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We study the structure of a GARCH( p, q) sequence. We show that the conditional variance can be

written as an infinite sum of the squares of the previous observations and that the representation is

unique. We prove the consistency and asymptotic normality of the quasi-maximum likelihood

estimator of the parameters of the GARCH( p, q) sequence under mild conditions.
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1. Introduction

The analysis of financial data has received considerable attention in the literature over the

last 20 years. Several models have been suggested for capturing special features of financial

data, and most of these models have the property that the conditional variance (or the

conditional scaling) depends on the past. One of the best-known and most often used

examples is the autoregressive conditionally heteroscedastic (ARCH) process introduced by

Engle (1982). The ARCH model has been investigated and generalized by several authors,

including Bollerslev (1986) and Gouriéroux (1997). The theoretical results on ARCH and

related properties have played a special role in empirical work in the analysis of data on

exchange rates, stock prices and so on. In this paper we study the asymptotic properties of

the generalized autoregressive conditionally heteroscedastic (GARCH) process introduced by

Bollerslev (1986). A GARCH( p, q) process is defined by the equations

yk ¼ � k�k (1:1)

and

� 2
k ¼ øþ

X
1<i< p

Æi y2
k�i þ

X
1< j<q

� j�
2
k� j, (1:2)

where

ø . 0, Æi > 0, 1 < i < p, � j > 0, 1 < j < q (1:3)

are constants. We also assume that
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f�i, �1 , i , 1g are independent, identically distributed random variables: (1:4)

Nelson (1990) showed that in case of a GARCH(1, 1) sequence, (1.1) and (1.2) have a unique

stationary solution if and only if E log(�1 þ Æ1�2
0) , 0. Bougerol and Picard (1992a; 1992b)

found necessary and sufficient conditions for the existence of a unique stationary solution of

(1.1) and (1.2) in the case of a general GARCH( p, q) model. To state their condition we must

introduce further notation. Let

� n ¼ (�1 þ Æ1�
2
n, �2, . . . , �q�1) 2 Rq�1,

�n ¼ (�2
n, 0, . . . , 0) 2 Rq�1

and

Æ ¼ (Æ2, . . . , Æp�1) 2 R p�2:

(Clearly, by including extra terms with zero coefficients in (1.2) we can achieve

min( p, q) > 2.) Define the ( p þ q � 1) 3 ( p þ q � 1) matrix An, written in block form, by

An ¼

� n �q Æ Æp

I q�1 0 0 0

�n 0 0 0

0 0 I p�2 0

2
664

3
775,

where I q�1 and I p�2 are the identity matrices of size q � 1 and p � 2, respectively. The

norm of any d 3 d matrix M is defined by

kMk ¼ supfkMxkd=kxkd : x 2 Rd , x 6¼ 0g,

where k � kd is the usual (Euclidean) norm in Rd . The top Lyapunov exponent ªL associated

with the sequence fAn, �1 , n , 1g is

ªL ¼ inf
0<n,1

1

n þ 1
E log kA0 A1 . . . Ank,

assuming that

E(log kA0k) , 1: (1:5)

(We note that kA0(1, 0, . . . , )Tk > 1 and therefore kA0k > 1:) Condition (1.5) and the

subadditive ergodic theorem (cf. Kingman 1973) imply

lim
n!1

1

n þ 1
log kA0 A1 . . . Ank ¼ ªL almost surely.

Bougerol and Picard (1992a; 1992b) showed that if (1.5) holds, then (1.1) and (1.2) have a

unique strictly stationary solution if and only if

ªL , 0: (1:6)

Let Xn ¼ (� 2
n, . . . , � 2

n�q�1, y2
n�1, . . . , y2

n� p�1)T 2 R pþq�1 and D ¼ (ø, 0, . . . , 0)T 2
R pþq�1. Equations (1.1) and (1.2) can be written equivalently as

Xnþ1 ¼ AnXn þ D:
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Bougerol and Picard (1992a; 1992b) showed that if (1.6) holds, then

Xn ¼ D þ
X

0<k,1
An � � � An�kD: (1:7)

Throughout this paper we will assume that conditions (1.1)–(1.6) hold. Clearly, they are a

minimal set of conditions for the existence and stationarity of the GARCH( p, q) sequence.

Let Ł ¼ (ø, Æ1, Æ2, . . . , Æp, �1, �2, . . . , �q). Assuming that y1, y2, . . . , yn have been

observed, Lumsdaine (1996) studied the estimation of the unknown parameter Ł in the case

of p ¼ q ¼ 1. Lumsdaine (1996) advocated the quasi-maximum likelihood estimator and

proved its consistency and asymptotic normality for the GARCH(1, 1) model. However,

some conditions in Lumsdaine (1996) seem to be unnecessarily restrictive and should be

relaxed. Lee and Hansen (1994) impose weaker conditions on the error sequence.

The main goal of our paper is to provide rigorous proofs of the consistency and

asymptotic normality of the quasi-maximum likelihood estimator in GARCH( p, q) models

under weaker conditions. These results will be given in Section 4, where we also compare

our theorems with some earlier results. The estimation in Lumsdaine (1996) is based on a

representation of � 2
k in terms of past observations fyi, �1 , i , kg. In Section 2 we

obtain a similar result for GARCH( p, q) sequences and prove that this representation is

unique. The representation for GARCH( p, q) is an infinite sum and the coefficients satisfy

a recursion. In Section 3 we establish some basic properties of the solution of the

recursions; these properties will be used in Section 4, where the asymptotic properties of

the quasi-maximum likelihood estimator will be discussed.

2. Representations for GARCH( p, q)

For a strictly stationary GARCH( p, q) process with coefficients (ø, Æ1, . . . , Æp,

�1, . . . , �q), let

A(x) ¼ Æ1x þ Æ2x2 þ . . . þ Æpx p

and

B(x) ¼ 1 � �1x � �2x2 � . . . � �qxq:

Here and in the following we do not need min( p, q) > 2, and the possible inclusion of extra

terms in (1.2); this was needed in Section 1 only for computing the top Lyapunov exponent

ªL. We assume that the order of B(x) is exactly q, i.e.

�q 6¼ 0: (2:1)

Bougerol and Picard (1992b) showed that ªL , 0 implies

�1 þ �2 þ . . . þ �q , 1: (2:2)

Relation (2.2) entails that all roots of B(x) ¼ 0 lie outside of the unit circle. More precisely,

we have:
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Lemma 2.1. Relation (2.2) is equivalent to

jªij . 1 for all 1 < i < ‘, where ª1, ª2, . . . , ª‘ stand for the

solutions of B(x) ¼ 0 with multiplicities �1, . . . , �‘: (2:3)

Proof. Let us assume first that �1 þ �2 þ . . . þ �q > 1. Since B(0) ¼ 1 and B(1) ¼
1 � (�1 þ �2 þ . . . þ �q) < 0, we have at least one solution of B(x) ¼ 0 in the interval

(0, 1], contradicting (2.3).

