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We provide a new characterisation of Duquesne and Le Gall’s α-stable tree, α ∈ (1,2], as the solution of a recursive

distributional equation (RDE) of the form T
d
= g (ξ,Ti,i ≥ 0), where g is a concatenation operator, ξ = (ξi,i ≥ 0) a

sequence of scaling factors, Ti , i ≥ 0, and T are i.i.d. trees independent of ξ. This generalises the characterisation
of the Brownian Continuum Random Tree proved by Albenque and Goldschmidt, based on self-similarity observed
by Aldous. By relating to previous results on a rather different class of RDE, we explore the present RDE and obtain
for a large class of similar RDEs that the fixpoint is unique (up to multiplication by a constant) and attractive.
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1. Introduction

R-trees constitute a class of loop-free length spaces which frequently arise as scaling limits of discrete
trees. Significant attention turned to random R-trees following Aldous’s introduction of the Brow-
nian Continuum Random Tree (BCRT) [4] and Evans’s initiation of Gromov–Hausdorff topologies
in probability theory [17]. The BCRT is generalised by Duquesne and Le Gall’s α-stable trees [15],
which represent the genealogies of continuous-state branching processes with branching mechanism
ψ(λ) = λα,α ∈ (1,2]. When α = 2, we recover the BCRT. α-stable trees emerge in scaling limits of nu-
merous discrete tree structures, e.g. Bienaymé–Galton–Watson trees [4] and their vertex-cut trees [14]
and conditioned stable Lévy forests [11]. Particular aspects of α-stable trees include invariance under
random re-rooting [18], decompositions along the diameter [16], an embedding property [13], and links
to beta coalescents [7]. We emphasise a crucial self-similarity property of α-stable trees: decomposing
an α-stable tree above a certain height or at appropriate nodes results in the connected components af-
ter decomposition forming rescaled independent copies of the original tree. This observation was first
formalised by Miermont [20], building upon Bertoin’s self-similar fragmentation theory [8].

In this paper, we express the self-similarity of the α-stable tree by a new recursive distributional
equation (RDE) in the setting of Aldous and Bandyopadhyay’s survey paper [6]. Given a random
variable T taking values in a Polish metric space (T,d), an RDE is a stochastic equation of the form

T
d
= g (ξ,Ti,i ≥ 0) on T,

where (Ti,i ≥ 0) are i.i.d. and distributed as T , g is a measurable mapping, and ξ is independent of
(Ti,i ≥ 0). RDEs are pertinent in various contexts with recursive structures, ranging from Bienaymé–
Galton–Watson branching processes [6] to Quicksort algorithms [25].

RDEs have been employed in the recursive construction of the BCRT by Albenque and Goldschmidt
[3], recursively concatenating three rescaled trees at a single point. Broutin and Sulzbach [10] extended
this to further recursive combinatorial structures and weighted R-trees under a finite concatenation
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Figure 1. RDEs derived from the decomposition of the BCRT (simulation courtesy of Igor Kortchemski) around
a branchpoint (the red triangle) into three parts and along the spine from the root (green square) to a random leaf
(green circle) into “infinitely many” parts.

operation. Rembart and Winkel [24] did similarly with R-trees under a different operation that con-
catenates a countable (possibly infinite) number of rescaled trees to a branch/spine. See Figure 1.

In this paper, we consider as g the operation that concatenates at a single point a countable number

of R-trees Ti
d
= T , rescaled by ξi ≥ 0, i ≥ 0, respectively, seeking to obtain a version of T . Theorem 3.5

shows that the law of the α-stable tree is a fixpoint solution of an RDE of this type. This is illustrated in
Figure 2. Our primary argument appeals to Marchal’s random growth algorithm [19], which provides
a recursive method of constructing α-stable trees as scaling limits. To explore the uniqueness of this
solution (up to rescaling distances by a constant) we require certain finite height moments. In the
absence of this condition, further solutions can be obtained, e.g., by decorating the α-stable tree with
massless branches, see Remark 3.6.

Let us explore our approach to uniqueness and attraction in the context of the literature. While our
results resemble [3] and [10] for the (binary) BCRT and other finitely branching structures, our re-
sults extend finite concatenation operations to handle trees such as the α-stable trees, whose branch
points are of countably infinite multiplicity. Extending their uniqueness and attraction results is not
straightforward using the methods of [3,10]. On the other hand, [24] presents an RDE for which the
law of the α-stable tree is a unique and attractive fixpoint, but the concatenation approach of em-

Figure 2. RDEs derived from the decomposition of a stable tree (simulation courtesy of Igor Kortchemski) around
a branchpoint (the red star) into “infinitely many” parts.
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ploying strings of beads (weighted intervals) and bead-splitting processes of [23] is different. Our
RDEs only require countably infinite weight sequences such as Poisson–Dirichlet sequences and give
a less technical recursive construction of α-stable trees that elucidates how mass partitions in α-stable
trees relate to urn models and partition-valued processes. This approach allows us to work under the
Gromov–Hausdorff–Prokhorov topology hence responding to a suggestion in [3, Section 4.2], who use
Gromov–Prokhorov.

Specifically, we prove the self-similarity property of α-stable trees decomposed at a branch point
solely via the recursive nature of Marchal’s algorithm, without need for Miermont’s fragmentation tree
theory [20]. To prove our uniqueness and attraction result, Theorem 4.2, we establish a connection
between the two types of RDE, which effectively breaks down the proofs here into a one-dimensional
martingale argument, the uniqueness and attraction of the RDE of [24] and a tightness argument that
again builds on [24] by constructing an auxiliary dominating CRT.

The structure of this paper is as follows. In Section 2, we state background results on R-trees and α-
stable trees, and we collect some of the tools we use, chiefly the setup of Marchal’s algorithm and RDEs.
Section 3 establishes an RDE for the law of the α-stable tree and indicates other fixpoint solutions to
the same RDE. In Section 4, we obtain the uniqueness and attraction properties of the RDE solution
up to multiplicative constants. The latter arguments are in a general setup where g is the single-point
concatenation operation, but the distribution of ξ is just subject to non-degeneracy assumptions.

2. Preliminaries

2.1. R-trees and topologies on sets of (marked or weighted) R-trees

Definition 2.1 (R-tree). A metric space (T ,d) is an R-tree if for every a,b ∈ T ,

(i) there exists a unique isometry fa,b : [0,d(a,b)] → T such that fa,b(0) = a and fa,b(d(a,b)) = b.
In this case, let �a,b� denote the image fa,b ([0,d(a,b)]),

(ii) if h : [0,1] → T is a continuous injective map with h (0) = a and h (1) = b, then h ([0,1]) =
�a,b�, i.e. the only non self-intersecting path from a to b is �a,b�.

A rooted R-tree (T ,d, ρ) is an R-tree (T ,d) with a distinguished vertex ρ ∈ T called the root. The
degree of a vertex a ∈ T is the number of connected components of T \ {a}. A leaf is a vertex a ∈

T \ {ρ} with degree one. We denote the set of leaves in T by L (T ). We say that a ∈ T \ {ρ} is a
branch point if its degree is at least three. Finally, for any a ∈ T , we define the height of a as d (ρ,a),
and the height of T as ht (T ) := supa∈T d (ρ,a).

We will want to specify a marked point on a compact rooted R-tree. Two marked compact rooted
R-trees (T ,d, ρ, x) and (T ′,d ′, ρ′, x′) are GHm-equivalent if there is an isometry f : T → T ′ such that
f (ρ) = ρ′ and f (x) = x′. We denote the set of equivalence classes of marked compact rooted R-trees
by Tm. For two marked compact rooted R-trees, the marked Gromov–Hausdorff distance is defined as

dm
GH((T,d, ρ, x),(T

′,d ′, ρ′, x′)) := inf
φ,φ′

(δH(φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ′)) ∨ δ(φ(x) , φ′(x′))) ,

where the infimum is taken over all metric spaces (X, δ) and all isometric embeddings φ : T → X and
φ′ : T ′ → X . The marked Gromov–Hausdorff distance only depends on the GHm-equivalence classes
of (T ,d, ρ, x) and induces a metric on Tm, which we also denote by dm

GH.
Suppose now that (X, δ) is a complete metric space, then (X, δ, μ) is a metric measure space if (X, δ)

is equipped with a Borel probability measure μ. A weighted R-tree is a compact rooted R-tree (T ,d, ρ)
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equipped with a Borel probability measure μ, referred to as the mass measure. We will often write T
for a weighted R-tree, the distance, the root and the mass measure being implicit. We write

dGHP((T,d, ρ, μ),(T ′,d ′, ρ′, μ′)) := inf
φ,φ′

(
δH(φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ′)) ∨ δP(φ∗μ,φ

′
∗μ

′))
)
,

for the Gromov–Hausdorff–Prokhorov distance between weighted R-trees (T ,d, ρ, μ), (T ′,d ′, ρ′, μ′),
where the infimum is taken over all metric spaces (X, δ) and all isometric embeddings φ : T → X and
φ′ : T ′ → X , δP denotes the Prokhorov metric, and φ∗μ, φ′∗μ

′ are push-forwards of μ, μ′.
Two weighted R-trees (T ,d, ρ, μ) and (T ′,d ′, ρ′, μ′) are considered GHP-equivalent if there is an

isometry f : (T ,d, ρ, μ) → (T ′,d ′, ρ′, μ′) such that f (ρ) = ρ′ and μ′ is the push-forward of μ under f .
Denote the set of equivalence classes of weighted R-trees by Tw. The Gromov–Hausdorff–Prokhorov
distance naturally induces a metric on Tw.

