidimensional discrete-time optimal stopping problems 1041



~SS1
t :¼ e�rt(eº tS1

t ) and ~SS2
t :¼ e�rtS2

t , t 2 [0, T ],

make up a two-dimensional P-martingale with respect to the filtration F B of the two-

dimensional Brownian motion B :¼ (B1, B2). The diffusion S :¼ (S1, S2) is obviously not

uniformly elliptic, but (ln S1, ln S2) clearly is.

An American exchange option with exchange rate � is the right to exchange once and

only once, at any time t 2 [0, T ], � units of asset S2 for one unit of asset S1. Or, to put it

the other way round, the right to buy one unit of asset S1 for � units of asset S2.

The discounted premium of such an option is defined as the (h, 0)-Snell envelope of

ht :¼ e�rt(S1
t � �S2

t )þ ¼ max(e�º t ~SS1
t � � ~SS2

t , 0),

where xþ denotes the positive part of the real number x. Since ht does not depend upon the

interest rate r, we may assume without loss of generality that r :¼ 0. So, if Ext denotes the

premium of this exchange American option at time t,

Ext :¼ ess sup t<�<T E(h�jF t) :¼ E(t, S1
t , S

2
t , r, �1, �2, º):

One noticeable feature of this derivative is that the premium of its European counterpart, that

is, the right to exchange at time T , �S2 and S1, admits a closed form given by

E xt :¼ E(T � t, S1
t , �S

2
t , ~�� , º), ~�� :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2

1 þ � 2
2 � 2r�1�2

q
where

E(t, x, y, �, º) :¼ x e�º t erf (d1(t, x, y, �, º))� y erf (d1(t, x, y, �, º)� �
ffiffi
t
p

),

d1(t, x, y, �, º) :¼ ln (x=y)þ (� 2=2� º)t

�
ffiffi
t
p , erf (x) :¼

ðx
�1

e�u
2=2 duffiffiffiffiffiffi

2�
p :

American exchange options have two characteristics: the (discounted) contingent claim ht

only depends on the state variable St :¼ (S1
t , S

2
t ) at time t, and the European option related

to hT has a closed form. For such options, one uses the premium of the European option as

a control variate to reduce the computations to the ‘residual’ American part of the option.

That is to say, keeping in mind that r ¼ 0, set

8 t 2 [0, T ], k t :¼ ht � E x(T � t, S1
t , �S

2
t , ~�� , º):

Since (E(T � t, S1
t , �S

2
t , ~�� , º)) t2[0,T ] is a P-martingale, it follows that

Ext ¼ ess sup t<�<T k� þ E xt:

So, pricing the American exchange option amounts to pricing the American option having k t

as discounted contingent claim. The interesting fact for numerical purposes is that kT 
 0

and that k t is always smaller than ht. Moreover, standard computations show that one may

write k t :¼ k(ln ~SS1
t , ln ~SS2

t ), where k is a Lipschitz continuous function.
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6.2.2. Practical implementation and results

In a Black–Scholes model, exact simulation of (St k )0<k<n at times 0 ¼:
t0 , t1 , t2 , . . . , t k , . . . , tn :¼ T is possible. In fact, for numerical purposes, it is

more convenient to consider the couple (ln ~SS1
t , ln ~SS2

t ) as the underlying variables of the

pricing problem. One simulates this process recursively at times t k :¼ kT=n, 0 < k < n, by

setting ~SS1
0 :¼ s1

0 . 0, ~SS2
0 :¼ s2

0 . 0 and, for every k 2 f0, n . . . , n� 1g,

ln ( ~SS1
t kþ1

) :¼ ln ( ~SS1
t k

)þ � � 2
1

2
˜þ �1

ffiffiffiffĩp
�2k

� �
,

ln ( ~SS2
t kþ1

) :¼ ln ( ~SS2
t k

)þ � � 2
2

2
˜þ �2

ffiffiffiffĩp
(r �2k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
�2kþ1)

� �

where �k is an i.i.d. sequence of normal random variables and ˜ :¼ T=n.

We carried out a simulation in which the parameters of the options were set as follows

T :¼ 1 (1 year), �1 ¼ �2 :¼ 20%, º :¼ 5%, S1
0 ¼ 40, S2

0 :¼ 36 or 44, � :¼ 1 and

r 2 f�0:8; 0; 0:8g (the price does not depend upon the interest rate r).

The quantization was processed with N :¼ 5722 R2-valued elementary quantizers

dispatched on 25 layers using the optimal dispatching rule (41). The estimation of the

weights (and of the quadratic quantization error) was carried out using M :¼ 106 trials in

the CLVQ algorithm. The reference solution labelled VZ in Table 1 computed by a two-

dimensional finite-difference algorithm devised by Villeneuve and Zanette (2002).

