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The EM algorithm is a much used tool for maximum likelihood estimation in missing or incomplete

data problems. However, calculating the conditional expectation required in the E-step of the algorithm

may be infeasible, especially when this expectation is a large sum or a high-dimensional integral.

Instead the expectation can be estimated by simulation. This is the common idea in the stochastic EM

algorithm and the Monte Carlo EM algorithm.

In this paper some asymptotic results for the Stochastic EM algorithm are given, and estimation

based on this algorithm is discussed. In particular, asymptotic equivalence of certain simple estimators

is shown, and a simulation experiment is carried out to investigate this equivalence in small and

moderate samples. Furthermore, some implementation issues and the possibility of allowing

unidenti®ed parameters in the algorithm are discussed.
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1. Introduction

Missing data problems often lead to complicated likelihood functions involving high-

dimensional integrals or large sums, which are dif®cult if not impossible to calculate. Also

any differentiation needed to ®nd the maximum likelihood estimator (MLE) may be

infeasible. The EM algorithm is an appealing method for maximizing the likelihood, since

derivatives are not needed. Instead, from a given value of the unknown parameter the

complete data log-likelihood is predicted and then maximized. Often the prediction ± a

conditional expectation of the complete data log-likelihood given the observed data ± is easy

to calculate and the maximization can be done either explicitly or by standard methods such

as Newton±Raphson or scoring.

However, in particular with high-dimensional data or incomplete observations such as

censored data, the conditional expectation is a high-dimensional integral or an integral over

an irregular region and cannot be calculated explicitly. Instead one could try to estimate it

by simulation. This is done in the stochastic EM algorithm suggested by Celeux and

Diebolt (1986) ± see Diebolt and Ip (1996) for a recent review and further references ±

and in the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990). The main

difference between these two algorithms is that the MCEM algorithm uses (in®nitely) many

simulations to obtain a good estimate of the conditional expectation (at least for the last
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iterations of the algorithm), whereas the stochastic EM algorithm uses only one in each

iteration.

In this paper asymptotic results applicable to both algorithms are shown. However, since

we focus on the situation where the number of simulations in each iteration is small

compared to the sample size (for reasons to be discussed in Section 4), we will use the

term stochastic EM algorithm. Furthermore, for brevity we shall use the acronym StEM to

denote the stochastic EM algorithm. Often SEM is used as an acronym, but we prefer StEM

to avoid confusion with the simulated EM algorithm (Ruud 1991) and the supplementary

EM algorithm (Meng and Rubin 1991), both of which are called SEM as well.

1.1. The StEM algorithm

Let X 1, X2 . . . , X n be independent identically distributed (i.i.d.) random variables from a

distribution indexed by an unknown parameter è. Suppose that a (many-to-one) mapping Yi

of Xi is observed rather than X i. Throughout this paper X denotes a generic random variable

from the unknown distribution and Y the corresponding incomplete observation.

The StEM algorithm takes the following form. From an arbitrary starting value ~èn(0) a

sequence (~èn(k))k2N0
is formed by going through a stochastic E-step or StE-step

(simulation) and an M-step (maximization):

StE-step. Given a value of ~èn(k), simulate values ~Xi from the conditional distribution of

X given Y � yi under ~èn(k), i.e. draw ~Xi � L ~èn(k)(X jY � yi).

M-step. Maximize the resulting complete data log-likelihood,
Pn

i�1 log fè( ~Xi), and let the

maximizer be the next value, ~èn(k � 1).

The StE-step completes the data set, and the maximization in the M-step is thus a complete

data maximum likelihood estimation. Hence the M-step is typically easy to solve either

explicitly or iteratively using standard algorithms such as Newton±Raphson or scoring.

It is clear that by simulating new independent ~Xis in each step, the sequence of

maximizers, (~èn(k))k2N0
, is a time-homogeneous Markov chain, when the observed data,

y1, y2, . . . , yn, are ®xed (i.e. conditioned upon). If ergodic, the algorithm will converge in

the sense that as k, the number of iterations, tends to in®nity, ~èn(k) converges in

distribution to a random variable, ~èn, where ~èn is distributed according to the stationary

distribution of the Markov chain. We shall show that ~èn is asymptotically normal and use

this result to ®nd estimators of the unknown parameter è.

1.2. Outline of paper

In the following section we introduce notation and regularity assumptions to be used in the

proofs of the large-sample results. Also some necessary facts about the convergence of

sequences of Markov chains are discussed.

In Section 3 we ®rst show that the Markov chains are well behaved ± aperiodic,

irreducible and Feller ± and give weak suf®cient conditions for ergodicity (Theorem 1). In

Section 3.2 we prove that the stationary distribution of the Markov chain converges to a
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normal distribution if suitably normalized (Theorem 2) as the sample size tends to in®nity.

This result has been suggested previously, for instance by Chan and Ledolter (1995), who

gave a heuristic argument under stronger regularity assumptions, and proved for a special

case by Celeux and Diebolt (1993). The general proof given in Section 3.2 appears to be

new, however.

In Section 4 we give large-sample results for some simple estimators of the unknown

parameter è derived from the StEM algorithm, and show asymptotic equivalence of some

estimators obtained from simple extensions of the StEM algorithm. A simulation study is

given to illustrate small to moderate sample size behaviour of the various estimators, and

estimation of the asymptotic variance is discussed.

The paper concludes with a discussion of some implementation issues and an indication

of what effect unidenti®ed parameters may have on the algorithm.

2. Preliminaries

In this section necessary results about sequences of Markov chains are given (Section 2.1),

some notation is introduced (Section 2.2), and assumptions to be used in showing the

asymptotic results are given (Section 2.3). The results in Section 2.1 are `discrete-time'

versions of some `continuous-time' results given by Ethier and Kurtz (1986, Chapter 4).

2.1. Sequences of Markov chains

Let Pn be the transition probabilities for a Markov chain on a ®nite-dimensional Euclidean

state space S and let ìn be the corresponding stationary initial distributions, which are

assumed to exist. C b(S) denotes the set of continuous, bounded functions k : S ! R.

The following assumptions (referred to collectively as Assumption C) will be used:

Assumption C1. Pn(x, :)!w P(x, :) uniformly over compacta, i.e. for all compact sets, K � S,

supx2K j
�
k(y)Pn(x, dy)ÿ � k(y)P(x, dy)j ! 0 as n!1 for all k 2 C b(S).

Assumption C2. x! �
k(y)P(x, dy) is continuous for all k 2 C b(S).

Assumption C implies that
�
k(y)Pn(:, dy) converges to

�
k(y)P(:, dy) continuously, i.e.�

k(y)Pn(xn, dy)! �
k(y)P(x, dy) when xn ! x. Conversely, continuous convergence of�

k(y)Pn(:, dy) to
�
k(y)P(:, dy) implies Assumptions C1 and C2 (Roussas 1972, p. 132).

Thus assumption C may be replaced by:

Assumption C�. � k(y)P(:, dy) converges continuously to
�
k(y)P(:, dy) for each k 2 C b(S),

where P is a transition probability.

We are interested in the limiting distribution of the stationary distributions. The following

results characterizes the limit in terms of the limit of the transition probabilities.
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Proposition 1. Suppose that Assumption C holds. If a subsequence of (ìn)n2N converges

weakly to a probability ì, then ì is a stationary initial distribution for the Markov chain with

transition kernel P.

Proof. Suppose (ìn9)n9 is a convergent subsequence with limit ì. Then������k(y)P(x, dy) dì(x)ÿ
�
k(x) dì(x)

���� <

������k(y)P(x, dy) dì(x)ÿ
��

k(y)P(x, dy) dìn9(x)

����
�
����� �

k(y)P(x, dy)ÿ
�
k(y)Pn9(x, dy)

� �
dìn9(x)

����
�
�����k(x) dìn9(x)ÿ

�
k(x) dì(x)

����: (1)

Here the ®rst and the third terms vanish as n9!1. Let å. 0 be arbitrary. According to

Prohorov's theorem, a compact set K can be chosen such that inf n9ìn9(K) . 1ÿ å=2. Thus����� �
k(y)P(x, dy)ÿ

�
k(y)Pn9(x, dy)

� �
dìn9(x)

����
<

å

2
� sup

x2K

�����k(y)P(x, dy)ÿ
�
k(y)Pn9(x, dy)

����, (2)

where the second term can be made arbitrarily small (smaller than å=2, say) by Assumption

C1. h

From Proposition 1 follows:

Corollary 1. Suppose Assumption C holds. If ì is the unique stationary distribution

corresponding to P and (ìn)n2N is tight, then ìn!w ì.

Proof. Tightness implies that any subsequence of (ìn)n2N has a convergent sub-subsequence,

(ìn9). According to Proposition 1, ìn9!w ì, and the result follows from Theorem 2.3 in

Billingsley (1968). h

In order to apply Corollary 1, a criterion for tightness is necessary:

Proposition 2. Suppose that, for each n 2 N, (Z n
k)k2N0

is an ergodic Markov chain on a

®nite-dimensional Euclidean state space S with initial distibution vn and transition kernel Pn.

Let ìn be the corresponding stationary initial distribution. If there exist functions

jn : S ! [0; 1[, øn : S ! R, and ø : S ! [ÿC; 1[ for some C . 0, such that

(i)
�
jn dvn is ®nite for all n 2 N,

(ii) øn > ø for all n 2 N,

(iii) ø is a norm-like function, i.e. fz : ø(z) < cg is compact for each c . 0,

(iv) and E(jn(Z n
l )) < E(jn(Z n

lÿ1))ÿ E(øn(Z n
lÿ1)) for all n, l 2 N,

then (ìn)n2N is tight.
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Proof. Letting Kc � fz : ø(z) < cg, we get øn > c . 1Kc
c
ÿ C . 1Kc

� cÿ (C � c) . 1Kc
by

(ii). Now

0 < E(jn(Z n
l )) < E(jn(Z n

0 ))ÿ E
Xlÿ1

k�0

øn(Z n
k)

 !

>

�
jndvn � (C � c)E

Xlÿ1

k�0

1Kc
(Z n

k)

 !
ÿ cl, (3)

so that

c

C � c
ÿ 1

l

�
jndvn

1

C � c
< E

1

l

Xlÿ1

k�0

1Kc
(Z n

k)

 !
: (4)

When l!1 the right-hand side converges to ìn(Kc) and the second term on the left-hand

side vanishes. As c may be chosen arbitrarily large and Kc is compact, (ìn)n2N is tight. h

Remark. Conditions (i)±(iv) of the proposition need only hold for n suf®ciently large.