Proposition 2.2 (e.g., Proposition 9(ii) of [21] and Theorem 2.7 of [1].). The spaces
(
Tm,dm

GH
)

and
(Tw,dGHP) are Polish.

In [4], Aldous originally built his theory of continuum trees, in 	1(N). Indeed, some of our arguments
will benefit from specific representatives in 	1(U), where U is the countable set of integer words. In any
case, [4, Theorem 3] connects Aldous’s 	1(N) embedding and the above setup of weighted R-trees. So,
we call a weighted R-tree (T ,d, ρ, μ) a continuum tree if the Borel probability measure μ satisfies the
following properties.

(i) μ (L (T )) = 1, that is, μ is supported by the leaves of T .
(ii) μ is non-atomic, that is, if a ∈ L (T ), then μ ({a}) = 0.
(iii) For every a ∈ T \ L (T ), we have μ (T (a)) > 0, where T(a) := {σ ∈ T : a ∈ �ρ,σ�} is the

subtree above a in T .

A Continuum Random Tree (CRT) is a random variable taking values in a space (of GHP-equivalence
classes) of continuum trees. Note that conditions (i)–(ii) above imply that L(T ) is uncountable for
any CRT T . It is not obvious how to determine the distribution of a CRT (T ,d, ρ, μ) simply by this
definition. To do this, Aldous introduced the notion of reduced trees. Let m ≥ 1. A uniform sample of
m points according to the measure μ is a vector (V1, . . . ,Vm) such that Vi ∼ μ, i = 1, . . . ,m, are i.i.d..
The associated m-th reduced subtree of (T ,d, ρ, μ) is the subtree of T spanned by V1, . . . ,Vm and ρ, i.e.⋃

1≤ j≤m�ρ,Vj�.
The distribution of the m-th reduced subtree is fully specified by its tree shape when regarded as

a discrete, graph-theoretic, rooted tree with m labelled leaves, and by its edge lengths. The consistent
system of m-th reduced subtree distributions, m ≥ 1, may be regarded as a system of finite-dimensional
distributions of a CRT [3]. It is well-known that they determine the distribution of a CRT on Tw.

We now turn to Marchal’s algorithm which leads to the definition of a special class of continuum
random trees, the α-stable trees with parameter α ∈ (1,2].

2.2. Marchal’s algorithm and α-stable trees

Definition 2.3 (Marchal’s algorithm). Given α ∈ (1,2], recursively construct a sequence (Tα(n))n≥1
valued in the set of leaf-labelled discrete trees, with Tα(n) having n leaves and a root, as follows.

(I) Initialise Tα(1) as the unique tree consisting of a single edge connecting a root vertex and a leaf.
(II) For n ≥ 1, given Tα(n), assign weight α − 1 to each edge and weight d − 1 − α to each branch

point of degree d ≥ 3. Choose an edge or a branch point with probability proportional to its
weight.
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(III) (a) If an edge was selected, split the chosen edge into two edges at its midpoint by a new middle
vertex. To this new vertex, attach a new edge carrying the (n + 1)-st leaf.

(b) If a branch point was selected, attach a new edge carrying the (n + 1)-st leaf to this vertex.
(IV) Denote the resulting tree by Tα(n + 1) and repeat from (II) with n 
→ n + 1.

Define the measure W(·) which assigns the total weight to sub-structures in Marchal’s algorithm. It is
easy to see that, regardless of tree shape, for all n ≥ 1, the total weight of the tree is W(Tα(n)) = nα−1.
The distribution of the shape of the trees in Marchal’s algorithm was given in [19, Theorem 1]:

Proposition 2.4. Suppose t is a given leaf-labelled tree with n leaves and a root, where n ≥ 2, then the
tree shape of Tα(n) has distribution

P (Tα(n) = t) =
∏

v∈t pdeg(v)∏n−1
i=1 (iα − 1)

,

where p1 = 1, p2 = 0, and pk =
���∏k−2

i=1 (α − i)
��� for k ≥ 3.

We state a result by Curien and Haas [13, Theorem 5(iii)], strengthening [19, Theorem 2], allowing
us to regard the scaling limit of the sequence of trees generated by Marchal’s algorithm in (Tw,dGHP).

Proposition 2.5. For α∈(1,2], let β :=1−1/α ∈ (0,1/2]. Let μn denote the empirical mass measure on
the leaves of Tα(n), dn be the graph distance on Tα(n), and ρn be the root. Then(

Tα(n),
dn
αnβ

, ρn, μn

)
a.s.
−→ (Tα,dα, ρα, μα) as n →∞,

in the Gromov–Hausdorff–Prokhorov topology, for some CRT (Tα,dα, ρα, μα).

Definition 2.6 (α-stable tree). We call (Tα,dα, ρα, μα) the α-stable tree, α ∈ (1,2].

We highlight that each element in the sequence of trees produced by Marchal’s algorithm is a
Bienaymé–Galton–Watson tree conditioned on a fixed number of leaves, whose offspring distribu-
tions lie in the domain of attraction of an α-stable law. This can be seen from Proposition 2.4, see also
[19, Section 2.3] and [15, Theorems 3.2.1 and 3.3.3]. Indeed, the convergence stated in Proposition
2.5 holds as a distributional scaling limt for any family of such conditioned Bienaymé–Galton–Watson
trees.

It is useful to parametrize the α-stable tree by an index β := 1 − 1/α ∈ (0,1/2]. We often rescale
trees: distances by cβ and masses by c, as in(

Tα,cβdα, ρα,cμα
)
.

When α = 2, no weight is ever given to a vertex of T2(n), n ≥ 1, in the second step of Marchal’s
algorithm. In the scaling limit, this coheres with the fact that T2 is binary almost surely.

The tree (Tα,dα, ρα, μα) induces a distribution ςα on Tw. We call the distribution ςα the law of the
α-stable tree. Similarly, we will consider the distribution ςm

α of (Tα,dα, ρα, xα) on Tm when xα ∼ μα is
a marked element of Tα sampled from μα, which we call the law of the marked α-stable tree.

In [13], Curien and Haas exploit the recursive nature of Marchal’s algorithm property to obtain a ran-
domly rescaled α′-stable tree from an α-stable tree by pruning, where 1 < α < α′ ≤ 2. They identified



1034 N. Chee, F. Rembart and M. Winkel

sub-constructions within Marchal’s algorithm with parameter α that evolve as a time-changed Marchal
algorithm with parameter α′. We use a similar approach in Section 3 to find a recursive distributional
equation where the law of the α-stable tree is a solution.

2.3. Mittag–Leffler distributions and Chinese restaurant processes

Given β > 0 and θ > −β, a random variable L valued in [0,∞) has a generalised Mittag–Leffler distri-
bution with parameters (β,θ), denoted by L ∼ ML (β,θ), if it has p-th moment

E [Lp] =
Γ(θ + 1)Γ (θ/β + 1 + p)
Γ(θ/β + 1)Γ (θ + βp + 1)

, p ≥ 1. (1)

Indeed, the moments (1) uniquely characterise a distribution, see e.g. [22]. It was shown in [2,
Lemma 11] that α times the distance between two points sampled from μα in an α-stable tree Tα is
ML(β, β)-distributed, where β = 1 − 1/α. By invariance under random re-rooting [18, Theorem 11],
this is also the distribution of α times the distance between the root and point sampled from μα.

Definition 2.7 (Chinese restaurant process). Given β ∈ [0,1] and θ > −β, the two-parameter Chi-
nese restaurant process with a (β,θ) seating plan, denoted by CRP (β,θ), proceeds as follows. Label
customers by n ≥ 1. Seat customer 1 at the first table. For n ≥ 1, let Kn denote the number of tables
occupied after customer n has been seated and let Nj (n) denote the number of customers seated at the
j-th table for j ∈ {1, . . . ,Kn}. At the next arrival, conditional on

(
N1(n), . . . ,Nj (n)

)
, customer n + 1

• sits at the j-th table with probability
(
Nj (n) − β

)
/(n + θ) for j ∈ {1, . . . ,Kn},

• opens the (Kn + 1)-st table with the complementary probability (θ + Knβ) /(n + θ).

The CRP satisfies the following limit theorem, cf. [22, Theorems 3.2 and 3.8].

Proposition 2.8. Consider a two-parameter Chinese restaurant process with parameters β ∈ (0,1) and
θ > −β, denoted by CRP (β,θ). Then the number of tables Kn at time n satisfies

n−βKn
a.s.
−→ K∞ as n →∞,

where K∞ ∼ ML(β,θ). Furthermore, relative table sizes have almost sure limits(
N1(n)

n
,

N2(n)
n

, . . . ,
NKn (n)

n
,0,0, . . .

)
a.s.
−→

(
W1,W1W2,W1W2W3, . . .