Let us assume now that (2.2) holds. Then, for any jzj < 1, we have jB(z)j
> 1 � (�1jzj þ �2jzj2 þ . . . þ �qjzjq) > 1 � (�1 þ �2 þ . . . þ �q) . 0, and therefore (2.3)

must be true. h

We will also need the following simple lemma. Let logþ x ¼ log x if x . 1, and 0

otherwise.

Lemma 2.2. If f�k , 0 < k , 1g is a sequence of identically distributed random variables

satisfying

E logþ j�0j , 1, (2:4)

then
P

0<k,1�k z k converges with probability one for any jzj , 1.

Proof. By the Borel–Cantelli lemma it is enough to prove that, for any � . 1,X
1<k,1

Pfj�k j . �kg , 1: (2:5)

The distribution of �k does not depend on k, soX
1<k,1

Pfj�k j . �kg ¼
X

1<k,1
Pflogþ j�k j . k log �g

¼
X

1<k,1
Pflogþ j�0j . k log �g

< E logþ j�0j=log �,

and thus (2.4) implies (2.5). h

We now establish a representation for � 2
k in terms of the y2

k�i, i > 1. Since, by Lemma

2.1, B(x) has all roots outside the unit disc, we have

X1
j¼0

d jx
j ¼ 1

B(x)
, jxj < 1, (2:6)

and the coefficients d0, d1, d2, . . . decay exponentially fast. Let
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c0 ¼ ø
X

0<m,1
d m (2:7)

and

c j ¼ Æ1d j�1 þ Æ2d j�2 þ . . . þ Æpd j� p, 1 < j , 1: (2:8)

We note that c0 ¼ ø=B(1) and

A(x)

B(x)
¼
X

1<i,1
cix

i, jxj < 1, (2:9)

and by (2.8) the coefficients c1, c2, . . . decay exponentially fast.

Theorem 2.1. If

E log � 2
0 , 1, (2:10)

then

� 2
k ¼ c0 þ

X
1<i,1

ci y2
k�i, for all k, (2:11)

with probability one.

Proof. Since kA0k > k�0k ¼ �2
0, (1.5) yields that E logþ �2

0 < E logþ kA0k , 1: Since by

(1.1) we have E logþ y2
0 < E logþ � 2

0 þ E logþ �2
0, from (2.10) we obtain that

E logþ y2
0 , 1: (2:12)

Since the sequence c1, c2, . . . decays exponentially fast, Lemma 2.2 yields that the series in

(2.11) is absolutely convergent with probability one. It is clear that the stationary sequence

�k ¼ øþ
X

1<i< p

Æi y2
k�i (2:13)

satisfies (2.4).

We must show that

� 2
k ¼

X
0<m,1

d m�k�m: (2:14)

The series in (2.14) is absolutely convergent with probability one on account of Lemma 2.2

and the exponential decay of di. It follows from (2.6) that
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d0 ¼ 1,

d1 ¼ �1,

d2 ¼ d1�1 þ �2, (2:15)

..

.

dq ¼ dq�1�1 þ . . . þ d1�q�1 þ �q

and

di ¼ di�1�1 þ . . . þ di�q�q, for i . q: (2:16)

Using (2.15), (2.16) and induction, it is not difficult to verify that, for j > q,

�k þ d1�k�1 þ d2�k�2 þ . . . þ d j�k� j ¼ � 2
k �

X
1<i<q

(diþ j�q�q þ . . . þ d j�i)�
2
k�i� j: (2:17)

By Lemma 2.2, as j ! 1, the left-hand side of (2.17) tends a.s. to the right-hand side of

(2.14). Using the exponential decay of d j and (2.10), we obtain that

X
1< j,1

P

���� X
1<i<q

(diþ j�q�q þ . . . þ d j�i)�
2
k�i� j

���� . �

( )
, 1, for any � . 0,

and therefore, applying the Borel–Cantelli lemma, we conclude (2.11). h

Using the backward shift operator S, we can write (2.11) succinctly as

� 2
k ¼ A(S)

B(S)

ø

A(1)
þ y2

k

� �
: (2:18)

Using partial fractions it is possible to find an explicit recursive formula for the ci in

(2.11) in terms of the coefficients ø, Æ1, . . . , Æp, �1, . . . , �q.

It is sometimes useful to express � 2
k in terms of finitely many values of y2

k�i and a small

remainder term, as in the following theorem whose proof is omitted.

Theorem 2.2. Let R ¼ max( p, q): If (2.10) holds, then for any k > R

� 2
k ¼

X
0<m<k�R

øþ
X

1<i< p

Æi y2
k�i�m

 !
d m þ Qk , (2:19)

where

Qk ¼ �1�
2
R�1 þ � � � þ �q�

2
R�q

�  
d k�R þ �2�

2
R�1 þ � � � þ �q�

2
R�qþ1

�  
d k�R�1

þ � � � þ �q�
2
R�1d k�R�qþ1:

The next result shows that if there is a representation like (2.11), it must be unique.
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Theorem 2.3. We assume that

�2
0 is a non-degenerate random variable. (2:20)

If, for some k,

� 2
k ¼ c0 þ

X
1<i,1

ci y2
k�i a:s: and � 2

k ¼ c0 þ
X

1<i,1
ci y2

k�i a:s:,

then ci ¼ ci for all 1 < i , 1.

Proof. We prove the result by contradiction. Let m . 0 be the smallest integer satisfying

cm 6¼ cm. (If c j ¼ cj for all j . 0, then c0 ¼ c0 must also hold.) By the definition of m, we

have

(cm � cm)y2
k�m ¼ c0 � c0 þ

X
m, j,1

(c j � cj )y2
k� j,

and (1.1) yields that

�2
k�m ¼ 1

(cm � cm)� 2
k�m

c0 � c0 þ
X

m, j,1
(c j � cj )y2

k� j

( )
: (2:21)

Since � 2
k�m > ø . 0, �2

k�m is well defined. Let F j be the � -algebra generated by

f�i, �1 , i < jg. Relation (1.7) shows that yj is F j-measurable and thus the right-hand side

of (2.21) (and consequently also �2
k�m) is a real-valued random variable, measurable with

respect to F k�m�1. Since the � j are independent, this implies that �2
k�m is a.s. constant,

contradicting (2.20). h

Putting together Theorems 2.1 and 2.3, we have the following result:

Theorem 2.4. If (2.10) is satisfied, then (2.11) holds with exponentially decaying weights ci.

If (2.20) is also satisfied, then the representation (2.11) is unique.

