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We consider likelihood-based asymptotic inference for a p-dimensional parameter è of an identi®able

parametric model with singular information matrix of rank pÿ 1 at è � è� and likelihood

differentiable up to a speci®c order. We derive the asymptotic distribution of the likelihood ratio test

statistics for the simple null hypothesis that è � è� and of the maximum likelihood estimator (MLE)

of è when è � è�. We show that there exists a reparametrization such that the MLE of the last pÿ 1

components of è converges at rate Op(nÿ1=2). For the ®rst component è1 of è the rate of convergence

depends on the order s of the ®rst non-zero partial derivative of the log-likelihood with respect to è1

evaluated at è�. When s is odd the rate of convergence of the MLE of è1 is Op(nÿ1=2s) . When s is

even, the rate of convergence of the MLE of jè1 ÿ è�1 j is Op(nÿ1=2s) and, moreover, the asymptotic

distribution of the sign of the MLE of è1 ÿ è�1 is non-standard. When p � 1 it is determined by the

sign of the sum of the residuals from the population least-squares regression of the (s� 1)th derivative

of the individual contributions to the log-likelihood on their derivatives of order s. For p . 1, it is

determined by a linear combination of the sum of residuals of a multivariate population least-squares

regression involving partial and mixed derivatives of the log-likelihood of a speci®c order. Thus

although the MLE of jè1 ÿ è�1 j has a uniform rate of convergence of Op(nÿ1=2s), the uniform

convergence rate for the MLE of è1 in suitable shrinking neighbourhoods of è�1 is only Op(nÿ1=(2s�2)).
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1. Introduction

The asymptotic distributions of the maximum likelihood estimator (MLE) and of the

likelihood ratio test statistic of a simple null hypothesis in parametric models have been

extensively studied when the information matrix is non-singular. In contrast, the asymptotic

properties of these statistics when the information matrix is singular have been studied only

in certain speci®c problems, but no general theory has yet been developed.

Silvey (1959) noted that in a single-parameter identi®able model the score statistic can be
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zero for all data con®gurations, but did not discuss the point further. Rothenberg (1971)

proved that under local identi®ability the set of parameters where the score vanishes

identically has Lebesgue measure zero. Cox and Hinkley (1974, p. 303) noticed that a zero

score can arise in the estimation of variance components parameters, and they showed that

the asymptotic distribution of the MLE of the variance components can be found after a

power reparametrization. Sargan (1983) constructed identi®able simultaneous equations

models with singular information matrix and derived the asymptotic distribution of speci®c

instrumental variables estimators of the parameters of his model. Kiefer (1982) noted that in

parametric mixture models that include one homogeneous distribution, the Fisher

information about the mixing parameter value corresponding to the homogeneous

distribution is zero. Lee and Chesher (1986) derived the asymptotic distribution of the

corrected score statistic for testing homogeneity in a mixture model with a location±scale

mixing distribution. Chen (1995) derived the asymptotic distribution of the MLE of the

parameter indexing a ®nite mixture model when the true mixing parameter value

corresponds to a mixing distribution with one support point. Lee (1993) calculated the

asymptotic distribution of the MLEs of the parameters in a stochastic frontier function

model with a singular information matrix.

Non-singular information matrices can also be encountered in parametric models that

allow for non-ignorable non-response in the sense de®ned by Rubin (1976), also called

selection bias in the econometrics literature. Lee (1981) showed that regression models with

selection bias and a probit selection model (Gronau, 1974; Heckman, 1976; Nelson, 1977)

can have singular information matrix. Lee and Chesher (1986) provided tests for selection

bias that are asymptotically equivalent to tests based on the MLE derived in Section 2.

However, they did not derive the asymptotic distribution of the MLE of the model

parameters when the information matrix is singular. In particular, they did not discuss the

possibility of a bimodal likelihood function and the local distributional theory when the

variance of the potentially missing data is known. Copas and Li (1997) have recently

carried out a largely numerical study of the performance of likelihood-based inferences in

models for selection bias.

The goal of the present paper is to provide a uni®ed theory for deriving the asymptotic

distribution of the MLE and of the likelihood ratio test statistic when the information matrix

has rank one less than full and the likelihood is differentiable up to a speci®c order. We deal

only with the case of independent and identically distributed random variables, although our

results can be extended to independent and non-identically distributed random variables.

The paper is organized as follows. In Section 2 we describe as a motivating example the

estimation of the mean of a normal distribution under non-ignorable non-response when a

parametric non-response model is assumed. In Section 3 we give some heuristics and state

our results in a one-dimensional parametric model with zero Fisher information at a

parameter value. The results are illustrated in a nonlinear regression model with normal

errors. In Section 4 we describe our results for the multidimensional parametric models

with singular information matrix of rank one less than full. Our results are applied to derive

the asymptotic properties of the estimators of the example in Section 2. In Section 5 we

describe some key identities from which speci®c asymptotic properties of the high-order

derivatives of the log-likelihood follow. In Section 6 we give some ®nal remarks.

244 A. Rotnitzky, D.R. Cox, M. Bottai and J. Robins



2. A motivating example

To motivate the general discussion in the remainder of the paper, we begin with a quite

informal account of a special case. The model is a simple representation of informative non-

response; for similar more complicated models, see Heckman (1976) and Diggle and

Kenward (1994). The example will reveal some unusual types of behaviour that it is the

object of the later part of the paper to illustrate.

Suppose that Y is normally distributed with mean â and variance ó 2. There are available

for study n independent individuals but for each there is the possibility that the value of Y

cannot be observed. If the probability of not being able to observe Y is assumed

independent of the unobserved value the analysis proceeds with just the fully observed

individuals. Suppose, however, that conditionally on Y � y the probability of observing y

has the form

Pc(y; á0, á1) � expfH(á0 � á1(yÿ â)=ó )g,
where (á0, á1) are unknown parameters and H(:) is a known function assumed to have its

®rst three derivatives at á0 non-zero. Interest may lie in small values of á1 and in particular

in testing the null hypothesis á1 � 0.

We thus consider two random variables (R, Y ), where R is binary, taking values 0 and 1.

The value of Y is observed if and only if R � 1. The contribution of one individual to the

log-likelihood is thus

ÿr log ó ÿ r(yÿ â)2=(2ó 2)� rHfá0 � á1(yÿ â)=óg � (1ÿ r)log Qc(á0, á1),

where

Qc(á0, á1) � Ef1ÿ Pc(Y ; á0, á1)g
is the marginal probability that Y is not observed. For n individuals the log-likelihood

Ln(â, ó , á0, á1) is the sum of n such terms.

To study behaviour for small á1, we expand in powers of á1. If terms are retained only

up to order á2
1 the data enter through terms in

nc,
X

c

(yj ÿ â),
X

c

(yj ÿ â)2,

where nc is the number of complete observations and the summation
P

c is over the

complete observations. Inference is thus to this order based on the statistics

p̂c � nc=n, �yc �
X

c

yj=nc, ó̂ 2
c �

X
c

(yj ÿ �yc)2=nc:

Similarly, if the expansion is carried to the term in á3
1 the above statistics are augmented

by the standardized third cumulant of the complete data, ç̂c3.

We now consider separately the cases where ó 2 is ®rst known and then unknown. With ó 2

known there are three unknown parameters so that in the ®rst place we take the expansion to

the term in á2
1. Equations locally equivalent to the maximum likelihood estimating equations

are then obtained by equating p̂c, �yc, ó̂ 2
c to their respective expectations.

Likelihood-based inference with singular information matrix 245



Now

Pc(á0, á1) � expfH(á0)g � O(á2
1),

Ec(Y ) � â� á1óH9(á0)� O(á3
1),

varc(Y ) � ó 2f1� á2
1 H 0(á0)g � O(á4

1),

where Pc(á0, á1) � 1ÿ Qc(á0, á1), Ec(Y ) � E(Y jR � 1) and varc(Y ) � var(Y jR � 1).

It follows that the approximate estimating equations are initially of the form

p̂c � expfH(~á0)g,

�yc � ~â� ~á1ó H 9(~á0),

ó̂ 2
c � ó 2(1� ~á2

1 H 0(~á0)):

These equations are easily solved for the estimates; account, however, has to be taken of the

restriction that á2
1 > 0, leading in particular to

~á2
1 � maxf(ó̂ 2

c ÿ ó 2)=H 0(~á0), 0g:
Thus if interest is focused on já1j, as would be the case, for example, if the sign of any non-

zero value of á1 can be regarded as known, then sampling errors in j~á1j are Op(nÿ1=4) for

values of já1j that are within O(nÿ1=4) of zero because the values of ~á2
1 are within Op(nÿ1=2)

of zero. If, however, interest is in estimating â taking into account selection bias, the sign is

very important, and if it is to be estimated this must be done by going to a higher-order

expansion, essentially estimating sgn(á1) via sgn(ç̂c3), this having a probability of error of

1=2 for these values of já1j. Thus as regards the estimation of â the possibility can arise that

the magnitude of the adjustment to the sample mean is reasonably well known but the

direction of the adjustment essentially unknown.

Next suppose that ó 2 is unknown, giving four unknown parameters, leading directly to

the use of terms up to order O(á3
1) in the expansion of the log-likelihood. By the same

argument as before, we obtain estimates based on p̂c, �yc, ó̂ 2
c, ç̂c3. In particular

~á3
1 � fH -(~á0)gÿ1ç̂c3:

It follows that the sampling ¯uctuations in ~á1 are Op(nÿ1=6).

There are thus some quite striking qualitative differences in the behaviour according to

whether there are three unknown parameters or four. We shall see in Section 4 the general

explanation of that difference.

To study the distributional behaviour for small but non-zero values of á1 we introduce a

sequence of non-null values tending to zero as n!1. Such sequences are totally notional

and are devices for producing approximations that will be useful in appropriate

circumstances.

We shall outline a number of possibilities in which

á1 � anÿb,
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where b takes values in the range 0 , b < 1=2. This compares with the choice b � 1=2 in the

regular Cochran±Pitman theory of asymptotic relative ef®ciency. The objective of the various

asymptotic considerations is to highlight the quite different forms of distributions of the MLE

that can occur.

First, if b , 1=6 the value of the third cumulant is asymptotically large compared with its

standard error and the sign of á1 is determined with high probability. Further, in the case

where ó 2 is known, the atom of probability at zero in the distribution of ~á2
1 is also

negligible.

Next, if b � 1=6 then asymptotically the probability that ~á1 has the correct sign tends to

a constant bounded away from one; that is to say, the possibility that the estimate has the

wrong sign cannot be ignored. Also, in the case where ó 2 is known, the atom of probability

at zero in the distribution of ~á2
1 is negligible.

If 1=6 , b , 1=4 then asymptotically the estimate ~á1 is equally likely to have either sign,

and when ó 2 is known, the atom of probability at zero in the distribution of ~á2
1 is

negligible.

If b � 1=4 the conclusion about ~á1 remains the same, but when ó 2 is known there is an

atom of probability at zero in the distribution of ~á2
1. Finally, if b . 1=4 that last probability

is 1=2.

In some contexts dif®culties in the asymptotic theory of maximum likelihood estimates

are wholly or partially avoided by concentrating on likelihood ratio tests and on associated

con®dence regions, although this is much less straightforward when there are nuisance

parameters and the pro®le likelihood is used. This is not the case here, however. Indeed, so

far as inference about â is concerned, maximization over á1 to form a pro®le likelihood

would conceal the problems mentioned above concerning ambiguities of sign. In this paper

we shall not consider the calculation of con®dence regions.

Note, ®nally, that quite apart from the unusual distribution theory and the slow rates of

convergence there is extreme sensitivity to assumptions. Thus when ó 2 is unknown any

non-normality in the observed values of y is interpreted as a consequence of selection bias

rather than as non-normality of the underlying distribution of Y . One of the points of our

analysis is to make very explicit how this sensitivity arises.

The special features of this problem are probably best seen from the rather direct

arguments summarized above. Nevertheless, to link with the general discussion in the rest

of the paper and to see the essential reason for the unusual behaviour, we examine the score

vector of ®rst partial derivatives of the log-likelihood evaluated at the null point â, á0,

á1 � 0. The contribution from a single observation is, setting â � 0 without loss of

generality,

ry=ó 2, rH 9(á0)ÿ (1ÿ r)e H(á0) H9(á0)=(1ÿ e H(á0)), ryH9(á0)=ó :

The key feature is that as a vector random variable this has dimension 2, because of the

proportionality of the ®rst and third components. That is, the score vector is degenerate at

this particular parameter point. Equivalently, the information matrix calculated from

expected second derivatives is singular at this parameter point.
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3. Inferences in one-dimensional parametric models

3.1. Introduction

The asymptotic properties of the estimators in the example of Section 2 can be derived from

the general asymptotic properties of the MLE in multidimensional parametric models in

which the information matrix is singular and of rank one less than full. Indeed, identi®able

models with zero Fisher information also exist in one-dimensional parametric models. The

asymptotic derivations in the one-parameter problem are somewhat simpler than in the

multiparameter problem because in the former zero information is equivalent to the vanishing

of the score statistic with probability 1, while in the latter a singular information matrix is

equivalent only to the existence of a linear dependence among the scores for the different

parameters. Thus, in this Section we restrict attention to the one-parameter case.

Suppose that Y1, . . . , Yn are n independent copies of a random variable Y with density

f (y; è�) with respect to a carrying measure, where è� is an unknown scalar. In Section 4

we formally state the regularity conditions assumed on f (y; è). These essentially consist of

the usual smoothness assumptions that guarantee uniqueness and consistency of the MLE

and in addition the existence in a neighbourhood of è� of 2s� 1 derivatives with respect to

è of log f (Y ; è) for some positive integer s with absolute values uniformly bounded by

functions of Y that have ®nite mean. We assume, however, that exactly the ®rst sÿ 1

derivatives of log f (y; è) are, with probability 1, equal to 0 at è � è�. That is, letting

l( j)(Y ; è) denote @ j log f (Y ; è)=@è j, we assume that with probability 1,

l(1)(Y ; è�) � l(2)(Y ; è�) � . . . � l(sÿ1)(Y ; è�) � 0, (1)

and with probability greater than 0,

l(s)(Y ; è�) 6� 0: (2)

Condition (1) for some s > 2 is equivalent to zero Fisher information at è�. Throughout we

use ? to denote convergence in distribution under è � è�. In a slight abuse of notation, for

any pair of random variables X and W we use the identity X � W to denote that X and W

are equal with probability 1 if they are de®ned on the same probability space, otherwise to

denote that they have the same distribution. In addition, we use I(A) to denote the indicator

of the event A, that is I(A) � 1 if A occurs and I(A) � 0 otherwise.

3.2. Informal look at inferences under è = è�

An informal examination of the log-likelihood function under (1) and (2) and the regularity

conditions of Section 4.2 will help provide some insight into the asymptotic properties that

are stated formally later in Section 3.4. Denote the log-likelihood function
P

l(Yi; è) by

Ln(è), and write L( j)
n (è) for its jth derivative. A Taylor expansion of the log-likelihood around

è� gives
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Ln(è) � Ln(è�)�
X2s�1

j�s

L( j)
n (è�)

j!
(èÿ è�) j � ä(2s�1)

n

(2s� 1)!
(èÿ è�)2s�1, (3)

where ä(2s�1)
n � L(2s�1)

n (�è)ÿ L(2s�1)
n (è�) for some �è satisfying j�èÿ è�j, jèÿ è�j. In Section

5 we show a set of identities for the second and higher-order derivatives of the log-likelihood

when (1) and (2) hold that include the following key results:

(R1.1) For s < j < 2sÿ 1, l( j)(Y , è�) � f ( j)(Y ; è�)= f (Y ; è�). Thus, l( j)(Y , è�) is a

mean-zero random variable. Letting l[ j](Y ; è�) denote l( j)(Y , è�)= j!, we have, in

particular,

(i) nÿ1=2 L(s)
n (è�)=s! � Z0 � op(1), where Z0 � N (0, I) and

I � E[fl[s](Y ; è�)g2];

(ii) nÿ1=2 L( j)
n (è�) � Op(1), s� 1 < j < 2sÿ 1.