)
as n →∞,

where Wj ∼ Beta (1 − β,θ + jβ), j ≥ 1, are independent and W j := 1 −Wj for all j ≥ 1.

The distribution of the vector (P1,P2,P3, . . .) :=
(
W1,W1W2,W1W2W3, . . .

)
as defined in Proposition

2.8 is the Griffiths–Engen–McCloskey distribution with parameters (β,θ), denoted by GEM(β,θ). Or-
dering (Pi,i ≥ 1) in decreasing order yields the Poisson–Dirichlet distribution with parameters (β,θ),
in short PD(β,θ), i.e.

(
P↓
i ,i ≥ 1

)
:= (Pi,i ≥ 1)↓ ∼ PD (β,θ).
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2.4. Recursive distributional equations (RDEs)

We review RDEs in their full generality, as presented in [6, Section 2.1]. Denote our underlying proba-
bility space by (Ω,F ,P). Given two measurable spaces (S,FS) and (Θ,FΘ), consider

Θ∗ :=Θ ×
⋃

0≤m≤∞

S
m, (2)

where the union is disjoint over Sm, the space of S-valued sequences of lengths 0 ≤ m ≤ ∞, and where
S

0 := {Δ} is the singleton set and S∞ is constructed as a typical sequence space.
Equip Θ∗ with the product sigma-algebra. Let g : Θ∗ → S be a measurable map, and define random

variables (Si,i ≥ 0) ∈ S∞, (ξ,N) ∈ Θ ×N :=Θ × {0,1, . . . ;∞} as follows.

(i) (ξ,N) ∼ ν, where ν is a probability measure on Θ ×N.
(ii) Si ∼ η, i ≥ 0, i.i.d., where η is a probability measure on S.
(iii) (ξ,N) and (Si,i ≥ 0) are independent.

Denote by P (S) the set of probability measures on (S,FS). Given the distribution ν onΘ×N, we obtain
a mapping

Φ : P(S) → P(S), η 
→Φ(η), (3)

where Φ(η) is the distribution of S := g(ξ,Si,0 ≤ i ≤∗ N), and where the notation ≤∗ N means ≤ N for
N <∞ and <∞ for N =∞. This lends itself to a fixpoint perspective on RDEs, where we wish to find
a distribution of S such that

η =Φ(η) ⇐⇒ S
d
= g(ξ,Si,0 ≤ i ≤∗N) on S. (4)

2.5. An independence criterion

To end the Preliminaries section, we introduce an elementary lemma, which will help us verify certain
required independences. We leave its proof to the reader.

Lemma 2.9. Let T be an a.s. finite stopping time with respect to a filtration (Fn)n≥1. Suppose that X
is a non-negative and bounded random variable satisfying, for each n ≥ 1,

E [X | FT ] = E [X | Fm] a.s.,

for all m ≥ n on {T = n}. Then E[X |FT ] = E[X |F∞] a.s. where F∞ = σ (Fn,n ≥ 1).

3. An RDE for R-trees from Marchal’s algorithm

In this section, fix α ∈ (1,2] and let β = 1 − 1/α ∈ (0,1/2]. Unless ambiguity arises, we suppress α
hereafter. Note that, in Marchal’s algorithm, T(2) is deterministic, comprising a Y-shape with a root
and two leaves that we denote by A0, A1 and A2 and an internal vertex denoted by V2. Denote the edges
by e0 := �A0,V2�, e1 := �A1,V2� and e2 := �A2,V2�. The following paragraph, inspired by the proof of
[13, Proposition 10], outlines the argument in this section.

The independent choice at each step of Marchal’s algorithm entails that we have independent sub-
constructions of Marchal’s algorithm with parameter α evolving along each edge of T(2). This yields
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three independent copies of Tα, denoted by τ0, τ1 and τ2, subject to rescaling depending on the eventual
proportion of mass distributed to each tree. For α ∈ (1,2), the internal vertex V2 will give rise to a
further countably infinite and independent collection of copies of Tα a.s.. Denote this infinite collection
by (τi,i ≥ 3), which is independent of τ0, τ1 and τ2. We will rescale and concatenate our collection
(τi,i ≥ 0) of independent copies of Tα at V2 to get a copy of Tα. Denote the collection of scaling factors
in the limit by ξ = (ξi,i ≥ 0) and the concatenation operator by g. We obtain an RDE

Tα
d
= g (ξ,τi,i ≥ 0)

in the form (4). To be rigorous, we need to address the following questions.

1. What is the distribution of the limiting scaling factors ξ = (ξi,i ≥ 0)?
2. Are the random variables (τi,i ≥ 0) independent of ξ, as well as of each other?
3. How do we construct the concatenation operation in a measurable way?

3.1. The scaling factors ξ = (ξi , i ≥ 0) and subtrees (τi , i ≥ 0)

For i ∈ {0,1,2} and n ≥ 0, define τ
(n)
i as the subtree of T(n + 2) cut at V2 containing the edge ei .

For example, we have τ(0)i = ei for each i ∈ {0,1,2}. Let Kn denote the set of edges incident to V2
in T(n + 2) excluding {ei,i = 0,1,2}, and set Kn = |Kn | . For Kn � ∅, Kn = {ej, j = 3, . . . ,Kn + 2},
ordered according to least leaf labels. Define σ(n) as the remaining components of T(n + 2) cut at V2

excluding
⋃2

i=0 τ
(n)
i . If Kn = ∅, then σ(n) = ∅. Otherwise, σ(n) =

⋃Kn+2
j=3 τ

(n)
j is a union of subtrees

{τ
(n)
j , j = 3, . . . ,Kn + 2} growing along their respective edges in Kn. We illustrate this in Figure 3.

Regard V2 as a (weightless) root from the perspective of each element of {τ(n)i ,i = 1, . . . ,Kn + 2} and

as a marked leaf of τ(n)0 . For each i = 1, . . . ,Kn + 2, mark the first leaf created in τ
(n)
i by Marchal’s

algorithm, that is, the other endpoint of ei which is not V2. We treat A0 as the root of τ(n)0 .

Denote the number of leaves of T(n + 2) in τ
(n)
i

by Ni(n) for all i = 0,1, . . . ,Kn + 2, and define

its inverse N−1
i (n) := inf{k ≥ 0: Ni(k) = n} as the first time k at which τ

(k)
i

has n leaves, with the
convention inf∅ =∞.

Recall that W(·) measures the total weight of a given sub-structure, e.g., for each i ∈ {0,1,2},
W(τ

(0)
i ) = α − 1. The following result shows that the weight of a particular subtree only depends on

the number of leaves it has, and not on its shape.

Figure 3. Illustration of Marchal’s random growth algorithm and notation employed
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Lemma 3.1. Regardless of its shape, the total weight of the i-th subtree is W(τ
(n)
i

)=αNi(n)−1 for
i = 0,1, . . . ,Kn + 2 and n ≥ 0.

Proof. This follows simply by induction applied to each subtree.

The following result gives the limiting weight partition of subtrees and proves that the subtrees
essentially evolve as independent copies at the first branch point.

Proposition 3.2.

(i) For α ∈ (1,2), Kn →∞ as n →∞ a.s.. When α = 2, Kn = 0 a.s. for all n ≥ 0.
(ii) The relative weight split in Tα(n) has an almost sure limit as n →∞ given by

�

�
W

(
τ
(n)
0

)
(n + 2)α − 1

,
W

(
τ
(n)
1

)
(n + 2)α − 1

,
W

(
τ
(n)
2

)
(n + 2)α − 1

,
W

(
σ(n)

)
+W({V2})

(n + 2)α − 1

����
a.s.
−→ (X0,X1,X2,X3) , (5)

where (X0,X1,X2,X3) ∼ Dir (β, β, β,1 − 2β), noting that if α = 2, no weight is distributed to X3.
For α ∈ (1,2), within the last co-ordinate, denote the limiting weight proportion of the subtree τi+2
by Pi for i ≥ 1. Then, (Pi,i ≥ 1) ∼ GEM (1 − β,1 − 2β). In particular, the subtrees τi , i ≥ 3, have a
relative weight partition that follows a PD(1− β,1− 2β) distribution, when ranked in decreasing
order.

(iii) Let α ∈ (1,2), for n ≥ 1 and i ≥ 0, we have τ
(N−1

i (n))

i

d
= T(n). That is, at transition times in which

a leaf is added into the i-th subtree, it evolves as Marchal’s algorithm with parameter α with
initial edge ei . The sigma-field generated by(

τ
(N−1

i (n))

i ,n ≥ 1
)
i≥0

is independent of the sigma-field generated by (Ni(n),n ≥ 1,i ≥ 0). Consequently, the limiting
CRTs τi , i ≥ 0, are independent. Furthermore, (τi,i ≥ 0) is independent of (Ni(n),n ≥ 1,i ≥ 0). An
analogous result holds when α = 2.

(iv) For α ∈ (1,2), the random variables (X0,X1,X2,X3) and (Pi,i ≥ 1) are independent, and inde-
pendent of (τi,i ≥ 0). This fully specifies their joint distribution.