Lemma 2.3. If

Ej�2
0j� , 1 for some � . 0, (2:22)

then there is � . 0 such that

Ejy2
0j�


, 1 and Ej� 2

0j�

, 1:

Proof. By (1.6) and the definition of ªL, there is an integer m > 1 such that

E log kA0 A1 � � � Am�1k , 0: (2:23)

Also, kA0k < C(1 þ �2
0), and thus by (2.22) we have that

EkA0 A1 � � � Am�1k� < (EkA0k�)m , 1: (2:24)
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Following Remark 2.6 in Basrak et al. (2001), we introduce the function s(t) ¼
EkA0 A1 � � � Am�1k t. Since s9(0) ¼ E log kA0 A1 � � � Am�1k , 0, s(t) decreases in a neigh-

bourhood of 0, and since s(0) ¼ 1, there exists 0 , � , 1 such that

EkA0 A1 � � � Am�1k�

, 1: (2:25)

Using (1.7), we conclude that

kX0k < kDk þ
X

0<k,1
kA0 � � � A�kk kDk,

and since 0 , � , 1, we obtain that

kX0k�

< kDk�


þ

X
0<k,1

kA0 � � � A�kk�

kDk�


:

Using (2.25), it follows easily that there exist 0 , ~cc , 1 and 0 , ~rr , 1 such that

EkA0 A1 � � � Akk�

< ~cc~rrk ,

proving that EkX0k�

, 1, which implies the conclusion of Lemma 2.3. h

Theorem 2.1 and 2.3 show that there is a one-to-one correspondence between the

sequence f� 2
k , �1 , k , 1g and the coefficients ci, 0 < i , 1. However, this fact is not

enough to estimate the parameters of a GARCH( p, q) sequence. For this purpose we also

need the definition (1.2) to be minimal in the sense that there is no pair ( p, q) such that

p , p or q , q and

� 2
k ¼ ø þ

X
1<i< p

Æi y2
k�i þ

X
1< j<q

�j � 2
k� j (2:26)

for some (not necessarily non-negative) ø, Æi (1 < i < p) and �j (1 < j < q).

Theorem 2.5. We assume that (2.10) and (2.20) are satisfied. Then the definition (1.1)–(1.2)

is minimal if and only if

the polynomials A(x) and B(x) are coprimes

in the set of polynomials with real coefficients:
(2:27)

Proof. Let us assume that (2.27) holds and assume indirectly that there exist ( p, q),

p , p or q , q, and ø, Æi , 1 < i < p, �j , 1 < j < q such that (2.26) holds. Let

A(x) ¼ xÆ1 þ . . . þ x pÆ
p and B(x) ¼ 1 � (�1 x þ . . . þ �

qxq). Similarly to (2.9), we

have
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X
1<i,1

cix
i ¼ A(x)

B(x)
, (2:28)

and consequently A(x)=B(x) ¼ A(x)=B(x). By (2.27), A(x) and B(x) are coprimes, and

thus we conclude that there is a polynomial P(x) such that A(x) ¼ A(x)P(x) and

B(x) ¼ B(x)P(x), and consequently p > p, q > q, a contradiction.

Let us assume conversely that the definition (1.1)–(1.2) is minimal but (2.27) fails, i.e.

there exist polynomials A, B and P such that P is non-constant and A(x) ¼ A(x)P(x)

and B(x) ¼ B(x)P(x). We now show that with ~øø ¼ øB(1)=B(1), we have

� 2
k ¼ ~øøþ

X
1<i< p

Æi y2
k�i þ

X
1< j<q

�j � 2
k� j: (2:29)

Indeed, by (2.18) and (2.28) we obtain that

� 2
k ¼ ø

B(1)
þ A(S)

B(S)
y2

k ¼ ~øø

B(1)
þ A(S)

B(S)
y2

k :

Hence

B(S)� 2
k ¼ A(S)

~øø

A(1)
þ y2

k

� �
:

Observing that the degrees of A and B are less than the degrees of A and B, (2.29)

contradicts the minimality assumption. h

Corollary 2.1. We assume that (2.10), (2.20) and (2.27) are satisfied. Then there is no

(ø, Æ1 , . . . , Æp, �1 , . . . , �q ) 6¼ (ø, Æ1, . . . , Æp, �1, . . . , �q) such that

� 2
k ¼ ø þ

X
1<i< p

Æi y2
k�i þ

X
1< j<q

�j y2
k� j: (2:30)

Proof. Let (ø, Æ1 , . . . , Æp, �1 , . . . , �q ) be a sequence satisfying (2.30) and let A, B be

the analogues of A and B for the sequence (ø, Æ1 , . . . , Æp, �1 , . . . , �q ). Following the first

part of the proof of Theorem 2.5, we obtain that there exists a polynomial P such that

A(x) ¼ A(x)P(x) and B(x) ¼ B(x)P(x). Since B and B have the same degree q and the

same constant term 1, we obtain P(x) ¼ 1 and Corollary 2.1 is proven. h

The next section contains some preliminary results used in the construction of the quasi-

maximum likelihood estimator.
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3. Recursions related to the infinite representation of
GARCH( p, q)

In Section 2 we gave explicit formulae for the coefficients ci in (2.11) in terms of the roots

ª1, . . . , ª‘ of the polynomial B. However, the computation of the solutions of B(x) ¼ 0 may

not be simple, especially if q is large, and thus our formulae are numerically impractical.

By (2.9), we have

cn ¼ d n

dx n

A(x)

B(x)

� �
x¼0

1 < n , 1,

and computing the derivatives on the right-hand side and using B(0) ¼ 1, we see that

cn, 1 < n , 1, are actually polynomials of Æ1, . . . , Æp, �1, . . . , �q with integer coefficients.

Letting C(x) ¼
P

1<n,1cnx n, (2.9) shows that A(x) ¼ B(x)C(x), and performing the

multiplication on the right-hand side and comparing the coefficients, we obtain

Æ1 ¼ c1, Æ2 ¼ c2 � �1c1, Æ3 ¼ c3 � �1c2 � �2c1, . . .

from which c1, c2, . . . can be computed recursively.

In the estimation problem studied in Sections 4 and 5, the parameter Ł ¼
(ø, Æ1, . . . , Æp, �1, . . . , �q) is fixed but unknown. Thus we are dealing with a class of

processes whose parameter vector will be denoted by u ¼ (x, s1, . . . , s p, t1, . . . , tq). Hence

the coefficients ci, 0 < i , 1, will be functions of u and the recursion formulae obtained

above take on the following form. If q > p, then

c0(u) ¼ x

1 � (t1 þ . . . þ tq)
,

c1(u) ¼ s1,

c2(u) ¼ s2 þ t1c1(u),

..

.

cp(u) ¼ s p þ t1c p�1(u) þ . . . þ t p�1c1(u),

c pþ1(u) ¼ t1cp(u) þ . . . þ t pc1(u),

..

.

cq(u) ¼ t1cq�1(u) þ . . . þ tq�1c1(u):

If q , p the equations above are replaced by
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c0(u) ¼ x

1 � (t1 þ . . . þ tq)
,

c1(u) ¼ s1,

c2(u) ¼ s2 þ t1c1(u),

..

.

cqþ1(u) ¼ sqþ1 þ t1cq(u) þ . . . þ tqc1(u),

..

.

cp(u) ¼ s p þ t1c p�1(u) þ . . . þ tqc p�q(u):

If i . R ¼ max( p, q), then

ci(u) ¼ t1ci�1(u) þ t2ci�2(u) þ . . . þ tqci�q(u): (3:1)

Let 0 , u , u, 0 , r0 , 1, qu , r0 and define

U ¼ fu : t1 þ t2 þ . . . þ tq < r0 and u < min(x, s1, s2, . . . , s p, t1, t2, . . . , tq)

< max(x, s1, s2, . . . , s p, t1, t2, . . . , tq) < ug:

We assume that

Ł is in the interior of U : (3:2)

(Condition (3.2) requires that p and q are known. It also rules out zero coefficients in Ł.) We

use j � j to denote the maximum norm of vectors and matrices. Let x _ y ¼ max(x, y).