Condition (i) holds if (as will typically be the case) vn is degenerate, i.e. if Z n
0 is ®xed.

ø is norm-like if it is continuous and ø(z)!1 for kzk ! 1.

A suf®cient condition for condition (iv) is that E(jn(Z n
l )jZ n

lÿ1) < jn(Z n
lÿ1)ÿ øn(Z n

lÿ1),

and this will typically be easier to verify in practice. This is equivalent to showing that

jn(Z n
l )�P lÿ1

k�0øn(Z n
k) is a super-martingale for each n 2 N.

2.2. Notation

Let fè be the density of X with respect to some dominating probability measure, ì. The

resulting probability measure is denoted Pè, and expectation with respect to this probability is

denoted Eè. Let sx(è) be the corresponding score function and V (è) � Eè(sX (è)
2) the

complete data information.

The conditional density of X given Y � y with respect to some probability measure v y is

denoted kè(xjy), and the corresponding score function sxj y(è). Let Iy(è) �
Eè(sX j y(è))
2jY � y).

The density of Y is denoted hè and the corresponding score function is sy(è). Let I(è) �
Eè(sY (è)
2) denote the observed data information.

Notice that sy(è) � sx(è)ÿ sxj y(è) and that I(è) � V (è)ÿ Eè IY (è), when Eè(sX j y(è)j
Y � y) � 0, as we will assume below.

Let F(è) � Eè IY (è)V (è)ÿ1 be the expected fraction of missing information, and let è0

denote the true unknown value of è 2 È � Rd . It is easily shown that F(è) has d

eigenvalues in ]0; 1[, when both I(è) and Eè IY (è) are non-singular, as we will assume

below.

As in Section 1, we shall use ~Xi for simulated values. The distribution of the simulated

values is denoted ~Pè. This is of course just the conditional distribution of the unobserved

X is given the observed values of Yi � yi under Pè. Generally the simulated values are not
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from the distribution indexed by the same value of the parameter è as the observed Yis (i.e.

the correct value, è0), and the notation introduced should help to keep clear the distinction

between simulated and observed variables and their distributions. Notice that the ~Pè notation

is shorthand in the sense that the dependence upon the observed yis is suppressed.

2.3. Assumptions

The assumptions can be divided roughly into three groups corresponding to which model ±

the observed, the complete, or the incomplete data model ± they relate to.

On the model for the observed data, Y1, Y2, . . . , Yn, it is assumed that the unknown

parameter, è, is identi®able. Furthermore, we assume that there is an MLE, è̂n, which

solves the likelihood equation, 1
n

Pn
i�1syi

(è) � 0, such that
���
n
p

(è̂n ÿ è0)!D N (0, I(è0)ÿ1).

Note that we here implicitly assume that I(è0) is non-singular.

It is also assumed that è̂n converges to è0 almost surely. This assumption is not necessary

but it will simplify the proofs of Section 3.2. The strong consistency may be replaced by

taking almost surely convergent subsequences of arbitrary subsequences and applying

Theorem 2.3 in Billingsley (1968).

The assumptions on the observed data model may be dif®cult to verify in practice, but

will typically follow if the complete data model and the missing data model are suf®ciently

smooth. The assumptions do not appear to be unreasonable since the StEM algorithm

attempts to mimic maximum likelihood estimation. Hence, we would not expect it to have

better properties than maximum likelihood. We note that in the proofs to follow the

assumption that è is identi®able is never explicitly used. We conjecture, however, that some

of the regularity assumptions ± in particular, those involved in the discussion of tightness

(cf Proposition 3) ± will fail to hold if è is unidenti®able. We return to this discussion in

Section 5.2.

On the model for the complete data, X1, X 2, . . . , X n, it is assumed that (for n

suf®ciently large) there is (with probability 1) an MLE.

We must also assume that if èn � è0 � O(1=
���
n
p

) then, for all almost all y-sequences,���
n
p

(~èn(1)ÿ èn) � V (è0)ÿ1 1���
n
p

Xn

i�1

s ~X i
(èn)� o~Pèn

(1), (5)

where ~Xi � L èn
(X jY � yi) and ~èn(1) is the complete data MLE based on the simulated data.

This condition may be interpreted as an assumption of the complete data MLE based on

approximately correct simulations is approximately ef®cient. This is close to assuming local

ef®ciency of the complete data MLE. If ~èn(1) is uniformly asymptotically linear (Bickel et

al. 1993, De®nition 2.2.6) with in¯uence function V (è0)ÿ1s ~X i
in the model where Yi � Pè0

and ~Xi � L è̂(X jY � yi), with ~è playing the role of the unknown parameter, then (5) holds.

It is dif®cult to give simple, yet general, suf®cient conditions for (5), but it should not be

dif®cult to verify in actual applications. For instance, it is easily seen to hold if the

complete data model is a full exponential family. If the complete data model is smooth (in

the sense of Lehmann 1983, say), (5) follows if we show that
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ÿ 1

n

Xn

i�1

Dès ~X i
(èn)!

~Pèn
V (è0) (6)

for almost every y-sequence when èn � è0 � O(1=
���
n
p

) and either that the integrable

majorizer of the third derivative can be chosen to depend on y only or that a law of large

numbers (again given y) applies to this majorizer.

Finally, some assumptions are necessary on the model for the missing data, i.e. the

conditional distribution of X given Y � y. This is assumed to be regular in the sense of

Bickel et al. (1993, Section 2.1) In particular, this means that Eè0
IY (è0) is non-singular. Let

è! Dèk
1
2

è(:kjy) � _k
1
2

è(:jy) (7)

denote the (L2(v y)-) derivative of the root density,

è! (kè(:jy))
1
2 � k

1
2

è(:jy): (8)

Assume that for almost every y-sequence and every compact C � È we have the following:

Assumption U. supè2Cj1n
Pn

i�1 I yi
(è)ÿ Eè0

IY (è)j ! 0 as n!1.

Assumption D. 8h 2 Rd ,

supè2C supu2[0;1=
���
n
p

]
1
n

Pn
i�1

�
hT _k

1=2
è�uh(xjyi)ÿ hT _k

1=2
è (xjyi)

� �2

dv yi
(x)! 0

as n!1.

Assumption L. 8å. 0 : supè2C
1
n

Pn
i�1

~Eè[(hTsX ij yi
(è))21fjhT s Xi

j yi(è)j>å=
���
n
p g]! 0 as n!1.

Then (by a straightforward extension of Theorem II.6.2 in Ibragimov and Has'minskii 1981).Xn

i�1

log kè� 1��
n
p h(X i=yi)ÿ

Xn

i�1

log kè(X ijyi)

� hT 1���
n
p

Xn

i�1

sX ij yi
(è)ÿ 1

2
hTEè0

IY (è)h� Rn(è, h), (9)

where

sup
jhj<M

sup
è2C

~PèfjRn(è, h)j. åg ! 0 (10)

for every å, M . 0 and every compact set C � È, and given y

1���
n
p

Xn

i�1

sX ij yi
(èn)!D N (0, Eè0

IY (è0)) (11)

for every sequence (èn)n2N converging to è0.

Assumption L may be veri®ed in practice by showing that a Lyapunov-type condition
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holds. Assumptions U and D may be shown using empirical process techniques or from

further smoothness.

Finally, the distributions of the conditional model, (kè(:jy) . íy)è2È, must be mutually

equivalent for each given y.

3. Asymptotic results for the stochastic EM algorithm

In Section 3.1 the convergence of the StEM algorithm (for a ®xed sample size n) is

discussed. The properties of the Markov chain (~èn(k))k2N0
are discussed, and suf®cient

criteria for ergodicity are given.

In Section 3.2 large-sample results for the sequence (~èn)n2N are given. The main result is

Theorem 2, where the limiting distribution of
���
n
p

(~èn ÿ è0) is identi®ed as n!1. A

criterion for tightness of the sequence
���
n
p

(~èn ÿ è0) is given.

We apply the obtained result to a simple example in Section 3.3.

3.1. Convergence

It is clear that by simulating new independent ~Xis in each step, the sequence of maximizers,

(~èn(k))k2N0
, is a time-homogeneous Markov chain. We wish to show that the Markov chain is

ergodic, i.e. that the distribution of ~èn(k) converges in total variation to the stationary initial

distribution as k !1. Ergodicity is expected to hold quite generally, since there clearly is a

drift in the Markov chain (~èn(k))k2N0
. At each iteration, we maximize an unbiased estimate

of the conditional expectation Q(èj~èn(k ÿ 1)) �Pn
i�1E ~èn(kÿ1)(log fè(X )jY � yi) from the E-

step of the EM algorithm. Consequently, we expect that on average the new è value, ~èn(k),

will increase the observed data log-likelihood just as the resulting è value from one iteration

of the EM algorithm would. This idea is used to give suf®cient conditions for ergodicity in

Theorem 1.

Also the simulated x values make up a Markov chain; this is denoted ( ~X (k))k2N0

(suppressing the dependence on n). We start by showing a few properties of the Markov

chains ( ~X (k))k2N0
and (~èn(k))k2N0

.

Lemma 1. The Markov chain ( ~X (k))k2N0
is irreducible and aperiodic.

Remark. In the proofs of this subsection the dependence on n will be suppressed in the

notation. We may ± and will ± assume that supp íy � supp (kè(:jy) . íy) for all è 2 È since

the conditional distributions are mutually equivalent.

Proof. As ~Pf ~X (1) 2 Bj ~X (0) � xg � ~Pf ~X (1) 2 Bj~è(0) � èg � �
B

kè(x9jy) díy(x9) . 0 for any

x ± here è is the complete data MLE corresponding to the observation x ± and any

measurable set B such that íy(B) . 0, the chain is íy-irreducible.

