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This paper studies the change-point problem and the cross-covariance function for ARCH models.

Bounds for the cross-covariance function are derived and explicit formulae are obtained in special

cases. Consistency of a CUSUM type change-point estimator is proved and its rate of convergence is

established. A HaÂjek±ReÂnyi type inequality is also proved. Results are obtained under weak moment

assumptions.
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1. Introduction

This paper studies ARCH models de®ned by the equations

rk � ókåk , ó 2
k � a�

X1
j�1

b( j)r 2
kÿ j, (1:1)

where the åk are independent and identically distributed (i.i.d.) errors and a and the b( j) are

non-negative constants. Since their introduction by Engle (1982), ARCH type models have

become perhaps the most popular and extensively studied ®nancial econometric models. The

literature on the subject is so vast that we will restrict ourselves to directing the reader to

fairly comprehensive reviews by Bollerslev et al. (1992) and Shephard (1996). Model (1.1) is

suitable for series rk such that the observations are uncorrelated but exhibit `clusters of

volatility'.

We study the estimation of a change-point in (1.1). Note ®rst that if the åk have mean

zero and unit variance and the sequence frkg is weakly stationary, then

var[rk] � a

�
1ÿ

X1
j�1

b( j)

 !
: (1:2)

Suppose now that the parameters a and b( j) change at an unknown point k� in such a way

that the variance given by (1.2) changes. We are interested in estimating the change-point k�.
This problem is different from the problem of testing for structural changes where k� is

assumed to be known and one tests whether a change in model structure has taken place at

k�. Hsu (1977), InclaÂn and Tiao (1994) and Chen and Gupta (1997) studied a simpler
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variance-change model rk � ~ó kåk , where ~ó 2
k � a1, if 1 < k < k�, and ~ó 2

k � a2, if

k�, k < n, and where fåkg is a sequence of independent standard normal random

variables. HorvaÂth (1993) considered tests against alternatives allowing changes both in

means and variances of a sequence of independent normal random variables, whereas

estimators and tests for change in variance under weak moment conditions were considered in

Gombay et al. (1996).

By contrast, the change-point problem for linear sequences has received a great deal of

attention. CsoÈrg}o and HorvaÂth (1988; 1997) and Brodsky and Darkhovsky (1993) focus

mainly on sequences of independent observations. Recently there has, however, been

increasing interest in dependent data; see Antoch et al. (1997), Bai (1994), Bai and Perron

(1998), Davis et al. (1995), Giraitis et al. (1996), Giraitis and Leipus (1990; 1992), HorvaÂth

and Kokoszka (1997) and Leipus (1994), among others. The present paper studies processes

which exhibit no linear dependence, but are characterized by the dependence of the

conditional variance on past observations. This is known in econometrics as `dependence in

volatility'.

We study a CUSUM type estimator k̂ of k� de®ned by

k̂ � minfk : jRk j � max
1< j<n

jRjjg, (1:3)

where

Rk � k(nÿ k)

n2

1

k

Xk

j�1

r 2
j ÿ

1

nÿ k

Xn

j�k�1

r 2
j

0@ 1A: (1:4)

Figure 1 illustrates how the method works. Figure 1(a) shows a simulated realization

frk , 1 < k < 1000g of an ARCH(1) sequence with conditional variance a1 � br 2
kÿ1 for

k < 700 and a2 � br 2
kÿ1 for k . 700. We set a1 � 1, a2 � 1:3, b � 0:1 and used standard

normal innovations åk . It is impossible to tell by eye if and where a change in variance

occurred. Figure 1(b) shows the corresponding sequence Rk . The maximum is attained at

k̂ � 699.

Despite the standard form of the estimator k̂, proving its consistency is not easy. For

analogous estimators of a change-point in the mean of a linear process X k � ìk � ek the

dependence structure of the errors ek must be known. For ARCH models, we must be able

to say something about the cross-covariance function of two ARCH sequences driven by the

same innovations åk . This issue, which takes up the bulk of the paper, is addressed in

Section 3. We believe that the results obtained in Section 3 are also of independent interest,

as the study of the covariance function of ARCH type sequences has occupied an important

place in their theory. The method we propose is based on a Volterra series type expansion

of the random variables r 2
k derived in Section 2. It is different from methods based on

matrix manipulations, which go back to Engle (1982) and are applicable only to ®nite-order

ARCH and GARCH models; see He and TeraÈsvirta (1997) and references therein.

Another dif®culty lies in the complex probabilistic structure of the sequence fr 2
kg, which

does not fall into any well-studied class of stochastic processes for which appropriate
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inequalities are available. Thus, in Section 4 we prove a rather general HaÂjek±ReÂnyi type

inequality which we believe is also of independent interest.

Section 5 contains the proof of the consistency of the estimator k̂, which is fairly

standard once the tools developed in Sections 3 and 4 are available. The rate of

convergence of the estimator is established in Section 6. A small simulation study and a

data example are discussed in Section 7.

2. Stationarity of an ARCH(1) sequence

In this section we recall the de®nition of an ARCH(1) sequence and give a simple suf®cient

condition for ARCH(1) equations (2.1) and (2.2) to have a weakly stationary solution. As far

as we know, condition (2.3) below is new. Our method of proof is also different from the

methods developed in Engle (1982) and Bollerslev (1986) and a large number of subsequent

publications. It provides a closed-form solution to (2.1) and (2.2) and thus extends a similar

result for ARCH(1) models; see, for example, Theorem 8.4.9 of Embrechts et al. (1997).

Note also that we do not assume that the åk in De®nition 2.1 below are Gaussian but merely

that they have ®nite fourth moment. Thus, condition (2.3) is also a suf®cient condition for the

existence of the fourth moments of the solution of equations (2.1) and (2.2). Necessary and

suf®cient conditions have recently been established by He and TeraÈsvirta (1997) for ®nite-

order GARCH models.

Figure 1. (a) A simulated realization of an ARCH(1) sequence with change-point at k� � 700; (b) the

corresponding sequence Rk .
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We focus here on the squares of what is commonly referred to as an ARCH(1) sequence

rk � ókåk with the conditional variances ó 2
k de®ned by (2.2); in this paper the sequence of

squares, fr 2
kg, is referred to as an ARCH process.

De®nition 2.1. We say that a random sequence fr 2
k , k 2 Zg satis®es ARCH(1) equations if

there exists a sequence of zero-mean i.i.d. random variables fåk , k 2 Zg with Eå2
k � 1 and

Eå4
k � ë,1, such that

r 2
k � ó 2

kå
2
k , (2:1)

ó 2
k � a�

X1
j�1

b( j)r2
kÿ j, (2:2)

where a > 0, b( j) > 0, j � 1, 2, . . . :

Theorem 2.1. Consider the quantities B �P1k�1b(k) and ë � Eå4
k as in De®nition 2.1. If the

condition

ëB2 , 1 (2:3)

is satis®ed, then ARCH(1) equations (2.1) and (2.2) have a weakly stationary solution fr 2
kg

given by

r 2
k � aYk , (2:4)

where

Yk � å2
k

X1
l�0

M(k, l ) (2:5)

and

M(k, l ) �
X1

j1:::, j l�1

Yl

m�1

å2
kÿ j1ÿ...ÿ j m

b( jm)

 !
, l . 0, M(k, 0) � 1: (2:6)

We adopt the convention that
Q lÿi

l a j � 1,
Pmÿi

m a j � 0 for i . 0, and denote a ^ b :�
minfa, bg.