Lemma 3.1. For any u ¼ (x, s1, . . . , s p, t1, . . . , tq) 2 U and u ¼ (x, s1 , . . . , sp, t1 , . . . ,

tq ) 2 U, we have

C1ui < ci(u), 0 < i , 1, (3:3)

ci(u) < C2r
i=q
0 , 0 < i , 1, (3:4)

and

ci(u
)

ci(u)
< C3 max

1< j<q

tj
t j

_ 1

 !i

, 0 < i , 1, (3:5)

for constants 0 , C1, C2, C3 , 1:

Proof. The results are trivial for i ¼ 0. We use induction for i > 1. It is clear that ci(u),

i > 1, are polynomials of the coordinates of u with positive coefficients. Hence (3.3)–(3.5)

hold for all 1 < i < R ¼ max( p, q) if C1 is chosen small and C2, C3 are chosen large

enough.

GARCH processes: structure and estimation 211



Let j . R and assume that (3.3)–(3.5) are valid for all i , j. Since u , 1, by (3.1) we

have

c j(u) > u min
1<k<q

c j�k(u) > C1u j:

Also, by (3.1) we have

c j(u) < (t1 þ t2 þ . . . þ tq) max
1<k<q

c j�k(u) < r0C2r
( j�q)=q

0 < C2r
j=q

0 :

Finally, by (3.1) and the induction hypothesis we have, for j . R,

0 ,
cj(u

)

cj(u)
¼ t1

c j�1(u)

cj(u)
þ t2

c j�2(u)

cj(u)
þ . . . þ tq

c j�q(u)

cj(u)

¼ t1
t1

c j�1(u)

c j�1(u)
t1

c j�1(u)

c j(u)
þ t2

t2

c j�2(u)

c j�2(u)
t2

c j�2(u)

c j(u)
þ . . . þ

tq
tq

c j�q(u)

c j�q(u)
tq

c j�q(u)

c j(u)

< C3 max
1<i<q

ti
ti

_ 1

 ! j�1

1

c j(u)
ft1c j�1(u) þ t2c j�2(u) þ . . . þ tqc j�q(u)g max

1<i<q

ti
ti

 !

< C3 max
1<i<q

ti
ti

_ 1

 ! j

:

Thus (3.3)–(3.5) also hold for j and the proof of Lemma 3.1 is complete. h

Next we prove similar results for the vector

c9i(u) ¼ @ci(u)

@x
,
@ci(u)

@s1

, . . . ,
@ci(u)

@s p

,
@ci(u)

@ t1

, . . . ,
@ci(u)

@ tq

� �
:

Lemma 3.2. We assume that u 2 U . Then���� @c0(u)

@x

���� < 1

1 � r0

, (3:6)

@c0(u)

@s j

¼ 0, 1 < j < p, (3:7)

���� @c0(u)

@ t j

���� < u

(1 � r0)2
, 1 < j < q, (3:8)

and

jc9i(u)j=ci(u) < C4 i, 1 < i , 1, (3:9)

for some constant C4.
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Proof. Since c0(u) ¼ x=(1 � (t1 þ . . . þ tq)), (3.6)–(3.8) are obvious. To prove (3.9), we

begin by observing that

@ci(u)

@x
¼ 0, 1 < i , 1: (3:10)

Next, we show that ���� @ci(u)

@s j

=ci(u)

���� < C5, 1 < i , 1, 1 < j < p, (3:11)

for some constant C5. We again use induction. Clearly, (3.11) holds for i < R ¼ max( p, q),

provided C5 is large enough. By (3.1) we have, for i . R,

@ci(u)

@s j

¼ t1

@ci�1(u)

@s j

þ t2

@ci�2(u)

@s j

þ . . . þ tq

@ci�q(u)

@s j

,

and since c‘ . 0, @c‘=@s j > 0 (recall that c‘ is a polynomial of s1, . . . , s p, t1, . . . , tq with

positive coefficients), we conclude that

0 ,
1

ci(u)

@ci(u)

@sj

< max
1<m<q

1

ci�m(u)

@ci�m(u)

@s j

ft1ci�1(u) þ . . . þ tqci�q(u)g 1

ci(u)

¼ max
1<m<q

1

ci�m(u)

@ci�m(u)

@s j

:

Hence if i . R and (3.11) holds for all indices less than i, then it also holds for i, completing

the induction step.

We must now show that���� @ci(u)

@ t j

=ci(u)

���� < C6 i, 1 < i , 1, 1 < j < q, (3:12)

for some C6. By (3.1) we have, for i . R,

@ci(u)

@ t j

¼ ci� j(u) þ t1

@ci�1(u)

@ t j

þ . . . þ tq

ci�q(u)

@ t j

and therefore

1

ci(u)

@ci(u)

@ t j

¼ ci� j(u)

ci(u)
þ 1

ci�1(u)

@ci�1(u)

@ tj

t1

ci�1(u)

ci(u)
þ . . . þ 1

ci�q(u)

@ci�q(u)

@ t j

tq

ci�q(u)

ci(u)
:

Since ci(u) > t jci� j(u), we obtain that���� 1

ci(u)

@ci(u)

@ t j

���� < 1

tj

þ max
1<m<q

1

ci�m(u)

@ci�m

@ tj

1

ci(u)
ft1ci�1(u) þ . . . þ tqci�q(u)g

<
1

u
þ max

1<m<q

1

ci�m(u)

@ci�m(u)

@ t j

,

and therefore (3.12) follows again by induction, assuming that C6 is chosen larger than 1=u.
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Now (3.9) follows from (3.10)–(3.12). h

Our final lemma in this section shows that an estimate similar to (3.9) holds for the

matrix c 0i (u). We recall that jc 0i (u)j denotes the maximum norm of the matrix c 0i (u).

Similarly, jc(3)
i (u)j denotes the largest of the absolute values of the of elements of the

(hyper)matrix of the third partial derivatives.

Lemma 3.3. For all u 2 U, we have that

jc 00(u)j < C7,

jc 0i (u)j < C8 i2ci(u), 1 < i , 1,

jc(3)
0 (u)j < C9

and

jc(3)
i (u)j < C10 i3ci(u), 1 < i , 1,

for some constants C7, C8, C9 and C10.

Proof. Using induction, Lemma 3.3 can be derived along the lines of the proof of Lemma 3.2

and therefore the details are omitted.