To show aperiodicity, suppose that the chain is periodic with period at least two. Then

there exist two disjoint sets, D1 and D2, such that ~P( ~X (1) 2 D2j ~X (0) � xg � 1 for all
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x 2 D1 (see Meyn and Tweedie 1993, Theorem 5.4.4). Consequently,
�

D2
kè(xjy) díy(x) � 1

for all values of è, and D1 must be a null set for all è. In other words,
~Pf ~X (1) 2 D1j ~X (0) � xg � 0 for all x, contradicting Theorem 5.4.4 in Meyn and Tweedie

(1993). Thus the chain is aperiodic. h

The Markov chain (~èn(k))k2N0
inherits some of the properties of the chain ( ~X (k))k2N0

.

Corollary 2. The Markov chain (~èn(k))k2N0
is irreducible and aperiodic. If the Markov chain

( ~X (k))k2N0
is ergodic, then so is (~èn(k))k2N0

. In particular, if the simulations have a ®nite

sample space, (~èn(k))k2N0
is ergodic.

The assumed regularity of the conditional distributions has the following consequence:

Lemma 2. The Markov chain (~èn(k))k2N0
has the weak Feller property, and compact sets are

small.

Proof. The assumed regularity of the model implies that for all measurable sets B we obtain�
B

kè9(xjy) díy(x)! �
B

kè(xjy)íy(x) when è9! è. In particular, for an open set O � È,
~Pf~è(1) 2 Oj~è(0) � è9g ! ~Pf~è(1) 2 Oj~è(0) � èg as è9! è. Thus the Markov chain has the

weak Feller property.

If K � È is compact, then there is for each measurable B a è9 2 K such that

infè2K

�
B

kè(xjy) díy(x) � �
B

kè9(xjy) díy(x) since the map è! �
B

kè(xjy) díy(x) is contin-

uous. Thus K is small. h

It is worth noticing that (~èn(k))k2N0
typically has a smaller state space than È. For

instance, if the sample space of the simulations is ®nite, then so is the actual state space of

the Markov chain. Also the observed y values may restrict the sample space of the

simulations. The actual state space is the set of possible complete data maximum likelihood

estimates based on simulated data; or, more precisely, the image of the support of the

conditional distribution of (X i)i�1,:::,n given (Yi)i�1,:::,n � (yi)i�1,:::,n under the mapping that

transforms complete data to the corresponding complete data MLE. We let ~Èn denote the

actual state space; the dependence on y1, y2, . . . , yn is suppressed.

Since compact sets are small, we get:

Corollary 3. If ~Èn is compact, then (~èn(k))k2N0
, is ergodic.

More generally, we would try to verify a drift criterion to show ergodicity. The drift in

the EM algorithm towards high-density areas suggests looking at the observed data log-

likelihood:

Theorem 1. Put v(è) � log hè̂(y)ÿ log hè(y). Let c � log
�

k ~è(~xjy) díy(~x), where ~è is the

complete data MLE based on ~x.

Suppose that c ,1 and that the function
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è! Ä(è) � ~E(log f ~è(k�1)(
~X )ÿ log f ~è(k)(

~X )j~è(k) � è), (12)

where ~X � L ~è(k)(X jY � y), is greater than (1� ä)c outside a compact set K � ~èn for some

ä. 0. Then:

(i) there is a stationary initial distribution, ~P, of the Markov chain (~èn(k))k2N0
. In

particular, the distribution of ~èn(k) converges in total variation to ~P as k !1 for
~P-almost all values of ~èn(0).

(ii) if è! v(è) is norm-like, then the Markov chain (~èn(k))k2N0
is ergodic.

(iii) if è! Ä(è) is norm-like, then the Markov chain (~èn(k))k2N0
is ergodic.

Proof. First note that Ä(è) is positive, since ~è(k � 1) maximizes è! log fè( ~X ). Now

v(~è(k � 1)) � v(~è(k))� log h ~è(k)(y)ÿ log h ~è(k�1)(y)

� v(~è(k))� (log f ~è(k)(
~X )ÿ log f ~è(k�1)(

~X ))

ÿ (log k ~è(k)(
~X jy)ÿ log k ~è(k�1)(

~X jy)), (13)

where ~X � L ~è(k)(X jY � y). Now by Jensen's inequality

ÿ~E(log k ~è(k)(
~X jy)ÿlog k ~è(k�1)(

~X jy)j~è(k))

< log ~E
k ~è(k�1)(

~X jy)

k ~è(k)(
~X jy)

����~è(k)

 !
� log

�
k ~è(k�1)(~xjy)díy(~x) � c: (14)

Hence

~E(v(~è(k � 1))j~è(k) � è) < v(è)ÿ Ä(è)� c: (15)

Now:

(i) since the chain is Feller and Ä(è)ÿ c > äcÿ (1� ä)c1K (è), (15) ensures the

existence of a stationary initial distribution, ~P (Meyn and Tweedie 1993, Theorem

12.3.4). This implies convergence in total variation for ~P-almost all starting values.

(ii) if è! v(è) is norm-like, then the chain is Harris recurrent according to Theorems

9.1.8 and 9.4.1 in Meyn and Tweedie (1993). In combination with the positivity

shown in (i), this gives ergodicity (Meyn and Tweedie 1993, Theorem 13.3.3).

(iii) if è! Ä(è) is norm-like, then Ä(è)ÿ c > (1� Ä(è))=2ÿ (c� 1=2)1K1
(è) for the

compact set K1 � fè 2 ~èn : Ä(è) < 1� 2cg, which by Theorem 14.0.1 in Meyn and

Tweedie (1993) ensures ergodicity. h

Remark. Since
�

k ~è(~xjy) díy(~x) >
�

kè̂(~xjy) díy(~x) � 1, c is positive but may be in®nite. It is

®nite if (è, x)! kè(xjy) is bounded; here it may be useful to remember that we need only

consider è 2 ~èn. The assumption that log
�

k ~è(~xjy) díy(~x) is ®nite may be relaxed to assuming

that ~E(log k ~è(k�1)(
~X jy)ÿ log k ~è(k)(

~X jy)j~è(k) � è) is bounded by some c ,1 (as a function

of è). We expect this to hold quite generally since it is bounded by the mean of half the
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(conditional) likelihood ratio test statistic (`ÿ 2 log Q') for testing the null hypothesis

è � ~è(k), which (in large samples) is approximately ÷2-distributed with d degrees of

freedom.

Assuming that fè 2 ~Èn : Ä(è) ,(1� ä)cg is (contained in) a compact set holds if Ä(è)

is norm-like.

The assumption of v(è) being norm-like seems to be weak but dif®cult to check in

practice. It holds if the observed data likelihood è! hè(y) is continuous and goes to 0 as

è goes away from the observed data MLE.

The assumption in (iii) may be relaxed to K1 de®ned in the proof above being compact.

The implications of the inequality (15) are stronger than just ergodicity under the

assumption made in (iii) (see Meyn and Tweedie 1993, Chapter 14) but they do not appear

to be generally useful in this context.

3.2. Asymptotic normality

In this subsection asymptotic normality of the sequence
���
n
p

(~èn ÿ è0) is shown. The aim is to

apply Corollary 1 to the sequence
���
n
p

(~èn ÿ è̂n) conditional on the observed y-sequence.

In order to do this, we have to look at how the transition probabilities from a ®xed point

of the sample space behave as n tends to in®nity. Here the `®xed points' of the Markov

chains, (
���
n
p

(~èn(k)ÿ è̂n))k2N0
, have the form h � ���

n
p

(èn ÿ è̂n). We will verify Assumption

C� the following lemma. Hence we need to look at a convergent sequence, hn ����
n
p

(èn ÿ è̂n), of points in the sample space, i.e. è values of the type èn � è̂n �
(1=

���
n
p

)h� o(1=
���
n
p

), and show continuous convergence of the transition probabilities.

Lemma 3. Let ~Xn � L èn
(X jY � yi), where èn � è̂n � (1=

���
n
p

)h� o(1=
���
n
p

) � ~èn(0).

For almost all y-sequences and conditional on y,���
n
p

(~èn(1)ÿ è̂n)!D N (F(è0)T h, V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1), (16)

where ~èn(1) is the complete data MLE based on the simulated ~Xis, and F(è0) �
Eè0

IY (è0)V (è0)ÿ1 is the expected fraction of missing information.

Proof. Observe that from (9) the difference of the log-likelihood, based on the simulated ~Xi,

evaluated at èn and è̂n, respectively, is

ln(èn; è̂n) � hT 1���
n
p

Xn

i�1

s ~X ij yi
(è̂n)ÿ 1

2
hTEè0

IY (è0)h� o~Pè̂n

(1): (17)

From (5) follows that when ~Xn � L è̂n
(X jY � yi)

���
n
p

(~èn(1)ÿ è̂n) � V (è0)ÿ1 1���
n
p

Xn

i�1

s ~X i
(è̂n)� o~Pè̂n

(1)
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� V (è0)ÿ1 1���
n
p

Xn

i�1

s ~X ij yi
(è̂n)� o~Pè̂n

(1) (18)

since
Pn

i�1s yi
(è̂n) � 0. Therefore, under è̂n, i.e. when ~Xi � L è̂n

(X jY � yi),

ln(èn; è̂n)���
n
p

(~èn(1)ÿ è̂n)

0@ 1A

!D N

ÿ1
2
hTEè0

IY (è0)h

0

0@ 1A,

hTEè0
IY (è0)h hT F(è0)

F(è0)T h V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1

0@ 1A
0B@

1CA (19)

according to (9). LeCam's third lemma implies that under èn���
n
p

(~èn(1)ÿ è̂n)!D N (F(è0)T h, V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1), (20)

as we wished to show. h

Lemma 3 shows that the transition probabilities of the Markov chain

(
���
n
p

(~èn(k)ÿ è̂n))k2N0
converge continuously to the transition probabilities of a multivariate

Gaussian AR(1) process.

Theorem 2. Suppose
���
n
p

(~èn ÿ è̂n) is tight for almost every y-sequence. Then:

(i) for almost every y-sequence and conditionally on y,

���
n
p

(~èn ÿ è̂n)!D N (0, I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]);

(ii) unconditionally
���
n
p

(~èn ÿ è0)!D N (0, I(è0)ÿ1[2I ÿ fI � F(è0)gÿ1]).

Here F(è0) � Eè0
IY (è0)V (è0)ÿ1 is the expected fraction of missing information.