Proof. We will show that faYkg is a second-order stationary sequence satisfying (2.1) and

(2.2).

The assumption that Eå2
1 � 1 and the Cauchy inequality imply that ë > 1 and thus, by

(2.3), B , 1. Since all factors of the product
Q l

m�1 å
2
kÿ j1ÿ...ÿ j m

in (2.6) are independent, we

obtain

EM(k, l ) �
X1

j1:::, j l�1

Yl

m�1

b( jm) � Bl

and
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EYk �
X1
l�0

EM(k, l ) �
X1
l�0

Bl � 1

1ÿ B
,1:

Therefore M(k, l ) and Yk are well de®ned: for any k and l, M(k, l ) ,1 a.s. and Yk ,1
a.s. Using the recursive equality

M(k, l ) �
X1
j�1

b( j)å2
kÿ j M(k ÿ j, l ÿ 1),

it is easy to verify that faYkg is a solution to (2.1) and (2.2).

Next we will show that the series
P1

l�1 M(k, l ) converges in L2. We use the Cauchy

criterion and write

E

���� X
n1, l<n2

M(k, l )

����2 � X
n1, l, l9<n2

EM(k, l )M(k, l9), (2:7)

where

EM(k, l )M(k, l9)

�
X1

j1,:::, j l�1

X1
j91,:::, j9l9�1

Yl

m�1

b( jm)

 ! Yl9

m9�1

b( j9m9)

 !
E
Yl

m�1

å2
kÿ j1ÿ:::,ÿ jm

Yl9

m9�1

å2
kÿ j91ÿ...ÿ j9m9

 !24 35

<
X1

j1,:::, j l�1

X1
j91,:::, j9l9�1

Yl

m�1

b( jm)

 ! Yl9

m9�1

b( j9m9)

 !
E
Yl

m�1

å4
kÿ j1ÿ...ÿ j m

 !
1=2

E
Yl9

m9�1

å4
kÿ j91ÿ...ÿ j9m9

 !
1=2

24 35
� ë( l� l9)=2 Bl� l9:

This, combined with (2.3) and (2.7), yields

E
X

n1, l<n2

M(k, l )

�����
�����2! 0, as n1, n2 !1:

To verify that the sequence r 2
k de®ned by (2.4) is weakly stationary, observe that

EYk � 1

1ÿ B
�
X1
l�0

X1
j1,:::, j l�1

Yl

m�1

b( jm), (2:8)

and hence
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cov(Yi, Yi�k) � E(YiYi�k)ÿ EYi EYi�k

�
X1
l, l9�0

X1
j91,:::, j9l9�1

Yl9

m9�1

b( j9m9)

 ! X1
j1,:::, j l�1

Yl

m�1

b( jm)

 !
E

Yl9

m9�0

å2
iÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
i�kÿ j1ÿ...ÿ j m

ÿ 1

 !

� cov(Y0, Yk): (2:9)

h

3. The cross-covariance function of ARCH(1) sequences

In order to ®nd the correlation function (of the squares) of an ARCH( p) or GARCH( p, q)

sequence with ®nite p and q, equalities analogous to Yule±Walker equations have been used

in the existing literature. For example, for the ARCH(1) sequence

r 2
k � (a� br2

kÿ1)å2
k (3:1)

multiplying both sides of (3.1) by r 2
0, taking expectations and using the relation Er 2

k �
a=(1ÿ b), we obtain cov(r 2

0, r 2
k) � bk var r 2

0. However, computing the variance var r 2
0 is not

easy and requires a representation of r 2
0 in terms of the å2

k .

Similarly, in the GARCH( p, q) case, one can derive Yule±Walker type equalities (see

Bollerslev, 1986) which can be solved when the ®rst q� 1 covariances are known.

In this section we focus on the cross-covariance function of two ARCH(1) sequences

fr 2
1,k , k 2 Zg and fr 2

2,k , k 2 Zg driven by the same sequence fåkg of i.i.d. random

variables with Eå1 � 0, Eå2
1 � 1 and Eå4

1 � ë,1, that is,

r 2
i,k � ó 2

i,kå
2
k , ó 2

i,k � ai �
X1
j�1

bi( j)r2
i,kÿ j, i � 1, 2, (3:2)

where ai > 0, and fbi( j)g, i � 1, 2, are two sequences of non-negative numbers.

Our results are valid for `short memory' ARCH(1) models, that is to say, we assume

that the bi( j) decay exponentially fast. More speci®cally, we suppose in the remainder of

the paper that the following assumption holds:

Assumption 3.1. The coef®cients b( j) in De®nition 2.1 satisfy

b( j) < âá j (3:3)

for some 0 < á, 1 and â > 0 such that

ë
âá

1ÿ á

� �2

, 1: (3:4)

Clearly, condition (3.4) implies (2.3).

In the proof of Theorem 3.1 and thereafter we will extensively use the quantities
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Bi(k) :� bi(k)� bi(k � 1) � . . . and Bi :� Bi(1), i � 1, 2:

We now formulate the main theorem of this section.

Theorem 3.1. If the sequences fr 2
1,kg and fr 2

2,kg satisfy Assumption 3.1, then

0 < cov(r 2
1,k , r 2

2,k9) < a1a2C1á
jk9ÿkj(1� â)jk9ÿkj, (3:5)

where

C1 � â(ëÿ 1)

(1� â)(1ÿ á)(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)
: (3:6)

Note that, since ë > 1, condition (3.4) implies á(1� â) , 1.

Proof. Set r 2
1,k � a1Y

(1)
k , r 2

2,k � a2Y
(2)
k , where the Y

(i)
k are de®ned by (2.5) with

corresponding parameters bi(1), bi(2), . . . : Note that

cov(Y
(1)
k , Y

(2)
k9 )

�
X1
l, l9�0

X1
j91,:::, j9l9�1

Yl9

m9�1

b2( j9m9)

 ! X1
j1,:::, j l�1

Yl

m�1

b1( jm)

 !
E

Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ j m

ÿ 1

 !
:

(3:7)

Assume ®rst that k . k9. Then the products
Q l9

m9�0 å
2
k9ÿ j91ÿ...ÿ j9m9

and
Q l

m�0 å
2
kÿ j1ÿ...ÿ j m

in (3.7)

are independent if l � 0 or j1 � . . . � j l , k ÿ k9. Thus we can write

cov(Y
(1)
k , Y

(2)
k9 ) �

X1
l�1
l9�0

X1
j91,:::, j9l9�1

Yl9

m9�1

b2( j9m9)

 ! X1
j1,:::, j l�1

j1�...� j l>kÿk9

Yl

m�1

b1( jm)

 !