(R1.2) l(2s)(Y , è�) � f (2s)(Y ; è�)
f (Y ; è�) ÿ

1
2

2s

s

� �
f (s)(Y ; è�)
f (Y ; è�)

( )2

. Thus,

nÿ1 L(2s)
n (è�) � ÿ(2s)!I=2� op(1).

(R1.3) l(2s�1)(Y , è�) � f (2s�1)(Y ; è�)
f (Y ; è�) ÿ 2s� 1

s

� �
f (s)(Y ; è�)
f (Y ; è�)

f (s�1)(Y ; è�)
f (Y ; è�) . Thus,

nÿ1 L(2s�1)
n (è�) � ÿ(2s� 1)!C � op(1), where C � Efl[s](Y ; è�)l[s�1](Y ; è�)g:

Note that (R1.1) and (R1.2) are direct generalizations of familiar results and identities

involving ®rst and second log-likelihood derivatives in the theory of regular parametric

models. In fact, Iÿ1 coincides with the Bhattacharyya bound of order s for unbiased

estimators of (èÿ è�)s evaluated at è � è� (Bhattacharyya, 1946). The Bhattacharyya

bound of order u for unbiased estimators of g(è) is de®ned as the variance of the least-

squares projection under è of any unbiased estimator of g(è) on the space spanned by

f (1)(Y ; è)

f (Y ; è)
,

f (2)(Y ; è)

f (Y ; è)
, . . . ,

f (u)(Y ; è)

f (Y ; è)
:

From expansion (3) these results imply that under regularity conditions on L(2s�1)
n (è), for

n1=2(èÿ è�)s bounded,

Ln(è)ÿ Ln(è�) � Gn(è)� Rn, (4)

where

Gn(è) � Z0 n1=2(èÿ è�)s ÿ I

2
fn1=2(èÿ è�)sg2,
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and the remainder Rn converges to 0 in probability. More speci®cally,

Rn � nÿ1=(2s)fn1=(2s)(èÿ è�)gs�1Tn, (5)

where

Tn � nÿ1=2 L(s�1)
n (è�)
(s� 1)!

ÿ Cn1=2(èÿ è�)s � op(1)

( )
:

The expansions above show that the shape of the likelihood near è� depends critically on

the parity of s. When s is odd, the function Gn(è) is unimodal and has a unique global

maximum at è� � nÿ1=(2s)(Z0=I)1=s. When s is even, Gn(è) is symmetric around è�. For a

positive Z0, Gn(è) is bimodal, it has a local minimum at è� and two global maxima

attained at è� ÿ nÿ1=(2s) (Z0=I)1=s and è� � nÿ1=(2s)(Z0=I)1=s. For a negative Z0, Gn(è) is

unimodal, and its global maximum is attained at è�. Because with probability going to 1 as

n!1 (which we will abbreviate to as with a probability tending to 1), the log-likelihood

ratio Ln(è)ÿ Ln(è�) differs from Gn(è) locally near è� by a vanishing amount, we would

expect, and we will later show, that under the regularity conditions of Section 4.2 the

following happens:

(R2.1) The asymptotic behaviour of the MLE and of the likelihood ratio test statistic

depends on the parity of s.

(R2.2) When s is odd the maximum of Ln(è) is attained at è� � nÿ1=(2s) (Z0=I)1=s �
op(1).

(R2.3) When s is even, with a probability tending to 1 the maximum of Ln(è) is attained

at è� whenever Z0 is negative, and at either ~è1 � è� ÿ nÿ1=(2s)(Z0=I)1=s � op(1)

or ~è2 � è� � nÿ1=(2s)(Z0=I)1=s � op(1) when Z0 is positive.

(R2.4) Because Z0 is a mean-zero normal random variable, when s is even the

probability that the maximum is attained at è� converges to 1=2 as n!1.

(R2.5) Because Gn(è) is symmetric around è� when s is even, the determination of

whether the global maximum of the likelihood is attained at ~è1 or at ~è2 is driven

by the behaviour at these two points of the remainder Rn de®ned in (5).

Now, since the remainder Rn is the product of fn1=(2s)(èÿ è�)gs�1 and Tn, and this

product is positive when n1=(2s)(èÿ è�) and Tn have the same sign and is negative

otherwise, then if è̂ denotes the MLE of è�, the sign of è̂ÿ è� has to agree asymptotically

with the sign of Tn. But from the results (R1.1) and (R1.3) and from the asymptotic

representation of ~è1 and ~è2, it follows that

Tn � nÿ1=2
Xn

i�1

l[s�1](Yi; è
�)ÿ CIÿ1 l[s](Yi; è

�)
( )

� op(1): (6)

Thus, up to an op(1) term, Tn is equal to the normalized sum of residuals from the

population least-squares regression of l[s�1](Yi; è
�) on l[s](Yi; è

�). Because these residuals

are mean-zero random variables that are uncorrelated with the regressors l[s](Yi; è
�), we

conclude that Tn ? T , a mean-zero normal variable independent of Z0. Thus, the sign of

è̂ÿ è� will be asymptotically determined by I(T . 0) which is a Bernoulli random variable
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with success probability 1=2 that is statistically independent of Z0 and hence of the absolute

value of è̂ÿ è�. Finally, it follows from (R2.2)±(R2.4) that 2fLn(è̂)ÿ Ln(è�)g converges in

law to ÷2
1, a chi-squared random variable with 1 degree of freedom, when s is odd and to a

mixture of a ÷2
1 random variable and 0 with mixing probabilities equal to 1=2 when s is

even. The analysis above has assumed that when s is even, l(s�1)(Y ; è�) is neither identically

equal to zero nor linearly dependent with l(s)(Y ; è�), which is the case considered in this

paper. See the remark at the end of Section 3.3 for some discussion on failure of this

condition.

3.3. Informal look at local inferences near è = è�

The discussion above has concerned behaviour at the anomalous point è � è�. Somewhat

similar behaviour may be expected in the neighbourhood of è�, and this we now explore

informally. The richness of the possibilities that follow is a warning of the care needed in

applications in obtaining sensible con®dence regions for è in the neighbourhood of the

anomalous point è�. To study the behaviour of inferences locally near è� we consider

parameters èn � è� � anÿb and è9n � è� ÿ anÿb for some ®xed values a and b . 0.

Throughout, opn
(nÿá) indicates a sequence of random variables that when multiplied by ná

converge to 0 in probability when the data are generated under èn. In the Appendix we

provide an outline of the derivation of the following results.

Consider ®rst b > 1=(2s). Expansion (4) is valid also when the data are generated under

è � èn or under è � è9n, except that when b � 1=(2s), Z0 � N (as I , I). Thus under

regularity conditions (A1)±(A7) and (B1)±(B3) of Section 4.2, we observe the following:

(R3.1) Conclusions (R2.1)±(R2.3) and (R2.5) of the previous discussion on inferences

under è � è� remain valid when the data are generated under èn.

(R3.2) Conclusion (R2.4) remains valid under èn when b . 1=(2s). When b � 1=(2s) and

s is even, the probability that the maximum of Ln(è) is attained at è� converges

under èn to Ö(ÿas
���
I
p

) , 1=2.

(R3.3) When b . 1=(2s), 2fLn(è̂)ÿ Ln(è�)g converges in law to the same random

variable under è � è�, under è � èn and under è � è9n. When b � 1=(2s) and s is

even, 2fLn(è̂)ÿ Ln(è�)g converges under either èn or è9n to a mixture of the

constant 0 and a non-central chi-squared random variable with 1 degree of

freedom and non-centrality parameter a2s I with mixing probabilities Ö(ÿas
���
I
p

)

and Ö(as
���
I
p

), respectively. When s is odd and b � 1=(2s) it converges to a non-

central ÷2
1 random variable with non-centrality parameter a2s I.

(R3.4) For b > 1=(2s) and s even, 2fLn(è̂)ÿ Ln(èn)g converges to the same random

variable when the data are generated under èn or under è9n.
(R3.5) From (R3.3) and (R3.4) we have the following implications:

(i) The likelihood ratio test 2fLn(è̂)ÿ Ln(è�)g of the null hypothesis

H0 : è � è� has power against the alternative H1n : è � èn or H91n : è � è9n
that converges to its level when b . 1=(2s), which is to say that the test is

asymptotically completely ineffective. Its power converges to a number

strictly greater than its level but bounded away from 1 when b � 1=(2s).
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(ii) When b > 1=(2s) and s is even, the likelihood ratio test 2fLn(è̂)ÿ Ln(èn)g
of the null hypothesis H0n : è � èn has power against the alternative

hypothesis H1n : è � è9n that converges to its level.

(iii) Thus, from (i) and (ii), the likelihood ratio test of H0 is sensitive to local

departures of order O(nÿ1=(2s)) but not of order O(nÿ1=2). However, when s is

even as the sample size n converges to 1, the data provide essentially no

indication of the directionality of departures of order O(nÿ1=(2s)).

Now consider 1=(2s� 2) , b , 1=(2s). Under the regularity conditions stated in the

Appendix, we have that

Ln(è�)ÿ Ln(èn) converges in probability toÿ1 under èn: (7)

Furthermore, when s is odd,

Ln(è9n)ÿ Ln(èn) converges in probability to�1 under è9n: (8)

However, for any s and for è satisfying���
n
p f(èÿ è�)s ÿ (èn ÿ è�)sg � O(1), (9)

the log-likelihood function satis®es

Ln(è)ÿ Ln(èn) � ~Gn(è)� ~Rn, (10)

where

~Gn(è) � Z0 n1=2f(èÿ è�)s ÿ (èn ÿ è�)sg ÿ I

2
[n1=2f(èÿ è�)s ÿ (èn ÿ è�)sg]2, (11)

and ~Rn � n1=2f(èÿ è�)s�1 ÿ (èn ÿ è�)s�1g~T n, with ~Tn � Z1 ÿ Cn1=2f(èÿ è�)s ÿ
(èn ÿ è�)sg � opn

(1).

Here I and C are de®ned as before and (Z0, Z1) is a bivariate mean-zero normal random

vector with var(Z0) � I , cov(Z0, Z1) � C and var(Z1) � J, where J � E[fl[s�1](Y ; è�)g2].

Now, when s is odd and (9) is true, ~Gn(è) has a unique maximum attained at

è� � f(èn ÿ è�)s � nÿ1=2 Z0=Ig1=s. When s is even, for values of è satisfying (9) and such

that sgn(èÿ è�) is constant, ~Gn(è) is concave. Furthermore, ~Gn(è) is symmetric around è�
and has two global maxima attained at è� � f(èn ÿ è�)s � nÿ1=2 Z0=Ig1=s and è�ÿ
f(èn ÿ è�)s � nÿ1=2 Z0=Ig1=s. Also, because n1=2f(èÿ è�)s�1 ÿ (èn ÿ è�)s�1g � o(1) when

(9) holds, ~Rn � opn
(1). This suggests the following results.

(R4.1) From (7),

Ln(è̂)ÿ Ln(è�) converges to �1 under èn (12)

and therefore the asymptotic distribution of the MLE no longer has an atom of

probability at è�.
(R4.2) When s is odd, Ln(è) has a unique maximum at è̂ satisfying

è̂ � è� � f(èn ÿ è�)s � nÿ1=2 Z0=I � opn
(nÿ1=2)g1=s

� èn � nb(sÿ1)ÿ1=2asÿ1 Z0=(sI)� opn
(nb(sÿ1)ÿ1=2): (13)
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(R4.3) When s is even, the MLE è̂ of è is equal to ~è1 or ~è2 satisfying, for j � 1, 2,

~è j ÿ è� � (ÿ1) j�1sgn(èn ÿ è�)f(èn ÿ è�)s � nÿ1=2 Z0=I � opn
(nÿ1=2)g1=s: (14)

(R4.4) Determining at which of ~è1 or ~è2 Ln(è) attains its global maximum is driven by

the behaviour of the remainder ~Rn evaluated at these two points. Thus, as argued

earlier for the case of inferences under è � è�, the sign of the MLE has to agree

asymptotically with the sign of ~Tn evaluated at either point. But at either point,
~Tn satis®es ~Tn � Z1 ÿ CIÿ1 Z0 � opn

(1). Thus, since Z1 ÿ CIÿ1 Z0 is a mean-zero

normal random variable, we conclude that the probability that the sign of è̂ÿ è�
is the same as the sign of èn ÿ è� converges to 1=2.

(R4.5) Evaluating Ln(è) at ~è1 and at ~è2, we obtain

Ln(è̂)ÿ Ln(èn) � 1
2
fZ0=

���
I
p
g2 � opn

(1): (15)

(R4.6) Because when s is even, ~Gn(è9n) � 0, then Ln(è9n)ÿ Ln(èn) � opn
(1). Thus, (15)

and (12) also hold when the data are generated under è9n.
(R4.7) From (R4.1), (R4.5), (R4.6) and equation (8) we conclude that

(i) The likelihood ratio test 2fLn(è̂)ÿ Ln(è�)g of the null hypothesis

H0 : è � è� has power that converges to 1 for detecting the alternative

hypothesis H1n : è � èn or H91n : è � è9n.
(ii) The likelihood ratio test 2fLn(è̂)ÿ Ln(èn)g of the null hypothesis

H0n : è � èn has power against the alternative hypothesis H1n : è � è9n that

converges to its level when s is even. When s is odd the power converges to

1.

(iii) From (i) and (ii) we conclude that the likelihood ratio test of H0 has power

converging to 1 for detecting local departures of order O(nÿb). Nevertheless,

when s is even the directionality of the departure is left inconclusive.

Now consider b � 1=(2s� 2). Under the regularity conditions stated in the Appendix, (7)

and (8) remain valid. However, when (9) holds,

Ln(è)ÿ Ln(èn) � �Gn(è)� �Rn(è), (16)

where

�Gn(è) � fZ0 � ds(è)2as�1Cgn1=2f(èÿ è�)s ÿ (èn ÿ è�)sg

ÿ I

2
[n1=2f(èÿ è�)s ÿ (èn ÿ è�)sg]2,

ds(è) � 1
4
f1� (ÿ1)sgjsgn(èÿ è�)ÿ sgn(èn ÿ è�)j,

and

�Rn(è) � ÿds(è)2as�1fZ1 � as�1 Jg � opn
(1):

When s is odd, ds(è) � 0 and therefore for values of è satisfying (9),

Ln(è)ÿ Ln(èn) � ~Gn(è)� opn
(1), (17)
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where ~Gn(è) is de®ned in (11). This suggests (and it is shown in the Appendix under

regularity conditions) that (R4.2) for the case 1=(2s� 2) , b , 1=(2s) remains valid when

b � 1=(2s� 2).