Proof. From Lemma 3 and Corollary 1 it follows that the limiting stationary distibution of���
n
p

(~èn ÿ è̂n) given almost every y-sequence is the one corresponding to the Gaussian AR(1)

process with parameter F(è0)T � V (è0)ÿ1Eè0
IY (è0) and innovation variance

V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1. This distribution is normal with expectation 0 and variance

given by

X1
k�0

F(è0)T k

V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1 F(è0)k � F(è0)T

X1
k�0

F(è0)T k

V (è0)ÿ1 F(è0)k
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� F(è0)TV (è0)ÿ1
X1
k�0

F(è0)2k � V (è0)ÿ1 F(è0)fI ÿ F(è0)2gÿ1

� V (è0)ÿ1fI ÿ F(è0)gÿ1 F(è0)fI � F(è0)gÿ1 � I(è0)ÿ1 F(è0)fI � F(è0)gÿ1

� I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]: (21)

Part (ii) follows from Lemma 1 in Schenker and Welsh (1987). h

Tightness still remains to be shown. We shall give a suf®cient condition. Let M denote

the EM update, i.e. the mapping which maps è to arg maxè9Q(è9jè), the result after one

iteration of the EM algorithm. Recall from the general theory of the EM algorithm (see, for

example, Dempster et al. 1977 that è̂n is a ®xed point of M . Suppose that è! M(è) is

differentiable and let ën(è) be the largest eigenvalue of DèM(è) � V (M(è))ÿ1.

(1=n)
Pn

i�1 I yi
(è). Since the model is regular V (è)ÿ (1=n)

Pn
i�1 I yi

(è) is positive de®nite

and 0 < ën(è̂n) , 1. Continuity (also a consequence of regularity) ensures that ën(è) , 1 in

a neighbourhood of è̂n.

Proposition 3. Suppose that there is a ë�, 1 such that ën(è) < ë� for all è 2 Èn for n

suf®ciently large and almost every y-sequence. If there exists a c , 1ÿ ë� such that, for some

C ,1,

~E(
���
n
p k~èn(1)ÿ M(~èn(0))k2j

���
n
p

(~èn(0)ÿ è̂n) � h) < C � ckhk2 (22)

~P-almost surely for n suf®ciently (and almost every y-sequence) large, then the sequence

(
���
n
p

(~èn ÿ è̂n))n2N0
is tight.

Proof. Since M(è̂n) � è̂n we get���
n
p k~è(1)ÿ è̂nk2 <

���
n
p k~è(1)ÿ M(~è(0))k2 �

���
n
p kM(~è(0))ÿ è̂nk2

<
���
n
p k~è(1)ÿ M(~è(0))k2 � ë� ���

n
p k~è(0)ÿ è̂nk2, (23)

so that, for n suf®ciently large,

~E(
���
n
p k~èn(1)ÿ è̂nk2) < ~E(

���
n
p k~èn(0)ÿ è̂nk2)ÿ (1ÿ ë� ÿ c)~E(

���
n
p k~èn(0)ÿ è̂nk2)� C: (24)

Thus the assumptions of Propositions 2 hold with jn(:) � k : k2 and øn(:) � ø(:) �
(1ÿ ë� ÿ c)k : k2 ÿ C. h

Remark. Note that Proposition 3 gives suf®cient conditions for tightness given the observed

y-sequence. This is what we need in Theorem 2. Of course, unconditional tightness of���
n
p

(~èn ÿ è0) follows easily from conditional tightness of
���
n
p

(~èn ÿ è̂n).

For exponential family models ± with è the expectation of the canonical statistic ±

M(~èn(0)) � ~E(~èn(1)j~èn(0)) and

~E(
���
n
p k~èn(1)ÿ M(~èn(0))k2j

���
n
p

(~èn(0)ÿ è̂n) � h) <

���������������������������������������
trffvar( ~èn(1)j~èn(0))g

q
: (25)
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In this case (22) holds if the conditional variance of ~èn(1) given ~èn(0) is small compared to

the distance of ~èn(0) to the observed data MLE, when this is large.

The assumptions used to obtain Proposition 3 are stronger than the assumptions used to

prove the previous results: here we have assumed differentiability of M and existence of

moments of the transition probabilities. We can ensure that the moments exist by

reparametrizing so that the unknown parameter is restricted to lie in a bounded set. If���
n
p

(j(~èn)ÿ j(è̂n)) is tight then we can apply Theorem 2 to this sequence and afterwards

transform to obtain the asymptotic distribution of
���
n
p

(~èn ÿ è̂n).

Differentiability of M was used to ensure that the EM update is a contraction. Of course,

this may hold without M being differentiable. If M is a contraction, then the EM algorithm

converges to the observed data MLE. Examples exist where the EM algorithm has more

than one ®xed point, and in these examples M is only locally a contraction. However, this

is typically (when è is identi®ed from the observed data) a small-sample problem. Thus we

expect that in these examples the assumptions of Proposition 3 will hold (for n suf®ciently

large).

3.3. An example

In order to illustrate the theoretical results in the two previous subsections we look at a

simple example.

Let X 1, X 2, . . . , X n be i.i.d. exponentially distributed random variables with mean è.

Suppose X i is only observed if X i , c for some ®xed positive c. The observed data MLE is

è̂n � (1=N )
Pn

i�1 Xi ^ c, where N is the number of uncensored X is. Obviously, if N � 0,

i.e. all the observations are censored, the MLE does not exist. Moreover, it is easy to see

that the StEM algorithm will not converge in this case. However PfN � 0g goes to zero

exponentially fast, so in large samples this will not be a problem. To avoid notational

dif®culties, put è̂n � 0 if N � 0. Suppose for simplicity that it is the ®rst N X is that are

observed. The regularity conditions are easily checked in this example.

In the (k � 1)th iteration of the StEM algorithm we ®rst simulate ~Xn � c� ~èn(k)åi,

where åi are i.i.d. standard exponentially distributed random variables, if X i is censored and

put ~Xn � Xi otherwise. In the M-step we get ~èn(k � 1) � (1=n)
Pn

i�1
~Xn �

(1=n)
Pn

i�1 Xi ^ c � (1=n)
Pn

i�N�1
~èn(k)åi. Here the actual state space, ~Èn, is

[1
n

Pn
i�1 Xi ^ c; 1[.

Simple but tedious manipulations show that (when 0 , N , n)

~E(log k ~è(k�1)(
~X jy)ÿ log k ~è(k)(

~X jy)j~è(k)) < ÿn
nÿ N

n
log

nÿ N

n

� �
� 1

nÿ N ÿ 1

� �
ÿ N ,

(26)

while
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Ä(è) � n~E ÿlog
1

n

Xn

i�N�1

åi � 1

èn

Xn

i�N�1

X i ^ c

 ! !
� 1

è

Xn

i�N�1

Xi ^ cÿ N

! n log n� ãÿ
XnÿNÿ1

k�1

1

k

 !
ÿ N as è!1: (27)

Here ã � 0:5772 . . . is Euler's constant. Subtracting the left-hand side of (26) fromt he left-

hand side of (27) and dividing by n gives

ÿ N

n
log

nÿ N

n

� �
� log(nÿ N )ÿ

XnÿNÿ2

k�1

1

k

 !
� ã: (28)

which is strictly positive. Since è! log hè̂(y)ÿ log hè(y) is norm-like, the Markov chain is

ergodic by Theorem 1(ii). Of course, if N � n there are no missing data and the Markov

chain is trivially ergodic.

We see that

M(~èn(k)) � ~E(~èn(k � 1)j~èn(k)) � 1

n

XN

i�1

Xi � nÿ N

n
(c� ~èn(k)), (29)

so that ën(è) � DèM(è) � (nÿ N )=n. Since (nÿ N )=n! exp(ÿc=è0) for almost every y-

sequence, ën(è) < ë� for any ë�. exp(ÿc=è0) for n suf®ciently large. To show tightness,

note that

~E(
���
n
p j~èn(1)ÿ M(~èn(0))jj ���np (~èn(0)ÿ è̂n)) <

�������������
nÿ N
p

n
~èn(0)

<
1���
n
p ~èn(0) <

1

n

���
n
p j~èn(0)ÿ è̂nj � 1���

n
p è̂n, (30)

for n suf®ciently large. Since è̂n=
���
n
p ! 0 for almost every y-sequence and 1=n can be made

arbitrarily small, tightness follows from Proposition 3.

To ®nd the asymptotic distribution of ~èn, note that the complete data information, V (è0),

is 1=è2
0 and that F(è0)T � Eè0

(DèM(è0)) � exp(ÿc=è0). Theorem 2 and straightforward

calculations show that the asymptotic variance of
���
n
p

(~èn ÿ è0) is

è2
0

1ÿ exp(ÿc=è0)
. 2ÿ 1

1� exp(ÿc=è0)

� �
, (31)

where the ®rst factor is the asymptotic variance of the observed data MLE.

Remark. Ergodicity can be shown quite easily in this example for all values of n with N . 1

by noting that

~E(~èn(1)j~èn(0)) � 1

n

Xn

i�1

X i ^ c� nÿ N

n
~èn(0) (32)
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and invoking Theorem 14.0.1 in Meyn and Tweedie (1993).

4. Estimation

We will now discuss various ways of using the StEM algorithm for estimating the unknown

parameter è. Theorem 2 immediately yields a consistent asymptotically normal estimator of

è, namely ~èn, with asymptotic variance I(è0)ÿ1[2I ÿ fI � F(è0)gÿ1]. The asymptotic

variance can be split into a `model part', I(è0)ÿ1, and a `simulation part',

I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]. The latter is the asymptotic variance of ~èn given the observed

data, i.e. the additional variance due to the simulations. The following result bounds this

additional variance.

Proposition 4. The asymptotic relative ef®ciency of uT ~èn to uTè̂n, for any u 2 Rd, is bounded

by 2ÿ 1=(1� ë), where ë is the largest eigenvalue of the fraction of missing information,

F(è0). In particular, the simulation increase the variance by less than 50% compared to the

observed data MLE.

Proof. Let I(è0)1=2 the positive de®nite square root of the positive de®nite matrix I(è0) and

let I(è0)ÿ1=2 denote its inverse.