4. The quasi-maximum likelihood estimators

The logarithm of the quasi-maximum likelihood function in GARCH( p, q) is defined as

Ln(u) ¼
X

1<k<n

� 1

2
log wk(u) þ y2

k

wk(u)

( )
, (4:1)

where

wk(u) ¼ c0(u) þ
X

1<i,1
ci(u)y2

k�i: (4:2)

The functions ci(u), 0 < i , 1, are defined in Section 3. Putting together Lemma 2.2, (2.12)

and (3.4), we obtain that wk(u) exists with probability one. Clearly, wk(Ł) ¼ � 2
k . If we

were to assume that �0 is standard normal, then, conditionally on F k�1 ¼
�f�i, �1 , i < k � 1g, yk=� k(Ł) is also standard normal. The likelihood in (4.1) is

derived under this assumption. However, we will show that the quasi-maximum likelihood

estimator Ł̂Łn, defined as

Ł̂Łn ¼ arg max
u2U

Ln(u), (4:3)

will be consistent and asymptotically normal without assuming that �0 is standard normal.
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Theorem 4.1. We assume that (2.20), (2.27), (3.2) hold and

Ej�2
0j1þ� , 1, for some � . 0, (4:4)

lim
t!0

t��Pf�2
0 < tg ¼ 0, for some � . 0, (4:5)

and

E�2
0 ¼ 1: (4:6)

Then

Ł̂Łn !
a:s:

Ł, as n ! 1: (4:7)

Remark 4.1. For GARCH(1, 1), (4.7) was established by Lumsdaine (1996) under much

stronger conditions. For example, Lumsdaine assumed that E�32
0 , 1 and �0 has a symmetric

unimodal density, bounded in a neighborhood of 0. It is clear that in this case (4.5) holds for

any � , 1=2.

Remark 4.2. Jeantheau (1998) announced the weak consistency of Ł̂Łn as a consequence of a

more general theorem. However, his conditions are stronger than ours. For example, one of

his conditions implies that Ey4
0 , 1 (cf. Jeantheau (1998, p. 76)). This condition is not

required in Theorem 4.1. We wish to point out that the conditions of Theorem 4.1 also imply

(cf. Lemma 2.3) that E(y2
0)�


, 1 for some � . 0, but � can be very small.

We prove Theorem 4.1, as well as Theorems 4.2–4.4 below, in the next section.

We now discuss the asymptotic normality of n1=2(Ł̂Łn � Ł). Let

‘k(u) ¼ � 1

2
(log wk(u) þ y2

k=wk(u)) (4:8)

and introduce the matrices A0 ¼ cov(‘90(Ł)) and B0 ¼ E(‘ 00(Ł)).

Theorem 4.2. We assume that (2.20), (2.27), (3.2), (4.5), (4.6) hold and

Ej�2
0j2þ� , 1, for some � . 0: (4:9)

Then

A0 and B0 are non-singular, (4:10)

Ł̂Łn � Ł ¼ 1

n

X
1<k<n

1

2
(1 � �2

k)
w9k(Ł)

wk(Ł)
B�1

0 þ oP(n�1=2), as n ! 1, (4:11)

and

n1=2(Ł̂Łn � Ł)!D N (0, B�1
0 A0 B�1

0 ), as n ! 1, (4:12)

where N (0, C) stands for a multivariate normal random variable with mean 0 and covariance

matrix C.
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Remark 4.3. Theorem 4.2 extends the central limit theorem in Lumsdaine (1996) by

removing some unnecessary conditions and allowing arbitrary p and q.

Remark 4.4. Comte and Lieberman (2000) announced the asymptotic normality of the quasi-

maximum likelihood estimator in GARCH( p, q) models. However, they assume that

Æ1 þ . . . þ Æp þ �1 þ . . . þ �q , 1, which is a much stronger condition than ours. Also

they assume that �0 has an absolutely continuous density, positive in a neighbourhood of 0.

We only need (4.5).

In practice, we observe only y1, . . . , yn and the logarithm of the quasi-maximum

function in (4.1) cannot be computed from our data. Hence we replace Ln(u) with

~LLn(u) ¼
X

1,k<n

� 1

2
log ~wwk(u) þ y2

k

~wwk(u)

( )
,

where

~wwk(u) ¼ c0(u) þ
X

1<i<k�1

ci(u)y2
k�i:

Similarly to (4.3), we define

~ŁŁn ¼ arg max
u2U

~LLn(u):

The next two theorems show that our limit theorems will remain true for ~ŁŁn.

Theorem 4.3. Under the conditions of Theorem 4.1 we have

~ŁŁn !
a:s:

Ł, as n ! 1:

Theorem 4.4. Under the conditions of Theorem 4.2 we have

~ŁŁn � Ł ¼ 1

n

X
1<k<n

1

2
(1 � �2

k)
w9k(Ł)

wk(Ł)
B�1

0 þ oP(n1=2), as n ! 1,

and

n1=2(~ŁŁn � Ł)!D N(0, B�1
0 A0 B�1

0 ), as n ! 1:

Remark 4.5. We note that A0 ¼ �1
2
(E�4

0 � 1)B0. So if E�4
0 ¼ 3, as in the case of standard

normal random innovations, then A0 ¼ �B0.

Remark 4.6. We note that Theorems 4.3 and 4.4 remain true if ~wwk(u) is replaced by

~wwk(u) þ vk(u), if supu2U jv(3)
k (u)j ¼ O(~rrk) a.s. for some 0 , ~rr , 1. This claim will be

immediate from the proofs of Theorems 4.3 and 4.4.
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5. Proof of Theorems 4.1–4.4

We start with some technical results.

Lemma 5.1. We assume that (3.2), (4.5) hold and

Ej�2
0jª , 1, for some ª . 0: (5:1)

Then, for any 0 , � , ª, we have

E sup
u2U

� 2
k

wk(u)

( )�

, 1: (5:2)

Proof. For any M > 1, we have

� 2
k

wk(u)
<

� 2
kP

1<i<M ci(u)y2
k�i

¼ � 2
kP

1<i<M ci(u)�2
k�i�

2
k�i

: (5:3)

Since � 2
k�1 . �i� 2

k�i�1, 1 < i < q, and � 2
k�1 . Æi y2

k�i�1, 1 < i < p, and since � 2
k�1 > ø,

we obtain

� 2
k

� 2
k�1

¼
øþ Æ1 y2

k�1 þ Æ2 y2
k�2 þ . . . þ Æp y2

k� p þ �1� 2
k�1 þ . . . þ �q� 2

k�q

� 2
k�1

< 1 þ Æ1�2
k�1�

2
k�1

� 2
k�1

þ Æ2

Æ1

þ Æ3

Æ2

þ . . . þ Æp

Æp�1

þ �1 þ �2

�1

þ �3

�2

þ . . . þ �q

�q�1

< K1(1 þ �2
k�1),

(5:4)

for some constant K1 . 1. It follows from (5.4) that

� 2
k

� 2
k�i

< K M
1

Y
1< j<M

(1 þ �2
k� j), for all 1 < i < M ,

and thus (5.3) yields, in view of (3.3),

� 2
k

wk(u)
< K M

1

Y
1< j<M

1 þ �2
k� jP

1<i<M ci(u)�2
k�i

< (K2)M
Y

1< j<M

1 þ �2
k� jP

1<i<M�2
k�i

,

for some K2, since u 2 U . The Hölder inequality yields, for any 0 , � , ª,
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E sup
u2U

� 2
k

wk(u)

 !�

< K M�
2 E

Y
1< j<M

(1 þ �2
k� j)

 !ª !�=ª

E
X

1<i<M

�2
k�i

 !��ª=(ª��)
0
@

1
A

(ª��)=ª

:

By (1.4) and condition (5.1) we have

E
Y

1< j<M

(1 þ �2
k� j)

ª

 !
¼ E 1 þ �2

0

! "
ª

! "
M , 1,

and therefore it is enough to prove that

E
X

1<i<M

�2
i

 !��ª=(ª��)

, 1: (5:5)

Condition (4.5) implies

P
X

1<i<M

�2
i

 !��ª=(ª��)

. t

8<
:

9=
; < P

X
1<i<M

�2
i < t�(ª��)=(�ª)

( )

< (Pf�2
0 < t�(ª��)=(�ª)g)M

< K3 t�M �(ª��)=(�ª) < K3 t�2

for all t > 1, for some constant K3, if M > 2�ª=(�(ª� �)). Hence (5.5) is proved,

completing the proof of Lemma 5.1. h

Lemma 5.2. We assume that (3.2) holds and

Ejy2
0j� , 1, for some � . 0: (5:6)

Then for any � . 0,

E sup
u2U

P
1<i,1 i3ci(u)y2

k�i

1 þ
P

1<i,1ci(u)y2
k�i

 !�

, 1: (5:7)

Proof. For any M > 1, we haveP
1<i,1 i3ci(u)y2

k�i

1 þ
P

1<i,1ci(u)y2
k�i

<

P
1<i<M i3ci(u)y2

k�iP
1<i<M ci(u)y2

k�i

þ
X

M,i,1
i3ci(u)y2

k�i

< M3 þ
X

M,i,1
i3ci(u)y2

k�i: (5:8)

We pick constants r1=q
0 , r , 1, r . 1, such that rr , 1 and take M >

M0(C2, r, r) (C2 is from (3.4)) large enough. Then using (3.4), (5.6) and the Markov

inequality, we obtain for all t . 0 that
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P sup
u2U

X
M,i,1

i3ci(u)y2
k�i . t

( )
< P C2

X
M,i,1

i3ri=q
0 y2

k�i . t

( )

< P
X

M,i,1
ri

 y2
k�i . t

( )

<
X

M,i,1
P y2

k�i . tr�i


r

r � 1

� ��1

r�i



( )

<
X

M,i,1
P (y2

0)� > t�
r

r � 1

� ���

(rr)�i�

( )
(5:9)

< t��Ejy2
0j�

r
r � 1

� �� X
M,i,1

(rr)i�

<
Ejy2

0j�
1 � (rr)�

r
r � 1

� ��

t��(rr)M�:

Let t . 2 max(M3
0, 1) and M ¼ (t=2)1=3. Putting together (5.8) and (5.9), we conclude that

P sup
u2U

P
1<i,1 i3ci(u)y2

k�i

1 þ
P

1<i,1ci(u)y2
k�i

. t

( )
< K4e�K5 t1=3

for constants K4 and K5, completing the proof of Lemma 5.2. h

Lemma 5.3. We assume that (3.2), (4.4), (4.5) and (5.6) hold. Then

E sup
u,v2U

1

ju � vj

���� y2
k

wk(u)
� y2

k

wk(v)

���� , 1 (5:10)

and

E sup
u,v2U

1

ju � vj jlog wk(u) � log wk(v)j , 1: (5:11)

Proof. According to the mean value theorem there exists � 2 U satisfying j� � uj < ju � vj,
j� � vj < ju � vj such that���� y2

k

wk(u)
� y2

k

wk(v)

���� ¼ ju � vj
���� y2

k

wk(�)

����
���� w9k(�)

wk(�)

����: (5:12)

By Lemma 5.1, (4.4) and the independence of �k and � k, we have that
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E sup
u2U

y2
k

wk(u)

 !1þ�=2

¼ E(�2
k)1þ�=2E sup

u2U

� 2
k

wk(u)

 !1þ�=2

, 1: (5:13)

Using Lemma 3.2, we conclude that

sup
u2U

���� w9k(u)

wk(u)

���� < K6 sup
u2U

c0(u) þ
P

1<i,1 ici(u)y2
k�i

1 þ
P

1<i,1ci(u)y2
k�i

, (5:14)

and therefore Lemma 5.2 yields

E sup
u2U

���� w9k(u)

wk(u)

����
 !(2þ�)=�

, 1: (5:15)

The Hölder inequality, (5.12), (5.13) and (5.15) imply (5.10).

Using the mean value theorem again, we obtain that

jlog wk(u) � log wk(v)j < ju � vj sup
�2U

���� w9k(�)

wk(�)

����, u, v 2 U ,

and therefore (5.15) yields (5.11). h

Lemma 5.4. We assume that (3.2), (4.4) and (4.5) hold. Then

sup
u2U

���� 1

n
Ln(u) � L(u)

����!a:s: 0, as n ! 1,

where

L(u) ¼ � 1

2
E log w0(u) þ y2

0

w0(u)

( )
:

Proof. From Lemma 2.3 we have that (5.6) is satisfied. Using Lemma 3.1, we obtain that

0 , C1 < wk(u) < C2 1 þ
X

1<i,1
ri=q

0 y2
k�i

 !
:

By Lemma 2.3, E(1 þ
P

1<i,1ri=q

0 y2
k�i)

� , 1, with the assumption that � , 1: Hence

Ejlog w0(u)j , 1 (5:16)

and, by (4.4) and Lemma 5.1,

E
y2

0

w0(u)
¼ E�2

0E
� 2

0

w0(u)
, 1: (5:17)

By (1.7) there is a function g such that yk ¼ g(�k , �k�1, . . .) and therefore, by Theorem 3.5.8

in Stout (1974), yk is stationary and ergodic. By (5.16) and (5.17) we can use the ergodic

theorem and obtain that, for any u 2 U,
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1

n
Ln(u) ! L(u) a:s:

Next we write

sup
u,v2U

jLn(u) � Ln(v)j 1

ju � vj <
1

2

X
1<k<n


k ,

where


k ¼ sup
u,v2U

1

ju � vj jlog wk(u) � log wk(v)j þ
���� y2

k

wk(u)
� y2

k

wk(v)

����
( )

:

Again using Theorem 3.5.8 in Stout (1974), we conclude that 
k is a stationary and ergodic

sequence, and by Lemma 5.3 we have that E
0 , 1. So, using the ergodic theorem again,

we obtain that

1

n

X
1<k<n


k ¼a:s: O(1),

showing that

sup
u,v2U

���� 1

n
Ln(u) � 1

n
Ln(v)

���� 1

ju � vj ¼ O(1) a:s: (n ! 1):

Thus the sequence Ln(u)=n is equicontinuous with probability one, it converges a.s. to L(u)

and U is compact; hence the uniform convergence of Ln(u)=n follows. h

Lemma 5.5. If the conditions of Theorem 4.1 are satisfied, then L(u), u 2 U has a unique

maximum at Ł.

Proof. Since w0(Ł) ¼ � 2
0 and E(y2

0=w0(u)) ¼ E(� 2
0=w0(u)) by (5.17) and (4.6), we have

L(Ł) � L(u) ¼ � 1

2
þ 1

2
E

� 2
0

w0(u)
� log

� 2
0

w0(u)

 !
: (5:18)

The function x � log x is positive for all x . 0 and reaches its smallest value at x ¼ 1. Thus,

L(u), u 2 U , has an absolute maximum at Ł.