Proof of (i). We prove the result for α ∈ (1,2) with the α = 2 case similarly argued. From Lemma 3.1,
conditional on an edge or branch point in τ(n)i being selected in the next step of Marchal’s algorithm,

we increase the weight in τ(n)i by α. It is easy to check that this holds for σ(n) with one weighted copy
of V2 included. Hence, (

W
(
τ
(n)
0

)
,W

(
τ
(n)
1

)
,W

(
τ
(n)
2

)
,W

(
σ(n)

)
+W ({V2})

)
(6)

evolves precisely as a Pólya urn scheme with 4 colours and weight vector �γ = (α−1,α−1,α−1,2−α)
which increases by α at each update for the chosen colour.

Next, we focus on the subtrees within σ(n). The above implies that W
(
σ(n)

)
+W ({V2}) → ∞ as

n → ∞ a.s.. So, a.s., we observe infinitely many leaves being added to
(
σ(n),n ≥ 1

)
. We may then

condition on the times where a leaf is added to
(
σ(n),n ≥ 1

)
, say (qi,i ≥ 1), where 1 ≤ q1 < q2 <

· · · < qn < qn+1 < · · · is an infinite sequence a.s.. Conditional on the preceding event, the first leaf
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added creates τ(q1)
3 . At each r ∈ {qn, . . . ,qn+1 − 1}, we have n leaves (not including V2) with Kqn

subtrees whose union is σ(r). For j = 3, . . . ,Kqn + 2, τ(r)j has Nj (qn) leaves (not including V2), and
so has total weight αNj (qn) − 1, by Lemma 3.1. Thus, as the total weight of V2 is 2 + Kqn − α,
the total weight of σ(r) and {V2} is αn + (2 − α). At the next arrival time qn+1, we add a leaf to
τ
(qn+1−1)
j with probability

(
αNj (qn) − 1

)
/(αn + 2 − α) and we create a new sub-tree with probability(

2 + Kqn − α
)
/(αn + 2 − α). Regarding the leaves (excluding V2) as customers and each subtree as a

table, this models a CRP(1 − β,1 − 2β). From Proposition 2.8, Kn →∞ as n →∞ almost surely.

Proof of (ii). We continue in the setting introduced in the proof of (i). For the Pólya urn, (5) is well-
known to hold [9]. Now let α ∈ (1,2) and recall that q1 <∞ almost surely, so we may assume n ≥ q1.
From Proposition 2.8, we can identify the almost sure limiting proportion of leaves split within subtrees
of σ(n) as GEM(1 − β,1 − 2β) holding along the increasing subsequence (qi,i ≥ 1). That is,(

N3(qn)
n

, . . . ,
NKqn+2(qn)

n
,0,0, . . .

)
a.s.
−→ (Pi,i ≥ 1) as n →∞,

where (Pi,i ≥ 1) ∼ GEM(1 − β,1 − 2β). Write Nσ(n) as the number of leaves in σ(n) excluding V2.
Noting that Nσ(n) > 0 for n ≥ q1, we may rephrase the above as(

N3(n)
Nσ(n)

, . . . ,
NKn+2(n)

Nσ(n)
,0,0, . . .

)
a.s.
−→ (Pi,i ≥ 1) as n →∞. (7)

Using the relation W
(
σ(n)

)
+W ({V2}) = αNσ(n)+ 2−α, and the aggregation property of the Dirichlet

distribution applied to (6), we get that

Nσ(n)
n

a.s.
−→ X3 as n →∞, (8)

where X3 ∼ Beta(1 − 2β,3β). Applying the algebra of a.s. convergence for all j = 3, . . . ,Kn + 2 and
n ≥ q1, and using the fact that W

(
τ
(n)
j

)
= αNj (n) − 1, the results above imply that, jointly in j,

W
(
τ
(n)
j

)
(n + 2)α − 1

=

N j (n)

n − 1
αn

n+2
n − 1

αn

a.s.
−→ X3Pj−2 as n →∞,

where X3 ∼ Beta(1 − 2β,3β) and (Pi,i ≥ 1) ∼ GEM(1 − β,1 − 2β). Thus, we have obtained the almost
sure limiting weight partition for the subtrees (τ(n)

j
, j ≥ 0).

Proof of (iii). From (i), Kn →∞ a.s. as n →∞. In particular, for all i ≥ 0 and n ≥ 1, N−1
i (n) <∞ a.s..

We assume this holds henceforth. It suffices to show the independence of the sigma-fields generated by

(Ni(n),n ≥ 1,i ≥ 0) and
(
τ
(N−1

i (n))

i ,n ≥ 1
)

0≤i≤m+2
,

respectively, where m ≥ 0 is arbitrary but fixed.

Since N−1
i (n) <∞ a.s., the distributional identity τ

(N−1
i (n))

i

d
= T(n) in the i-th subtree for 0 ≤ i ≤ m+2

holds by virtue of Marchal’s algorithm.
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Let M > 1 be arbitrary, but fixed, and denote the natural filtration of (Ni(n),i ≥ 0)n≥1 by (Fn)n≥1.
Note that for any fixed n ≥ 1, (Ni(n),i ≥ 0) is almost surely a vector with finitely many non-trivial en-
tries. Define T :=maxi=0,...,m+2 N−1

i (M), which is a stopping time with respect to (Fn)n≥1. By assump-
tion, T <∞ a.s.. Conditional on FT (which is the same as conditioning on relative weights on subtrees
until time T), we have factorisation of tree shape probabilities into tree shape probabilities for the re-

spective subtrees cut at V2. In particular, given FT , the tree shapes of
(
τ
(N−1

i (n))

i ,1 ≤ n ≤ M
)

0≤i≤m+2
are independent. Furthermore, on the event {T = t}, conditioning on the sigma-field generated at a later
time k ≥ t does not affect the tree shapes under consideration. Hence, the hypotheses in Lemma 2.9 are
fulfilled. Let t(n)i be some given leaf-labelled trees with n leaves and a root. Then,

P

(
τ
(N−1

i (n))

i = t(n)i ,1 ≤ n ≤ M,0 ≤ i ≤ m + 2
���� F∞)

= P

(
τ
(N−1

i (n))

i = t(n)i ,1 ≤ n ≤ M,0 ≤ i ≤ m + 2
���� FT )

= P

(
τ
(N−1

i (M))

i = t(M)
i ,0 ≤ i ≤ m + 2

���� FT )
(9)

=

m+2∏
i=0

P

(
τ
(N−1

i (M))

i = t(M)
i

���� FT ) = m+2∏
i=0

P

(
T(M) = t(M)

i

���� FT )
=

m+2∏
i=0

P

(
T(M) = t(M)

i

)
, (10)

where (9) holds by Proposition 2.4 and since τ
(N−1

i (M))

i determines τ
(N−1

i (n))

i for all 1 ≤ n ≤ M . (10)
follows since there is no dependence on F∞ in the final expression and we are conditioning over an
almost surely finite number of discrete random variables. Furthermore, this implies that the sigma-

field of
(
τ
(N−1

i (n))

i ,1 ≤ n ≤ M
)

0≤i≤m+2 is independent of F∞. Letting M →∞, and recalling m ≥ 0 is
arbitrary, the claimed independence of the sigma-fields follows.

As the collection (τi,i ≥ 0) is measurably constructed from
(
τ
(N−1

i (n))

i ,n ≥ 1
)
i≥0, it is independent of

(Ni(n),n ≥ 1,i ≥ 0). Dropping the conditioning in (10), we get that
(
τ
(N−1

i (n))

i ,1 ≤ n ≤ M
)
, 0 ≤ i ≤ m+2,

are independent. Thus, in the limit as M →∞,
(
τ
(N−1

i (n))

i
,n ≥ 1

)
, 0 ≤ i ≤ m + 2, are independent. As

τi is measurably constructed from
(
τ
(N−1

i (n))

i ,n ≥ 1
)

for each 0 ≤ i ≤ m + 2,
(
τi,0 ≤ i ≤ m + 2

)
are

independent. Let m →∞ to conclude that (τi,i ≥ 0) are independent.

Proof of (iv). Recall that Nσ(n) denotes the number of leaves (excluding V2) in σ(n), and define
N−1
σ (n) := inf{k ≥ 0: Nσ(k) = n}, which is a.s. finite by (i) since σ(n) has at least Kn leaves. Let

(Fn)n≥1 denote the natural filtration of
(
N−1

0 (n),N−1
1 (n),N−1

2 (n),N−1
σ (n)

)
n≥1. Conditional on a leaf be-

ing added to σ(n) at time n + 1, the process of adding leaves to each subtree within σ(n) is modelled
by a CRP (1 − β,1 − 2β) and does not depend on the times at which the leaf is added. By a similar
argument to (iii) and applying Lemma 2.9, for all non-negative integers l(n)j ,

P

(
Nj

(
N−1
σ (n)

)
= l(n)j ,1 ≤ n ≤ M,3 ≤ j ≤ m

���� F∞)
= P

(
Nj

(
N−1
σ (n)

)
= l(n)j ,1 ≤ n ≤ M,3 ≤ j ≤ m

)
.