The ‘quantization’ premium of European style options was computed using the number

N25 of elementary quantizers on the last (25th) layer, namely N25 :¼ 299. The numerical

experiments were carried out with � ¼ 1. Of course, once the quantization is performed, the

pricing of any American style options for any (reasonable) value of � simply needs to rerun

the (pseudo-)dynamic programming formula whose CPU cost is negligible. One could

parametrize the starting values s1
0 and s2

0 similarly. Figure 4 displays the global results

obtained for 25 maturities from (approximately) 2 weeks up to 1 year.

One important and promising fact is that quite similar results have been obtained by

directly quantizing the standard Brownian motion itself instead of the geometric Brownian

motions of the above Black–Scholes model. The first noticeable fact is that the functions hk
are no longer Lipschitz continuous: this speaks for the robustness of the method. This

robustness of the method could play a role in the future development of this approach to

Table 1. ‘Quantization premia’ versus ‘reference premia’ for some European and American exchange

options

S2
0 :¼ 36 r �0.8 0 0.8 S2

0 :¼ 44 r �0.8 0 0.8

Euro. B & S 6.6547 5.2674 3.0674 Euro. B & S 3.6390 2.2289 0.3217

Euro. Quantiz. 6.6297 5.2558 3.0639 Euro. Quantiz. 3.6133 2.2117 0.3151

Am. VZ 6.9754 5.6468 4.0000 Am. VZ 3.7692 2.3364 0.3595

Am. Quantiz. 6.9812 5.6520 4.000 Am. Quantiz. 3.7726 2.3398 0.3610

Solving multidimensional discrete-time optimal stopping problems 1043



finance since the quantization of a standard Brownian motion is parameter-free (except for

the dimension!). Furthermore, the quantization of every layer can be achieved, up to an

appropriate dilatation, by using some precomputed tables of optimal quantization of the

standard d-dimensional Gaussian vector. (Generating such optimal quantization tables is

done by a splitting method. At each step, 106 CLVQ trials are processed. The CPU time for

producing an optimal (N þ 1)-grid from an optimal N -grid increases from 5 s (if N ¼ 25)

to 60 s (N ¼ 300).) At this stage, if using these precomputed grids, all that remains is to

estimate the transition weights �k
ij using a standard Monte Carlo simulation. Exploratory

experiments showed that 10 000 trials are enough to obtain results as accurate as above for

American exchange options (the total CPU time required for this weight estimation is then

25 s). The quantization tree descent itself is instantaneous.

These results augur well of the future comparisons with former pricing methods for

multidimensional American options (see Broadie and Glasserman 1997; Longstaff and

Schwartz 2001). The simulations were performed by J. Printems (Univ. Paris 12). Some

extensive numerical investigations have been carried out in Bally et al. (2002b).

6.2.3. Provisional remarks

There is a possible alternative to optimal quantization: one may build the grids of the

quantization tree by settling the first N ¼ N=n random paths of the Markov chain. The

Figure 4. American and European style option prices as a function of the maturity (S1
0 :¼ 40,

S2
0 :¼ 36, r :¼ 0). Dashes depict the reference prices (V&Z for American style and B&S for European

style options); crosses depict the quantization price for American style options; and diamonds depict

the quantization price for European style options
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resulting theoretical quantization errors almost surely still follow a O(N�1=d)-rate, with a

worse sharp rate (see Cohort 2003). The companion parameter estimation is carried out by

a standard Monte Carlo simulation.

Some developments (quantized hedging) are proposed in Bally et al. (2002b), and some

first-order schemes based on correctors obtained using Malliavin calculus are proposed in

Bally et al. (2003).

Appendix. Partial almost sure convergence results for the
CLVQ algorithm

As the distortion D
X ,2
N does not enjoy the standard properties of a potential for a stochastic

gradient, we are led to make the following restrictive assumption:

supp(PX ) is a compact set: (57)

Hence, the convex hull of supp(PX ) is a convex compact set.