When s is even, equation (16) describes the shape of the log-likelihood function for

values of è satisfying (9) and the role of the constant C in determining its shape, as well as

suggesting the behaviour of likelihood-based inferences. Speci®cally, we have the following

results:

(R5.1) For values of è satisfying (9) such that sgn(èÿ è�) is constant, the function
�Gn(è) is concave. The two local maxima of �Gn(è) are attained at the points

è� � sgn(èn ÿ è�)f(èn ÿ è�)s � nÿ1=2 Z0=Ig1=s

and

è� ÿ sgn(èn ÿ è�)[(èn ÿ è�)s � nÿ1=2fZ0 � 2as�1Cg=I]1=s

.

(R5.2) From (R5.1) we would expect (and we show in the Appendix) that under

regularity conditions the maximum of Ln(è) is attained at one of the points ~è1

and ~è2 satisfying

~è1 � è� � sgn(èn ÿ è�)f(èn ÿ è�)s � nÿ1=2 Z0=I � opn
(nÿ1=2)g1=s

� èn � nÿ1=(s�1)asÿ1 Z0=(sI)� opn
(nÿ1=(s�1)) (18)

and

~è2 � è� ÿ sgn(èn ÿ è�)[(èn ÿ è�)s � nÿ1=2fZ0 � 2as�1Cg=I � opn
(nÿ1=2)]1=s

� 2è� ÿ èn ÿ nÿ1=(s�1)asÿ1fZ0 � 2as�1Cg=(sI)� opn
(nÿ1=(s�1)): (19)

(R5.3) By (16), (18) and (19),

Ln(~è1)ÿ Ln(~è2) � 2(Z1:0 � ó 2
1:0)� opn

(1), (20)

where

Z1:0 � as�1(Z1 ÿ CIÿ1 Z0) and ó 2
1:0 � a2s�2(J ÿ C2 Iÿ1):

Now, since (7) holds when b � 1=(2s� 2), (R4.1) for the case

1=(2s� 2) , b , 1=(2s) remains valid. From (20) we conclude that, asymptoti-

cally, the global maximum of Ln(è) is attained at ~è1 whenever Z1:0 � ó 2
1:0 . 0 and

at ~è2 otherwise. Since Z1:0 is a mean-zero normal random variable with variance

equal to ó 2
1:0, the probability that the MLE è̂ coincides with ~è1 (and therefore that

sgn(è̂ÿ è�) � sgn(èn ÿ è�)) converges to Ö(
��������
ó 2

1:0

p
) . 1=2.

(R5.4) The distribution of Z1:0 � ó 2
1:0 is the same as the limit law under èn of

nÿ1=2
X
fl[s�1](Yi; è

�)ÿ âl[s](Yi; è
�)g, (21)

where â � covfl[s�1](Y ; è�), l[s](Y ; è�)gvarfl[s](Y ; è�)gÿ1. Thus, the sign of
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(è̂ÿ è�) is asymptotically determined by (21). The sign of the random variable

l[s�1](Y ; è�)ÿ âl[s](Y ; è�) is interpreted as the effective score for estimating

sgn(èÿ è�) after taking into account the estimation of jèÿ è�j.
(R5.5) Suppose now that C � 0. Then �Gn(è) is symmetric around è�. Thus, for values of

è( j), j � 1, 2, satisfying (9) and such that è(1) ÿ è� � ÿ(è(2) ÿ è�) with, say,

sgn(è(1) ÿ è�) � sgn(èn ÿ è�), Ln(è(1)) differs, up to an opn
(1) term, from Ln(è(2))

by the value 2as�1fZ1 � as�1 Jg independent of è. But since, by (R5.3),

asymptotically sgn(è̂ÿ è�) � sgn(èn ÿ è�) if and only if 2as�1fZ1 � as�1 Jg. 0,

we conclude that for any pair of points equidistant from è� satisfying (9) the

likelihood will tend to be greater at the point whose difference from è� has the same

sign as the difference of the MLE from è�. Thus, likelihood-based con®dence

regions for è when the data are generated under èn will, with high probability for

large samples, be comprised of two disjoint intervals located at each side of è�, with

the interval located on the same side as the MLE having the largest length.

(R5.6) If C 6� 0, after some algebra it can be shown that Ln(è(1))ÿ Ln(è(2)) is, up to an

opn
(1) term, equal to

2as�1C

I
[as�1C ÿ In1=2f(è(2) ÿ è�)s ÿ (è̂ÿ è�)sg]� 2(Z1:0 � ó 2

1:0)

if Z1:0 � ó 2
1:0 . 0 or equivalently if sgn(è̂ÿ è�) � sgn(èn ÿ è�), and it is equal to

2as�1C

I
[ÿas�1C ÿ In1=2f(è(2) ÿ è�)s ÿ (è̂ÿ è�)sg]� 2(Z1:0 � ó 2

1:0)

if Z1:0 � ó 2
1:0 , 0 or equivalently if sgn(è̂ÿ è�) 6� sgn(èn ÿ è�). Thus, for values

of è( j), j � 1, 2, equidistant from è� and such that jè( j) ÿ è�j differs by a small

amount from jè̂ÿ è�j, the likelihood will be larger at the value è( j) located on the

same side of è� as the MLE. However, for moderate and large values of

j(è( j) ÿ è�)s ÿ (è̂ÿ è�)sj the sign of the difference Ln(è(1))ÿ Ln(è(2)) will be

essentially determined by the sign of the function

ÿ2as�1Cn1=2f(è(2) ÿ è�)s ÿ (è̂ÿ è�)sg
and will therefore depend on the sign of aC or equivalently of ènC. In particular, if

C has sign opposite to the sign of èn, so that aC , 0, then as the parameter points

move away from è� the likelihood function will tend to decrease more rapidly on

the side of è� opposite to where èn is located. The contrary will occur when

aC . 0. Thus, when the data are generated under èn, then, with high probability for

large samples, the relative length of the intervals comprising a likelihood-based

con®dence region for è will depend on the sign of ènC.

(R5.7) By (16), (18) and (19),

Ln(è̂)ÿ Ln(èn) � �Gn(~è1)I(Z1:0 � ó 2
1:0 . 0)

� f �Gn(~è2)� �Rn(~è2)gI(Z1:0 � ó 2
1:0 , 0)� opn

(1)

� 1
2
(Z0=

���
I
p

)2 ÿ 2(Z1:0 � ó 2
1:0)I(Z1:0 � ó 2

1:0 , 0)� opn
(1): (22)
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Thus, the likelihood ratio test 2fLn(è̂)ÿ Ln(èn)g of the null hypothesis

H0n : è � èn converges to the sum of a ÷2
1 random variable and an independent

truncated positive normal random variable.

(R5.8) Equation (22) is valid also when the data are generated under è � è9n, except that

Z0 � N (ÿ2as�1C, I) and Z1:0 � N (ÿ2ó 2
1:0, ó 2

1:0). Thus, the likelihood ratio test

2fLn(è̂)ÿ Ln(èn)g of the null hypothesis H0n : è � èn has power against the

alternative H1n : è � è9n that converges to a value strictly greater than its level but

bounded away from 1.

(R5.9) From (R5.7) and (R5.8), the likelihood ratio test of H0 : è � è� has power

converging to 1 for detecting local departures of order O(nÿ1=(2s�2)). Nevertheless,

the directionality of the departure is only correctly determined with probability

that converges to a number bounded away from 1.

(R5.10) From (22), the likelihood ratio test 2fLn(è̂)ÿ Ln(èn)g of the null hypothesis

H0n : è � èn converges in law under èn to a random variable that is

stochastically larger than the ÷2
1 random variable. This implies that likelihood-

based con®dence regions computed using the 1ÿ á critical point of the ÷2
1

distribution will not have uniform asymptotic coverage equal to 1ÿ á.

Finally consider b , 1=(2s� 2). Under the regularity conditions of the Appendix, (7)

holds and therefore the likelihood ratio test of the hypothesis H0 : è � è� has power

converging to 1 for detecting the alternative hypotheses H1n : è � èn and H91n : è � èn.

Furthermore, (8) holds for all values of s. Thus, 2fLn(è̂)ÿ Ln(èn)g converges in probability

to �1 under è9n. Thus, the likelihood ratio test of the hypothesis H0n : è � èn has power

converging to 1 for detecting the alternative hypothesis H1n : è � è9n. We conclude that

departures from è� of order O(nÿb) are detected with a probability tending to 1 and the

directionality of the departure is ®rmly determined.

Figure 1 illustrates the variety of likelihood functions that arise. More detailed properties

are summarized in the previous results.

Remark. When l(s�1)(Y ; è�) vanishes identically but l(s�3)(Y ; è�) is not zero, the

determination of the sign of (è̂ÿ è�) under è� is driven asymptotically by higher-order

terms of the log-likelihood expansion. Speci®cally, it can be shown that under è�,
sgn(è̂ÿ è�) is asymptotically determined by the sign of the sum of residuals from the

population least-squares regression of l[s�3](Yi; è
�) on l[s](Yi; è

�). Also, in this case, Z1, J

and C are all equal to 0. Then, from (16), Ln(è9n)ÿ Ln(èn) � opn
(1) when s is even and

b � 1=(2s� 2). Thus, the likelihood ratio test of H0n : è � èn has power converging to its

level for detecting the alternative H1n : è � è9n. A similar situation occurs in the example of

Section 2 if H -(á0) � 0 and the ®fth derivative Hv(á0) is not equal to 0. When

l(s�1)(Yi; è
�) does not vanish identically but is equal to Kl(s)(Yi; è

�) for some non-zero

constant K, the reparametrization ø � èÿ è� � Kfs(s� 1)gÿ1(èÿ è�)2 yields a model with

1st, . . . , (sÿ 1)th and (s� 1)th log-likelihood derivatives that vanish identically at ø� � 0,

so that the above remarks hold for the estimation of the sign of ø. Interestingly, in this case

the likelihood ratio test of H0n : è � èn when s is even and b � 1=(2s� 2) has power for

detecting the alternative H1n : è � è9n converging to a number strictly greater than its level
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Figure 1. Schematic forms of Ln(è)ÿ Ln(è̂) for s even; data generated under èn � è� � anÿb. (a)

b . 1=(2s): two log-likelihoods with è̂ � è�, asymptotic probability 1=2. (b) b . 1=(2s): two bimodal

log-likelihoods with è̂ � è̂(1) or è̂ � è̂(2), asymptotic probability 1=2. (c) b � 1=(2s): two log-

likelihoods with è̂ � è�, asymptotic probability less than 1=2. (d) b � 1=(2s): two bimodal log-

likelihoods with è̂ � è̂(1) or è̂ � è̂(2), asymptotic probability greater than 1=2. (e) 1=(2s� 2) ,
b , 1=(2s): dotted curve, global maximum at è̂(1); dashed curve, global maximum at è̂(2); asymptotic

probability of both types 1=2. (f) b � 1=(2s� 2): as for (e) except that the asymptotic probability of

the dotted curve is greater than 1=2.

(a)

θ*θn θ*θnθ^(2) θ^(1)

(b)

n21/(2s)

θ* θn

(c)

θ*θ^(2) θn θ^(1)

n21/(2s)

(d)

θ*θ^(2) θn θ^(1)

n2b nb/(s 2 1)21/2

(e)

θ*θ^(2) θn θ^(1)

n21/(2s 1 2)

(f)

n21/(s 1 1)
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even though the difference Ln(~è1)ÿ Ln(~è2) � opn
(1). Thus, the likelihood ratio test of the

composite null hypothesis H90 : è. è� remains asymptotically ineffective for detecting the

alternative hypothesis H91 : è, è�. Further terms of the log-likelihood expansion are required

if both l(s�1)(Yi; è
�) and l(s�3)(Yi; è

�) vanish identically. Alternatively, a second

reparametrization is needed if l(s�1)(Yi; è
�) is linearly dependent with l(s)(Yi; è

�) and the

(s� 3)th and sth derivatives of the log-likelihood under the initial reparametrization are also

linearly dependent.

3.4. Asymptotic properties under è = è�

The following two theorems establish the asymptotic distribution of the MLE of è and of the

likelihood ratio test statistic when è � è� for odd and even values of s. They are special

cases of the Theorems 3 and 4 stated in Section 4. We nevertheless state them here for the

sake of completeness.

Theorem 1. Under regularity conditions (A1)±(A7), (B1) and (B2) of Section 4.2, when s is

odd: (a) the MLE è̂ of è exists when è � è�, it is unique with a probability tending to 1 and

it is a consistent estimator of è when è � è�; (b) n1=(2s)(è̂ÿ è�) ? Z1=s, where

Z � N (0, Iÿ1); and (c) 2fLn(è̂)ÿ Ln(è�)g ? ÷2
1.

Theorem 2. Under regularity conditions (A1)±(A7) and (B1)±(B3) of Section 4.2, when s is

even: (a) the MLE è̂ of è exists when è � è�, it is unique with a probability tending to 1 and

it is a consistent estimator of è when è � è�; (b) n1=(2s)(è̂ÿ è�) ? (ÿ1)B Z1=s I(Z . 0),

where B is a Bernoulli random variable with success probability equal to 1=2, and

Z � N (0, Iÿ1) independent of B; and (c) 2fLn(è̂)ÿ Ln(è�)g ? Z�2 I(Z�. 0), where

Z� � N (0, 1).

Theorems 1 and 2 imply that when the Fisher information is zero at a parameter è� then,

under suitable regularity conditions, there exists s such that n1=2(è̂ÿ è�)s is asymptotically

normally distributed with variance that attains the Bhattacharyya bound of order s for

unbiased estimators of (èÿ è�)s evaluated at è�.
In the Appendix we give the proofs of Theorems 1 and 2. These proofs essentially rely

on a ®rst-order expansion of the score function in order to determine the asymptotic

distribution of the roots of the score equation, and then on the expansion of the remainder

Rn to determine at which of these roots the likelihood is maximized. In particular, the

proofs show that the difference between the likelihood ratio test statistic and its limiting

random variable is of order Op(nÿ1=(2s)) and, when s is even, this difference is positive. The

difference between the respective cumulative distribution functions is of order O(nÿ1=(2s))

when s is even, but it is of order O(nÿ1=s) when s is odd (Cox and Reid 1987a).

Some but not all of the above results when the data are generated under è � è� can be

obtained by reparametrization. If s is odd, one can use the one-to-one transformation

ë � è� � (èÿ è�)s to show that the model admits a regular parametrization (Bickel et al.

1993, Section 2.1, Proposition 1) and hence the results of Theorem 1 follow. In fact, this
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argument shows that the model is locally asymptotically normal (LAN) at ë � è� with

normalizing constant of order O(n1=2) (Ibragimov and Has'minskii 1981, Section 2.1,

Theorem II.1.2; Bickel et al. 1993, Section 2.1. Proposition 2). In particular, the LAN

property implies that the optimal rate for estimating ë under ë � è� is no better than

Op(nÿ1=2), and thus the optimal rate for estimating for è is no better than Op(nÿ1=(2s))

(Ibragimov and Has'minskii 1981, Section 2.9, Lemma 9.1). Interestingly, the second

derivative of the log-likelihood in the reparametrized model does not exist at ë � 0 unless

all of the derivatives of log f (y; è) at è � è� of order s� 1 to 2sÿ 1 are 0. When s is

even, the transformation ë � è� � (èÿ è�)s in effect yields inference only about jèÿ è�j.

3.5. Example

Suppose that Yi � (Wi, X i), i � 1, . . . , n, are independent bivariate random variables.