This implies that the sigma-field generated by
(
Nj

(
N−1
σ (n)

)
,1 ≤ n ≤ M

)
3≤ j≤m is independent of F∞

for all M ≥ 1. Let M →∞ to conclude that the sigma-field generated by
(
Nj

(
N−1
σ (n)

)
,n ≥ 1

)
3≤ j≤m is
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independent of F∞. We may rewrite equations (7) and (8) to get

Ni+2

(
N−1
σ (n)

)
n

a.s.
−→ Pi and

n
N−1
σ (n)

a.s.
−→ X3 as n →∞.

So, (Pi,i ≥ 1) are measurable with respect to the sigma-field generated by
(
Nj

(
N−1
σ (n)

)
,n ≥ 1

)
j≥3.

Also, X3 is F∞-measurable, similarly for X0, X1 and X2. The desired result follows.

We finally obtain the main result regarding the self-similarity of Marchal’s algorithm, which proves
the self-similarity property of limiting α-stable tree when decomposed at the “first” branch point.

Theorem 3.3. For any α ∈ (1,2], the limiting trees (τi,i ≥ 0) in Marchal’s algorithm are independent.
Furthermore, they are independent of their scaling factors. For each subtree τ(n)i , let d(n)

i denote the

graph distance and μ(n)i the empirical mass measure on its leaves. For each i ≥ 0, we have(
τ
(n)
i ,

d(n)
i

αnβ
, μ

(n)
i

)
a.s.
−→

(
τi, ξ

β
i di, ξiμi

)
as n →∞,

in the Gromov–Hausdorff–Prokhorov topology, where (τi,di, μi),i ≥ 1, are i.i.d. with

(τi,di, μi)
d
= (Tα,dα, μα) , i ≥ 0,

and ξi = Xi for i ∈ {0,1,2} and, for α ∈ (1,2), ξj+2 = X3Pj for j ≥ 1. For α = 2, (ξ0, ξ1, ξ2) ∼

Dir (1/2,1/2,1/2). Otherwise, for α ∈ (1,2), (X0,X1,X2,X3) and (Pi,i ≥ 1)↓ are independent with
(X0,X1,X2,X3) ∼ Dir (β, β, β,1 − 2β) and (Pi,i ≥ 1)↓ ∼ PD(1 − β,1 − 2β).

Proof. The almost sure convergence in the rescaled subtrees arises by applying Proposition 2.5 and
Proposition 3.2(iii). The independence between the limiting subtrees comes immediately from Propo-
sition 3.2(iii). The arguments in Lemma 3.1 and Proposition 3.2(ii) show that the limiting proportion
of weights is measurably constructed from

(
Ni(n),n ≥ 1,i ≥ 0

)
. Hence, by Proposition 3.2(iii), the lim-

iting subtrees are independent of their scaling factors. The representation of (ξi,i ≥ 0) and hence its
distribution are a consequence of Proposition 3.2(ii) and Proposition 3.2(iv).

The results of Theorem 3.3 agree with similar decompositions of the BCRT at a branch point in
Aldous [5, Theorem 2], Albenque and Goldschmidt [3, Section 1.4], and Croydon and Hambly [12,
Lemma 6], where the branch point is uniquely determined by a uniformly chosen point according to
the mass measure within each of the three subtrees. We point out that Albenque and Goldschmidt
deal with an unrooted BCRT, while Croydon and Hambly’s construction uses a doubly-marked rooted
BCRT. Our construction thus far does not require a notion of a mass measure (even though we have
chosen to include the mass measure in our statements), but rather a single marked point in each sub-
tree.

3.2. Formal specification of the concatenation operation

After verifying that the subtrees (τi,i ≥ 0) are rescaled versions of Tα in the limit with the required in-
dependences, the next step is to show that the concatenation operation induced by Marchal’s algorithm
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Figure 4. Construction of concatenated tree from 4 marked trees, rescaling is not shown.

is well-defined and measurable as an operation on Tm. We adapt the general setup and terminology
from [24]. Let

Ξ :=
{
(x0, x1, x2, x3pj, j≥1) : x0, x1, x2, x3≥0,

3∑
i=0

xi=1, p1≥p2≥· · ·≥0,
∞∑
j=1

pj=1
}
.

For notational convenience, we write ξi =
{

xi if i ∈ {0,1,2},
x3pi−2 otherwise.

Set Ξ∗ := Ξ × T∞m, as in (2), which is a Polish space since it is a product of Polish spaces. We
formally define our concatenation operator. Let ξ ∈ Ξ and let (τi,di, ρi, xi) be representatives of GHm-
equivalence classes in Tm for i ≥ 0. Define the concatenated tree (τ′,d ′, ρ′, x′) as follows.

1. Let τ̃′ :=
∐

i≥0 τi be the disjoint union of trees. Let ∼c be the equivalence relation on τ̃′ in which
ρi ∼c x0 for all i ≥ 1. Define τ′ := τ̃′/∼c . Write ψc for the canonical projection from τ̃′ onto τ′.

2. Define d ′ as the metric induced on τ′ under ψc by the metric d̃ ′ on τ̃′ such that

d̃ ′(u,v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ξ
β
i di(u,v) if u,v ∈ τi,i ≥ 0,
ξ
β
0 d0(u, x0) + ξ

β
j dj(ρj,v) if u ∈ τ0 and v ∈ τj, j � 0,

ξ
β
i di(u, ρi) + ξ

β
0 d0(x0,v) if u ∈ τi and v ∈ τ0,i � 0,

ξ
β
i di(u, ρi) + ξ

β
j dj (ρj,v) if u ∈ τi and v ∈ τj,i, j � 0.

(11)

3. Retain x′ = ψc (x1) as our marked point in τ′ and set ρ′ = ψc (ρ0) as the root of τ′.

We illustrate this construction in Figure 4.
By virtue of this construction, the GHm-equivalence class of (τ′,d ′, ρ′, x′) only depends on the GHm-

equivalence classes of (τi,di, ρi, xi) for i ≥ 0. Thus, it makes sense to define Cβ ⊆ Ξ∗ as the set of
elements κ = (ξ,τi,i ≥ 0) ∈ Ξ∗ such that the concatenated tree (τ′,d ′, ρ′, x′) formed by any equivalence
class representatives of ((τi,di, ρi, xi) ,i ≥ 0) is compact. Equip Tm and Ξ∗ with their respective Borel
sigma-algebras, B(Tm) and B(Ξ∗). The concatenation operator gβ : Ξ∗ → Tm is,

gβ(κ) =

{
(τ′,d ′, ρ′, x′) if κ ∈ Cβ,

({x′} ,0, x′, x′) otherwise,
(12)



1042 N. Chee, F. Rembart and M. Winkel

where ({x′},0, x′, x′) denotes the equivalence class of a trivial one-point rooted tree.

Proposition 3.4. The map gβ : Ξ∗ → Tm is B(Ξ∗)-measurable.

Proof. The proof can be adapted from [24, Proposition 3.2].

3.3. First main result: The RDE satisfied by the stable tree

We now deduce our main theorem in this section.

Theorem 3.5. The marked α-stable tree (Tα,dα, μα, xα) with xα ∼ μα satisfies the RDE

Tα
d
= gβ (ξ,Ti,i ≥ 0) (13)

on Tm, where (Ti,i ≥ 0) is a sequence of independent copies of Tα, independent of the sequence ξ =(
X0,X1,X2,X3Pj, j ≥ 1

)
∈ Ξ, and where the following holds.

• If α = 2, then ξj+2 = X3Pj = 0 almost surely for all j ≥ 1 and (X0,X1,X2) ∼ Dir (1/2,1/2,1/2).
• If α ∈ (1,2), then (X0,X1,X2,X3) ∼ Dir (β, β, β,1 − 2β) and (Pj, j ≥ 1) ∼ PD(1 − β,1 − 2β), where
(X0,X1,X2,X3) and (Pj, j ≥ 1) are independent.

In other words, the law of the marked α-stable tree ςm
α satisfies the fixpoint equation η = Φβ (η) on

P(Tm), where Φβ : P (Tm) → P (Tm) is the mapping on P(Tm) induced by (13), and where we recall
that P(Tm) denotes the set of Borel probability measures on Tm.

Proof. Recall that for the subtrees involved in the recursive application of Marchal’s algorithm, we
regarded V2 as a root and marked the first leaf in the i-th subtree for each i ≥ 1. We regarded A0 as
the root for the overall tree, and V2 as a marked leaf for the 0-th subtree. Thus, our construction using
Marchal’s algorithm agrees with the concatenation operator gβ acting on the subtrees. Theorem 3.3
gives the required independences and the distribution of ξ = (ξi,i ≥ 0). Proposition 3.4 ascertains the
measurability of gβ .

In general, the marked α-stable tree is not the only fixpoint of (13). If the metrics di of (the repre-
sentatives of) (τi,di, ρi, xi) ∈ Tm in (11) were multiplied by some constant c > 0, then the concatenated
tree will also have its metric d ′ multiplied by c. Furthermore, if the original concatenated tree were a
marked compact rooted R-tree, then so would the concatenated tree with metric multiplied by c. Thus,
since (Tα,dα, ρα, xα) is a distributional fixpoint of (13), so is (Tα,cdα, ρα, xα) for any c > 0.