The one-dimensional case

In this very special setting, standard stochastic approximation theory applies and we obtain

a satisfactory almost sure convergence result. The convex hull of supp(PX ) is an interval

[a, b]. One first notices that the set of N -grids is one-to-one with the simplex

�a,b,þ
N :¼ fˆ :¼ (x1, . . . , xN ) 2 (a, b)N j a , x1 , . . . , x

N
, bg,

which is invariant for the algorithm provided that the starting value ˆ0 2 �a,b,þ
N . Then,

8ˆ :¼ (x1, . . . , x
N
) 2 �a,b,þ

N , =D
X ,2
N (ˆ) :¼ 2

ð~xxiþ1

~xxi

(xi � 	)PX (d	)

 !
1<i<N

, (58)

where ~xx1 :¼ a, ~xxi :¼ (xi þ xi�1)=2, ~xxNþ1 :¼ b. Consequently, the distribution PX being

continuous (i.e. no single 	 is weighted), =DX ,2
N has a continuous extension on the compact

set �
a,b,þ
n .

Theorem 5 (Pagès 1997). (a) If ˆ0 2 �a,b,þ
N , then the algorithm (37) lives in �a,b,þ

N .

Furthermore, if PX is continuous, if f=DX ,2
N
¼ 0g \ �a,b,þ

N
is finite and if the step ªt satisfies

the usual decreasing step assumption
P

t>1 ªt ¼ þ1 and
P

t>1 ª
2
t , þ1, then

ˆ t�!a:s ˆ� 2 f=DX ,2
N ¼ 0g:

(b) Moreover, if PX has a log-concave density then f=DX ,2
N ¼ 0g \ �

a,b,þ
N ¼

argmin
�
a,b,þ
N

D
X ,2
N ¼ fˆ�g (see Kieffer 1982; Trushkin 1982; Lamberton and Pagès 1996;

Graf and Luschgy 2000), with
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ˆ� ¼ aþ 2k � 1

2N
(b� a), 1 < k < N

� �

if X � U ([0, 1]).

The multidimensional case (d > 2)

In the multidimensional setting, only partial results are proved, even for bounded

distributions �. We observe once again that the singularity of =D
X ,2
N makes the standard

theory inefficient. The result below follows from a specific proof. The assumption on the

distribution of the stimuli 	t is now the following:

PX has a bounded density f with a compact convex support: (59)

Roughly speaking, Theorem 6 below says that, almost surely, either the N components of ˆ t

remain parted and converge to some stationary quantizer of D
X ,2
N , or they get stuck into M

aggregates which will converge, up to some subsequence, towards a stationary quantizer of

DX ,2
M

. This is of very little help for simulations since it does not say precisely how often the

elementary quantizers remain parted. In the worst case – all the components get stuck into a

single aggregate at the average of P
X

– the resulting quantization would be simply useless.

These partial theoretical results seem very pessimistic in view of the practical performance of

the CLVQ: no aggregation phenomenon is usually observed when the algorithm is

appropriately initialized (random or splitting method).

Theorem 6 (Pagès 1997). Assume that (59) holds and that the step sequence satisfiesP
t>1ªt ¼ þ1 and

P
t>1ª

2
t , þ1.

(a) P-almost surely, either the elements of ˆ t remain asymptotically parted or at least

two elements of ˆ t get asymptotically stuck as t! þ1, that is,

lim t dist(ˆ t, cS
N
) . 0 or lim

t
dist(ˆ t, cS

N
) ¼ 0,

where SN denotes the set of N-tuples with pairwise distinct components.

(b) On the event flim t dist(ˆ t, cSN ) . 0g (asymptotically parted components), there

exists a ‘level’ �� . 0 and a connected component ˆ� of f=DX ,2
N ¼ 0g \ fDX ,2

N ¼ ��g such
that

ˆ t�!a:s: ˆ� as t! þ1:

(c) On the event flim t dist(ˆ t, cSN ) ¼ 0g, the components definitely get stuck, that is,

dist(ˆ t, cSN ) �!t!þ1
as t! þ1:

There is a partition I1 [ . . . [ I M of f1, . . . , Ng along which the components ˆ t make M

aggregates as t! þ1. At least one of the limiting values of ˆ t is a zero of =DX ,2
M .
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El-Karoui, N., Kapoudjan, C., Pardoux, É., Peng, S. and Quenez, M.C. (1997a) Reflected solutions of

backward stochastic differential equations and related obstacle problems for PDEs. Ann. Probab.,

25, 702–737.

El Karoui, N., Peng, S. and Quenez, M.C. (1997b) Backward stochastic differential equations in

finance. Math. Finance, 7, 1–71.

Solving multidimensional discrete-time optimal stopping problems 1047



Fort, J.C. and Pagès, G. (1995) On the a.s. convergence of the Kohonen algorithm with a general

neighborhood function. Ann. Appl. Probab., 5, 1177–1216.

Fort, J.C. and Pagès, G. (2002) Asymptotics of optimal quantizers for some scalar distributions.

J. Comput. Appl. Math., 146, 253–275.
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