Suppose that the marginal law of X i is known and that, conditional on X i,

Wi � exp(ÿèX i)ÿ
Xsÿ1

k�0

(ÿ1)k

k!
èk X k

i � åi, (23)

with åi � N (0, ó 2). Suppose that ó 2 is known but è is unknown. A simple calculation shows

that the ®rst sÿ 1 derivatives of the log-likelihood with respect to è evaluated at è � 0 are

identically equal to zero. Furthermore, at è � 0, l[s](Yi; è
�) � (s!)ÿ1ó ÿ2(ÿ1)såi X

s
i and

l[s�1](Yi; è
�) � (s!)ÿ1ó ÿ2(ÿ1)s�1åi X

s�1
i . Thus when s is odd, n1=(2s)(è̂ÿ 0) ? Z1=s, and

when s is even, n1=(2s)(è̂ÿ 0) ? (ÿ1)B Z1=s I(Z . 0), where Z � N (0, Iÿ1) with

I � f(ó s!)ÿ2 E(X 2s
i )gÿ1. The random variable B is Bernoulli with success probability 1=2

independent of Z. As noted before, the distribution of B follows because it is the limiting

distribution of the sign of the sequence Tn in (6). In this example, Tn is equal toXn

i

åi

(ÿ1)s�1 X s�1
i

(s� 1)!
ÿ ã

(ÿ1)s X s
i

s!

( )
, (24)

where ã � ÿ(s� 1)ÿ1E(X 2s�1
i )E(X 2s

i )ÿ1. We have chosen this example because it offers a

nice heuristic explanation of why the sign of the MLE of è is asymptotically equivalent to

the sign of Tn. Speci®cally, Taylor-expanding exp(ÿèX i), we obtain that (23) is the same as

Wi � ès (ÿ1)s X s
i

s!
� ès�1 (ÿ1)s�1 X s�1

i

(s� 1)!
� o(ès�1)� åi: (25)

Letting â1 denote ès, â2 denote sgn(è), and de®ning ~X1i � (s!)ÿ1(ÿ1)s X s
i and

~X 2i � f(s� 1)!gÿ1(ÿ1)s�1 X s�1
i ÿ ã(s!)ÿ1(ÿ1)s X s

i , the model (25) with unrestricted è is the

same as the model

Wi � â1(1ÿ â1=s
1 â2) ~X1i � â2â1â

1=s
1

~X 2i � o(â(s�1)=s
1 )� åi, (26)

where â1 > 0 and â2 2 fÿ1, 1g. Because, by construction, ~X 1i and ~X2i are uncorrelated, the

MLEs of â1(1ÿ â1=s
1 â2) and of â2â1â

1=s
1 are asymptotically independent. Furthermore, under

â1 � 0, i.e. under è � 0, the MLE of â1(1ÿ â1=s
1 â2) is asymptotically equivalent to the MLE
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â̂1 of â1. Thus, asymptotically, inferences about â1 in model (26) are equivalent to inferences

about â1 under the linear regression model Wi � â1
~X1i � åi, with â1 > 0. The MLE of

â2â1â
1=s
1 in (26) is asymptotically equivalent to the least-squares estimator in the linear

regression of Wi on ~X 2i. Thus, conditional on â̂1 . 0, the MLE of â2 is asymptotically

equivalent to the sign of the MLE of â2â1â
1=s
1 , i.e. the sign ofX
Wi

~X 2i,

which under â1 � 0 is asymptotically equivalent to the sign of (24).

4. Inferences in multidimensional parametric models

4.1. Introduction

In this Section, we consider the estimation of a p 3 1 parameter vector è � (è1, è2, . . . , èp)

indexing the law f (y; è) when the information matrix at a point è� is singular and of rank

pÿ 1 and log f (y; è) is differentiable up to a speci®c order. In what follows S j(è) denotes

the score with respect to è j, @ log f (Y ; è)=@è j, 1 < j < p, and S j denotes S j(è
�). The rank

of the information matrix at è� is pÿ 1 if and only if pÿ 1 elements of the score vector, say

the last pÿ 1 scores,

S2, . . . , Sp are linearly independent (27)

and the remaining score is equal to a linear combination of them, i.e.

S1 � K(S2, . . . , Sp)T (28)

for some 1 3 ( pÿ 1) vector of constants K. In this Section we show that when (27) and (28)

hold the MLEs of some or all of the components of è will converge at rates slower than

Op(nÿ1=2). Furthermore, we derive the asymptotic distribution of the MLE of è� and of the

likelihood ratio test statistic for testing H0 : è � è� versus H1 : è 6� è�.
The informal derivation of the asymptotic distribution of the MLE of è in Section 3 relied

heavily on the ®rst and possibly higher-order derivatives of the log-likelihood at è� being

identically equal to 0. When è has more than one component, the singularity of the

information matrix does not imply the vanishing of any of the scores corresponding to the

components of è, so the derivations in Section 3 cannot be directly extended to the

multiparameter problem. Our derivation of the asymptotic distribution of the MLE è̂ of è�
and of the likelihood ratio test is carried out in two steps. First, we consider the more

tractable special case in which the following two assumptions that resemble the key

conditions of the one-dimensional problem are satis®ed: (a) the score corresponding to è1 is

zero at è�, i.e. S1 � 0 and K � 0 in equation (28); and (b) higher-order partial derivatives of

the log-likelihood with respect to è1 at è� are possibly also zero, but the ®rst non-zero

higher-order partial derivative of the log-likelihood with respect to è1 evaluated at è� is not a

linear combination of the scores S2, . . . , Sp. Analogously to the one-parameter problem, we

show that for this case there exists a (positive integer) power of è1 ÿ è� that is estimable at
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rate
���
n
p

. When the parity of the power is odd the asymptotic distribution of the likelihood

ratio test statistic is chi-squared with p degrees of freedom. When the parity of the power is

even, the likelihood ratio statistic behaves asymptotically as that of an experiment based on

data Y1, . . . , Yn in which è1 ÿ è� is known to lie in a closed half real line. Speci®cally, the

asymptotic distribution is a mixture of chi-squared distributions with p and pÿ 1 degrees of

freedom and mixing probabilities equal to 1=2. Next, for a general model with information

matrix of rank pÿ 1 at è�, we reduce the derivation of the asymptotic distribution of the

desired statistics by working with a reparametrization of the model that satis®es (a) and (b).

4.2. Assumptions

We assume that Y1, Y2, . . . , Yn are n independent copies of a random variable Y with density

f (y; è�) with respect to a carrying measure. Let l(y; è) denote log f (y; è) and, for any

1 3 p vector r � (r1, . . . , rp), let l(r)(y; è) denote @ r: log f (y; è)=@ r1è1@
r2è2 . . . @ r pèp,

where r: �P p
k�1 rk . Write Ln(è) and L(r)

n (è) for
P

l(Yi; è) and
P

l(r)(Yi; è) respectively, and

de®ne kèk2 �P p
k�1è

2
k . We assume the following regularity conditions:

(A1) è� takes its value in a compact subset È of R p that contains an open

neighbourhood N of è�.
(A2) Distinct values of è in È correspond to distinct probability distributions.

(A3) Efsupè2Èjl(Y ; è)jg,1.

(A4) With probability 1, the derivative l(r)(Y ; è) exists for all è in N and r: < 2s� 1

and satis®es Efsupè2N jl(r)(Y ; è)jg,1. Furthermore, with probability 1 under è�,
f (Y ; è) . 0 for all è in N .

(A5) For s < r: < 2s� 1, E[fl(r)(Y ; è�)g2] ,1.

(A6) When r: � 2s� 1 there exists å. 0 and some function g(Y ) satisfying

Efg(Y )2g,1 such that for è and è9 in N , with probability 1,

jL(r)
n (è)ÿ L(r)

n (è9)jj < jjèÿ è9jå
X

g(Yi): (29)

(A7) Conditions (27) and (28) hold with probability 1 for some 1 3 ( pÿ 1) constant

vector K.

We initially require the following additional conditions:

Let S
(s� j)
1 , j � 0, 1, denote @ s� j l(Y ; è)=@ès� j

1 jè� .
(B1) With probability 1, @ j l(Y ; è)=@è j

1jè� � 0, 1 < j < sÿ 1.

(B2) For all 1 3 ( pÿ 1) vectors K, S
(s)
1 6� K(S2, . . . , Sp)T with positive probability.

(B3) If s is even, then for all 1 3 p vectors K9, S
(s�1)
1 6� K9(S

(s)
1 , S2, . . . , Sp)T with

positive probability.

4.3. Asymptotic results under (A1)±(A7) and (B1)±(B3)

The following theorems state the asymptotic distribution of è̂ and of the likelihood ratio test

statistic 2fLn(è̂)ÿ Ln(è�)g when l(y; è) satis®es conditions (A1)±(A7) and (B1)±(B3). As
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in the one-dimensional problem, the asymptotic behaviour depends on the parity of s. In what

follows, I denotes the covariance matrix of (S
(s)
1 =s!, S2, . . . , Sp), I jk denotes the ( j, k)th

entry of Iÿ1, Z � (Z1, Z2, . . . , Zp)T denotes a mean-zero normal random vector with

variance equal to Iÿ1 and B denotes a Bernoulli variable with success probability equal to

1=2 that is independent of Z.

Theorem 3. Under (A1)±(A7) and (B1)±(B2), when s is odd: (a) the MLE è̂ of è exists when

è � è�, it is unique with a probability tending to 1, and it is a consistent estimator of è when

è � è�; (b)

n1=(2s)(è̂1 ÿ è�1 )

n1=2(è̂2 ÿ è�2 )

..

.

n1=2(è̂p ÿ è�p)

2666664

3777775 ?

Z
1=s
1

Z2

..

.

Zp

26666664

37777775;

and (c) 2fLn(è̂)ÿ Ln(è�)g ? ÷2
p.

Theorem 4. Under (A1)±(A7) and (B1)±(B3), when s is even: (a) the MLE è̂ of è exists

when è � è�, it is unique with a probability tending to 1, and it is a consistent estimator of è
when è � è�; (b)

n1=(2s)(è̂1 ÿ è�1 )

n1=2(è̂2 ÿ è�2 )

..

.

n1=2(è̂p ÿ è�p)

2666664

3777775 ?

(ÿ1)B Z
1=s
1

Z2

..

.

Zp

26666664

37777775I(Z1 . 0)�

0

Z2 ÿ (I21=I11)Z1

..

.

Zp ÿ (I p1=I11)Z1

266666664

377777775I(Z1 , 0), (30)

and (c)

2fLn(è̂)ÿ Ln(è�)g ?
Xp

j�1

Z�2
j I(Z�1 . 0)�

Xp

j�2

Z�2
j I(Z�1 , 0),

where Z�j , j � 1, 2, . . . , p, are independent N (0, 1) random variables. That is, the

asymptotic distribution of the likelihood ratio test statistic is a mixture of a ÷2
pÿ1 and a ÷2

p

random variable, with mixing probabilities equal to 1=2.

The second term of the limiting random vector in (30) is the MLE of the mean of Z

when the mean of the ®rst component Z1 is known to be 0. The differences

Zj ÿ (I j1=I11)Z1 are the residuals Zj ÿ E(ZjjZ1) from the population (linear) regression

of Zj on Z1.

In Theorems 3 and 4, the covariance of Z, Iÿ1, is the Bhattacharyya variance bound of

order s for unbiased estimators of [(è1 ÿ è�1 )s, è2, . . . , èp] evaluated at è � è�.
Bhattacharyya (1946) gives the multivariate generalization of his univariate bound given

in Section 3.
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In the proof of Theorem 4 (equation (33)) we show that when s is even and for

n1=2[(è1 ÿ è�1 )s, è2 ÿ è�2 , . . . , èp ÿ è�p] bounded, the log-likelihood is, up to an op(1) term,

a function of jè1 ÿ è�1 j, è2, . . . , èp. Thus, the calculation of the statistic that asymptotically

determines the sign of the MLE of èÿ è� requires a higher-order expansion of the log-

likelihood. This is shown in the Appendix to effectively yield estimation of the

sign of è1 ÿ è�1 from the sign of the product of the MLE of èÿ è� and the sum of

residuals of the population least-squares regression of the vector

[l[s�1,0,..., 0](Yi, è
�), l(1,1,0,..., 0)(Yi, è

�), . . . , l(1,0,..., 0,1)(Yi, è
�)]

on the vector

[l[s,0,..., 0](Yi, è
�), l(0,1,0,..., 0)(Yi, è

�), . . . , l(0,0,..., 0,1)(Yi, è
�)], i � 1, . . . , n,

(equation (44), where l[s� j,0,... , 0](Yi, è
�) � l(s� j,0,... , 0)(Yi, è

�)=(s� j)!. If interest is focused

on è1, the other components of the vector è being regarded as nuisance parameters, an

analysis of the local behaviour of inferences near è1 � è�1 similar to that carried out in

Section 3 would reveal several possibilities as in the one-parameter problem. In particular, it

would indicate the possibility of pro®le likelihood con®dence regions for è1 being comprised

of two disjoint intervals located at each side of è�1 when the data are generated under

è1 � anÿb and 1=(2s� 2) < b , 1=(2s).

The results of Theorem 4 when s is even are strongly connected with the results of

Geyer (1994) on maximum likelihood estimation subject to a boundary constraint. See also

the related results under more stringent regularity conditions of Moran (1971) on the

distribution of the MLE, and of Chant (1974) and Self and Liang (1987) on the distribution

of the likelihood ratio test statistic, the latter drawing from the earlier work of Chernoff

(1954) on the distribution of the likelihood ratio test statistic of a composite null hypothesis

when the true parameter is in the interior of the parameter space but on the boundary of the

parameter sets de®ning the null and alternative hypothesis. The essence of the connection is

that the asymptotic distribution of the MLE of [(è1 ÿ è�1 )s, è2, . . . , èp] at è � è� in the

submodel in which è1 is known to satisfy è1 > è�1 can be obtained from the results of

Geyer (1994) after reparametrization. This distribution agrees with the asymptotic

distribution of the MLE of [(è1 ÿ è�1 )s, è2, . . . , èp] given in Theorem 4. Thus inference

about [jè1 ÿ è�1 j, è2, . . . , èp] is unaffected by the constraint è1 > è�1 .

4.4. Asymptotic results under (A1)±(A7) when (B1)±(B3) do not hold

We now derive the asymptotic distributions of the MLE and of the likelihood ratio test

statistic when conditions (A1)±(A7) hold but conditions (B1)±(B3) are not true. The

fundamental idea behind our derivation is the iterative reparametrization of the model until

conditions (B1)±(B3) are satis®ed. Speci®cally, when equation (28) holds with K 6� 0, we

start with a reparametrization ø � ø(è) such that: (i) the scores corresponding to ø2, . . . , øp

evaluated at ø� � ø(è�) are equal to the scores corresponding to è2, . . . , èp in the originally

parametrized model evaluated at è�; and (ii) the score corresponding to ø1 evaluated at ø� is

orthogonal to, i.e. uncorrelated with, the vector of scores corresponding to ø2, . . . , øp
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evaluated at ø�. Conditions (i) and (ii) imply that the score for ø1 evaluated at ø� is

simultaneously orthogonal and linearly dependent with the vector of scores for ø2, . . . , øp

evaluated at ø�, which in turn implies that the score for ø1 evaluated at ø� is equal to 0.