Remark 3.6. There also exist solutions to RDE (13) with infinite 1/β-th height moment. This can
be shown by grafting mass-less length-y branches onto a stable tree with intensity proportional to
y−1−1/βdyμ(dx), see e.g. [10] and [3] for such constructions in the context of related RDEs with finite
concatenation operations – the arguments there are not affected by the change of setting here. We
will establish uniqueness of the solution to (13) up to multiplication of distances by a constant, under
suitable constraints on height moments.
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4. Uniqueness and attraction for a general RDE on Tm

4.1. Recursive tree frameworks (RTF) and recursive tree processes (RTP)

In a recursive tree framework, the approach of Section 2.4 is extended recursively to Si,i ≥ 1, and
beyond. To this end, we will work with the Ulam–Harris-indexation of integer words

U :=
⋃
n≥0

N
n, where N := {0,1,2, . . .}.

Consider a sequence of i.i.d. Θ × N-valued random variables (ξu,Nu),u ∈ U. Furthermore, suppose
that there are random variables τu,u ∈ U, possibly on an extended probability space, as follows.

(i) For all u ∈ U,

τu = g
(
ξu, τuj,1 ≤ j ≤∗Nu

)
a.s.. (14)

(ii) The variables (τu,u ∈ Nn) are i.i.d. with some distribution ηn, n ≥ 1.
(iii) The variables (τu,u ∈ Nn) are independent of the variables (ξu,Nu,u ∈

⋃n
k=0N

k).

In this setup, we may define a recursive tree framework as follows.

Definition 4.1 (Recursive tree framework). A pair ((ξu,Nu,u ∈ U),g) is called a recursive tree frame-
work if (ξu,Nu,u ∈ U) is an i.i.d. family of Θ × N-valued random variables (ξu,Nu) ∼ ν,u ∈ U, and
g : Θ∗ → T is a measurable map.

Enriching an RTF with the random variables τu,u ∈ U gives us a so-called recursive tree process
(RTP). Sometimes, RTPs are only considered up to generation n, that is, only for τu,u ∈

⋃n
k=0N

k . We
then speak of an RTP of depth n. Finite-depth RTPs can always be defined for any distribution ηn of
τu,u ∈ Nn, by use of (14) with i.i.d. ξu, u ∈

⋃n−1
k=0N

k , also independent of the i.i.d. family
(
τu,u ∈ Nn

)
.

4.2. Second main result: Uniqueness and attraction for the new RDE

We now turn to the uniqueness and attraction of the fixpoints in (13). By Theorem 3.5 and Remark 3.6,
uniqueness will only hold up to multiplication by a constant and under additional moment conditions
on tree heights in the specific setting of Theorem 3.5. As our setup works for more general ξ ∈ Ξ, we
will broaden our scope and establish a uniqueness theorem for the RDE (13) in a setting that keeps the
same concatenation operation gβ of Section 3.2, but allows a more general distribution of ξ.

It will be useful to work in the a recursive tree framework, as defined in Section 4.1. Let us consider
an i.i.d. family of sequences of scaling factors (ξui,i ≥ 0),u ∈ U, with some distribution ν on Ξ, where
we recall the Ulam–Harris notation U =

⋃
n≥0N

n. Then (((ξui,i ≥ 0),u ∈ U),gβ) is a recursive tree
framework.

For n ≥ 1 and η ∈ P(Tm), we would like to study the distribution Φn
β(η) of Tn := τ(n)

∅
, where

τ
(n)
u := gβ

(
(ξui,i ≥ 0),

(
τ
(n)
ui ,i ≥ 0

) )
, u ∈ Nk, k = n − 1, . . . ,0, (15)

for τ(n)ui ∼ η,i ≥ 0, u ∈ Nn−1, i.i.d.. We also set T0 := τ(0)
∅

∼ η. Note that this setup induces a recursive
tree process of depth n, for any n ≥ 0 and η ∈ P(Tm).
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Furthermore, let P∞(Tm) ⊂ P(Tm) be defined as

P∞ (Tm) := {η ∈ P (Tm) : E [ht (T )p] <∞ for all p > 0 where (T ,d, ρ, x) ∼ η} .

Our main result in this section is as follows.

Theorem 4.2. For any Ξ-valued random variable ξ=(ξi,i≥0) such that P(ξ0+ξ1<1)=1 and P(ξ0 >

0, ξ1 > 0) = 1, choose β ∈ (0,1) such that E[ξβ0 + ξ
β
1 ] = 1. Then, for any η ∈ P∞(Tm) with h := E[d(ρ, x)]

for (T ,d, ρ, x) ∼ η,

Φn
β (η) → η∗h weakly as n →∞,

where η∗
h

is the unique fixpoint of Φβ in P∞(Tm) with E[d∗(ρ∗, x∗)]=h for (T ∗,d∗, ρ∗, x∗)∼η∗
h

.

Note that the function f : [0,1] → (0,∞), β 
→ E[ξβ0 + ξ
β
1 ] is continuous with f (0) = 2 and f (1) < 1

when P(ξ0 + ξ1 < 1) = 1. Hence, there is always some β ∈ (0,1) such that f (β) = 1 in the situation of
Theorem 4.2.

The uniqueness and attraction of the marked α-stable tree in (13) is a direct consequence of Theorem
4.2.

Corollary 4.3. Let α ∈ (1,2] and β = 1 − 1/α. Furthermore, let ξ = (X0,X1,X2,X3Pj, j ≥ 1) for inde-
pendent (X0,X1,X2,X3) ∼ Dir(β, β, β,1 − 2β) and (Pj, j ≥ 1) ∼ PD(1 − β,1 − 2β). Then the law ςm

α of
the marked α-stable tree is the unique fixpoint of Φβ on P∞(Tm) with E[d(ρ, x)] = αΓ(β)/Γ(2β) for
(T ,d, ρ, x) ∼ η, η ∈ P∞(Tm). Furthermore, for any η ∈ P∞(Tm) with E[d(ρ, x)] = h for (T ,d, ρ, x) ∼ η,
we have

Φn
β (η) → ςm

α,h weakly as n →∞,

where ςm
α,h

denotes the distribution of the marked α-stable tree with distances scaled by the factor
hΓ(2β)/(αΓ(β)).

Proof. Apply Theorem 4.2 with the specific distribution for ξ, and β = 1−1/α ∈ (0,1/2]. Furthermore,
recall from Theorem 3.5 that the marked α-stable tree is a fixpoint of the resulting RDE, is well-known
to have height moments of all orders (e.g. from its construction via Theorem 4.6), and from Section
2.3 that the distance between the root and a uniformly sampled leaf of the α-stable tree has distribution
ML(β, β) scaled by α, which has mean αΓ(β)/Γ(2β) by (1).

To prove Theorem 4.2, we first focus on the case when η is supported on the space of probability
measures on trivial trees, that is, single branch trees with a root and exactly one leaf (which is marked).
We further require that the length of such a tree has moments of orders p > 0. Specifically, we consider

T
tr
m := {(T ,d,0, y) ∈ Tm : T = �0, y�, y > 0} .

For most of the proof, we will work in the special case of Ttr
m-valued initial distributions:

Assumption (A). η ∈ P∞
(
T

tr
m
)

:=
{
η ∈ P

(
T

tr
m
)

: E[(ht(T ))p] <∞ for all p > 0 where T ∼ η
}

.

Under Assumption (A), we will show the convergence of scaling factors on the spine from the root
to the marked point in the RDE (Section 4.3), the convergence of subtrees spanned by leaves up to
recursion depth k (Section 4.4), the CRT limit as k →∞ (Section 4.6) and establish that the RDE is



A recursive distributional equation for the stable tree 1045

attractive, pulling threads together via a tightness argument (Section 4.7). We finally strengthen this to
lift Assumption (A) and complete the proof of Theorem 4.2.

For the remainder of this section, we write (Tn,n ≥ 0) for the sequence of trees constructed around
(15) from i.i.d. τ(n)u ∼ η, u ∈ Nn, n ≥ 0, for some η ∈ P(Tm). We write Yu := ht(τ(n)u ), u ∈ Nn, n ≥ 0.

4.3. Scaling factors on the spine from the root to the marked point in the RDE

We first study an Lp-bounded martingale in the general setting of Theorem 4.2, which arises from the
scaling factors that are relevant for the spine from the root to the marked point under Φn

β(η), n ≥ 0.

Lemma 4.4. Let ξ be a Ξ-valued random variable with P(ξ0 > 0, ξ1 > 0) = 1. Let β ∈ (0,1] such that
E[ξ

β
0 + ξ

β
1 ] = 1, let (ξuj, j ≥ 0),u ∈ U, be i.i.d. with the same distribution as ξ, and define ξ

∅
:= 1 and

ξu := ξu1ξu1u2 · · · ξu1...un , u = u1 . . . un ∈ Nn, n ≥ 1. (16)

Then the process

Ln =
∑

u∈{0,1}n
ξ
β
u, n ≥ 0, (17)

is a mean-1 martingale that converges a.s. and in Lp for all p ≥ 1.