The asymptotic relative ef®ciency of uT ~èn to uTè̂n is

uT I(è0)ÿ1[2I ÿ fI � F(è0)gÿ1]u

uT I(è0)ÿ1u
� vT I(è0)ÿ1=2[2I ÿ fI � F(è0)gÿ1]I(è0)1=2v

vTv
< ë1, (33)

where v � I(è0)ÿ1=2u and ë1 is the largest eigenvalue of I(è0)ÿ1=2[2I ÿ fI �
F(è0)gÿ1]I(è0)1=2. This matrix has the same eigenvalues as [2I ÿ fI � F(è0)gÿ1] and by

straightforward manipulations we see that ë1 � 2ÿ 1=(1� ë). Since ë, 1 we get that

ë1 , 3=2. h

We see that the additional variance due to the simulations is an increasing function of the

fraction of missing information. Thus the increase in variance can to some extent be

controlled by choosing the complete data model so that the fraction of missing information

is small.

Obviously, it will be of interest to reduce the simulation part of the variance, i.e. to

reduce the additional variance due to simulations. The ®rst thing that comes to mind is to

average (the last part of) the Markov chain, (~èn(k))k2N0
, i.e. to use ~E(~èn) as an estimator of

è. However, more than ergodicity of the Markov chain is needed to ensure that this mean

exists and hence that the average of the chain converges to ~E(~èn). Indeed, in most examples

it is not dif®cult to construct parameters where the mean of ~èn does not exist. For instance,

in the example discussed in Section 3.3, if we reparametrize to (the hardly relevant

parameter) è� � 1=(èÿ c), then the Markov chain derived from the StEM algorithm will

still be ergodic and tight, but the mean of the stationary distribution does not exist.

Furthermore, more than ergodicity is needed to ensure that ~E(~èn) is a consistent estimator
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of è, if È is not bounded. To get
���
n
p

-consistency, even more is needed. Finally, in order to

estimate the mean of ~èn we need to run the Markov chain for more iterations than are

needed to (approximately) obtain a realization of ~èn. As we consider large-sample properties

of the StEM algorithm and as the simulation burden increases with the sample size, we

shall here only discuss some ®nite simulation estimators of è.

4.1. Averaging the Markov chain

Even with only ®nite simulation, averaging the last m iterations of the Markov chain,

(~èn(k))k2N0
, improves the estimation.

Choose a sequence of integers, (kn)n2N, such that the total variation distance between
~èn(kn) and ~èn is smaller than, say, 1=n. This is possible due to the ergodicity of the Markov

chain. Then, conditionally on y,���
n
p

(~èn(kn)ÿ è̂n)!D N (0, I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]) (34)

We can now show the following result:

Proposition 5. Let m be a ®xed integer and assume ergodicity and tightness as in Theorem 2.

(i) (
���
n
p

(~èn(kn � j)ÿ è̂n)) j�0,:::,mÿ1 converges in distribution given y for almost every y-

sequence as n!1 to a sequence of the same length of the stationary Gaussian

AR(1) process with autoregression parameter F(è0)T and innovation variance

V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1.

(ii)
���
n
p

( 1
m

Pmÿ1
j�0

~èn(kn � j)ÿ è0) converges in distribution as n!1 to the normal

distribution with mean 0 and variance given by

I(è0)ÿ1 � 1

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]

� 2

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]F(è0)(I ÿ F(è0))ÿ1

ÿ 2

m2
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]F(è0)(I ÿ F(è0)m)(I ÿ F(è0))ÿ2: (35)

Proof. The ®rst statement of the proposition is easily shown by induction on m. The

induction start is given by (34), and the induction step uses the same arguments as the proof

of Proposition 1 with ìn replaced by the distribution of (
���
n
p

(~èn(kn � j)ÿ è̂n)) j�0,:::,kÿ1 and ì
by the corresonding weak limit, which exists by the induction hypothesis.

From part (i) it follows that, conditionally on y,
���
n
p

((1=m)
Pmÿ1

j�0
~èn(kn � j)ÿ è̂n)

converges in distribution as n!1 to the normal distribution with mean 0 and variance

given by
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1

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]� 1

m2

X
1<i , j<m

[(F(è0)T) jÿi I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]

� I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]F(è0) jÿi]: (36)

Since (F(è0)T) jÿi I(è0)ÿ1[I ÿ fI � F(è0)gÿ1] � I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]F(è0) jÿi, the

variance simpli®es to

1

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]

� 2

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]F(è0)(I ÿ F(è0))ÿ1

ÿ 2

m2
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]F(è0)(I ÿ F(è0)m)(I ÿ F(è0))ÿ2: (37)

The result now follows from Lemma 1 in Schenker and Welsh (1987). h

Notice that the mean of ~èn does not have to exist for this result to be valid, since it is a ®xed

m result.

4.2. More simulations per iteration

In this subsection we shall discuss three different estimators derived from simple extensions

of the StEM algorithm. All these estimators are obtained by increasing the amount of

simulation in each iteration by a factor m, and, though different, they turn out to be

asymptotically equivalent. Just like the simple estimator, ~èn, they can be further improved by

averaging as discussed in the previous subsection, but for simplicity of exposition we shall

avoid discussion of this in the following paragraphs.

4.2.1. Averaging log-likelihoods

The StE-step estimates the expectation from the E-step in the EM algorithm by (an average

of) one simulated value. Thus the StE-step can be thought of as a very poor Monte Carlo

integration, and the StEM algorithm may be seen as a simple version of the MCEM

algorithm (Wei and Tanner 1990).

The resemblance can be strengthened by improving the Monte Carlo approximation, i.e.

by simulating, for each observation yi, m independent (given yi) values, ~X i,1 . . . , ~X i,m, say,

of the missing data, X i, and maximizing the average, (1=m)
Pm

j�1

Pn
i�1 log fè( ~X i, j), of the m

complete data log-likelihoods. This is again a complete data log-likelihood, namely the log-

likelihood obtained when the ~X i, js are treated as if they were i.i.d. Obviously, ~X i, j,

j � 1, . . . , m, are not (unconditionally) independent. The complete data log-likelihood

allows us to use standard methods, i.e. the methods we would have used had we had

complete data, in order to maximize the likelihood. The dependence in the simulated ~X i, js
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may in some cases lead to multimodality of the likelihood function and thus complicate the

M-step.

This algorithm again leads to a Markov chain of è values, which is typically ergodic. Let
~èMC

n denote a random variable drawn from the stationary distribution of this chain. We refer

to this random variable as the Monte Carlo estimator.

To ®nd the asymptotic distribution of ~èMC
n we proceed as in Section 3.2. The multiple

simulations affect Lemma 3 in Section 3.2; in the asymptotic distribution of the transition

probabilities (16) the mean is unchanged but the variance is replaced by
1
m

V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1. A detailed proof of this will not be given here; it closely

mimics the proof of Lemma 3. The consequence of the changes to Lemma 3 is that the

limiting AR(1) process will have an innovation variance, which is a factor 1=m smaller than

the innovation variance in Theorem 2(i), but the same autoregression parameter F(è0)T.

Hence, unconditionally,���
n
p

(~èMC
n ÿ è0)!D N 0, I(è0)ÿ1 � 1

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]

� �
: (38)

4.2.2. Multiple maximizations

In Section 4.2.1 we simulated m ~Xns for each X i and used these to improve the estimate of

the conditional expectation required in the E-step of the EM algorithm. We could instead use

the multiple simulations to construct m (pseudo-)complete data sets and then maximize these

separately. The m maximizers found by maximizing each of the m complete data log-

likelihoods separately could then be averaged to give the next value of ~èn(k). This is again a

Markov chain. Obviously, if the complete data MLE is linear in the data, then this approach

leads to the exact same result as the simultaneous maximization approach discussed in the

previous paragraph. It is therefore not surprising that this algorithm leads to the same

asymptotic result as above. In order to prove this claim, we generalize Lemma 3.

Lemma 4. For j � 1, . . . , m, let ~X i, j � L èn
(X jY � yi), where èn � è̂n � (1=

���
n
p

)h �
o(1=

���
n
p

) � ~èMM
n (0). Let ~èn1, . . . , ~ènm be the m complete data estimators calculated from

the m simulated data sets. For almost all y-sequences and conditional on y,���
n
p

(~èMM
n (1)ÿ è̂n)!D F(è0)T h,

1

m
V (è0)ÿ1Eè0

IY (è0)V (è0)ÿ1

� �
, (39)

where ~èn(1)MM is the average of ~èn1, . . . , ~ènm.

Proof. Applying Lemma 3 to each of the m complete data MLEs ~èn1, . . . , ~ènm leads

to
���
n
p

(~ènj ÿ è̂n)!D N F(è0)T h
ÿ

, V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1), for j � 1, . . . , m. Since the

simulations are independent (given the observed data) the average has the asymptotic

distribution (39). h

Having found the asymptotic distribution of the transition probabilities of this Markov

chain, we can show (assuming convergence and tightness as in Theorem 2 and mimicking
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the proof) that the stationary distribution of the Markov chain is asymptotically normal.

Thus the estimator derived from this algorithm has the unconditional asymptotic distribution���
n
p

(~èMM
n ÿ è0)!D N 0, I(è0)ÿ1 � 1

m
I(è0)ÿ1[I ÿ fI � F(è0)gÿ1]

� �
, (40)

just like the Monte Carlo estimator (38). We refer to ~èMM
n as the multiple maximization

estimator.

The advantage of the m-maximization approach compared to the simultaneous

maximization approach is that the averaging of the log-likelihoods which may introduce

multi-modality is avoided. This may in some cases make the m M-steps faster than the

more complicated M-step needed in the Monte Carlo version.

4.2.3. Comparison

The two estimators discussed in the previous paragraphs are obviously asymptotically

equivalent in the sense that they have the same asymptotic distribution. They are also

asymptotically equivalent to the estimator obtained if we run the StEM algorithm m times in

parallel and then average the m simple estimators obtained by just taking the last iteration of

each of the m algorithm. This estimator can be seen as a natural step further in the direction

of doing things in parallel. In Section 4.2.1 m simulations are done in parallel, averaged and

maximized. In Section 4.2.2 both the simulations and the maximizations are done in parallel,

and the average then taken. With multiple chains we do `everything' including convergence

in parallel before we average. The term `parallel' is meant to be taken conceptually; real

parallel computing is obviously not needed.