The reparametrization ø � è � [0, KT]T(è1 ÿ è�1 ) satis®es conditions (i) and (ii) (Cox and

Reid 1987b). Notice that under this reparametrization ø1 � è1 and ø� � è�. Furthermore,

the constant K satisfying condition (28) is equal to the population least-squares projection

constant, i.e. K � E(S1Ã)E(ÃÃT)ÿ1, where Ã � (S2, . . . , Sp)T. In the model parametrized by

ø the score for ø1 evaluated at ø� is equal to 0. To check if conditions (B1)±(B2) are

satis®ed in this model with s � 2, we need to evaluate the second partial derivative with

respect to ø1 of the reparametrized log-likelihood evaluated at ø�. If it is neither equal to

zero nor a linear combination of the scores for the remaining parameters, then the

reparametrized model satis®es conditions (B1) and (B2) with s � 2. Otherwise, we set K2

equal to the coef®cients of the linear combination or K2 � 0 if this derivative is zero. That is,

we set K2 equal to the population least-squares projection constant, E(~S(2)
1 Ã)E(ÃÃT)ÿ1, where

~S(2)
1 is the second partial derivative of the reparametrized log-likelihood with respect to ø1

evaluated at ø�. Next, we consider the new reparametrization ø � è� [0, K]T(è1 ÿ è�1 ) �
[0, 1=2K2]T(è1 ÿ è�1 )2. The newly reparametrized model satis®es ø1 � è1 and ø � è� when

è � è�. Under the new parametrization: (a) the scores for ø2, . . . , øp evaluated at

ø� � ø(è�) remain unchanged; and (b) the second partial derivative of the log-likelihood

with respect to ø1 evaluated at ø� and the vector of scores for ø2, . . . , øp evaluated at ø�
are orthogonal. Thus, in particular, in the newly reparametrized model the ®rst and second

partial derivatives of the log-likelihood with respect to ø1 evaluated at ø� are equal to zero

and the scores for the remaining parameters are equal to the scores for è2, . . . , èp in the

originally parametrized model. For the newly parametrized model, we now check whether the

third partial derivative of the log-likelihood with respect to ø1 is neither zero nor a linear

combination of the scores for the remaining parameters. If that is the case, the iterative

reparametrization stops and the reparametrized model satis®es conditions (B1) and (B2) with

s � 3. Otherwise, the process of reparametrization continues until condition (B2) is satis®ed.

If s is even, we now need to check further that condition (B3) is satis®ed by the

reparametrized model. If this condition fails, further reparametrization is needed. However, in

this paper we consider only models in which condition (B3) is satis®ed if condition (B2)

holds.

We will henceforth assume that the following conditions hold for some positive integer s.

(C1) Set K0 � 0 and A0 equal to the p 3 1 null vector. With probability 1, there exist

1 3 ( pÿ 1) (possibly null) vectors K1, K2, . . . , Ksÿ1 de®ned iteratively for

1 < j < sÿ 1 by

@ j l Y ; èÿ
Xjÿ1

l�0

Al(è1 ÿ è�1 ) l

( )
@è j

1

�����
è�
� K j(S2, S3, . . . , Sp)T, (31)

where A j denotes the p 3 1 vector [0, ( j!)ÿ1 K j]
T.
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(C2) For j � 0, 1, de®ne

~S(s� j)
1 �

@ s� j l Y ; èÿ
Xsÿ1

l�0

Al(è1 ÿ è�1 ) l

( )
@ès� j

1

�����
è�
:

Then with probability greater than 0, ~S(s)
1 is neither zero nor a linear combination of

S2, . . . , Sp and, if s is even, ~S(s�1)
1 is neither zero nor a linear combination of

~S(s)
1 , S2, . . . , Sp.

Note that K1 de®ned in (C1) exists and is equal to K de®ned in (28). Furthermore, K j is

the population least-squares projection constant of the random variable on the left-hand side

of (31) on the vector (S2, S3, . . . , Sp).

Let I denote the covariance of (~S(s)
1 =s!, S2, . . . , Sp), let I jk denote the ( j, k)th element of

Iÿ1, let Z � (Z1, Z2, . . . , Zp)T denote a mean-zero normal random vector with covariance

Iÿ1 and let B be a Bernoulli random variable with success probability 1=2 independent of Z.

Theorem 5. Under (A1)±(A7), (C1) and (C2): (a) the MLE è̂ of è exists when è � è�, it is

unique with a probability tending to 1, and it is a consistent estimator of è when è � è�; (b)

when s is odd, we have

(i)

n1=(2s)(è̂1 ÿ è�1 )

n1=2f(è̂2 ÿ è�2 )�
Xsÿ1

j�0

( j!)ÿ1 K j1(è̂1 ÿ è�1 ) jg

..

.

n1=2f(è̂ p ÿ è�p)�
Xsÿ1

j�0

( j!)ÿ1 K j( pÿ1)(è̂1 ÿ è�1 ) jg

2666666666664

3777777777775
?

Z
1=s
1

Z2

..

.

Zp

26666664

37777775,

where K jl is the lth element of K j, 0 < j < sÿ 1, 1 < l < pÿ 1,

(ii) 2fLn(è̂)ÿ Ln(è�)g ? ÷2
p;

and (c) when s is even, we have

(i)

n1=(2s)(è̂1 ÿ è�1 )

n1=2f(è̂2 ÿ è�2 )�
Xsÿ1

j�0

( j!)ÿ1 K j1(è̂1 ÿ è�1 ) jg

..

.

n1=2f(è̂ p ÿ è�p)�
Xsÿ1

j�0

( j!)ÿ1 K j( pÿ1)(è̂1 ÿ è�1 ) jg

2666666666664

3777777777775
?

W1

W2

..

.

W p

26666664

37777775,
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where

W1

W2

..

.

W p

266664
377775 �

(ÿ1)B Z
1=s
1

Z2

..

.

Zp

26666664

37777775I(Z1 . 0)�

0

Z2 ÿ (I21=I11)Z1

..

.

Zp ÿ (I p1=I11)Z1

266666664

377777775I(Z1 , 0),

(ii) 2fLn(è̂)ÿ Ln(è�)g ? P p
j�1 Z�2

j I(Z�1 . 0)�P p
j�2 Z�2

j I(Z�1 , 0), where Z�j , j � 1, 2,

. . . , p, are independent N (0, 1) random variables.

Notice that when conditions (B1)±(B3) hold, ~S(s� j)
1 is equal to S

(s� j)
1 , j � 0, 1, because

the vectors K j, j � 1, . . . , sÿ 1, de®ned in (31) are all equal to 0. Thus, Theorems 3 and 4

are special cases of Theorem 5. We nevertheless stated these theorems separately because

our proof of Theorem 5 builds up from the asymptotic results under the more stringent

conditions (B1)±(B3).

In proving Theorems 3 and 4 (equation (39)) we show that the difference between the

likelihood ratio test statistic and its limiting random variable is of order Op(nÿ1=(2s)). The

difference between the respective cumulative distribution functions is of order O(nÿ1=(2s))

when s is even but it is of order O(nÿ1=s) when s is odd (Cox and Reid 1987a).

4.5. Example

We now apply the iterative reparametrization and the results of Theorem 5 to derive the

asymptotic distribution of the estimators of the example of Section 2. Suppose, ®rst, that ó is

known and equal to ó�. Let è � (á1, â, á0)T, and è� � (á�1 , â�, á�0 )T, where á�1 � 0, á�0 is

a ®xed and arbitrary value, and â� � 0 without loss of generality. The individual contribution

to the derivative of the log-likelihood evaluated at è � è�, (S1, S2, S3), is given by

[RH9(á�0 )ó�ÿ1Y , Ró�ÿ2Y , fRÿ (1ÿ R)A0gH9(á�0 )],

where A0 � e H(á�
0

)f1ÿ e H(á�
0

)gÿ1. Since S1 � K11 S2, where K11 � ó�H9(á�0 ) and S2 and S3

are linearly independent, we consider the reparametrization (á1, â, á0)! (á1, â �
K11á1, á0). The second derivative of the log-likelihood with respect to á1 evaluated at

è � è� in the reparametrized model is equal to

~S(2)
1 � R[fH9(á�0 )g2 � H 0(á�0 )ó�ÿ2

Y 2]ÿ (1ÿ R)[fH9(á�0 )g2 � H 0(á�0 )]A0: (32)

Since ~S(2)
1 is a function of Y 2, it cannot be a linear combination of S2 and S3. Thus, the

iterative reparametrization stops and by Theorem 5,

[n1=4á̂1, n1=2(â̂� K11á̂1), n1=2(á̂0 ÿ á�0 )]

converges under è � è� to the random vector W � (W1, W2, W3) given in part (c)(i) of that
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Theorem with I equal to the covariance of (~S(2)
1 =2, S2, S3). The distribution of W coincides

with the asymptotic distribution of the estimators found in Section 2 when ó is known.

Suppose now that ó is unknown. With è and è� rede®ned as è � (á1, â, á0, ó )T and

è� � (á�1 , â�, á�0 , ó�)T, the derivative of the log-likelihood with respect to ó evaluated at

è � è�, S4, is equal to Ró�ÿ3

(Y 2 ÿ ó�2

). Since S4 is linearly independent of S1, S2 and S3,

we consider the reparametrization (á1, â, á0, ó )! (á1, â� K11á1, á0, ó ). In the repar-

ametrized model the individual contribution to the second derivative of the log-likelihood

with respect to á1 evaluated at è � è� remains equal to (32). However, now ~S(2)
1 can be

written as K22S3 � K23S4, where K22 � fH9(á�0 )gÿ1[fH9(á�0 )g2 � H 0(á�0 )] and K23 �
ó�H 0(á�0 ). Thus, we consider the new reparametrization

(á1, â, á0, ó )! (á1, â� K11á1, á0 � 2ÿ1 K22á
2
1, ó � 2ÿ1 K23á

2
1):

In the newly reparametrized model, the third partial derivative of the log-likelihood with

respect to á1 evaluated at è � è� is equal to

~S(3)
1 � ÿ3fH9(á�0 )gÿ1fH 0(á�0 )g2ó�ÿ1Y � H -(á�0 )ó�ÿ3Y 3:

This expression is a cubic polynomial in Y and therefore cannot be a linear combination of

the scores S2, S3 and S4. The iterative reparametrization therefore stops and by Theorem

5(b)(i),

[n1=6á̂1, n1=2(â̂� K11á̂1), n1=2(á̂0 ÿ á�0 � 2ÿ1 K22á̂
2
1), n1=2(ó̂ ÿ ó� � 2ÿ1 K23á̂

2
1)]

converges under è � è� to a normal random vector with mean 0 and covariance matrix I

equal to the covariance of (~S(3)
1 =6, S2, S3, S4), which agrees with the results derived in

Section 2.

5. Asymptotic properties of the second and higher-order
derivatives of the log-likelihood

The results in Sections 3 and 4 rely heavily on the asymptotic distribution of the second and

higher-order derivatives of the log-likelihood. These distributions are derived here as a

consequence of a general result stated in the following lemma on the properties of the high-

order derivatives of the logarithm of a function whose ®rst sÿ 1 derivatives vanish at a point.

This lemma, implicit from the exlog relations described in Barndorff-Nielsen and Cox (1989,

pp. 140±142), is shown in the Appendix to follow immediately from FaaÁ di Bruno's (1859, p.

3) formula on the derivatives of a composition of two functions. De®ne the 1 3 p vectors

r( j) � ( j, 0, 0, . . . , 0), ~R( j) � ( j, 1, 0, . . . , 0), 0 < j < 2s� 1, and a � (1, 2, 0, . . . , 0).

Lemma 1. Let h : Ù! R, where Ù is an open set of R p. Suppose

@2s�1 h(u)=@ur1@ur2 . . . @ur p ,
P

ri � 2s� 1, exist at an interior point u� � (u�1 , u�2 ,

. . . , u�p) of Ù. De®ne G(u) � log h(u), and for r � (r1, r2, . . . , rp) and r: �Pri let
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h�r �
f@ r:h(u)=@ur1

1 @ur2

2 . . . @u
r p

p gju�
h(u�) ,

and

G(r)(u) � @ r:G(u)=@ur1

1 @ur2

2 . . . @ur p

p :

Then:

(i) for 1 < j < sÿ 1, h�r( j)
� 0 if and only if G(r( j))(u�) � 0.

Furthermore, if G(r(1))(u�) � . . . � G(r(sÿ1))(u�) � 0 then:

(ii) for s < j < 2sÿ 1, G(r( j))(u�) � h�r( j)
;

(iii) G(r(2s))(u�) � h�r(2s)
ÿ f(2s)!=2(s!)2gfG(r(s))(u�)g2;

(iv) G(r(2s�1))(u�) � h�r(2s�1)
ÿ (2s�1

s )G(r(s))(u�)G(r(s�1))(u�);
(v) for 1 < j < sÿ 1, G( ~R( j))(u�) � h�~R( j)

;

(vi) G( ~R(s))(u�) � h~R(s)
ÿ G(r(s))(u�)G( ~R(0))(u�);

(vii) G( ~R(s�1))(u�) � h�~R(s�1)
ÿ (s� 1)G(r(s))(u�)G(r(1))(u�)ÿ G(r(s�1))(u�)G( ~R(0))(u�);

(viii) G(a)(u�) � h�a ÿ 2G( ~R(1))(u�)G( ~R(0))(u�);
(ix) parts (v), (vi) and (vii) are also true if ~R( j) and a are de®ned as before but ~R( j)

has 0 in its second entry and 1 in its k th entry, and a has 0 in its second entry

and 2 in its k th entry, and k is any ®xed index between 3 and p.

The following corollary of Lemma 1 follows immediately from the central limit theorem

under the regularity conditions (A1), (A4), (A5) and (B1) of Section 4.2, since under

conditions (A1), (A4) and (A5), f (r)(Y ; è�)= f (Y ; è�) has zero mean and l(r)(Y ; è�) has

®nite variance for all r with r: < 2s� 1, and under condition (B1) the derivatives

l(r)(Y ; è�) can be obtained from Theorem 5. The corollary states the asymptotic behaviour

of the derivatives of the log-likelihood. For any r � (r1, r2, . . . , rp) let L(r)
n (è) denoteP

l(r)(Yi; è) and write l[r](Y ; è�) for f (r)(Y ; è�)=fm! f (Y ; è�)g, where m � max fr2, . . . ,

rpg.

Corollary 1. De®ne

I11 � E[fl[r(s)](Y ; è�)g2], I22 � E[fl[ ~R(0)](Y ; è�)g2],

I21 � I12 � Efl[r(s)](Y ; è�)l[ ~R(0)](Y ; è�)g,
C11 � Efl[r(s)](Y ; è�)l[r(s�1)](Y ; è�)g, C22 � Efl[ ~R(0)](Y ; è�)l[ ~R(1)](Y ; è�)g,
C12 � Efl[r(s)](Y ; è�)l[ ~R(1)](Y ; è�)g, C21 � Efl[ ~R(0)](Y ; è�)l[r(s�1)](Y ; è�)g:

Then, under assumptions (A1), (A4), (A5) and (B1) of Section 4.2:

(a) For s < j < 2sÿ 1,

nÿ1=2 L(r( j))
n (è�) � j!nÿ1=2

Xn

i

l[r( j)](Yi; è
�)

� Z r( j)
� op(1),
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where Z r( j)
is a mean-zero normal random variable. The variance of Z r(s)

is equal to (s!)2 I11.

(b) For 1 < j < sÿ 1,

nÿ1=2 L( ~R( j))
n (è�) � ( j!)nÿ1=2

Xn

i

l[ ~R( j)](Yi; è
�)

� Z ~R( j)
� op(1),

where Z ~R( j)
is a mean-zero normal random variable.

(c) nÿ1 L
(r(2s))
n (è�) � ÿf(2s)!=2gI11 � Op(nÿ1=2).