3 E
Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ j m

ÿ 1

 !
: (3:8)

We now split the last sum in (3.8) into a sum over j1 � . . . � j lÿ1 > k ÿ k9 and a sum over

j1 � . . . � jlÿ1 , k ÿ k9. This procedure is carried on until the second sum is split into l

sums S1, . . . , Sl (see (3.9) and (3.10) below), such that Si can be appropriately bounded

above (see (3.16)). The latter bound is then used in (3.17) and (3.18), which lead to (3.5).

Write, then,
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X1
j1,:::, j l�1

j1�...� j l>kÿk9

Yl

m�1

b1( jm)

 !
E

Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ j m

ÿ 1

 !

�
X1

j1,:::, j l�1
j1�...� j lÿ1>kÿk9

Yl

m�1

b1( jm)

 !
E

Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ j m

ÿ 1

 !

�
X1

j1,:::, j lÿ1�1
j1�...� j lÿ1 , kÿk9

Ylÿ1

m�1

b1( jm)

 ! X1
j l�kÿk9ÿ j1ÿ...ÿ j lÿ1

b1( j l)E
Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ j m

ÿ 1

 !

�: T � S1: (3:9)

For the term T , consider analogously the cases j1 � . . . � jlÿ2 > k ÿ k9 and j1 � . . . �
j lÿ2 , k ÿ k9:

T �
X1

j1,:::, j l�1
j1�...� j lÿ2>kÿk9

Yl

m�1

b1( jm)

 !
E

Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ jm

ÿ 1

 !

�
X1

j1,:::, j lÿ2�1
j1�...� j lÿ2,kÿk9

Ylÿ2

m�1

b1( jm)

 ! Y1
j lÿ1�kÿk9ÿ j1ÿ...ÿ j lÿ2

b1( j lÿ1)
X1
j l�1

b1( j l)

3 E
Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ jm

ÿ 1

 !
:

Continuing the above procedure, we obtain

T � S2 � . . . � Sl, (3:10)

where

Si �
X1

j1,:::, j lÿi�1
j1�...� j lÿi,kÿk9

Ylÿi

m�1

b1( jm)

 ! X1
j lÿi�1�kÿk9ÿ j1ÿ...ÿ j lÿi

b1( j lÿi�1)
X1

j lÿi�2�1

b1( j lÿi�2) . . .
X1
j l�1

b1( j l)

3 E
Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m�0

å2
kÿ j1ÿ...ÿ jm

ÿ 1

 !
:

For the term Sl we can write
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Sl <
X1

j1�kÿk9

b1( j1)
X1
j2�1

b1( j2) . . .
X1
j l�1

b1( j l)(ë
( l9�1)^ l ÿ 1)

� B1(k ÿ k9)Blÿ1
1 (ë( l9�1)^ l ÿ 1): (3:11)

For the terms Si (i � 1, . . . , l ÿ 1) we obtain

Si �
X1

j1,:::, j lÿi�1
j1�...� j lÿi,kÿk9

Ylÿi

m�1

b1( jm)

 ! X1
j lÿi�1�kÿk9ÿ j1ÿ...ÿ j lÿi

b1( j lÿi�1)
X1

j lÿi�2�1

b1( j lÿi�2) . . .
X1
j l�1

b1( j l)

3 E
Yl9

m9�0

å2
k9ÿ j91ÿ...ÿ j9m9

Yl

m� lÿi�1

å2
kÿ j1ÿ...ÿ j m

ÿ 1

0@ 1A:
<

X1
j1,:::, j lÿi�1

j1�...� j lÿi,kÿk9

Ylÿi

m�1

b1( jm)

 ! X1
j lÿi�1�kÿk9ÿ j1ÿ...ÿ j lÿi

b1( j lÿi�1) . . .
X1
j l�1

n1( j l)(ë
( l9�1)^i ÿ 1)

� (ë( l9�1)^i ÿ 1)Biÿ1
X1

j1,:::, j lÿi�1
j1�...� j lÿi,kÿk9

Ylÿi

m�1

b1( jm)

 ! X1
j lÿi�1�kÿk9ÿ j1ÿ...ÿ j lÿi

b1( j lÿi�1): (3:12)

By the assumption bi( j) < âá j,

X1
j lÿi�1�kÿk9ÿ j1ÿ...ÿ j lÿi

Ylÿi

m�1

b1( jm)

 !
b1( j lÿi�1) < â lÿi�1 á

kÿk9

1ÿ á
: (3:13)

Thus, for i � 1, . . . , l ÿ 1,

Si < (ë( l9�1)^i ÿ 1)Biÿ1
1 â lÿi Akÿk9

X1
j1,:::, j lÿi�1

j1�...� j lÿi, kÿk9

1, (3:14)

where

Ak :� âák

1ÿ á
:

Since X1
j1,:::, j l�1

j1�:::� j l�m

1 � mÿ 1

l ÿ 1

� �
,

we have
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X1
j1,:::, j lÿi�1

j1�...� j lÿi,kÿk9

1 �
Xkÿk9ÿ l�iÿ1

j�0

j� l ÿ iÿ 1

j

� �
1f lÿi, kÿk9g: (3:15)

By (3.14) and (3.15) it follows that, for i � 1, . . . , l ÿ 1,

Si < (ë( l9�1)^i ÿ 1)Biÿ1
1 â lÿi Akÿk9

Xkÿk9ÿ l�iÿ1

j�0

j� l ÿ iÿ 1

j

� �
1f lÿi, kÿk9g: (3:16)

Now substitute these estimates to (3.10), (3.9) and (3.8) and write

cov Y
(1)
k , Y

(2)
k9 ) <

X1
l�1
l9�0

X1
j91,:::, j9l9�1

Yl9

m9�1

b2( j9m9)

 !
Sl �

X1
l�1
l9�0

X1
j91,:::, j9l9�1

Yl9

m9�1

b2( j9m9)

 !Xlÿ1

i�1

Si

�: s1 � s2:

Consider ®rst the term s1:

s1 �
X1
l9�0

Bl9
2

X1
l�1

Sl < B1(k ÿ k9)
X1
l9�0

Bl9
2

X1
l�1

Blÿ1
1 ë( l9�1)^ l ÿ

X1
l9�0

Bl9
2

X1
l�1

Blÿ1
1

" #

� B1(k ÿ k9)
X1
l9�0

Bl9
2

Xl9�1

l�1

Blÿ1
1 ë l �

X1
l9�0

Bl9
2

X1
l� l9�2

Blÿ1
1 ë l9�1 ÿ (1ÿ B1)ÿ1(1ÿ B2)ÿ1

24 35
� B1(k ÿ k9)

X1
l�1

Blÿ1
1 ë l

X1
l9� lÿ1

Bl9
2 �

X1
l9�0

Bl9
2 ë

l9�1
X1

l� l9�2

Blÿ1
1 ÿ (1ÿ B1)ÿ1(1ÿ B2)ÿ1

" #

� B1(k ÿ k9)
ë

(1ÿ B2)(1ÿ B1 B2ë)
� B1ë

(1ÿ B1)(1ÿ B1 B2ë)
ÿ 1

(1ÿ B1)(1ÿ B2)

� �

� B1(k ÿ k9)
ëÿ 1

(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)
: (3:17)

For the term s2 we have, by (3.16),

s2 < Akÿk9

X1
l�1
l9�0

X1
j91,:::, j9l9�1

Yl9

m9�1

b2( j9m9)

 !