Assume that L(u) ¼ L(Ł) for some u 2 U . By (5.18) and the remark following it, we

have � 2
0 ¼ w0(u) a.s. Using Theorem 2.3, we obtain that ci(Ł) ¼ ci(u

) for all 0 < i , 1
and therefore, in view of (4.2), � 2

k ¼ wk(u). Thus, letting u ¼ (x, s1 , . . . , sp,

t1 , . . . , tq ), we have

� 2
k ¼ wk(Ł) ¼ øþ Æ1 y2

k�1 þ . . . þ Æp y2
k� p þ �1�

2
k�1 þ . . . þ �q�

2
k�q (5:19)

and

� 2
k ¼ wk(u) ¼ x þ s1 y2

k�1 þ . . . þ sp y2
k� p þ t1 � 2

k�1 þ . . . þ tq � 2
k�q (5:20)

for all �1 , k , 1. Using Corollary 2.1, we conclude that u ¼ Ł:
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Proof of Theorem 4.1. Clearly, U is a compact set. We have also shown that Ln(u)=n

converges uniformly to L(u) on U with probability one (Lemma 5.4) and proved that L(u)

has a unique maximum at u ¼ Ł (Lemma 5.5). Therefore standard arguments show that the

locations of the maxima of Ln(u)=n converge a.s. to that of L(u). h

Lemma 5.6. If the conditions of Theorem 4.2 are satisfied, then

sup
u2U

���� 1

n
L9n(u) � L9(u)

����!a:s: 0 (5:21)

and

sup
u2U

���� 1

n
L 0n(u) � L 0(u)

����!a:s: 0, (5:22)

as n ! 1:

Proof. From (4.8) we obtain

‘9k(u) ¼ � 1

2

w9k(u)

wk(u)
� �2

k

� 2
k

wk(u)

w9k(u)

wk(u)

( )
(5:23)

and

‘ 0k(u) ¼ � 1

2
� w9k(u)

wk(u)

� �T
w9k(u)

wk(u)
þ w 0k(u)

wk(u)

(

þ 2�2
k

� 2
k

wk(u)

w9k(u)

wk(u)

� �T
w9k(u)

wk(u)
� �2

k

� 2
k

wk(u)

w 0k(u)

wk(u)

)
: (5:24)

Note that ‘9k(u) and ‘ 0k(u) are stationary and ergodic sequences. Using Lemmas 3.2, 3.3, 5.2

and relation (5.14), we obtain that

E sup
u2U

���� w90(u)

w0(u)

����
�

, 1

and

E sup
u2U

���� w 00(u)

w0(u)

����
�

, 1,

for any � . 0. Therefore by Lemma 5.1 and equations (5.23) and (5.24) we obtain that

E supu2U j‘90(u)j , 1 and E supu2U j‘ 00(u)j , 1. Thus an application of the ergodic theorem

yields L9n(u)=n ! L9(u) a.s. and L 0n(u)=n ! L 0(u) a.s. for any u 2 U. The proof of the

uniformity follows similar lines to the proof of Lemma 5.4. h

Lemma 5.7. If the conditions of Theorem 4.2 are satisfied, then A0 is non-singular.
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Proof. The existence of cov(‘90(Ł)) is an immediate consequence of (5.15) and condition

(4.9). Let �k ¼ w9k(Ł). From the recursion formulae for ci(u) at the beginning of Section 3,

we easily obtain

wk(u) ¼ x þ
X

1<i< p

si y2
k�i þ

X
1< j<q

t jwk� j(u): (5:25)

Differentiating (5.25) with respect to its variables u ¼ (x, s1, . . . , s p, t1, . . . , sq) we obtain

that

�k ¼ �1�k�1 þ . . . þ �q�k�q þ jjk , (5:26)

where jjk ¼ (jk,0, . . . , jk, pþq) is given by

jk,0 ¼ 1,

jk,1 ¼ y2
k�1, . . . , jk, p ¼ y2

k� p,

jk, pþ1 ¼ � 2
k�1, . . . , jk, pþq ¼ � 2

k�q:

Next we show that there exists no real vector º 2 R pþqþ1, º 6¼ 0, and integer k such that

º�T
k ¼ 0 with probability one: (5:27)

Let us assume that (5.27) holds for some º 6¼ 0 and for some integer k. Then by stationarity,

(5.27) holds for all integers k. Hence (5.26) and (5.27) imply ºjjT
k ¼ 0 for all k. However,

this contradicts the minimality of (1.2), which follows from the assumptions of Theorem 4.2.

We have thus proved that (5.27) and consequently º(w90(Ł)=w0(Ł))T ¼ 0 holds with

probability one only if º ¼ 0. Hence cov(w90(Ł)=w0(Ł)) is non-singular. Observing that

‘90(Ł) ¼ 1

2
(�2

0 � 1)
w90(Ł)

w0(Ł)
(5:28)

and since �2
0 and w90(Ł)=w0(Ł) are independent and E(�2

0 � 1)2 6¼ 0 by (2.20), we obtain that

cov(‘90(Ł)) is also non-singular.

Proof of Theorem 4.2. By (4.1) and (4.2), Ln(u) is twice continuously differentiable on U

and reaches its maximum at Ł̂Łn, which, for sufficiently large n, is an inner point of U by

(3.2) and (4.7). Thus there is a random index n0 such that

L9n(Ł̂Łn) ¼ 0, if n > n0: (5:29)

Therefore for n > n0 we have L9n(Ł̂Łn) � L9n(Ł) ¼ �L9n(Ł), so by the mean value theorem for

the coordinates of L9n ¼ (L9n,0, . . . , L9n, pþq) we have

(Ł̂Łn � Ł)L 0n,i(�n,i) ¼ �L9n,i(Ł), 0 < i < p þ q,

where �n,i is between Ł̂Łn and Ł. So, using Lemma 5.6 and the continuity of L 0(u), we obtain

(Ł̂Łn � Ł)(B0 þ o(1)) ¼ � 1

n
L9n(Ł) a:s: (5:30)
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By (5.23) we have

‘9k(Ł) ¼ 1

2
(�2

k � 1)
w9k(Ł)

wk(Ł)
: (5:31)

In view of (4.6), E((‘9k(Ł))T‘9j(Ł)), j 6¼ k, is the zero matrix, and thus we conclude that

cov n�1=2 L9n(Ł)
�  

¼ A0: (5:32)

By Lemma 5.7, A0 is non-singular and therefore (5.30) implies the non-singularity of B0.

If n is large, then (B0 þ o(1))�1 exists and equals B�1
0 þ o(1). By (5.32) and the Markov

inequality we have L9n(Ł)=n1=2 ¼ OP(1), and thus (4.11) follows from (5.30) and (5.31).