We mention the multiple chains estimator here for two reasons. First, running Markov

chain algorithms from several (over-dispersed) starting points has been suggested as a way

of checking convergence (cf. Gelman and Rubin 1992); we shall return brie¯y to this in

Section 5.1. Thus it is a `real' estimator in the sense that it occurs in practice; we refer to it

as the multiple chains estimator. Second, one might expect the asymptotics to work slightly

better for this estimator than for the the other two estimators since we average independent

estimators; with multiple maximizations we average dependent estimators and with

simultaneous maximizations we `average the data' and then maximize. Hence in the

simulation results we will discuss in the next subsection the multiple chains estimator will

serve as a `gold standard'.

We note that the time it takes to complete one iteration of one of these three algorithms

differs from algorithm to algorithm. In every one of them we have m StE-steps. When using

multiple chains there is only one averaging rather than one per iteration, but we would not

expect this to make a signi®cant difference in run-times. However, in the multiple

maximization and the multiple chains algorithms we also have m M-steps rather than just

one. Thus one might think that the Monte Carlo version is faster than the other two.

However, as indicated previously, the maximization of the averaged log-likelihood may be

more complicated and thus more time-consuming than m simpler maximizations. Thus it is

far from obvious which algorithm has the fastest iterations. Nor is it obvious which

algorithm requires less iterations to converge. Both questions are of interest since it is the
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time to convergence measured in CPU time, rather than the number of iterations, that is of

interest when deciding which algorithm to use.

When comparing the estimators given in this subsection and the averaged estimators

discussed in Section 4.1, we note that the reduction in the variance for the same choice of

m is always larger for the estimators discussed in this subsection. Furthermore, the

difference between the variances of the estimators discussed here and the averaged estimator

discussed in Section 4.1 is of the same magnitude, 1=m, as the additional variance due to

the simulations. This means that the relative ef®ciency of a multiple simulation estimator

compared to an averaged estimator conditional on the observed data does not go to 1 even

if m increases. In fact, at least for a one-dimensional parameter, this relative ef®ciency

moves further away from 1 as m increases.

The gain of averaging the Markov chain depends greatly on the fraction of missing

information. If the fraction of missing information is large then the gain is small, but for

small fractions of missing information the gain can be quite large. Figure 1 shows the

asymptotic relative ef®ciency of the estimators compared to the MLE for different values of

m as a function of the fraction of missing information in the one-dimensional case.

Note, however, that averaging of the last iterations of the Markov chain is possible also

Figure 1. Relative ef®ciency of StEM estimators: full lines, multiple simulation estimators; broken

lines, averaged single simulation estimators.
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for the multiple simulations versions, so that there is not really a choice of either/or; we can

always average the last iterations of the Markov chain. Also the other methods may be

mixed; for instance, we could run m1 chains of the multiple maximizations algorithm with

m2 simulations per Xi leading to an estimator with variance as in (38) or (40) with

m � m1 m2. This variance can then be brought further down by averaging.

4.3. Simulation experiment

In order to illustrate the behaviour of the various estimators in small and moderate samples,

we report some ®ndings from a simulation experiment. A simple model has been chosen so

that the results found should be an effect of the methods rather than an effect of a complex

model.

The simulated data are a random sample from a standard exponential distribution. The

incomplete data are obtained by censoring the simulated data at a ®xed point. Two different

sample sizes, (n � 50 and n � 500) and two different points of censoring (one

corresponding to F(è0) � 1
4

and one to F(è0) � 1
2
) have been used. Thus we have a small

and a moderate sample size and a moderate and a large fraction of missing information.

Three different choices of m (1, 5 and 10) have been used. We estimate the intensity rather

than the scale parameter in order to obtain a complete data MLE that is nonlinear in the

data; in this way the asymptotically equivalent estimators are only asymptotically equivalent,

not actually identical. The algorithms have been run for a initial burn-in of 5000 iterations

and then an additional 1000 iterations have been used to estimate the distribution of the

estimators. Various convergence diagnostics (cf. Section 5.1) suggest that this burn-in is

suf®cient.

We summarize the distributions of the estimators in terms of the biases, i.e. the empirical

means of the simulated estimators minus the observed data MLE, the standard deviations

and the relative ef®ciencies of the estimators compared to the asymptotic distribution of the

observed data MLE. The unconditional distribution of the StEM estimator is made up of the

conditional distribution plus the distribution of the MLE. The latter is not of interest when

evaluating the effects of the simulations since it is purely a function of the observed data.

Since we are interested in comparing the various simulation estimators rather than

comparing the simulation estimators to the MLE, it is the conditional distribution that is of

interest. Therefore we report conditional biases and standard deviations rather than

unconditional ones. Furthermore, the differences between unconditional biases and standard

deviations would vanish compared to the biases and standard deviations of the MLE, in

particular for m � 10. The relative ef®ciencies are calculated unconditionally using the

asymptotic variance of the observed data MLE as comparison. We include these in order to

show how little the simulation noise matters in practice.

4.3.1. Averaging

We start by giving a few results for the average of the last m iterations of the Markov chain

from the StEM algorithm (Tables 1 and 2). We see, not surprisingly, that the variance goes
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down as m increases. The relative ef®ciencies are not too far away from the corresponding

asymptotic expressions given in the tables. We note that the estimators are biased. This is due

to the chosen parametrization: the complete data MLE of the intensity has an expected bias

of 1=(nÿ 1), and we would not expect the StEM estimator to do better. Had we chosen to

estimate the scale parameter (as in Section 3.3) instead, the conditional mean of the StEM

estimator would equal the observed data MLE. Using the readily available expressions for the

conditional mean and variance of the StEM estimator of the scale parameter, a Taylor

expansion suggests that the bias in the StEM estimator for the intensity is è̂n=(1� 2N ) plus

terms of lower order, where è̂n is the observed data MLE of the intensity parameter, and N is

the number of uncensored observations. In the small-sample cases this gives 0.0151 and

0.0215 for the moderate and large fraction of missing information respectively; in the large-

sample cases we obtain 0.001 33 and 0.001 98 respectively. We see that the bias in the

simulations is smaller than that obtained from the Taylor expansion, apart from the case of

large-sample, moderate fraction of missing information, where the bias in simulations is close

to what we would expect. This suggests that the discarded terms in the Taylor expansion are

still fairly large in the small-sample cases and ± to some degree ± also in the large fraction

of missing information case, where N is small compared to the sample size. Since the

expression for the bias obtained from the Taylor expansion is asymptotic, it is not surprising

that the biases in the large-sample cases are closer to the values given by the Taylor

expansion.

Table 1. Simulation results for averaged StEM estimator minus the MLE, F(è0) � 0:25

n � 50 n � 500
�èn Asymp

F(è0) � 0:25 Bias StDev RelEff Bias StDev RelEff RelEff

m � 1 0.006 70 0.075 295 1.2126 0.001 35 0.021 947 1.1806 1.2000

m � 5 0.004 13 0.040 840 1.0625 0.001 24 0.012 200 1.0558 1.0596

m � 10 0.004 83 0.029 534 0.0327 0.001 30 0.008 529 1.0273 1.0316

Notes: StDev is the standard deviation, RelEff the ef®ciency relative to the MLE, Asymp RelEff the
asymptotic relative ef®ciency compared to the MLE.

Table 2. Simulation results for averaged StEM estimator minus the MLE, F(è0) � 0:50

n � 50 n � 500
�èn Asymp

F(è0) � 0:25 Bias StDev RelEff Bias StDev RelEff RelEff

m � 1 0.016 18 0.131 162 1.4301 0.017 23 0.038 064 1.3622 1.3333

m � 5 0.010 77 0.079 513 1.1581 0.016 05 0.022 609 1.1278 1.1483

m � 10 0.014 74 0.058 616 1.0859 0.016 01 0.016 356 1.0669 1.0867

Notes: see Table 1.
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4.3.2. Multiple simulations

Tables 3±6 give simulation results for the multiple simulations estimators. Each table gives

results for all three estimators for a ®xed sample size, a ®xed fraction of missing information,

and for both m � 5 and m � 10. The case m � 1 can be seen in Tables 1 and 2; all

estimators are the same when m � 1, so we do not repeat these results.

Looking ®rst at the results for the low fraction of missing information (Tables 3 and 4),

we see that the standard deviations are virtually identical. The relative ef®ciencies are close

to the expected 1.04 (m � 5) and 1.02 (m � 10). Again the estimators are biased. The bias

of the Monte Carlo version is smallest, and this is to be expected. If we Taylor expand as in

the previous subsection, we see that the bias is è̂n=(1� 2mN ) (discarding terms of higher

order) for the Monte Carlo estimator, whereas the biases of the other two estimators are

unaffected by m. Thus the bias in these two cases is expected to be 0.0151 and 0.001 33 (in

the small and moderate sample size cases respectively) as in the previous subsection,

whereas for the Monte Carlo estimator we would expect 0.003 06 and 0.001 53 in the small

samples for m � 5 and m � 10 respectively, and 0.000 23 and 0.000 13 when n � 500. The

simulated bias again ®ts poorly to the asymptotic expression except in the Monte Carlo

case, but we do ®nd that the bias is unaffected by m in the multiple chains and multiple

maximization estimators, but considerably lower and decreasing with m in the Monte Carlo

estimators, though in the n � 500 case the biases are so small that they seem to disappear

in the simulation noise. Since the expression we have derived for the bias is a large-sample

expression ± we discard higher-order terms in a Taylor expansion ± it is not worrying that

Table 4. Simulation results for StEM estimators minus the MLE, n � 500, F(è0) � 0:25

m � 5 m � 10

n � 500

F(è0) � 0:25 Bias StDev RelEff Bias StDev RelEff

�è 0.000 74 0.010 095 1.0382 0.000 49 0.006 440 1.0156
~èMC 0.000 12 0.009 885 1.0366 0.000 26 0.006 941 1.0181
~èMM 0.001 02 0.010 381 1.0404 0.001 08 0.007 215 1.0195

Notes: see Table 3.

Table 3. Simulation results for StEM estimators minus the MLE, n � 50, F(è0) � 0:25

m � 5 m � 10

n � 50

F(è0) � 0:25 Bias StDev RelEff Bias StDev RelEff

�è 0.004 13 0.033 582 1.0423 0.004 83 0.023 633 1.0209
~èMC 0.003 02 0.032 767 1.0403 0.001 52 0.024 383 1.0223
~èMM 0.005 21 0.033 508 1.0421 0.005 52 0.024 579 10.227

Notes: �è is the average of m chains, ~èMC based on m simulations, ~èMM based on m maximizations.
StDev is the standard deviation, RelEff is the ef®ciency relative to the MLE.
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the simulated biases differs from the `expected'. The better agreement in the Monte Carlo is

probably due to the discarded terms decreasing in m. It is interesting that the biases behave

as we would expect: the Monte Carlo implementation of the StEM algorithm is closer to the

EM algorithm, which returns the MLE. Therefore we should expect the bias to be smaller

for the Monte Carlo estimator.