3
Xlÿ1

i�1

â lÿi(ë( l9�1)^i ÿ 1)Biÿ1
1

Xkÿk9ÿ l�iÿ1

j�0

j� l ÿ iÿ 1

j

� �
1f lÿi, kÿk9g

� Akÿk9

X1
l9�0

Bl9
2

X1
i�1

(ë( l9�1)^i ÿ 1)Biÿ
1 Gâ(k ÿ k9), (3:18)
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where

Gâ(k) :�
Xi�kÿ1

l�i�1

â lÿi
Xkÿ l�iÿ1

j�0

j� l ÿ iÿ 1

j

� �

�
Xkÿ1

m�1

âm
Xkÿmÿ1

j�0

j� mÿ 1

j

� �
�
Xkÿ1

m�1

âm
k ÿ 1

m

� �
:

It is easy to see that Gâ(1) � 0, Gâ(2) � â, . . . , Gâ(k) � Gâ(k ÿ 1)� â(â � 1)kÿ2, k > 2,

and hence

Gâ(k) � (â� 1)kÿ1 ÿ 1:

Using (3.18), we now establish an upper bound for s2 as follows:

s2 < Akÿk9Gâ(kÿ k9)
X1
l9�0

Bl9
2

Xl9

i�1

ëi Biÿ1
1 �

X1
l9�0

Bl9
2

X1
i� l9�1

ë l9�1 Biÿ1
1 ÿ

X1
l9�0

Bl9
2

X1
iÿ1

Biÿ1
1

24 35
� Akÿk9Gâ(kÿ k9)

X1
i�1

ëi Biÿ1
1

X1
l9�i

Bl9
2 �

X1
l9�0

Bl9
2 ë

l9�1
X1

i� l9�1

ÿ 1

(1ÿ B1)(1ÿ B2)

" #

� Akÿk9Gâ(kÿ k9)
X1
i�1

ëi Biÿ1
1 (1ÿ B2)ÿ1 Bi

2�
X1
l9�0

Bl9
2 ë

l9�1(1ÿ B1)ÿ1 Bl9
1 ÿ

1

(1ÿ B1)(1ÿ B2)

" #

� Akÿk9Gâ(kÿ k9)
ëB2

(1ÿ B2)(1ÿ B1 B2ë)
� ë

(1ÿ B1)(1ÿ B1 B2ë)
ÿ 1

(1ÿ B1)(1ÿ B2)

� �

� ákÿk9Gâ(kÿ k9)
â(ëÿ 1)

(1ÿá)(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)
: (3:19)

Applying now (3.17) and (3.19), we obtain

cov(Y
(1)
k , Y

(2)
k9 ) < B1(k ÿ k9)

ëÿ 1

(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)

� ákÿk9Gâ(k ÿ k9)
â(ëÿ 1)

(1ÿ á)(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)

� ëÿ 1

(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)
B1(k ÿ k9)� â

1ÿ á
ákÿk9Gâ(k ÿ k9)

� �
:

(3:20)

The inequality B1(k ÿ k9) < âákÿk9(1ÿ á)ÿ1 yields (3.5).

So far we have been assuming that k . k9 in order to ensure the independence of certain

products in (3.7). The case k9 . k is analogous. If k � k9, observe ®rst that setting ai � 1

yields Y
(i)
k � r 2

i,k . Then the claim follows from the general identity
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cov(r 2
1,k , r 2

2,k )
X1
j�1

b1( j)cov(r 2
1,kÿ j, r 2

2,k), (3:21)

which can be obtained by multiplying both sides of

r 2
1,k � a1 �

X1
j�1

b1( j)r 2
1,kÿ j

by r 2
2,k , taking expectations, and using the identity Er 2

i,k � ai=(1ÿ Bi). Then use the relation

cov(r 2
1,kÿ j, r 2

2,k) � cov(r 2
1, j, r 2

2,0) < C1(á(1� â)) j

and (3.5) with k ÿ k9 � j . 0. h

Remark 3.1. Careful examination of the proof of Theorem 3.1 reveals that Assumption 3.1

can be replaced by the condition

bi( j9)bi( j) < âibi( j9� j), i � 1, 2: (3:22)

Using (3.22) in (3.13) instead of Assumption 3.1, we obtain the following inequalities

cov(Y
(1)
k , Y

(2)
k9 ) <

ëÿ 1

(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)
B1(k ÿ k9)(1� â1)kÿk9ÿ1, if k > k9,

ëÿ 1

(1ÿ B1)(1ÿ B2)(1ÿ B1 B2ë)
B2(k9ÿ k)(1� â2)k9ÿkÿ1, if k , k9,

8>>><>>>:
where, roughly speaking, the factors ájkÿk9j in (3.5) are replaced by the tails Bi(jk ÿ k9j).

Remark 3.2. Replacing Y
(2)
k9 by Y

(1)
k in (3.5), a bound on the covariance function of the

sequence fYkg de®ned by (2.5) is obtained. The rate ák(1� â)k is optimal under Assumption

3.1. This can be veri®ed by setting bj � âá j, which corresponds to considering a

GARCH(1, 1) model as in Bollerslev (1988), who veri®ed an analogous result for the

correlation function of GARCH(1, 1) models with normal errors. Obtaining a formula for the

covariance function of GARCH models is much more complicated; see He and TeraÈsvirta

(1997).

Remark 3.3. Using the technique developed in the proof of Theorem 3.1, it is very easy to

verify that for the ARCH(1) sequence r 2
k � (a� br 2

kÿ1)å2
k or, equivalently, r 2

k � aYk , where

Yk �
P1

j�0b j
Q j

m�0 å
2
kÿm,

cov(Y0, Yk) � Kbk , (3:23)

where

K � ëÿ 1

(1ÿ b2ë)(1ÿ b)2
: (3:24)

This follows from the equality

524 P. Kokoszka and R. Leipus



cov(Y0, Yk) � E
X1
j, j9�0

b j� j9
Yj

m�0

å2
ÿm

Yj9

m9�0

å2
kÿm9 ÿ 1

0@ 1A
�
X1
j�0

Xj

i�0

b jbk�i(ëi�1 ÿ 1)�
X1
j�0

X1
i� j�1

b jbk�i(ë j�1 ÿ 1):

We have assumed so far that the sequences fr 2
1,kg and fr 2

2,kg start in®nitely far in the

past. After some modi®cations our methods can, however, also be applied to sequences

which start at some initial time point. To illustrate the idea, we focus here only on

ARCH(1) models. Assume, then, that sequences fr 2
1,k , k � 0, 1, . . .g and fr 2

2,k , k � 0,

1, . . .g are de®ned as follows:

r 2
i,k � ó 2

i,kå
2
k , ó 2

i,k � ai � bi r
2
i,kÿ1, k > 1, (3:25)

where ai > 0, 0 < bi , 1 and b2
i ë, 1, i � 1, 2, which is precisely condition (2.3) of

Theorem 2.1. The initial values r1,0 and r2,0, such that Er 4
i,0 ,1, are assumed to be

independent of få tg, but not necessary mutually independent. The following result gives a

closed-form formula for the cross-covariance function of the sequences fr 2
1,kg and fr 2

2,kg
starting at k � 0. The covariance function of each sequence fr 2

i,kg can be obtained by setting

V � 0 in (3.26) and replacing a1a2 by a2
i .