Since ‘9k(Ł) ¼ 1
2
(�2

k � 1) f (�2
k�1, �2

k�2, . . .) for some measurable function f , ‘9k(Ł) is a

stationary martingale difference sequence. By Theorem 3.5.8 in Stout (1974) it is also

ergodic. The covariance matrix of 1
2
(�2

k � 1)(w9k(Ł)=wk(Ł))B�1
0 is B�1

0 A0 B�1
0 , so the

Cramér–Wold device (cf. Billingsley 1968, pp. 48–49) and Theorem 23.1 of Billingsley

(1968, p. 206) shows that (4.11) implies (4.12). h

Lemma 5.8. If the conditions of Theorem 4.1 are satisfied, then

sup
u2U

���� X
1<k<n

(log wk(u) � log ~wwk(u))

���� ¼a:s: O(1) (5:33)

and

sup
u2U

���� X
1<k<n

w9k(u)

wk(u)
� ~ww9k(u)

~wwk(u)

� ����� ¼a:s: O(1), (5:34)

as n ! 1.

Proof. Since wk(u) > C1 and ~wwk(u) > C1 for all u 2 U and some positive constant C1 (cf.

Lemma 3.1), by the mean value theorem and (3.4) we have

jlog wk(u) � log ~wwk(u)j < 1

C1

jwk(u) � ~wwk(u)j

<
C2

C1

X
k<i,1

ri=q

0 y2
k�i (5:35)

¼ C2

C1

rk=q
0

X
0< j,1

r j=q
0 y2

� j:

By Lemmas 2.2 and 2.3 the sum
P

0< j,1r j=q

0 y2
� j is convergent with probability one. Hence

sup
u2U

���� X
1<k<n

(log wk(u) � log ~wwk(u))

���� < K7

X
0< j,1

r j=q

0 y2
� j

X
1<k<n

rk=q

0

¼a:s: O(1),
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proving (5.33). It is easy to see that���� w9k(u)

wk(u)
� ~ww9k(u)

~wwk(u)

���� < 1

C1

sup
u2U

jw9k(u) � ~ww9k(u)j þ 1

C1

sup
u2U

���� w9k(u)

wk(u)

���� sup
u2U

jwk(u) � ~wwk(u)j:

By (5.35) we obtain

X
1<k<n

sup
u2U

���� w9k(u)

wk(u)

���� sup
u2U

jwk(u) � ~wwk(u)j < K8

X
0< j,1

r j=q

0 y2
� j

X
1<k,1

sup
u2U

���� w9k(u)

wk(u)

����rk=q

0

, 1 a:s:

for some constant K8; in the last step we used Lemma 2.2 and (5.15). By Lemmas 3.1 and

3.2 there exist K9 and 0 , ~rr , 1 such that jc9i(u)j < K9 ~rri, u 2 U , for all 0 < i , 1: HenceX
1<k<n

sup
u2U

jw9k(u) � ~ww9k(u)j < K9

X
1<k<n

X
k<i,1

~rri y2
k�i

< K9

X
0< j,1

r j y2
� j

X
1<k,1

~rrk ,

completing the proof of (5.34). h

Lemma 5.9. If the conditions of Theorem 4.1 are satisfied, then

sup
u2U

���� X
1<k<n

y2
k

wk(u)
� y2

k

~wwk(u)

 !���� ¼a:s: O(1) (5:36)

and

sup
u2U

���� X
1<k<n

y2
k

w9k(u)

w 2
k(u)

� ~ww9k(u)

~ww2
k(u)

 !���� ¼a:s: O(1), (5:37)

as n ! 1.

Proof. By (5.35) we have

sup
u2U

X
1<k<n

y2
k

wk(u)

���� wk(u) � ~wwk(u)

~wwk(u)

���� < C2

C1

X
0< j,1

r j=q
0 y2

� j

X
1<k,1

sup
u2U

y2
k

wk(u)
rk=q

0 :

We note that supfy2
k=wk(u), u 2 Ug is a stationary sequence and, by (4.4) and Lemma 5.1,

E sup
u2U

y2
0

w0(u)

 !�

¼ E(�2
0)�E sup

u2U

� 2
0

w0(u)

 !�

, 1 (5:38)

for all � , 1 þ �. Thus an application of Lemma 2.2 yields that
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X
1<k,1

sup
u2U

y2
k

wk(u)
rk=q

0 , 1 a:s:,

completing the proof of (5.36). The proof of (5.37) is similar to that of (5.34) and (5.36), and

therefore the details are omitted. h

Proof of Theorem 4.3. Lemmas 5.8 and 5.9 imply that

sup
u2U

���� 1

n
Ln(u) � 1

n
~LLn(u)

���� ¼a:s: o(1),

and therefore, by Lemma 5.4,

sup
u2U

���� 1

n
~LLn(u) � L(u)

���� ¼a:s: o(1):

Thus ~ŁŁn ! Ł a.s. follows as in the proof of Theorem 4.1. h

Proof of Theorem 4.4. Observing that supu2U jL9n(u) � ~LL9n(u)j is bounded by the sum of the

left-hand sides of (5.34) and (5.37), and using Lemmas 5.8 and 5.9, we obtain under the

conditions of Theorem 4.4 that

sup
u2U

���� 1

n
L9n(u) � 1

n
~LL9n(u)

���� ¼a:s: O 1

n

� �
: (5:39)

Similarly to the proof of Theorem 4.2, there is a random variable n0 such that

~LL9n(~ŁŁn) ¼ 0, if n > n0: (5:40)

Using (5.29), (5.39) and (5.40), we obtain that

1

n
L9n(Ł̂Łn) � 1

n
L9n(~ŁŁn) ¼ 1

n
L9n(Ł̂Łn) � 1

n
~LL9n(~ŁŁn) þ O

1

n

� �
¼ O

1

n

� �
a:s: (5:41)

By (5.22) and a coordinatewise application of the mean value theorem, we obtain that

1

n
L9n(Ł̂Łn) � 1

n
L9n(~ŁŁn) ¼ (Ł̂Łn � ~ŁŁn)L 0(Ł)(1 þ o(1)) a:s:,

and therefore (5.41) implies

jŁ̂Łn � ~ŁŁnj ¼ O
1

n

� �
a:s:

Hence Theorem 4.4 is an immediate consequence of Theorem 4.2. h

Proof of Remark 4.5. By (5.23) we have ‘90(Ł) ¼ �1
2
(1 � �2

0)w90(Ł)=� 2
0 and therefore

E(‘90(Ł)T‘90(Ł)) ¼ 1

4
E(1 � �2

0)2E
w90(Ł)

� 2
0

� �T w90(Ł)

� 2
0

� �
: (5:42)

Similarly, on account of (5.24) and E�2
0 ¼ 1, we have
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E‘ 00(Ł) ¼ � 1

2
�E

w90(Ł)

� 2
0

� �T w90(Ł)

� 2
0

� �
þ E

w 00(Ł)

� 2
0

� �
þ 2E

w90(Ł)

� 2
0

� �T w90(Ł)

� 2
0

� �
� E

w 00(Ł)

� 2
0

� �( )

¼ � 1

2
E

w90(Ł)

� 2
0

� �T w90(Ł)

� 2
0

� �
: (5:43)

Comparing (5.42) and (5.43), we obtain Remark 4.5. h
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