(d) nÿ1 L
(r(2s�1))
n (è�) � ÿf(2s� 1)!gC11 � Op(nÿ1=2).

(e) nÿ1 L
( ~R(s))
n (è�) � ÿs!I12 � Op(nÿ1=2).

(f) nÿ1 L
( ~R(s�1))
n (è�) � ÿ(s� 1)!fC12 � C21g � Op(nÿ1=2).

(g) nÿ1 L(a)
n (è�) � ÿ2C22 � Op(nÿ1=2).

6. Discussion

There are a number of directions in which the results of the present paper need to be

extended. The information matrix at è � è� may be of rank pÿ q, where 1 , q < p. For

example, in the model of Section 2, the rank is pÿ 2 if H9(á0) � 0. Then the structure of the

maximum likelihood estimate is similar to but more complex than that derived above for

q � 1, and the law of the likelihood ratio test statistic is a mixture of chi-squared distributions.

Even when conditions (B1) and (B2) of Section 4.2 hold, it is possible for the (s� 1)th and sth

derivatives of the log-likelihood with respect to è1 to be linearly dependent. Then the calculation

of the statistic that asymptotically determines the sign of è̂1 ÿ è�1 requires examination of higher-

order terms of the log-likelihood expansion and, in some cases, additional reparametrization.

If the parameter è is partitioned into a parameter î of interest and a nuisance parameter

ö, then inference about î independent of ö may raise special problems near è � è�,
especially if there is serious ambiguity over the sign of certain components in ö. For

example, in the special case discussed in Section 2, with the mean â as the parameter of

interest, the adjustment to the sample mean has a sign determined by the sign of á1; it can

then happen that the magnitude but not the direction of the adjustment is fairly well

determined. Then the con®dence set would be a pair of intervals. An interesting consequence

is that in such cases intervals for â obtained from the pro®le likelihood sometimes have the

wrong structure. This and more complex issues will not be discussed in the present paper.

Appendix

Proofs of Theorems 1±4

Theorems 1 and 2 are special cases of Theorems 3 and 4 when p � 1. Therefore we only
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need to prove Theorems 3 and 4. For simplicity of notation we prove the result for p � 2 and

state at the end of the proof the additional steps required to extend the result for an arbitrary

p. Let ~è � (~è1, ~èT
2 ) be a sequence satisfying [(~è1 ÿ è�1 )s, (~è2 ÿ è�2 )T] � Op(nÿ1=2). When

p � 2, è2 is a scalar. We nevertheless write the transpose of è2, indicated by the superscript

T, and use scalar transposition occasionally throughout the proof, to facilitate the extension

later to an arbitrary p. Throughout, if v is a vector of dimension p, we write v � Op(nÿá)

and v � op(nÿá) to indicate that all the elements of v are Op(nÿá) and op(nÿá), respectively.

Let (~ù1, ~ùT
2 ) � [n1=(2s)(~è1 ÿ è�1 ), n1=2(~è2 ÿ è�2 )T] and L( j1, j2)

n (è) � @ j1� j2 Ln(è)=@è j1
1 @è

j2
2 .

Denote L( j1, j2)
n (è�) by L( j1, j2)

n . By assumption (B1) L( j,0)
n � 0, 1 < j < sÿ 1, so, forming

the Taylor expansion of Ln(~è), around è� we obtain

Ln(~è) � Ln(è�)� ~ùs
1 nÿ1=2 L(s,0)

n

s!

� ��

� nÿ1=(2s) nÿ1=2 L(s�1,0)
n

(s� 1)!
~ù1

( )
� nÿ1=(2s)

Xsÿ1

j1�2

nÿ1=2 L(s� j1,0)
n

(s� j1)!
n(1ÿ j1)=(2s) ~ù j1

1

8<:
9=;

� nÿ1 L(2s,0)
n

(2s)!
~ùs

1

( )
� nÿ1=(2s) nÿ1 L(2s�1,0)

n

(2s� 1)!
~ùs�1

1

( )
� nÿ1 ä(2s�1,0)

n

(2s� 1)!
~ùs�1

1

( )24 3535

� ~ùT
2 nÿ1=2 L(0,1)

n

n o
� nÿ1=(2s) nÿ1=2 L(1,1)

n ~ù1

n o
�

Xsÿ1

j1�2

nÿ1=2 L( j1,1)
n

j1!
n(1ÿ j1)=(2s) ~ù j1

1

8<:
9=;

264
375

264

� nÿ1 L(s,1)
n

s!
~ùs

1

� �
� nÿ1=(2s) nÿ1 L(s�1,1)

n

(s� 1)!
~ùs�1

1

( )
�

X2s

j1�s�2

nÿ1 L( j1,1)
n

j1!
n(1ÿ j1)=(2s) ~ù j1

1

8<:
9=;

264
� nÿ1 ä

(2s,1)
n

(2s)!
n(1ÿs)=(2s) ~ù2s

1

( )#
� nÿ1 L(0,2)

n

2
~ù2

� �
� nÿ1=(2s) nÿ1 L(1,2)

n

2
~ù1 ~ù2

� ��

�
X2sÿ1

j1�2

nÿ1 L( j1,2)
n

(2� j1)!
n(1ÿ j1)=(2s) ~ù j1

1 ~ù2

2� j1

j1

 !8<:
9=;

� nÿ1 ä(2sÿ1,2)
n

(2s� 1)!
n(2ÿ2s)=(2s) ~ù2sÿ1

1 ~ù2

2s� 1

2sÿ 1

 !8<:
9=;
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�
X2s�1

k�3

X
j1� j2�k

j2>3, j1>0

nÿ1 L( j1, j2)
n

k!
nf(1ÿ j1)�(2ÿ j2)sg=(2s) ~ù j1

1 ~ù j2ÿ1
2

k

j1

 !8><>:
9>=>;

�
X

j1� j2�2s�1
j2>3, j1>0

nÿ1 ä( j1, j2)
n

(2s� 1)
nf(1ÿ j1)�(2ÿ j2)sg=(2s) ~ù j1

1 ~ù j2ÿ1
2

2s� 1

j1

 !8><>:
9>=>;
3775
3775

� Ln(è�)� ~ùs
1(A1n � nÿ1=(2s) A2n � nÿ1=(2s) A3n � A4n � nÿ1=(2s)(A5n � A6n))

� ~ùT
2fA7n � nÿ1=(2s)(A8n � A9n)� A10n � nÿ1=(2s)(A11n � A12n � A13n)

� A14n � nÿ1=(2s)(A15n � A16n � A17n � A18n � A19n)g,
where for j1 � j2 � 2s� 1, ä( j1, j2)

n � L( j1, j2)
n (�è)ÿ L( j1, j2)

n (è�), for some �è satisfying

k�èÿ è�k < kèÿ è�k and the terms A jn, 1 < j < 19 correspond to the terms in braces in

the order they appear.

By Corollary 1(a)±(b) of Section 5 and by ~ù1 � Op(1) and ~ù2 � Op(1), we have that

A3n � op(1) and A9n � op(1). By assumption (A5) and the weak law of large numbers,

nÿ1 L( j1, j2)
n � Op(1) for j1 � j2 < 2s� 1 and hence by ~ù1 � Op(1) and ~ù2 � Op(1),

A12n � op(1), A16n � op(1) and A18n � op(1). By assumption (A6), and by ~ù1 � Op(1)

and ~ù2 � Op(1), A6n � op(1), A13n � op(1), A17n � op(1), and A19n � op(1). By Corollary

1(c)±(g),

A4n � fÿI11=2� op(nÿ1=(2s))g~ùs
1, A5n � fÿC11 � op(nÿ1=(2s))g~ùs�1

1 ,

A10n � fÿI21 � op(nÿ1=(2s))g~ùs
1, A11n � fÿCT

12 ÿ C21 � op(nÿ1=(2s))g~ùs�1
1 ,

A14n � fÿI22=2� op(nÿ1=(2s))g~ù2, A15n � fÿC22 � op(nÿ1=(2s))g~ù1 ~ù2,

where I jk and C jk, j, k � 1, 2, are de®ned in Section 5. Thus, regrouping terms, we obtain

Ln(~è) � Ln(è�)� G�n (~ùs
1, ~ù2)� R�n (~ù1, ~ù2), (33)

where

G�n (~ùs
1, ~ù2) � (~ùs

1, ~ùT
2 )[fnÿ1=2 L(s,0)

n =s!, (nÿ1=2 L(0,1)
n )TgT ÿ 1

2
I(~ùs

1, ~ùT
2 )T],

R�n (~ù1, ~ù2) � nÿ1=(2s) ~ù1fT�n (~ùs
1, ~ù2)� op(1)g, (34)

T�n (~ùs
1, ~ù2) � (~ùs

1, ~ùT
2 )[fnÿ1=2 L(s�1,0)

n =(s� 1)!, (nÿ1=2 L(1,1)
n )TgT ÿ C(~ùs

1, ~ùT
2 )T],

and

I � I11 I12

I21 I22

� �
, C � C11 C12

C21 C22

� �
: (35)
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The remainder R�n (~ù1, ~ù2) will be used later to calculate the statistic that asymptotically

determines the sign of è̂1 ÿ è�1 when s is even.

Part (a) of Theorems 3 and 4 follows because the regularity conditions (A1), speci®cally

the compactness of È, (A2) and (A3), and the continuity of log f (y; è) guarantee the

existence, uniqueness with a probability tending to 1 and consistency of the MLE è̂ of è
when è � è� (Newey and McFadden 1993, Theorem 2.5). Furthermore, because under (A1)

È contains an open neighbourhood N of è� and because log f (y; è) is differentiable in

N , the MLE is with a probability tending to 1 a solution of the score equation

[L(1,0)
n (è), (L(0,1)

n (è))T] � (0, 0) (36)

(Newey and McFadden, 1993, Section 3.7).

De®ne (ù1, ùT
2 ) � [n1=(2s)(è1 ÿ è�1 ), n1=2(è2 ÿ è�2 )T] and (ù̂1, ù̂T

2 ) � [n1=(2s)(è̂1 ÿ è�1 ),

n1=2(è̂2 ÿ è�2 )T], where è̂ � (è̂1, è̂T
2 ) is the MLE of è � (è1, è2). Forming the Taylor

expansions of nÿ1=(2s) L(1,0)
n (è̂) and L(0,1)

n (è̂) around è� and analysing the convergence of

each term of these expansions similarly to what was done for the log-likelihood expansion

gives that è̂ must solve

0 � M1n(ù1, ù2)� nÿ1=(2s)
ùs

1 ù2

0 ù1

� �
M2n(ùs

1, ù2)� op(1)
P1(ù1, ù2)

P2(ù1, ù2)

" #( )
, (37)

where

M1n(ù1, ù2) � ùsÿ1
1 0

0 1

� �
nÿ1=2 L(s,0)

n =s!

nÿ1=2 L(0,1)
n

" #
ÿ

I11 I12

I21 I22

" # ùs
1

ù2

24 358<:
9=;,

M2n(ùs
1, ù2) � nÿ1=2 L(s�1,0)

n =(s� 1)!

nÿ1=2 L(1,1)
n

" #
ÿ

(2s� 1)C11 sC12

C21 C22

" #
ùs

1

ù2

" #
,

and P1(ù1, ù2) and P2(ù1, ù2) are polynomials in ù1 and ù2. (Consistency of è̂ under

è � è� and assumption (A6) are used to show that the factor multiplying these polynomials

is op(1)). By Corollary 1, nÿ1=2 L(s,0)
n � Op(1), nÿ1=2 L(0,1)

n � Op(1), nÿ1=2 L(s�1,0)
n � Op(1),

nÿ1=2 L(1,1)
n � Op(1). Thus, since è̂ satis®es (37), ù̂1 � Op(1) and ù̂2 � Op(1).

De®ne (Z1n, ZT
2n)T � Iÿ1[nÿ1=2 L(s,0)

n =s!, (nÿ1=2 L(0,1)
n )T]T, where the matrix I is de®ned as

in Theorems 3 and 4. The matrix Iÿ1 exists since, by assumption (B2), I is non-singular.

By de®nition, Z1n � Äÿ1 3 (nÿ1=2 L(s,0)
n =s!ÿ I12 Iÿ1

22 nÿ1=2 L(0,1)
n ) and Z2:1n � Iÿ1

22 nÿ1=2 L(0,1)
n ,

where Z2:1n � Z2n ÿ I21(I11)ÿ1 Z1n, Ä � (I11 ÿ I12 Iÿ1
22 I21) and I jk is the ( j, k)th entry of

the matrix Iÿ1. By Corollary 1(a), (Z1n, ZT
2n)T � (Z1, ZT

2 )T � op(1), where (Z1, ZT
2 )T

N (0, Iÿ1). Solving for ù̂2 in the second equation of (37) and substituting its solution in the

®rst equation of (37) and in (33) gives

0 � ù̂sÿ1
1 (Z1n ÿ ù̂s

1)� Op(nÿ1=(2s)), (38)

and

Ln(è̂) � Ln(è�)� ù̂s
1Ä(Z1n ÿ ù̂s

1=2)� ZT
2:1n I22 Z2:1n � Op(nÿ1=(2s)): (39)
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Next we show that when s is odd, (38) and (39) imply that

ù̂s
1 � Z1n � Op(nÿ1=(2s)): (40)

But when (40) holds, substituting ù̂s
1 with Z1n � Op(nÿ1=(2s)) in the second equation of (37)

implies that

(ù̂s
1, ù̂T

2 ) � (Z1n, ZT
2n)� Op(nÿ1=(2s)), (41)

which shows Theorem 3(b). To show (40) it is enough, by (38), to show that there exists no

subsequence n9 of n such that ù̂1 converges in law along the subsequence to a random

variable with an atom of probability at 0. That is, if ù̂1 ? U along the subsequence n9, then

for all ä. 0, there exists an å. 0 such that P(jU j. å) . 1ÿ ä. We show this by

contradiction. Henceforth, suppose that there exists a subsequence n9 such that ù̂1 ? U and

P(U � 0) � ä. 0. Thus, by (39), there exists a constant M such that for all å. 0,

Ln9(è̂)ÿ Ln9(è
�) , åM � ZT

2:1n9 I22 ZT
2:1n9=2 with probability that converges to a number

greater that ä=2 along the subsequence. However, letting �è � (ù1, ù2), where ùs
1 � Z1n9 and

ù2 � Iÿ1
22 (nÿ1=2 L

(0,1)
n9 ÿ I21ùs

1), we have that

Ln9(�è)ÿ Ln9(è
�) � ÄZ2

1n9=2� ZT
2:1n9 I22 Z2:1n9=2� Op(n9ÿ1=(2s)):

Thus, Ln9(�è)ÿ Ln9(è̂) .ÄZ2
1n9=4 . ó . 0 with probability converging along the subsequence

to a strictly positive number. This is a contradiction since è̂ is the MLE. This concludes the

proof of Theorem 3(b). Next, by (41), evaluating (33) at (ù̂1, ù̂2) gives

Ln(è̂) � Ln(è�)� 1
2
(Z1, ZT

2 )I(Z1, ZT
2 )T � Op(nÿ1=(2s)): (42)

This shows Theorem 3(c) since (Z1, ZT
2 ) � N (0, Iÿ1).

To show Theorem 4(b), note that since ù̂s
1 . 0 when s is even, then, conditional on

Z1n , 0, Z1n ÿ ù̂s
1 , Z1n , 0 and therefore conditional on Z1n , 0, Z1n ÿ ù̂s

1 cannot

converge to a random variable with an atom of probability at 0 along any subsequence.