Theorem 3.2. For the sequences fr 2
1,kg and fr 2

2,kg given in (3.25) the cross-covariance

function is

cov(r 2
1,k , r 2

2,k9) �
Ubk9ÿk

2 � V (b1ë)k bk9
2 , if k < k9,

Ubkÿk9
1 � V (b2ë)k9bk

1 , if k . k9,

(
(3:26)

where

U � a1a2(ëÿ 1)

(1ÿ b1)(1ÿ b2)(1ÿ b1b2ë)
,

V � ÿ a1a2(1ÿ b1b2)ë

(1ÿ b1)(1ÿ b2)(1ÿ b1b2ë)
� E(r2

1,0 r 2
2,0): (3:27)

The proof is given in the Appendix.

4. A HaÂjek±ReÂnyi type inequality

In this section we prove a HaÂjek-ReÂnyi type inequality, that is, an inequality for the maximum

of weighted sums ck jX 1 � . . . � X k j, where X1, . . . , Xn are any ®nite-variance random

variables. The result is stated in Theorem 4.1 below. In the proof we will need an elementary

inequality, which we now state as a lemma, as we could not ®nd any reference to it.
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Lemma 4.1. For any random variables Y1, . . . , Yn and events A � fmax1<k<nYk . åg, Dk �
fY1 < å, . . . , Yk < åg

å1A < Y1 �
Xnÿ1

k�1

(Yk�1 ÿ Yk)1Dk
ÿ Yn1Dn

: (4:1)

Proof. Introduce the events E1 � fY1 . åg, Ei � fY1 < å, . . . , Yiÿ1 < å, Yi . åg, i � 2,

. . . , n. Obviously

å1A � å
Xn

i�1

1AEi
�
Xn

i�1

å1Ei
<
Xn

i�1

Yi1Ei
:

Applying Abel's transformation, we can writeXn

i�1

Yi1Ei
�
Xnÿ1

i�1

Ui(Yi ÿ Yi�1)� UnYn, (4:2)

where

Ui � 1Ei
� . . . � 1Ei

� 1ÿ 1D41
� 1D41

ÿ 1D2
� . . . � 1Diÿ1

ÿ 1Di
� 1ÿ 1Di

:

Thus, by (4.2), Xn

i�1

Yi1Ei
�
Xnÿ1

i�1

(1ÿ 1Di
)(Yi ÿ Yi�1)� (1ÿ 1Dn

)Yn

� Y1 �
Xnÿ1

i�1

(Yi�1 ÿ Yi)1Di
ÿ Yn1Dn

:

h

Theorem 4.1. Let X1, . . . , X n be any random variables with ®nite second moments and

c1, . . . , cn be any non-negative constants. Then

å2 P max
m<k<n

ck

Xk

j�1

X j

������
������. å

8<:
9=; < c2

m

Xm

i, j�1

E(X iX j)�
Xnÿ1

k�m

jc2
k�1 ÿ c2

k j
Xk

i, j�1

E(XiXj)

� 2
Xnÿ1

k�m

c2
k�1E jX k�1j

Xk

j�1

X j

������
������

0@ 1A�Xnÿ1

k�m

c2
k�1EX 2

k�1: (4:3)

Proof. Applying (4.1) with Yk � c2
k j
Pk

j�1 X jj2, we obtain

å2 P max
m<k<n

c2
k

Xk

j�1

X j

������
������
2

. å2

8<:
9=; < c2

mE
Xm

j�1

Xj

�����
�����
2

� E
Xnÿ1

k�m

c2
k�1

Xk�1

j�1

Xj

������
������
2

ÿ c2
k

Xk

j�1

Xj

������
������
2

0@ 1A1D9k ,
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where D9k � fYm < å2, . . . , Yk < å2g. Each summand on the right-hand side can be

estimated as follows:

c2
k�1

Xk�1

j�1

X j

������
������
2

ÿ c2
k

Xk

j�1

Xj

������
������
2

0@ 1A1D9k

< c2
k�1

Xk

j�1

X j

������
������
2

� 2c2
k�1

Xk

j�1

X j

������
������jX k�1j � c2

k�1 X 2
k�1 ÿ c2

k

Xk

j�1

X j

������
������
2

0@ 1A1D9k

< jc2
k�1 ÿ c2

k j
Xk

j�1

Xj

������
������
2

� 2c2
k�1

Xk

j�1

X j

������
������jX k�1j � c2

k�1 X 2
k�1, (4:4)

which yields (4.3). h

5. Consistency of the change-point estimator

Assume that fr 2
1,k , k 2 Zg and fr 2

2,k , k 2 Zg are two ARCH(1) sequences de®ned by (3.2),

where ai > 0 and where fbi( j)g are sequences of non-negative numbers satisfying

Assumption 3.1.

Suppose we observe a sample r 2
1, . . . , r 2

n from the model

r 2
k �

r 2
1,k , if 1 < k < k�,

r 2
2,k , if k�, k < n,

(
(5:1)

where k� is an unknown change-point. Let k� � ô�n and assume that 0 , ô�, 1. Obviously,

the `disordered' sequence fr 2
kg is no longer stationary. For example, for the ARCH(1) model

such that a1 6� a2 and b1 � b2 � b (cf. (3.25)), the covariance function has the form

cov(r 2
k , r 2

k9) �
a2

1 Kbjk9ÿkj, if 1 < k, k9 < k�,
a2

2 Kbjk9ÿkj, if k�, k, k9 < n,

a1á2 Kbjk9ÿkj, otherwise,

8>><>>:
where K is given by (3.24). Interestingly, the correlation function of the `disordered' sequence

is bjk9ÿkj and does not re¯ect the existence of non-stationarity. Therefore in the following we

focus on the covariance function.

For ease of reference we now state a simple consequence of Theorem 3.1 which follows

from the relation r 2
i,k � aiYk , with Yk given by (2.5).

Corollary 5.1. Suppose (3.2) and (5.1) hold and sequences fr2
1,kg and fr2

2,kg satisfy

Assumption 3.1. Then
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0 < cov(r 2
k , r 2

k9) <

a2
1C91(á(1� â))jk9ÿkj, if 1 < k, k9 < k�,

a2
2C91(á(1� â))jk9ÿkj, if k�, k, k9 < n,

a1a2C91(á(1� â))jk9ÿkj, otherwise,

8>><>>:
where

C91 � â(ëÿ 1)

(1� â)(1ÿ á)(1ÿ B)2(1ÿ B2ë)

and �B � maxfB1, B2g.