Proof. It is straightforward to show that (Ln,n ≥ 0) is a martingale, so we focus on the Lp-
boundedness. Indeed, for p = 1, we have for all n ≥ 1,

E [Ln] =
∑

u∈{0,1}n
E

[
ξ
β
u1

]
· · ·E

[
ξ
β
u1...un

]
=

(
E

[
ξ
β
0

]
+ E

[
ξ
β
1

] ) n
= 1.

Inductively, if for all j ≤ p − 1 and n ≥ 1, we have E[L j
n] ≤ f ( j), then for all n ≥ 1,

E
[
Lp
n

]
=

∑
u(1) ,...,u(p) ∈{0,1}n

E

[
ξ
β

u(1) · · · ξ
β

u(p)

]
=

∑
v∈{0,1}n

E

[
ξ
pβ
v

]
+

n−1∑
k=0

∑
v∈{0,1}k

E

[
ξ
pβ
v

] p−1∑
j=1

(
p
j

)
E

[
ξ
jβ
0 ξ

(p−j)β
1

]

× E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

w(1) ,...,w( j)

∈{0,1}n−k−1

(
ξ
β

w(1) · · · ξ
β

w( j)

)⎤⎥⎥⎥⎥⎥⎥⎥⎦
!E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

w( j+1),...,w(p)

∈{0,1}n−k−1

(
ξ
β

w( j+1) · · · ξ
β

w(p)

)⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Specifically, we split the sum over u(1), . . . ,u(p) according to the number k of initial entries that are com-
mon to all u(1), . . . ,u(p) and according to the number j of entries in the (k + 1)-st place of u(1), . . . ,u(p)

that equal 0. For each k and j, there are
(
p
j

)
ways to choose which j they are. By symmetry, the

contribution is the same as if they are 1, . . . , j, so that we write the sum as a sum over

u(1) = v0w(1), . . . ,u(j) = v0w(j),u(j+1) = v1w(j+1), . . . ,u(p) = v1w(p).
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By the induction hypothesis, we can further bound E[Lp
n ] above by

n∑
k=0

∑
v∈{0,1}k

E

[
ξ
pβ
v

] p−1∑
j=1

(
p
j

)
f ( j) f (p − j) ≤ �
�

p−1∑
j=1

(
p
j

)
f ( j) f (p − j)��� 1

1 − E
[
ξ
pβ
0 + ξ

pβ
1

] =: f (p),

and this is finite. An application of the Martingale Convergence Theorem completes the proof.

4.4. Convergence of subtrees spanned by leaves up to depth k

In the following, we associate a notion of depth with every leaf of the trees Tn := τ(n)
∅

, n ≥ 1, of (15),
so as to give a meaning to “the subtree of Tn spanned by the leaves up to depth k”. Let us do this under
Assumption (A). Recall that Tn, for n ≥ 1, is built recursively by scaling and concatenating trivial trees
τ
(n)
u , u ∈ Nn, in such a way that the unique leaf of τ(n)u gives rise to a leaf (if u1, . . . ,un ∈ N \ {0})

or branch point (otherwise) of Tn, which we denote by Σn,u ∈ Tn, u ∈ Nn. We say Σn,u has depth
k ∈ {1, . . . ,n} if u = u1 · · ·un ∈ Nn, with uk � 1 and uk+1 = . . . = un = 1. We also say that the marked
leaf Σn,11· · ·1 of Tn has depth 0. Then the subtree of Tn spanned by the leaves up to depth k has the
same tree shape as Tk , for all n ≥ k, with edge lengths, whose convergence will establish the following
proposition.

Proposition 4.5. Suppose Assumption (A) holds and Tn := τ(n)
∅

in the setting of (15), n ≥ 0. Let k ∈ N.
For n ≥ k, let T k

n be the subtree of Tn spanned by the root and the leaves up to depth k. We consider
Σn,11· · ·1 as the respective marked point. Then there is an increasing sequence (T k, k ≥ 0) of marked
trees such that, for all k ≥ 0,

T k
n →T k in probability as n →∞

in the marked Gromov–Hausdorff topology.

Proof. For k = 0, T 0
n is a trivial one-branch tree with a root and a marked leaf, and total length

L̃0
n =

∑
u∈{0,1}n

ξ
β
uYu.

Recall the martingale (Ln,n ≥ 0) from (17) and denote its limit by L∞. Let m := E[Y∅], and note that,

E

[ (
L̃0
n − mLn

) 2
]
= E

⎡⎢⎢⎢⎢⎣�
�
∑

u∈{0,1}n
ξ
β
u (Yu − m)

���
2⎤⎥⎥⎥⎥⎦

=
∑

u∈{0,1}n

∑
v∈{0,1}n

E

[
ξ
β
uξ

β
v

]
E [(Yu − m) (Yv − m)]

=
∑

u∈{0,1}n
E

[
ξ

2β
u

]
E

[
(Yu − m)2

]
=Var (Y∅)

(
E

[
ξ

2β
0 + ξ

2β
1

] ) n
→ 0

as n →∞, where we used the facts that Yu and Yv are independent for u � v, and E[ξ2β
0 + ξ

2β
1 ] < 1 as

0 < ξ0, ξ1 < 1 a.s.. Therefore, L̃0
n → L̃0

∞ :=m · L∞ in L2 and almost surely as n →∞.



A recursive distributional equation for the stable tree 1047

Under Assumption (A), the Yu also have finite p-th moment for all p ≥ 3 and splitting p-fold sums as
in the proof of Lemma 4.4, it is straightforward to strengthen this convergence to Lp-convergence.

Now, let k ≥ 1, and note that the shapes of T k
n and Tk coincide for all n ≥ k. Let L̃k

n,u,u ∈ Nk , denote
the lengths of the edges of T k

n using obvious notation, i.e.

L̃k
n,u :=

∑
v∈{0,1}n−k

ξ
β
uvYuv, u ∈ Nk .

Furthermore, let T k have the same shape and the same marked leaf as Tk with edge lengths L̃k
∞,u,u ∈

N
k , given by

L̃k
∞,u = lim

t→∞

∑
v∈{0,1}t

ξ
β
uvYuv, u ∈ Nk,

which exists a.s. as a ξ
β
u -scaled copy of L̃0

∞, independent for u ∈ Nk .
Hence, for each k ≥ 0, the differences

��L̃k
n,u − L̃k

∞,u
��, u ∈ Nk , are ξ

β
u -scaled independent copies of

| L̃0
n − L̃0

∞|. Therefore, for p ≥ 1/β, as every leaf of T k
n or T k is at most 2k edges from the root and

from another leaf,

E

[ (
dm

GH

(
T k
n ,T

k
) ) p]

≤ 2pk
E

[
max
u∈Nk

���L̃k
n,u − L̃k

∞,u

���p] ≤ 2pk
∑

u∈Nk

E

[���L̃k
n,u − L̃k

∞,u

���p]
= 2pk

∑
u∈Nk

E

[
ξ
pβ
u

]
E

[���L̃0
n − L̃0

∞

���p] .
Since

∑
u∈Nk E

[
ξ
pβ
u

]
<∞ for p ≥ 1/β and L̃0

n → L̃0
∞ in Lp as n →∞, we conclude that, for any ε > 0,

lim
n→∞

P

(
dm

GH

(
T k
n ,T

k
)
> ε

)
≤ lim

n→∞
ε−pE

[ (
dm

GH

(
T k
n ,T

k
) ) p]

= 0.

Hence, T k
n →T k in probability in the marked Gromov–Hausdorff topology as n →∞.

4.5. An RDE on T and associated constructions in Tw of [24]

In [24], two of us established a recursive construction method for CRTs by successively replacing the
atoms of a random string of beads, that is, a random interval [0,L] for some L > 0 equipped with a
random discrete probability measure μ, with scaled independent copies of itself. More general versions
of the CRT construction using so-called generalised strings were established to capture multifurcating
self-similar CRTs. Let us briefly recap this construction here, and refer to [24] for more details.

Strings of beads can be represented in the form ([0,	],(xi)i∈I ,(qi)i∈I ), where 	 > 0 denotes the length
of the interval, and xi ∈ [0,	], i ∈ I, are distinct and describe the locations of the atoms with respective
masses qi ≥ 0, i ∈ I, of a discrete measure μ =

∑
i∈I qiδxi on [0,	], where

∑
i∈I qi = 1, where I is some

countable index set. In this representation, the concept of a string of beads is naturally generalised by
allowing for non-distinct xi’s. We call such ([0,	],(xi)i∈I ,(qi)i∈I ) a generalised string. More gener-
ally, we write (T ,(xi)i∈I ,(qi)i∈I ) for an R-tree (T ,d), xi ∈ T , i ∈ I, and qi ≥ 0 with

∑
i∈I qi = 1. The

following theorem is a (slightly simplified) version of the main result in [24].
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Theorem 4.6. Let β ∈ (0,∞) and p > 1/β. Let ζ = (Ť0,(X̌
(0)
i

)i∈I0,(Q̌
(0)
i
)i∈I0 ) be a random generalised

string with length L > 0 such that E[Lp] <∞, and atom masses 0 ≤ Q̌(0)
i
< 1 a.s. for all i ∈ I0 and such

that
∑

i∈I0 Q̌(0)
i
= 1 a.s.. For n ≥ 0, the (n + 1)st R-tree with a measure represented by atom locations

and masses, (
Ťn+1,

(
X̌ (n+1)
i

)
i∈In+1

,
(
Q̌(n+1)
i

)
i∈In+1

)
,

conditionally given (Ťn,(X̌
(n)
i )i∈In ,(Q̌

(n)
i )i∈In ), is obtained by attaching to each X̌ (n)

i ∈ Ťn an indepen-

dent isometric copy of ζ with metric rescaled by (Q̌(n)
i )β and atom masses rescaled by Q̌(n)

i , i ∈ In.