Thus, by (38), conditional on Z1n , 0, ù̂1 � op(1). So, by (37), conditional on Z1n , 0,

(ù̂1, ù̂T
2 )ÿ [0, (Iÿ1

22 nÿ1=2 L(0,1)
n )T] � Op(nÿ1=(2s)), (43)

or equivalently (ù̂1, ù̂T
2 ) � (0, ZT

2:1n)� Op(nÿ1=(2s)). For Z1n . 0, arguing as for s odd, we

conclude that ù̂1 cannot converge to a random variable with an atom of probability at 0 along

any subsequence, and hence (ù̂1, ù̂2) must satisfy (41). Thus, conditional on Z1n . 0,

(jù̂1j, ù̂T
2 ) � (Z

1=s
1n , ZT

2n)� Op(nÿ1=(2s)). To calculate the statistic that asymptotically

determines the sign of ù̂1, we note that by (33) the log-likelihood evaluated at (ù̂1, ù̂2)

depends on the sign of ù̂1 only through the remainder R�n (ù̂1, ù̂2). Thus, the sign of ù̂1 must

be chosen to maximize this remainder. But, by (34), R�n (ù̂1, ù̂2) � nÿ1=(2s)ù̂1fT̂�n � op(1)g,
where

T̂�n � [nÿ1=2 L(s,0)
n =(s)!, (nÿ1=2 L(0,1)

n )T]Iÿ1

3
nÿ1=2 L(s�1,0)

n =(s� 1)!

nÿ1=2 L(1,1)
n

24 35ÿ CIÿ1
nÿ1=2 L(s,0)

n =(s)!

nÿ1=2 L(0,1)
n

24 358<:
9=;: (44)
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Thus, P(ù̂1 T̂�n . 0)! 1 as n!1. Equivalently, PfI(ù̂1 . 0) � I(T̂�n . 0)g ! 1 as

n!1. But,

nÿ1=2 L(s�1,0)
n =(s� 1)!

nÿ1=2 L(1,1)
n

" #
ÿ CIÿ1

nÿ1=2 L(s,0)
n =(s)!

nÿ1=2 L(0,1)
n

" #
� nÿ1=2

Xn

i�1

Di,

where Di is, by Corollary 1, the residual from the population regression of the vector

[l[s�1,0](Yi; è
�), (l[1,1](Yi; è

�))T] on the vector [l[s,0](Yi; è
�), (l[0,1](Yi; è

�))T], which is

not identically equal to zero by assumption (B3). Thus, Di is uncorrelated with

[l[s,0](Yi; è
�), (l[0,1](Yi; è

�))T]. Also,X
i

[l[s,0](Yi; è
�), (l[0,1](Yi; è

�))T] � [L(s,0)
n =(s)!, (L(0,1)

n )T]:

Thus, nÿ1=2
Pn

i�1 Di ? (W1, W T
2 ), with (W1, W T

2 ) a mean-zero normal random vector

uncorrelated with (Z1, ZT
2 ). Finally, T̂�n ? Z1W1 � ZT

2 W2 and P(Z1W1 �
ZT

2 W2 . 0jZ1, Z2) � 1
2
. Thus, B � I(Z1W1 � ZT

2 W2 . 0) is independent of (Z1, ZT
2 ). This

concludes the proof of Theorem 4(b). Theorem 4(c) then follows by noting that, conditional

on Z1n , 0, (43) holds, and then, from (39),

Ln(è̂) � Ln(è�)� ZT
2:1n I22 Z2:1n=2� Op(nÿ1=(2s)),

and conditional on Z1n . 0, (41) holds and therefore (42) holds.

The proof of Theorems 3 and 4 for an arbitrary p follows identically as for the case

p � 2 after making the following series of substitutions: ®rst,

è2 ! (è2, è3, . . . , èp), è�2 ! (è�2 , è�3 , . . . , è�p), ~è2 ! (~è2, ~è3, . . . , ~è p),

è̂2 ! (è̂2, è̂3, . . . , è̂ p);

second, for s < j < 2s� 1, and with r( j) and L(r)
n (è) de®ned as in Section 5,

L( j,0)
n ! L(r( j))

n (è�),
and

ä(2s�1,0)
n ! L(r(2s�1))

n (�è)ÿ L(r(2s�1))
n (è�);

third, for 0 < j < 2s, 2 < k < p and with ~R( j,k) de®ned as the 1 3 p vector with ®rst entry

equal to j, kth entry equal to 1 and all other entries equal to 0,

L( j,1)
n ! [L( ~R( j,2))

n (è�), L( ~R( j,3))
n (è�), . . . , L( ~R( j, p))

n (è�)]T

and

ä(2s,1)
n ! [L( ~R(2s,2))

n (�è), L( ~R(2s,3))
n (�è), . . . , L( ~R(2s, p))

n (�è)]T ÿ [L(~R(2s,2))
n (è�), L( ~R(2s,3))

n (è�), . . . , L( ~R(2s, p))
n (è�)]T;

fourth, for 0 < j < 2sÿ 1,

L( j,2)
n ! C( j,2)n(è�)
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and

ä(2sÿ1,2)
n ! C(2sÿ1,2)n(�è)ÿ C(2sÿ1,2)n(è�),

where C( j,2)n(è) is the ( pÿ 1) 3 ( pÿ 1) matrix with entry (u, v) equal to

@L j�2
n (è)=@è j

1@èu�1@èv�1; and ®nally

nÿ1=(2s) ~ùT
2 A18n ! nÿ1=(2s)

X2s�1

k�3

X
r:�k

r:ÿr1>3

cr nÿ1 L(r)
n (è�)nf(1ÿr1)�(2ÿr:�r1)sg=(2s)ùr1

1 ùr2

2 . . . ùrp

p ;

nÿ1=(2s) ~ùT
2 A19n ! nÿ1=(2s)

X
r:�2s�1
r:ÿr1>3

cr nÿ1ä(r)
n nf(1ÿr1)�(2ÿr:�r1)sg=(2s)ùr1

1 ùr2

2 . . . ùrp

p ;

where cr are appropriate constants, and, for any r such that r: � 2s� 1 and r:ÿ r1 > 3, ä(r)
n

is de®ned as L(r)
n (è�)ÿ L(r)

n (�è).

Furthermore, I12, I21 and I22 are rede®ned respectively as the 1 3 ( pÿ 1), ( pÿ 1) 3 1

and ( pÿ 1) 3 ( pÿ 1) block submatrices of the partitioned matrix I in (35), and C11, C12,

C21, C22 are rede®ned respectively as the 1 3 1, 1 3 ( pÿ 1), ( pÿ 1) 3 1 and

( pÿ 1) 3 ( pÿ 1) block submatrices of the partitioned matrix in (35), where I is the

matrix de®ned in Theorems 3 and 4 and C is de®ned as

C � Ef[l(r(s�1))(Y ; è�)=(s� 1)!, l( ~R(1,2))(Y ; è�), . . . , l( ~R(1, p))(Y ; è�)]T

3 [l(r(s))(Y ; è�)=s!, l( ~R(0,2))(Y ; è�), . . . , l( ~R(0, p))(Y ; è�)]g:

Derivation of the results in Section 3.3

Derivations for the case b > 1/(2s)

In the proof of Theorems 1±4, we showed that under the regularity conditions (A1)±(A7) of

Section 4.2, equation (4) holds for any è such that n1=2(èÿ è�)s � O(1) when the data are

generated under è�. This implies that Ln(èn)ÿ Ln(è�) � Gn(èn)� op(1). Thus, as n!1,

Ln(èn)ÿ Ln(è�) converges under è� to 0 when b . 1=(2s) and to Z0as ÿ Ia2s=2 when

b � 1=(2s). Hence, by LeCam's ®rst lemma (HaÂjek and SÏidaÂk 1967, p. 202) the sequences of

distributions with densities f n(y; èn) and f n(y; è�) are contiguous. Similarly, f n(y; è9n) and

f n(y; è�) are contiguous. Thus, for any sequence of random variables X n, n � 1, 2, . . . ,

X n � op(1)) X n � opn
(1): (45)

This implies that equation (4) also holds for values of è satisfying n1=2(èÿ è�)s � O(1)

when the data are generated under èn. In addition, by LeCam's third lemma (HaÂjek and SÏidaÂk,

1967, p. 208), Z0 � N (as I , I) when b � 1=(2s) and Z0 � N (0, I) when b . 1=(2s). Remark

(R3.1) follows from (45). Remark (R3.2) follows from the fact that P(Z0 , 0) � 1=2 if

b . 1=(2s) and P(Z0 , 0) � Ö(ÿas
���
I
p

) if b � 1=(2s). To show (R3.3), notice that, by (45),
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Ln(è̂)ÿ Ln(è�) � Gn(è̂)� opn
(1), (46)

n1=2(è̂ÿ è�)s � Iÿ1 Z0 I(Z0 . 0)� opn
(1) if s is even (47)

and

n1=2(è̂ÿ è�)s � Iÿ1 Z0 � opn
(1) if s is odd: (48)

Remark (R3.3) then follows by substituting n1=2(è̂ÿ è�)s in the expression for Gn(è̂) with

the right-hand side of expressions (47) and (48). The distribution of 2fLn(è̂)ÿ Ln(è�)g under

è9n follows by an identical argument because, by contiguity of f n(y; è9n) and f n(y; è�), (46),

(47) and (48) are also valid when opn
(1) is used to indicate convergence to 0 in probability

under è9n. To show (R3.4), notice that Ln(è9n)ÿ Ln(èn) � opn
(1) since expression (4) is valid

under èn and Gn(è) is symmetric around è�. Remark (R3.4) then follows by LeCam's third

lemma.

Derivations for the case b , 1/(2s)

In what follows we assume that, in addition to (A1)±(A7) and (B1)±(B3), the following

regularity conditions hold:

(D1) With probability 1, l(Y ; è) has 2s� 2 derivatives with respect to è, for all è 2 N .

(D2) For 0 < j < 2s� 2 and some í. 2, supè2N Eèfjl( j)(Y ; è�)jíg,1, where the

subscript è indicates expectation under the parameter è.

(D3) For 0 < j < 2s� 2, supè2N Eè[fl( j)(Y ; è)g2] ,1.

(D4) Condition (A6) of Section 4.2 holds with r: � 2s� 2, with g(Y ) satisfying

supè2N Eèfg(Y )2g,1.

Suppose ®rst that 1=(2s� 2) < b , 1=(2s). We ®rst show the identities (10) and (16). Let

ìn, j � n1=2Enfl[ j](Y ; è�)g, where the subscript n denotes expectation taken under è � èn.

Under (D2), by the central limit theorem, for j � 0, 1, nÿ1=2 L[s� j]
n (è�) � Zj � ìn, j � opn

(1),

and for 0 < j < sÿ 1, nÿ1=2 L[s� j]
n (è�) � ìn, j � Opn

(1), where Opn
(1) denotes a sequence

that is bounded in probability under èn. Also under (D2), by the law of large numbers,

nÿ1 L[2s� j]
n (è�) � nÿ1=2ìn,2s� j � opn

(1), 0 < j < 2. Thus, with

djn(è) � n1=2f(èÿ è�)s� j ÿ (èn ÿ è�)s� jg, j > 0,

a Taylor expansion of Ln(è) and Ln(èn) around è� gives
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Ln(è) � Ln(èn)ÿ
X1

j�0

fZj � ìn,s� j � opn
(1)gdjn(è)

24 35

�
X1

j�0

fnÿ1=2ìn,2s� j � opn
(1)gn1=2ds� j,n(è)

24 35

�
Xsÿ1

j�2

fìn,s� j � Opn
(1)gdjn(è)

24 35� [Opn
(1)n1=2ds�2,n(è)]

� fÄ1n n(èÿ è�)2s�2 � Ä2n n(èn ÿ è�)2s�2g
� Ln(èn)ÿ (B1n � B2n � . . . � B5n), (49)

where Ä1n � nÿ1fL[2s�2]
n (~è9)ÿ L[2s�2]

n (è�)g, Ä2n � nÿ1fL[2s�2]
n (~è 0)ÿ L[2s�2]

n (è�)g for some
~è9 and ~è 0 satisfying k~è9ÿ è�k < kèÿ è�k and k~è 0ÿ è�k < kèn ÿ è�k, and the terms Bjn

correspond to the square-bracketed terms of the expansion in the order they appear. But

under (D1)±(D3),

ìn,s � In1=2(èn ÿ è�)s � Cn1=2(èn ÿ è�)s�1 � o(1),

ìn,s�1 � Cn1=2(èn ÿ è�)s � Jn1=2(èn ÿ è�)s�1 � o(1),

ìn,s� j � Ofn1=2(èn ÿ è�)sg, 2 < j < 2sÿ 1,

nÿ1=2ìn,2s � ÿI=2� o(1), nÿ1=2ìn,2s�1 � ÿC � o(1), nÿ1=2ìn,2s�2 � O(1):

Suppose ®rst that n1=2f(èÿ è�)s ÿ (èn ÿ è�)sg � O(1). Then with

c1 jn(è) � n1=2(èn ÿ è�)sdjn(è), j > 2,

c2n(è) � n1=2ds�2,n(è),

c3n(è) � n(èn ÿ è�)2s�2,

the following identities hold:

c1 jn(è), c2n(è), c3n(è) � o(1) d1n(è) if 1=(2s� 2) , b , 1=(2s), (50)

c1 jn(è), c2n(è) � o(1) if b � 1=(2s� 2), (51)

c3n(è) � a2s�2 if b � 1=(2s� 2): (52)

Equation (50) implies that B3n � opn
(1)d1n(è) if 1=(2s� 2) , b , 1=(2s), and (51) implies

that B3n � opn
(1) if b � 1=(2s� 2). Equation (51) implies that B4n � opn

(1)d1n(è) if

1=(2s� 2) , b , 1=(2s), and also implies that B4n � opn
(1) if b � 1=(2s� 2). Furthermore,

under assumption (C4), Ä1n � opn
(1) and Ä2n � opn

(1), and therefore (51) implies that

B5n � opn
(1)d1n(è) if 1=(2s� 2) , b , 1=(2s), and (51) and (52) imply that B5n � opn

(1) if
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b � 1=(2s� 2). In addition, by n1=2(èn ÿ è�)s�2 � o(1) and after some algebra, it can be

seen thatX1

j�0

ìn,s� jdjn(è)� nÿ1=2ìn,2s� j n
1=2ds� j,n(è)

� ÿ I

2
nf(èÿ è�)s ÿ (èn ÿ è�)sg2 � Cn1=2

Y1

j�0

f(èÿ è�)s� j ÿ (èn ÿ è�)s� jg

� Jn1=2(èn ÿ è�)s�1 n1=2f(èÿ è�)s�1 ÿ (èn ÿ è�)s�1g � o(1): (53)

Equation (16) follows after substituting in the expansion (49) the left-hand side of (53) with

its right-hand side and noting that, for b � 1=(2s� 2), n1=2(èn ÿ è�)s�1 � as�1 and

n1=2f(èÿ è�)s�1 ÿ (èn ÿ è�)s�1g � ÿds(è)2as�1 � o(1). Equation (10) follows by perform-

ing the same substitution in the expansion (49) and noting that when b . 1=(2s� 2),

n1=2(èn ÿ è�)s�1 � o(1).