In the following, C stands for a positive constant whose value may change from line to

line. Consistency of the estimator ô̂ � k̂=n de®ned by (1.3) follows from the following

theorem.

Theorem 5.1. Consider a sample r 2
1, . . . , r 2

n satisfying (5.1), (3.2) and the change-point

estimator k̂ given by (1.3). If sequences fr2
1,kg and fr2

2,kg satisfy Assumption 3.1 and

Ä :� a1

1ÿ B1

ÿ a2

1ÿ B2

6� 0, (5:2)

then, for ô̂ � k̂=n,

Pfjô̂ÿ ô�j. åg <
C

å2Ä2
nÿ1=2, (5:3)

where C is some positive constant.

Proof. As a standard starting argument in the change-point problems, observe that jERk j
reaches its maximum at the point k�. Indeed, by the equality Er 2

i,k � ai=(1ÿ Bi), which is a

necessary condition for the stationarity of the sequence fr 2
i,kg,

ERk �
Äô(1ÿ ô�), if k < k�

Äô�(1ÿ ô), if k . k�,

(
(5:4)

where k � ôn. Thus

ERk� � Äô�(1ÿ ô�): (5:5)

It follows from (5.4) and (5.5) that

jERk� j ÿ jERk j �
jÄj(ô� ÿ ô)(1ÿ ô�), if k < k�,
jÄj(ôÿ ô�)ô�, if k . k�,

(
and hence

jERk� j ÿ jERk j > jÄkô� ÿ ôj(ô� ^ (1ÿ ô�)): (5:6)

Observe now that
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jRk j ÿ jRk� j < jRk ÿ ERk j � jERk j � jRk� ÿ ERk� j ÿ jERk� j
< 2 max

1<k<n
jRk ÿ ERk j � jERk j ÿ jERk� j,

and thus, by (5.6),

jÄj jô� ÿ ôj(ô� ^ (1ÿ ô�)) < jERk� j ÿ jERk j
< 2 max

1<k<n
jRk ÿ ERk j � jRk� j ÿ jRk j: (5:7)

Replacing ô by ô̂ in (5.7) and noting that jRk� j < jRk̂ j, we obtain

jÄj jô� ÿ ô̂j(ô� ^ (1ÿ ô�)) < 2 max
1<k<n

jRk ÿ ERk j: (5:8)

It now remains to estimate max1<k<njRk ÿ ERk j. Observing that

jRk ÿ ERk j � 1

n2
n
Xk

j�1

(r 2
j ÿ Er 2

j)ÿ k
Xn

j�1

(r 2
j ÿ Er 2

j)

������
������

<
1

n

Xk

j�1

(r 2
j ÿ Er 2

j)

������
������� 1

n

Xn

j�1

(r 2
j ÿ Er 2

j)

�����
�����,

we obtain

max
1<k<n

jRk ÿ ERk j < 2 max
1<k<n

1

n

Xk

j�1

(r 2
jEr 2

j)

������
������: (5:9)

Applying Theorem 4.1 with m � 1, Xk � r 2
k ÿ Er 2

k and c1 � . . . � cn � 1=n, we obtain

å2 P max
1<k<n

1

n

Xk

j�1

(r 2
j ÿ Er 2

j)

������
������. å

8<:
9=;

<
2

n2

Xnÿ1

k�1

E jr 2
k�1 ÿ Er 2

k�1j
Xk

j�1

(r 2
j ÿ Er 2

j)

������
������

0@ 1A� 1

n2

Xnÿ1

k�0

E(r 2
k�1 ÿ Er 2

k�1)2:

<
2

n2

Xnÿ1

k�1

(var r 2
k�1)1=2

Xk

j, j9�1

cov(r 2
j , r 2

j9)

0@ 1A1=2

� 1

n2

Xnÿ1

k�0

var r 2
k�1: (5:10)

By Corollary 5.1,

cov(r 2
j , r 2

j9) < Ë((1� â)á)j jÿ j9j,

where Ë � C91maxfa2
1, a2

2, a1a2g. Denoting maxfvar r 2
1,0, var r 2

2,0g �: S2, it follows that
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å2 P max
1<k<n

1

n

Xk

j�1

(r 2
j ÿ Er 2

j)

������
������. å

8<:
9=; <

2S
����
Ë
p

n2

Xnÿ1

k�1

Xk

j, j9�1

((1� â)á)j jÿ j9j
0@ 1A1=2

� 1

n
S2

<
K1

n2

Xnÿ1

k�1

k1=2 � 1

n
S2 < K2 nÿ1=2, (5:11)

where K1 and K2 are positive constants.

Combining (5.8), (5.9) and (5.11) yields (5.3). h

Consider now the change-point model (3.25) where the ARCH(1) sequences start from

k � 0 rather than from ÿ1.

Theorem 5.2. Consider the sample r 2
1, . . . , r 2

n satisfying (5.1), (3.25) and the change-point

estimator k̂ de®ned by (1.3). Then, for ô̂ � k̂=n,

Pfjô̂ÿ ô�j. åg <
C

å2Ä2
nÿ1=2: (5:12)

Proof. Denote b :� maxfb1, b2g. Using Theorem 3.2, we obtain, similarly to the proof of

Theorem 5.1,

å2 P max
1<k<n

1

n

Xk

j�1

(r 2
j ÿ Er 2

j)

������
������. å

8<:
9=; <

2S

n2

Xnÿ1

k�1

Xk

j, j9�1

(Ubj jÿ j9j � jV jb j� j9ë j^ j9)

0@ 1A1=2

� 1

n
S2,

(5:13)

where U and V are de®ned in (3.27). The summands under the square root can be estimated

as follows:Xk

j, j9�1

(Ubj jÿ j9j � jV jb j� j9ë j^ j9) < U
X
j jj, k

(k ÿ j jj)bj jj � jV j
Xk

j�1

(b2ë) j � 2jV j
Xk

j�1

Xj

j9�1

(b2ë) j

< Uk
X
j jj, k

bj jj � jV j b2ë

1ÿ b2ë
� 2jV jk b2ë

1ÿ b2ë
< K3 k:

This, together with (5.13) and (5.8), yields (5.12). h

Using inequality (5.8) it is easy to verify that the estimator ô̂ is still consistent when the

difference Ä � Ä(n) de®ned by (5.2) tends to zero, as n!1, at a rate slower that nÿ1=4.

Suppose that

r 2
k � (r

(n)
k )2 �

(r
(n)
1,k)2, if 1 < k < k�,

(r
(n)
2,k)2, if k�, k < n,

8<: (5:14)
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where k� � [nô�], ô� 2 (0, 1) and (r
(n)
i,k )2, i � 1, 2, are given by equations

(r
(n)
i,k )2 � (ó (n)

i,k )2å2
k , (ó (n)

i,k )2 � a
(n)
i �

X1
j�1

b
(n)
i ( j)(r

(n)
i,kÿ j)

2: (5:15)

Denote B
(n)
i :� b

(n)
i (1)� b

(n)
i (2)� . . . : Then we have the following corollary.