The largest differences in the simulation results are found when m � 10. The case of

small sample size and large m re¯ects the lower expected bias in the Monte Carlo

estimator. In all cases the multiple maximizations estimator has a larger bias than the other

two estimators; in the n � 500, m � 10 case the difference is quite large. Incidentally, in

this case there is a better agreement with the asymptotic bias and variance for the multiple

maximizations estimator than for the two other estimators.

Tables 5 and 6 give results for the large fraction of missing information case. Here

differences are more pronounced. The expected relative ef®ciencies are 1.0667 when m � 5,

and 1.0333 when m � 10. The multiple chains estimator is fairly close but the relative

ef®ciencies of the other estimators are a lot smaller. Obviously, this is also seen in the

standard deviations of the Monte Carlo and the multiple maximization estimators, which are

smaller than those of the multiple chains estimators. Again the tendencies in the biases are

as before; roughly unaffected by m in the multiple chains and multiple maximizations

estimators deviations, and generally smaller and decreasing with m for the Monte Carlo

estimator. As in the low fraction of missing information cases, the simulated biases ®t

poorly to the approximation; the expected biases for the Monte Carlo estimators are

0.004 36 and 0.002 18 (m � 5, 10 respectively) in the small-sample cases, and 0.003 97 and

0.000 20 in the n � 500 case. For the other two estimators we obtain 0.0215 and 0.001 98

Table 6. Simulation results for StEM estimators minus the MLE, n � 500, F(è0) � 0:50

m � 5 m � 10

n � 500

F(è0) � 0:50 Bias StDev RelEff Bias StDev RelEff

�è 0.018 11 0.016 860 1.0711 0.017 95 0.011 824 1.0524
~èMC 0.000 73 0.010 099 1.0255 0.000 05 0.007 133 1.0191
~èMM ÿ0.000 35 0.010 448 1.0273 0.000 66 0.007 613 1.0217

Notes: see Table 3.

Table 5. Simulation results for StEM estimators minus the MLE, n � 50, F(è0) � 0:50

m � 5 m � 10

n � 50

F(è0) � 0:50 Bias StDev RelEff Bias StDev RelEff

�è ÿ0.021 09 0.053 748 1.0722 ÿ0.017 11 0.039 386 1.0388
~èMC 0.000 66 0.034 797 1.0303 0.001 72 0.023 999 1.0144
~èMM 0.004 69 0.033 212 1.0276 0.004 67 0.022 719 1.0129

Notes: see Table 3.
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(n � 50, 500 respectively). We note that the larger the fraction of missing information, the

larger the sample size needed to obtain the asymptotic results.

Inspection of various quantile±quantile plots as well as Kolmogorov±Smirnov test

statistics (not shown here) suggests that in the low fraction of missing information case

almost all the triples of estimators with the same values of n and m are similarly

distributed. The only exceptions are the Monte Carlo estimator in the n � 50, m � 10 case

which has a smaller bias than the other two, and the multiple maximizations estimator in

the n � 500, m � 10 case, which has a considerably larger bias. In both cases the

differences appear to be mainly a question of bias; if we subtract the bias, there appear to

be no signi®cant differences.

For the large fraction of missing information none of the estimators have similar

distributions, the sole exceptions being the multiple maximization estimators and the Monte

Carlo estimators when m � 5. The explanation of these similarities appears to be the

roughly equal variances and the neglible biases.

4.4. Estimation of the asymptotic variance

The asymptotic variance of the various estimators can be estimated consistently from

consistent estimates of any two of the four quantities V (è0), I(è0), Eè0
IY (è0), and F(è0). The

estimators discussed in this subsection can of course be applied to any of the algorithms, but

for notational simplicity we only give formulae for the simple StEM algorithm.

If the complete data information is continuous, then V (~èn) is consistent for V (è0), and by

Assumption U (1=n)
Pn

i�1 I Yi
(~èn) is consistent for Eè0

IY (è0).

With further assumptions, (1=n)
Pn

i�1s ~X ijYi
(~èn)
2 may be a consistent estimator of

Eè0
IY (è), when ~Xn � L ~èn

(X jY � yi). This will be the case if

���� 1

n

Xn

i�1

s ~X ij yi
(è)
2 ÿ 1

n

Xn

i�1

I yi
(è)

����!~Pè 0 (41)

uniformly in a neighbourhood of è0 for almost every y-sequence.

These two estimators of Eè0
IY (è) may in practice be dif®cult to obtain due to the need

for expressions for either I yi
(è) or sxj yi

(è). Following Louis (1982), we note that

1

n

Xn

i�1

Dès ~X i
(~èn)� 1

n

Xn

i�1

s ~X i
(~èn)
2 ÿ 1

n

Xn

i�1

s ~X i
(~èn)

 !
2

(42)

is a consistent estimator of I(è0) assuming suf®cient smoothness.

Finally, we note that V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1 and F(è0) can be estimated from the

Markov chain, (~èn(k))k2N0
. Let kn be chosen as in Section 4.1 and put �èn �

(1=m)
Pm

i�1
~èn(kn � j). Then (using Proposition 5(i))
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~Fm �
Xmÿ1

j�1

(~èn(kn � j)ÿ �èn)
2

0@ 1Aÿ1

.
Xmÿ1

j�1

(~èn(kn � j� 1)ÿ �èn)( ~èn(kn � j)ÿ �èn)T

!D
Xmÿ1

j�1

(Zj ÿ �Z)
2

0@ 1Aÿ1

.
Xmÿ1

j�1

(Z j�1 ÿ �Z)(Zj ÿ �Z)T, (43)

where Z1, Z2, . . . , Zm are distributed according to the limiting Gaussian AR(1) process, as

n!1. Note that since m is kept ®xed, this estimator of F(è0) is not consistent.

Similarly, V (è0)ÿ1Eè0
IY (è0)V (è0)ÿ1 may be estimated (inconsistently for ®xed m) from

1

m

Xm

j�1

(~èn(kn � j)ÿ �èn)
2!D 1

m

Xm

j�1

(Zj ÿ �Z)
2: (44)

Due to the (asymptotically) positive autocorrelation this estimator will tend to underestimate

the innovation variance.

Without further assumptions, these two estimators may even be inconsistent as m!1.

However, their large-sample distribution may be simulated in practice. The convergence in

(43) may be strengthened to convergence in pth mean if we sum to j � m (rather than

j � mÿ 1) in the denominator of ~Fm as in (44).

5. Concluding remarks

5.1. Implementation issues

As we have seen in Section 4.2, the number of simulations, m, determines the variance of the

resulting estimator. By a straightforward extension of Proposition 4 the loss in ef®ciency is

bounded by (1ÿ 1=(1� ë))=m < 1=(2m), where ë is the largest eigenvalue of the fraction of

missing information. By specifying how small an ef®ciency loss, ä, due to simulations, we

will accept, an appropriate value of m can be chosen; m > 1=(2ä) will do. A closer bound

can be obtained if an upper bound, ë�, on the largest eigenvalue of the fraction of missing

information is available. Then choosing m > 1=(ä(1ÿ 1=(1� ë�)) will ensure that the loss

in ef®ciency is bounded by ä. In many cases the expected fraction of incomplete observations

will be an upper bound on ë. Typically, ë� must be estimated.

The value of m also affects the behaviour of the Markov chains. In nice exponential

families where ~E(~èn(k)j~èn(kÿ 1)) � M(~èn(kÿ 1)) we can write the multiple simulations

versions of the StEM algorithm (discussed in Sections 4.2.1 and 4.2.2) as

~èn(k) � M(~èn(k ÿ 1))� åk , (45)

where åk is approximately Gaussian for large values of n with mean zero and variance

inversely proportional to m. So we can think of the StEM algorithm as made up from a drift

part, which is just the EM update, M , and a noise part, åk . Suppose that è9n is a ®xed point of

M , i.e. that M(è9n) � è9n, and that for any è 6� è9n in an open ball B around è9n,
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kM(è)ÿ è9nk, kèÿ è9nk, so that the EM algorithm started inside this ball will converge to

è9n. Then the StEM algorithm will tend to stay for some time in B if m is large. This is the

case since the noise term will be so small that the probability of ~èn(k) not being in B, given

that ~èn(k ÿ 1) 2 B, will be small. Thus large values of m will make the StEM algorithm

move more slowly and possibly stay in neighbourhoods of ®xed points for long periods of

time. Consequently, if many ®xed points are present, we expect slow convergence of the

StEM algorithm for large values of m. On the other hand, if no such ®xed points exist the

small noise obtained for large values of m will make StEM move rapidly towards the MLE.

One also has to bear in mind that m . 1 leads to m M-steps or a possibly more

complicated M-step as mentioned in Section 4.2 and obviously results in a slower StE-step

(since m times as many simulations are necessary). However, as noted in Section 4.3 the

Monte Carlo version may result in an estimator with a smaller conditional bias due to being

closer to the EM algorithm. We stress that the bias is a maximum likelihood problem,

rather than a StEM-problem; it is due to the MLE being biased for some choices of

parametrization, and this is inherited by the estimators derived from the StEM algorithm.

If a Markov chain simulation scheme, such as a Gibbs sampler, is necessary to perform

the StE-step, then using m fairly large will typically be a good idea. After burn-in of the

Gibbs sampler it will be relatively cheap to obtain multiple simulations compared to the

time already spent. The results of Section 4.2 can easily be extended to the case where ~X i, j,

j � 1, . . . , m, are not independent given y but only stationary. As in Section 4.2 it is the

innovation variance of the Gaussian AR(1) process that is affected and not the parameter

F(è0). The new innovation variance will be similar to the variance (36); see Chan and

Ledolter (1995) for further details.

If the drift is a problem, the multiple chains approach may be useful. In both cases, we

need `the same' number of simulations (ignoring that the number of iterations needed for

convergence may differ), and the resulting estimators are asymptotically equivalent to the

Monte Carlo estimator.