We now show that the MLE è̂ satis®es equations (13) when s is odd and

1=(2s� 2) < b , 1=(2s), and when s is even it is equal to one of the points ~è1 or ~è2

satisfying equation (14) when 1=(2s� 2) , b , 1=(2s) and satisfying equations (18) or (19)

when b � 1=(2s� 2). Under the regularity conditions (A1)±(A7) the MLE è̂ is a consistent

estimator of è when è � èn and solves the score equation L(1)
n (è) � 0. Forming the Taylor

expansion of L(1)
n (è̂) around è0, we obtain

L(1)
n (è̂) � 0 � ���

n
p

(è̂ÿ è�)sÿ1
X1

j�0

(s� j)fZj � ìn,s� j � opn
(1)g(è̂ÿ è�) j

8<:
9=;

264

�
Xsÿ1

j�2

(s� j)fìn,s� j � Opn
(1)g(è̂ÿ è�) j

8<:
9=;:

�
X1

j�0

(2s� j)fnÿ1=2ìn,2s� j � opn
(1)g ���

n
p

(è̂ÿ è�)s� j

8<:
9=;

� (2s� 2)
L[2s� j]

n (�è)

n

���
n
p

(è̂ÿ è�)s�2

� �#

� ���
n
p

(è̂ÿ è�)sÿ1(B91n � B92n � B93n � B94n): (54)

The terms B9jn correspond to terms in braces in the order they appear. Note, ®rst, that

n1=f2(s�1)g(è̂ÿ è�) is equal to

sgn(èn ÿ è�)ssgn(è̂ÿ è�)s�1 n1=f2(s�1)gjèn ÿ è�j[1� n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sgo(1)]:

Thus, for b . 1=(2s� 2), ns=f2(s�1)g(èn ÿ è�)s � o(1), and we have
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n1=f2(s�1)g(è̂ÿ è�) � o(1)[1� n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg], (55)

and for b � 1=(2s� 2), ns=f2(s�1)g(èn ÿ è�)s � as and we have

n1=f2(s�1)g(è̂ÿ è�) � sgn(as)jajsgn(è̂ÿ è�)s�1[1� n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sgo(1)]: (56)

Consider now the term B92n. For j > 2,

ìn,s� j(è̂ÿ è�) j � fns=f2(s�1)g(èn ÿ è�)s n1=f2(s�1)g(è̂ÿ è�)g(è̂ÿ è�) jÿ1

� [1� n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg]opn
(1): (57)

where the last equality follows from equations (55) and (56) and the consistency of è̂. Thus,

B92n is also equal to the last member of (57). Turn now to the term B94n. By equations (55)

and (56) and by
���
n
p

(è̂ÿ è�)s�2 � fn1=(2(s�1))(è̂ÿ è�)gs�1(è̂ÿ è�) and the consistency of è̂,

we have that
���
n
p

(è̂ÿ è�)s�2 is equal to the last member of equation (57). Also, by (D1)±

(D4) and the consistency of è̂, nÿ1 L[2s�2]
n (�è) � opn

(1). Thus, B94n is also equal to the last

member of equation (57). Now, by the consistency of è̂ and after some algebra,

B91n � B93n � s[fZ0 � opn
(1)g ÿ fI � opn

(1)gn1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg

� fC � opn
(1)gn1=2f(èn ÿ è�)s�1 ÿ (è̂ÿ è�)s�1g � opn

(1)]:

For 1=(2s� 2) , b , 1=(2s), we have by (55) that n1=2f(èn ÿ è�)s�1 ÿ (è̂ÿ è�)s�1g �
[n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg � 1]opn

(1). Thus,

B91n � B93n � s[fZ0 � opn
(1)g ÿ fI � opn

(1)gn1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg � opn
(1)],

and from (54) we conclude that è̂ satis®es

è̂ � è� or n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg � Iÿ1 Z0 � opn
(1): (58)

For b � 1=(2s� 2), we have by (56) that

B91n � B93n � s[fZ0 � opn
(1)g ÿ fI � opn

(1)gn1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg

� Cas�1f1ÿ sgn(è̂ÿ è�)s�1g � opn
(1)],

and from (54) we conclude that when s is odd or when s is even and sgn(è̂ÿ è�) � 1, è̂
satis®es one of the identities in (58). When s is even, è̂ satis®es either (58) or

n1=2f(è̂ÿ è�)s ÿ (èn ÿ è�)sg � Iÿ1fZ0 � 2as�1g � opn
(1):

Thus, to show the desired identities it only remains to prove that the probability that è̂ is

equal to è� converges under è � èn to 0 as n!1. But to show this it is enough to show

that (7) holds. But (7) follows for b , 1=(2s) by noticing that n1=2(èn ÿ è�)s diverges and

under (D1)±(D4), a Taylor expansion of Ln(èn) around è� gives

Ln(èn) � Ln(è�)� n1=2(èn ÿ è�)sfZ0 � (I � opn
(1))n1=2(èn ÿ è�)s=2� opn

(1)g,
which diverges to �1 because I is positive.

Remark (R5.8) made for the case b � 1=(2s� 2) follows by LeCam's third lemma
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because, by equation (16), 2fLn(è9n)ÿ Ln(èn)g converges under èn to ÿ2as�1(Z1 � as�1 J ),

which is a normal random variable with mean equal to ÿ1=2 times its variance.

Finally, we show that when s is odd and b , 1=(2s) or when s is even and

b , 1=(2s� 2), (8) holds. Because, by de®nition, è9n ÿ è� � ÿ(èn ÿ è�), a Taylor

expansion of Ln(è9n) and Ln(èn) around è� gives

Ln(è9n) � Ln(èn)ÿ
Xsÿ1

j�0

f1ÿ (ÿ1)s� jgnÿ1=2 L[s� j]
n (è�)n1=2(è9n ÿ è�)s� j

24 35
� [2nÿ1 L[2s�1]

n (è�)n(è9n ÿ è�)2s�1]� [(Ä1n ÿ Ä2n)n(è9n ÿ è�)2s�2]

� Ln(èn)ÿ (B 01n � B 02n � B 03n),

where Äkn � nÿ1fL(2s�2)
n (�èk)ÿ L(2s�2)

n (è�)g for some k�èk ÿ è�k < kèn ÿ è�k, k � 1, 2, and

B 0jn, j � 1, 2, 3, correspond to the terms in square brackets in the order they appear. Under

assumptions (D1)±(D4), B 03n � o p9n
(1)n(è9n ÿ è�)2s�1. When s is odd and b , 1=(2s),

B 01n � 2n1=2(è9n ÿ è�)s[Z0 � fI � o p9n (1)gn1=2(è9n ÿ è�)s � o p9n (1)],

and B 02n � o p9n (1)n(è9n ÿ è�)2s. Thus,

Ln(è9n)ÿ Ln(èn) � fI � o p9n (1)gfn1=2(è9n ÿ è�)sg2 ÿ fZ0 � o p9n (1)g2n1=2(è9n ÿ è�)s: (59)

Then (59) converges in probability under è9n to �1 as n!1 since I is positive and

n1=2(èn ÿ è�)s diverges. When s is even and b , 1=(2s� 2), then

B 01n � n1=2(è9n ÿ è�)s�1[fZ1 � o p9n (1)g � Cn1=2(è9n ÿ è�)s � fJ � o p9n (1)gn1=2(è9n ÿ è�)s�1]

and

B 02n � n(è9n ÿ è�)2s�1fÿC � o p9n (1)g:
Thus,

Ln(è9n)ÿ Ln(èn) � fn1=2(è9n ÿ è�)s�1g2fJ � o p9n (1)g � n1=2(è9n ÿ è�)s�1fZ1 � o p9n (1)g:
And the convergence in probability of Ln(è9n)ÿ Ln(èn) to �1 under è9n follows since by

de®nition J is positive and n1=2(è9n ÿ è�)s�1 diverges when b , 1=(2s� 2).

Proof of Theorem 5

The proof of Theorem 5 will use the result of the following proposition that is easily shown

by induction:

Proposition A.1. Let b(ø) : R! R p31 be a vector function of a scalar ø whose jth

derivative exists. Let b( l)(ø) denote @ lb(ø)=@ø l, 1 < l < j. Let h(u) : R p31 ! R and

assume that h(u) is j times differentiable. Let Dh(u) denote the gradient of h(u). De®ne
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m(ø) � h � b(ø) and let m( j)(ø) denote the jth derivative of m(ø). Then there exists a

function H : R13 p( jÿ1) ! R such that

m( j)(ø) � b( j)(ø)T Dhfb(ø)g � Hfb(ø)T, b(1)(ø)T, . . . , b( jÿ1)(ø)Tg:

Let ø(è) : È! R p be de®ned as ø(è) � è�Psÿ1
l�0 Al(è1 ÿ è�1 ) l, and let Ø denote the

range of ø. De®ne ø� � ø(è�). Clearly, ø� � è�. Furthermore, the ®rst element of the

vector ø(è) is equal to the ®rst element of è, i.e. ø1(è) � è1. In addition, the function ø(è)

is one-to-one and onto Ø with inverse given by è(ø) � øÿPsÿ1
l�0 Al(ø1 ÿ ø�1 ) l. For any ø

in Ø, let ~f (Y ; ø) denote f fY ; è(ø)g. Then clearly, for 2 < k < p,

@ log ~f (Y ; ø)

@øk

����
ø�
� @ log f (Y ; è)

@èk

����
è�

, (60)

and, by de®nition of ~S(s� j)
1 , j � 0, 1,

@ s� j log ~f (Y ; ø)

@ s� jø1

����
ø�
� ~S(s� j)

1 : (61)

Thus ~f (Y ; ø) satis®es conditions (B2) and (B3) of Section 4.2 at the parameter ø�. We will

later show that it also satis®es (B1). Then, since clearly ~f (Y ; ø) satis®es all the other

regularity conditions of Theorem 2, the asymptotic distribution of the MLE ø̂ of ø� and of

the likelihood ratio test statistic follow from this theorem. But since (60) and (61) hold, the

conclusions of Theorem 5 follow because: (a) by the invariance of the MLE, ø̂ � ø(è̂); and

(b) by ø� � ø(è�) and the fact that ~P � f~f (Y ; ø) : ø 2 Øg and P � f f (Y ; è) : è 2 Èg
are the same statistical model, the likelihood ratio test statistics for testing H0 : ø � ø�
versus H1 : ø 6� ø� in ~P and for testing H0 : è � è� versus H1 : è 6� è� in P are exactly

the same. It remains to show that ~f (Y ; ø) satis®es condition (B1). We show this by induction

in s. For s � 2, (B1) is true because

@ log ~f (Y ; ø)

@ø1

����
ø�ø�

� @ log f (Y ; øÿ A1(ø1 ÿ ø�1 ))

@ø1

����
ø�ø�

� S1 ÿ KT
1Ã � 0,

where the second identity is true by (31). Suppose now that ~f (Y ; ø) satis®es (B1) for sÿ 1.

In order to show that ~f (Y ; ø) also satis®es (B1) for s, it will be convenient to de®ne

b(ø1) � [ø1, ø�2 , . . . , ø�p]T ÿ
Xsÿ1

l�0

Al(ø1 ÿ ø�1 ) l,

c(ø1) � b(ø1)� Asÿ1(ø1 ÿ ø�1 )sÿ1,

h(u) � log f (Y ; u), m(ø1) � hfb(ø1)g:
With these de®nitions and letting the superscript ( j) denote the jth derivative of a function,

the following identities hold:

b(ø�1 ) � c(ø�1 ) � ø�, (62)
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b( j)(ø�1 ) � c( j)(ø�1 ), j � 1, . . . , sÿ 2, (63)

c(sÿ1)(ø1) � 0, (64)

b(sÿ1)(ø1) � ÿ[0, Ksÿ1]T, m(ø1) � log ~f fY ; ø1, ø�2 , . . . , ø�pg, (65)

and, for any j,

m( j)(ø1)jø1�ø�1 �
@ j log ~f (Y ; ø)

@ø j
1

����
ø�ø�

: (66)

Now, letting Dh(u) denote the gradient of h(u), by Proposition A.1 there exist functions Hj,

for j � 1, . . . , sÿ 2, such that

m( j)(ø1)jø1�ø�1 � b( j)(ø�1 )T Dhfb(ø�1 )g � Hjfb(ø�1 ), b(1)(ø�1 ), . . . , b( jÿ1)(ø�1 )g; (67)

but, by (62) and (63), the right-hand side of (67) is equal to

c( j)(ø�1 )T Dhfc(ø�1 )g � Hjfc(ø�1 ), c(1)(ø�1 ), . . . , c( jÿ1)(ø�1 )g � d j hfc(ø1)g=dø j
1jø1�ø�1 :

This in turn is equal to 0 by the inductive hypothesis. Thus, by (66) the ®rst sÿ 2 partial

derivatives of log ~f (Y ; ø) with respect to ø1 evaluated at ø� are equal to 0. Also,

m(sÿ1)(ø1)jø1�ø�1 � ÿ[0, Ks]Dhfc(ø�1 )g � Hsÿ1fc(ø�1 ), c(1)(ø�1 ), . . . , c(sÿ2)(ø�1 )g

� ÿKsÿ1(S2, S3, . . . , Sp)T � dsÿ1 hfc(ø1)g
døsÿ1

1

����
ø1�ø�1

� 0,

where the ®rst equality is by Proposition A.1, and equations (62), (63) and (65), the second

equality is by Proposition A.1 and (64) and the third equality follows because, by assumption,

(31) is true for j � sÿ 1. This concludes the proof of the theorem.

Proof of Lemma 1

The lemma follows directly from FaaÁ di Bruno's formula on the qth partial derivative of the

composition of two functions. This formula, applied to G(u) � log h(u), gives

@qG(u)

@u
q
1

�
X q!

k1! . . . kq!

d p log y

dy p

� �
@h(u)

@u1

� �k1 1

2!

@2 h(u)

@u2
1

 !k2

. . .
1

q!

@q h(u)

@u
q
1

� �kq

, (68)

where the summation extends over all partitions of q such that p �Pq
l�1 k l and

q �Pq
l�1 lk l.

Lemma 1(i) follows immediately from formula (68). Speci®cally, if h�r( j)
� 0 for all

1 < j < sÿ 1, then, for 1 < q < sÿ 1, all terms in the summation are equal to 0 and

therefore G(r(q))(u�) � 0. The proof that G(r( j))(u�) � 0 for all 1 < j < sÿ 1 implies that

h�r( j)
� 0 for all 1 < j < sÿ 1 is easily carried out by induction, the induction step

consisting of noting that, under the inductive hypothesis, formula (68) implies that

G(r(q))(u�)ÿ G(r(qÿ1))(u�) � h�r(q)
. Part (ii) follows by noting that when h�r( j)

� 0, for all
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1 < j < sÿ 1, the only non-zero term in the summation in (68) when s < q < 2sÿ 1

corresponds to the choice kj � 0, 1 < j , q and kq � 1. Part (iii) follows by noting that

when q � 2s there are only two non-zero terms in the summation in formula (68) which

correspond to the choices (a) kj � 0, 1 < j , 2sÿ 1, and k2s � 1 and (b) k l � 0, for

1 < l < 2s, l 6� s and ks � 2. Part (iv) follows similarly by noting that when q � 2s� 1,

the only two non-zero terms in the summation in (68) correspond to the choices (a) kj � 0,

1 < j , 2s, and k2s�1 � 1 and (b) k l � 0 for 1 < l < 2s, l 6� s, s� 1, and ks � ks�1 � 1.

Parts (v)±(ix) can be shown similarly by taking one or two derivatives with respect to u2 in

both sides of (68) and examining the non-zero terms in the summation.
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