Corollary 5.2. Let the sample r 2
1, . . . , r 2

n be given by (5.14) and (5.15), and let sequences

fr(n)2
1,k g and fr(n)2

2,k g satisfy Assumption 3.1 (with ®xed á and â) for any n > 1. Assume that

a
(n)
1 , a

(n)
2 are bounded sequences and

Ä(n) :� a
(n)
2 =(1ÿ B

(n)
2 )ÿ a

(n)
1 =(1ÿ B

(n)
1 )

satis®es Ä(n)! 0 and Ä4(n)n!1 as n!1. Then ô̂ is a weakly consistent estimator of

ô�.

The same result holds in the case of ARCH(1) sequences (3.25).

6. Rate of convergence

In Section 5 the consistency of the estimator was established. Using this result, we will show

in the present section that jô̂ÿ ô�j � OP(1=n), that is,

lim
M!1

sup
n

Pfjô̂ÿ ô�j. M=ng � 0: (6:1)

Relation (6.1) shows that the estimator ô̂ converges at the same rate as the least-squares

estimator studied by Bai (1994) in the case of weakly dependent linear sequences. The

general idea of our proof is similar to Bai's proof, but given a different form of the HaÂjek±

ReÂnyi inequality, there are some differences. We have also been able to avoid a number of

technical arguments used by Bai.

Theorem 6.1. Under the assumptions of Theorem 5.1.

jô̂ÿ ô�j � OP

1

n

� �
:

(Recall that ô� 2 (0, 1) is ®xed and k� � [nô�].)

Proof. Observe that
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fjô̂ÿ ô�j. M=ng � fk̂ ÿ k�. Mg [ fk̂ ÿ k�,ÿ(M ÿ 1)g
� max

k<k��M
jRk j, max

1<k<n
jRk j

n o [ max
k<k�ÿ(Mÿ1)

jRk j � max
1<k<n

jRk j
n o

� max
k>k��M

jRk j � max
1<k<n

jRk j
n o [ max

k<k�ÿ(Mÿ1)
jRk j � max

1<k<n
jRk j

n o
� max

k>k��M
jRk j > jRk� j

n o [ max
k<k�ÿ(Mÿ1)

jRk j > jRk� j
n o

:

Thus

Pfjô̂ÿ ô�j. M=ng < P max
k>k��M

jRk j > jRk� j
n o� P max

k<k�ÿ(Mÿ1)
jRk j > jRk� j

n o
:

Because of symmetry, we focus only on the ®rst term. Since fjxj > jyjg � fxÿ y > 0,

x� y > 0g [ fxÿ y < 0, x� y < 0g, we have

P max
k>k��M

jRk j> jRk� j
n o

< P max
k>k��M

Rk ÿ Rk� > 0
n o� P min

k>k��M
Rk � Rk� < 0

n o�: i1� i2:

We will show that limM!1supni1 � 0 and limM!1supni2 � 0. Without loss of generality,

assume that Ä. 0, so that ERk > 0 (see (5.4)).

We consider only i1. The term i2 is dealt with analogously. We have

fRk ÿ Rk� > 0g � fRk ÿ ERk ÿ Rk� � ERk� > ERk� ÿ ERkg:

Observe that

Rk ÿ ERk ÿ Rk� � ERk� � nÿ2 n
Xk

j�k��1

(r 2
j ÿ Er 2

j)ÿ (k ÿ k�)
Xn

j�1

(r 2
j ÿ Er 2

j)

0@ 1A:
Thus

fRk ÿ Rk� > 0g � nÿ1
Xk

j�k
��1

(r 2
j ÿ Er 2

j)

������
������� nÿ2(k ÿ k�)

Xn

j�1

(r 2
j ÿ Er 2

j)

�����
����� > ERk� ÿ ERk

8<:
9=;:

We know from (5.6) (recall that we assume Ä. 0 so that ERk� > 0, ERk > 0) that for some

C . 0

ERk� ÿ ERk > CÄ
jk� ÿ kj

n
,

so that
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i1 � P max
k>k��M

Rk ÿ Rk� > 0
n o

< P max
k>k��M

(k ÿ k�)ÿ1
Xk

j�k
��1

(r 2
j ÿ Er 2

j)

������
������ > CÄ=2

8<:
9=;

� P nÿ1
Xn

j�1

(r 2
j ÿ Er 2

j)

�����
����� > CÄ=2

( )

�: j1 � j2:

Obviously

P nÿ1
Xn

j�1

(r 2
j ÿ Er 2

j)

�����
����� > CÄ=2

( )
<

~C

Ä2
nÿ1=2

for some ~C . 0, so that j2 ! 0 as n!1.

To prove that j1 ! 0 we use Theorem 3.1 and Theorem 4.1 with ck � 1=k and

X j � r 2
j� p ÿ Er 2

j� p, where p is an arbitrary integer. The third term on the right-hand side

of (4.3) is then of order mÿ1=2, whereas the remaining terms are of order mÿ1. So we obtain

P max
m<k<n

1

k

Xk

j�1

(r 2
j� p ÿ Er 2

j� p)

������
������. å

8<:
9=; < Kåÿ2 mÿ1=2, (6:2)

for some K . 0. Thus, by (6.2),

j1 < P max
l>M

1

l

Xl

i�1

(r 2
i�k� ÿ Er 2

i�k� )

�����
����� > CÄ=2

( )
<

4K

C2Ä2
Mÿ1=2 ! 0,

as M !1. h

Remark 6.1. Replacing the inequality k > k� � M by k > k� � M=Ä4 in the proof of

Theorem 6.1, it can be easily veri®ed that

jô̂ÿ ô�j � OP

1

nÄ4

� �
,

where Ä � Ä(n) also depends on n.

7. Simulations and a data example

In this section we brie¯y discuss the sampling distribution of the change-point estimator k̂

and then apply it to two ®nancial time series.

The estimator k̂ shares most properties of analogous CUSUM type estimators; see, for

example, Antoch et al. (1997) and HorvaÂth and Kokoszka (1997). It is skewed to the left,
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and the degree of skewness increases as the change-point k� moves to the right. Estimates

are most accurate if k� lies around the middle of the sample. Obviously, the accuracy

increases with the sample size and the size of the difference of variances before and after

k�. Interestingly, it appears that the estimator k̂ has larger spread when the change in

variance is due to the change in the b( j) rather than a. All these properties are illustrated

by the histograms in Figures 2±4. Each histogram describes the sample distribution of 1000

replications of k̂ for several ARCH(1) models. Series of length n � 103 were estimated. In

Figures 2 and 4, k� � 500; in Figure 3, k� � 750. In all the ®gures, a1 � 1 and b(1) � 0:1.

In Figures 2(a), 3(a) and 4(a) the variance increases by 30%; in Figures 2(b), 3(b) and 4(b)

it increases by 90%.