The multiple chain approach may also help in assessing convergence of the algorithm as

discussed by Gelman and Rubin (1992). The basic idea is to plot all the Markov chains and

consider them converged when they look alike. Some numerical measures are also

considered; they are implemented in the itsim software written by Gelman.

Other ways of determining convergence exist; most of the methods developed for Markov

chain Monte Carlo methods can be used. A recent review of these methods is given by

Brooks and Roberts (1998). In the example in Section 4.3, apart from visual inspection of

plots of the Markov chain, the itsim software and the gibbsit software written by Lewis

(Raftery and Lewis 1992), both available from StatLib, have been used to determine

convergence. The results suggest that the chosen burn-in is suf®cient. In general more than

one method should be used, since these methods are only able to detect lack of

convergence, not to prove convergence.

The fraction of missing information determines the speed of convergence (in a

neighbourhood of the MLE) for the EM algorithm (cf. Dempster et al. 1977). It will be

natural to expect the same to be the case for the StEM algorithm. Also the more data are

missing, the slower the StE-step will typically turn out to be.

In applications the StEM algorithm appears to converge quickly towards the MLE. The
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simulations done for Section 4.3 run in a few seconds, but this example is clearly too

simple to give any real indication of run-times. Celeux et al. (1996) report simulation

experiments with StEM applied to ®nite mixtures. Their CPU times are in the range of 3±

350 seconds depending on sample size and data generating model. Diebolt and Ip (1996)

report an application of StEM with a 5 hour CPU time. In their example the dimension of

è is about 100 and the sample size is 1000. There is a large fraction of missing

information, and the StE-step requires a Gibbs sampler.

5.2. Unidenti®ed parameters

Unidenti®ed parameters are typically problematical in incomplete data problems: due to the

incompleteness, parameters identi®ed in the complete data model may be unidenti®able in the

observed data model. As indicated by Diebolt and Ip (1996), the StEM algorithm may be

useful for looking at incomplete data problems with unidenti®ed parameters. In this

subsection we will discuss large-sample behaviour of the StEM algorithm when some

parameters are unidenti®ed.

We shall here only consider the case where unidenti®ed parameters make the observed

data information, I(è0), singular. A non-singular information matrix means that the

parameter is (at least) locally identi®ed. Hence we consider `globally' unidenti®ed

parameters.

If I(è0) is singular, then the fraction of observed information, I ÿ F(è0) � I(è0)V (è0)ÿ1,

is also singular. Hence some of the eigenvalues of I ÿ F(è0) are zero. Suppose that d ÿ r

of the eigenvalues of I ÿ F(è0) are zero. Then we can write I ÿ F(è0)T as áâT, where á
and â are d 3 r matrices of full rank. Since I ÿ F(è0) is similar to a symmetric matrix we

also have that rk[I ÿ F(è0)] � r. This implies that âTá is non-singular and that the

transformation

è! áT
?è

âTè

� �
(46)

where áT
? is a (d ÿ r) 3 d matrix spanning (span áT)?, is a bijection, i.e. a reparametrization

(cf. Johansen 1995).

Now, âTè is the identi®ed part of è, and áT
?è is the unidenti®ed part. This is so since the

fractions of missing information for the parameters âTè and áT
?è are

( âTEè0
IY (è0)â)( âTV (è0)â)ÿ1 � I ÿ âTá,

(áT
?Eè0

IY (è0)á?)(áT
?V (è0)á?)ÿ1 � I : (47)

Hence the fraction of observed information for âTè is âTá, which is non-singular, whereas it

is 0 for áT
?è.

If we apply the same transformation to the Gaussian AR(1) process Zt �
F(è0)T Z tÿ1 � å t, we obtain
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áT
?Zt

âT Zt

� �
� áT

?F(è0)T Z tÿ1

âT F(è0)T Z tÿ1

" #
�

áT
?å t

âTå t

" #
�

áT
?Z tÿ1

(I ÿ âTá)âT Z tÿ1

24 35� áT
?å t

âTå t

24 35: (48)

Consequently, since Lemma 3 applies even when F(è0) has eigenvalues equal to 1 and the

arguments leading to Proposition 2 may be applied to the identi®able part of the parameter,

âTè, we get that the âT ~èn is an asymptotically normal with mean âTè0 and variance

âT I(è0)ÿ1[2I ÿ fI � F(è0)gÿ1]â � âT I(è0)ÿ1â[2I ÿ ( âTá)ÿ1] (49)

if ( âT ~èn(k))k2N is ergodic and
���
n
p

( âT ~èn ÿ âTè̂n) is tight.

Thus if the StEM algorithm is used with some parameters completely unidenti®ed we

obtain large-sample results like the ones discussed in the previous sections for the identi®ed

part of the parameter and will expect the unidenti®ed part of the parameter to behave as a

random walk for large-sample sizes.

Remark. We have not assumed that âTè is identi®able, only shown (implicitly) that the

corresponding information matrix is non-singular. Hence, âTè is locally identi®able. Usually

this implies that there is a MLE which is consistent for âTè0, where this point is one of

possibly many isolated parameter values giving rise to the same distribution. It is not clear

whether âT ~èn is consistent for one of these âTè0 values if âTè is only locally identi®able.

Since the Markov chain âT ~èn(k))k2N is irreducible, it will visit neighbourhoods of all the

âTè0 values corresponding to the true distribution of the data. Hence we expect that tightness

of
���
n
p

( âT ~èn ÿ âTè̂n) may be impossible to show, unless âTè is actually identi®ed.

5.3. Relaxing the assumptions

The main assumptions are the implicitly assumed feasibility of the two steps ± the simulation

and the maximization ± of the algorithm. These assumptions may be relaxed to some extent.

The M-step may often be replaced by

~èn(k � 1) � ~èn(k)� V (~èn(k))ÿ1 1

n

Xn

i�1

s ~X i
(~èn(k)): (50)

This new è value will typically satisfy (5), which is enough to ensure the conclusion of

Lemma 3.

If simulating from the exact conditional distributions is infeasible, one may consider

simulating from another distribution giving an unbiased estimator of the conditional

expectation required in the E-step of the EM algorithm. This should work as long as the

conclusion of Lemma 3 holds partially (the asymptotic parameters in Lemma 3 may change

as long as we get the AR(1) structure). In particular, the variance may change. Importance

sampling may be an idea worth consideration in this respect. We expect, however, that in

most cases the importance weights, which are needed to ensure an unbiased estimator, will

be impossible to calculate. The results in Section 4.2.1 can ± when the log-likelihood is

linear in the simulations ± be seen as an example of how the correct conditional
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distributions may be replaced by another distribution, here a convolution of m correct

conditional distributions scaled by 1=m to ensure an unbiased estimate. This convolution

idea does not simplify the simulations, however.

The assumption of mutual equivalence of the distributions in the missing data model is

rather essential, since it ensures the irreducibility of the Markov chain, (~èn(k))k2N0
(cf.

Lemma 1). We note that mutual equivalence is not strictly necessary for irreducibility, but it

is dif®cult to imagine an example, where the chain is irreducible but mutual equivalence

fails. If the Markov chain is not irreducible, there may be absorbing states, which will

typically bias the estimates severely. Intuitively, this problem may be avoided either by

restarting the Markov chain (according to some ®xed distribution) when an absorbing state

is reached or by restricting the M-step so that absorbing states are excluded. The ®rst

approach was essentially applied by Celeux and Diebolt (1993), who gave asymptotic

results for the special case of mixing proportions, where absorption is a problem.

The asymptotic normality and the rate of convergence of the observed data MLE seem

essential for asymptotic normality of the StEM estimator. As noted in Section 2.3, the

strong consistency of è̂n is not really needed. In the previous subsection we have relaxed

the assumption of identi®ability of the parameter.

Tanner and Wong (1987) apply an algorithm, which is essentially the StEM algorithm, to

estimate a hazard function nonparametrically based on grouped survival data with some

promising simulation results. This suggests that it might be possible to extend the results

discussed in this paper to suitably nice non-Euclidean parameters.

5.4. Conclusion

When estimating in missing data problems, the EM algorithm is often a useful method. It is

derivative-free and, though it typically requires many iterations for convergence, each

iteration is often fast (cf. Ruud 1991). When the E-step of the algorithm is infeasible, the

StEM algorithm is an alternative. Furthermore, it has some advantages over the EM

algorithm: it does not get stuck; it often provides more information about the data (cf.

Diebolt and Ip 1996), for instance when parameters cannot be estimated; and even behaves

better than the EM algorithm in some cases (cf Celeux et al. 1996). Unlike the EM

algorithm, StEM always leads to maximization of a complete data log-likelihood in the M-

step.

In this paper, asymptotic results have been shown and a number of ®nite simulation

estimators have been discussed. As argued in Section 4 the larger the sample, the larger the

simulation burden. Thus for large samples typically only a ®nite sample of the Markov

chain is available for estimation of the unknown parameter. Furthermore, as any simulation

is ®nite even if large, the simulation part of the variance of the estimators should be

included in order not to underestimate the variance.

The StEM algorithm is a simulation-based method. As a consequence of this, any

estimator obtained from a ®nite sample of the Markov chain involved will contain variation

due to the simulations as well as variation due to the data. We note, however, that for

m � 1 the in¯ation of the variance is less than 50% (cf. Proposition 4) and that the
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simulation part of the variance can be made as small as required by choosing m suf®ciently

large; it goes down as 1=m.

In some applications the added variance due to the simulations may be unacceptable.

Even in this case the StEM algorithm may be a useful tool. For instance, the output from

StEM can be used to give good starting points for other algorithms, for instance the MCEM

algorithm with m large. Another possibility is to use a preliminary estimator derived from

the StEM algorithm to obtain asymptotically ef®cient estimators by one iteration of the

method of scoring if a suitable estimator of the observed data score function can be

obtained. One could consider

è̂M
n � ~èn ÿ

Xn

i�1

~I yi
(~èn)

 !ÿ1Xn

i�1

~s yi
(~èn), (51)

where ~s yi
(è) � (1=M)

PM
j�1s ~X i j

(è) and ~I yi
(è) is an analogous estimator of I yi

(è) with M very

large. See Hajivassiliou (1997) for more on this idea and Schick (1987) for technical

conditions ensuring ef®ciency.
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