We conclude this section by applying our method to series of returns on foreign

exchange rates. If Pt is the price of a currency in US dollars on day t, the return is de®ned

Figure 2. Sampling distribution of k̂, b(1) � b(2) � 0:1. (a) a2 � 1:3; (b) a2 � 1:8.

Figure 3. Sampling distribution of k̂, b(1) � b(2) � 0:1. (a) a2 � 1:3; (b) a2 � 1:8.
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as rt � log Pt ÿ log Ptÿ1. Figure 5(a) shows 6630 daily returns on the DM exchange rate

from 24 August 1971 to 21 January 1997. Recall that 24 August 1971 marks the end of the

Bretton Woods ®xed exchange rates system. Figure 5(b) shows the sequences Rk for returns

on DM and pound sterling exchange rates. The peak around k � 2100 corresponds to 1979,

when the European Monetary System (EMS) was introduced. Interestingly, even though the

Figure 4. Sampling distribution of k̂, (a) a2 � 1:25, b(2) � 0:013. (b) a2 � 1:6, b(2) � 0:02.

Figure 5. Analysis of returns on exchange rates.
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United Kingdom joined the EMS in October 1990 and left two years afterwards, the impact

of the system on the volatility of the pound is similar to that on the DM.

Appendix: Proof of Theorem 3.2

Applying recursively equations (3.25), we obtain, for i � 1, 2,

r 2
i,k � ai

Xkÿ1

j�0

b
j
i

Yj

m�0

å2
kÿm � bk

i r 2
i,0

Ykÿ1

m�0

å2
kÿm: (A:1)

Without loss of generality, suppose that k < k9. Then, multiplying r 2
1,k and r 2

2,k9, due to

(A.1), we can write Er 2
1,k r 2

2,k9 as

Er 2
1,k r 2

2,k9 � I1 � I2 � I3 � I4,

where

I1 :� a1a2

Xkÿ1

j�0

Xk9ÿ1

j9�0

b
j
1b

j9
2 E
Yj

m�0

å2
kÿm

Yj9

m9�0

å2
k9ÿm9,

I2 :� a1bk9
2 Er 2

2,0

Xkÿ1

j�0

b
j
1E
Yj

m�0

å2
kÿm

Yk9ÿ1

m9�0

å2
k9ÿm9,

I3 :� a2bk
1 Er 2

1,0

Xk9ÿ1

j�0

b
j9
2 E

Yj9

m9�0

å2
k9ÿm9

Ykÿ1

m�0

å2
kÿm,

I4 :� bk
1 bk9

2 E(r 2
1,0 r 2

2,0)E
Ykÿ1

m�0

å2
kÿm

Yk9ÿ1

m9�0

å2
k9ÿm9:

I1 can be split into two terms, the ®rst of which has two independent products:

I1 :� a1a2

Xkÿ1

j�0

Xk9ÿkÿ1

j9�0

b
j
1b

j9
2 E
Yj

m�0

å2
kÿm

Yj9

m9�0

å2
k9ÿm9 � a1a2

Xkÿ1

j�0

Xk9ÿ1

j9�k9ÿk

b
j
1b

j9
2 E
Yj

m�0

å2
kÿm

Yj9

m9�0

å2
k9ÿm9

�: I11 � I12:

Here

I11 � a1a2

Xkÿ1

j�0

Xk9ÿkÿ1

j9�0

b
j
1b

j9
2 � a1a2

(1ÿ bk
1 )(1ÿ bk9ÿk

2 )

(1ÿ b1)(1ÿ b2)

� c1 ÿ c1bk
1 � c1bk

1 bk9ÿk
2 ÿ c1bk9ÿk

2 ,

where
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c1 � a1a2

(1ÿ b1)(1ÿ b2)
:

Suppose that b1ë 6� 1 and b2ë 6� 1. The term I12, after straightforward algebra, can be written

as

I12 � a1a2ë
Xk

j�1

b
k9ÿ j
2 (1� b1ë � . . . � (b1ë)kÿ jÿ1 � (b1ë)kÿ j(1� b1 � . . . � b

jÿ1
1 ))

� a1a2ë
Xk

j�1

b
k9ÿ j
2

1ÿ (b1ë)kÿ j

1ÿ b1ë
� (b1ë)kÿ j 1ÿ b

j
1

1ÿ b1

 !

� c2bk9ÿk
2 � c3(b1ë)k bk9

2 � c4bk9
2 � c5bk

1 bk9ÿk
2 ,

where the constants c2, c3, c4 and c5 are

c2 � a1a2

ë

(1ÿ b2)(1ÿ b1ë)
ÿ ë

(1ÿ b1ë)(1ÿ b1b2ë)
� ë

(1ÿ b1)(1ÿ b1b2ë)

� �
,

c3 � a1a2

ë

(1ÿ b1ë)(1ÿ b1b2ë)
ÿ ë

(1ÿ b1)(1ÿ b1b2ë)
� ë

(1ÿ b1)(1ÿ b2ë)

� �
,

c4 � ÿa1a2

ë

(1ÿ b2)(1ÿ b1ë)
,

c5 � ÿa1a2

ë

(1ÿ b1)(1ÿ b2ë)
,

For the term I2 we have:

I2 � a1bk9
2 Er 2

2,0

Xkÿ1

j�0

b
j
1ë

j�1 � ÿc4bk9
2 � c4(b1ë)k bk9

2 :

Similarly to the case of the term I12, we obtain that

I3 � a2bk
1 Er 2

1,0(1� b2 � . . . � bk9ÿkÿ1
2 � bk9ÿk

2 ë(1� b2ë � . . . � (b2ë)kÿ1))

� a2bk
1 Er 2

1,0

1ÿ bk9ÿk
2

1ÿ b2

� bk9ÿk
2 ë

1ÿ (b2ë)k

1ÿ b2ë

 !

� c1bk
1 � c6bk

1 bk9ÿk
2 � c5(b1ë)k bk9

2 ,

where

c6 � a1a2 ÿ 1

(1ÿ b1)(1ÿ b2)
� ë

(1ÿ b1)(1ÿ b2ë)

� �
� ÿc1 ÿ c5:

Finally
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I4 � E(r 2
1,0 r 2

2,0)(b1ë)k bk9
2 :

Gathering the corresponding coef®cients in the sum I11 � I12 � I2 � I3 � I4, we see that

E(r 2
1,k r 2

2,k9) �
a1a2

(1ÿ b1)(1ÿ b2)
� (ÿc1 � c1)bk

1 � (c4 ÿ c4)bk9
2 � (c1 � c5 � c6)bk

1 bk9ÿk
2

� (ÿc1 � c2)bk9ÿk
2 � (c3 � c4 � c5)(b1ë)k bk9

2

� a1a2

(1ÿ b1)(1ÿ b2)
� Ubk9ÿk

2 � V (b1ë)k bk9
2 :

Now applying the equality

Er 2
1,kEr 2

2,k9 �
a1a2

(1ÿ b1)(1ÿ b2)
,

we obtain the statement of theorem in the case where b1ë 6� 1 and b2ë 6� 1. The claim in the

case b1ë � 1 or b2ë � 1 can be veri®ed easily.
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