Let μ̌n =
∑

i∈In Q̌(n)
i δ

X̌i
(n),n ≥ 0. Then there exists a random weighted R-tree (Ť , μ̌) such that

lim
n→∞

(
Ťn, μ̌n

)
=

(
Ť , μ̌

)
a.s.

in the Gromov–Hausdorff–Prokhorov topology in Tw. Furthermore, E[ht(Ť )p] < ∞ for all p < p∗ :=
sup{p ≥ 1: E[Lp] <∞}.

The convergence in Theorem 4.6 holds in particular in the Gromov–Hausdorff sense when we
omit mass measures. In fact, this construction is naturally carried out in the Banach space 	1(U),
U :=

⋃
n≥0N

n, which is a variant of Aldous’s 	1(N) since U is countable. So embedded, the con-
vergence holds with respect to the Hausdorff metric (or a Hausdorff–Prokhorov metric) for compact
subsets (equipped with a probability measure) of 	1(U), as a consequence of the arguments of [24].
In particular, the α-stable tree was characterised as the limit in the case of a β-generalised string for
β = 1 − 1/α ∈ (0,1/2], that is, a generalised string of the form

(
[0,L] ,(Xi)i≥1 ,(Pi)i≥1

)
where, for

(Qm,m ≥ 1) ∼ PD(β, β) independent of i.i.d. (R(m)
j , j ≥ 1) ∼ PD(1 − β,−β), m ≥ 1, the atom sizes are

given via

(Pi,i ≥ 1) =
(
QmR(m)

j , j ≥ 1,m ≥ 1
) ↓
,

and the atom locations are defined via i.i.d. Unif ([0,1])-variables (Um,m ≥ 1) and

L := lim
m→∞

mΓ(1 − β)Qβ
m, Xi = LUm if Pi =QmR(m)

j , i, j ≥ 1.

Figure 5. The dyadic structure of limiting branch lengths L̃k
∞,u = L̃k+1

∞,u0+ L̃k+1
∞,u1, ordered in lexicographical order;

atom positions Xui , not depending on i ≥ 2, are between fragments L̃n
∞,u0 and L̃n

∞,u1, u ∈ {0,1}n, n ≥ 0.
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4.6. The CRT limit of Tk as k →∞

Next, we want to prove the convergence of the limits T k of Proposition 4.5 as k →∞. We first identify
a suitable candidate for the limit. We employ the recursive construction method for CRTs as described
in Section 4.5. Let us define a generalised string that will capture subtree masses on the spine T 0 of
length L̃0

∞. Viewed as a subset of T k , this spine consists of 2k spinal edges. In the notation of the proof
of Proposition 4.5, they have lengths L̃k

∞,u, u ∈ {0,1}k , and their order from the root to the marked leaf
is the lexicographical order (see Figure 5), that is

v = v1 . . . vk ≺ u1 . . . uk = u ⇐⇒ ∃t ∈ {1, . . . , k} such that ∀ j < t : vj = u j and vt < ut .

In view of the concatenation operation gβ , subtrees and subtree masses are naturally parametrised by
U
∗ :=

⋃
k≥0{0,1}k × {2,3, . . .}. We set

ζ =
( [

0, L̃0
∞

]
,(Xu)u∈U∗ ,(Qu)u∈U∗

)
(18)

where (Qu)u∈U∗ and (Xu)u∈U∗ are defined by recursively splitting mass 1 and length L̃0
∞, as follows.

• Let Qi := ξi , i ≥ 2, and, for u = u1 . . . un ∈ U∗, define masses

Qu := ξu1ξu1u2 · · · ξu1u2...un = ξu1u2...un
.

Note that 0 ≤ Qu < 1 a.s. for all u ∈ U∗,
∑

u∈U∗ Qu = 1 a.s., and E
[∑

u∈U∗ Qpβ
u

]
< 1 for p > 1/β.

• Define the locations (Xu)u∈U∗ of the atoms with respective masses (Qu)u∈U∗ by Xi = L̃1
∞,0, i ≥ 2,

and, for general u = u1 . . . un ∈ U∗, the following sum of up to 2n − 1 edge lengths

Xu =
∑

v1...vn ∈{0,1}n : v1...vn≺u1...un
v1...vn−1vn�u1...un−11

L̃n
∞,v1...vn

. (19)

Noting in particular that this specifies Xu1...un−1i = Xu for all i ≥ 2 and each u = u1 . . . un ∈ U∗, the
scaled lengths and dyadic splits to depth k = 3 are illustrated in Figure 5.

We now apply the recursive construction as outlined in Theorem 4.6 to the generalised string ζ ,
which results in an R-tree T , whose distribution we denote by η∗.

Proposition 4.7. Let β ∈ (0,1], and p > 1/β. Consider the generalised string ζ given by (18). Consider
a sequence of random weighted R-trees obtained inductively by the construction of Theorem 4.6, which
we denote here by (T ∗

n , μ
∗
n), n ≥ 0. Then (T ∗

n , μ
∗
n) → (T , μ) a.s. in the Gromov–Hausdorff–Prokhorov

topology for some random weighted compact R-tree (T , μ) with E [ht (T )p] <∞ for all p > 0.

It will be convenient to refer to the two endpoints of the rescaled generalised strings attached in
the construction of T as ρu and Σu, u ∈ U. Specifically, we denote by ρ = ρ∅ and Σ∅ the endpoints
of T∗

0 ⊂ T . The first step of the construction performed in Proposition 4.7 consists of attaching to
T∗

0 rescaled independent copies of the generalised string ζ to T∗
0 , one for each u ∈ U∗. In particular,

we have Σu ∈ T ∗
1 for all u ∈ U∗. The way we specified ζ in terms of (ξu)u∈U∗ , removing Σ0 from

(T ∗
1 , μ

∗
1) or (T , μ) yields a mass split (ξi,i ≥ 0). For any u ∈ U, we have Σu ∈ T ∗

n \ T ∗
n−1 if and only if

u = u(1)i1 . . .u(n)inu(n+1) for some u(j) ∈
⋃

k≥0{0,1}k , 1 ≤ j ≤ n + 1, and ij ∈ {2,3, . . .}, 1 ≤ j ≤ n.
We will now couple the vectors (ξvi,i ≥ 0), v ∈ U, of the construction of (Tn,n ≥ 0) and (T k, k ≥ 0) in

the setting of Proposition 4.5, and the generalised strings ζu, u ∈ U, in the construction of Proposition
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4.7. Specifically, the recursive nature of both constructions ensures that we can achieve that removing
ρu = ρu0, Σu0 = ρu1 and Σu1 = Σu from T , or indeed from T∗

n for n sufficiently large, yields a relative
mass split (ξui,i ≥ 0) for the components adjacent to Σu0, and these splits are i.i.d., u ∈ U.

We can represent T and Tn, n ≥ 0, in 	1(U) in such a way that the convergences of Proposi-
tion 4.5 hold for the Hausdorff metric on compact subsets of 	1(U). The arguments in the proof of
Proposition 4.5 ensure that we have further a.s. convergence of Σn,u to limits that we denote by Σu,
for all u ∈ U. Then the trees T k are spanned by Σu, u ∈

⋃
0≤ j≤k N

j , while T∗
n is spanned by Σu,

u = u(1)v1u(2)v2 · · ·u(n)vnu(n+1), u(1), . . . ,u(n+1) ∈
⋃

m≥0{0,1}m, v1, . . . ,vn ∈ N.

Lemma 4.8. Let (T k, k ≥ 0) be the sequence of trees from Proposition 4.5, and let (T ∗
n ,n ≥ 0) be the

sequence of trees from Proposition 4.7 with T∗
n →T a.s. as n →∞. Then T k →T a.s. as k →∞ in

the marked Gromov–Hausdorff topology.

Proof. Since the sequence of trees (T k, k ≥ 0) is increasing and embedded in T with the same marked
point, it remains to show that the almost sure limit of T k is the whole of T .

Let (Tuj, j ≥ 2), u ∈
⋃∞

t=0N
k × {0,1}t , denote the connected components of T \T k , k ≥ 0, where we

write (Tu1...un j, j ≥ 2) for the subtrees of T \ T k rooted at the edge of Tk of length L̃k
∞,u1...uk

, n ≥ k,
using notation from Proposition 4.5. By the recursive construction, each Tuj is a ξuj-scaled independent
copy of T , and we obtain for k ≥ 0 and p > 1/β,

E

[ (
dm

GH

(
T k,T

) ) p]
≤ E

[ (
max

u∈
⋃∞

t=0N
k×{0,1}t , j≥2

ht
(
Tuj

) ) p]
≤ E [(ht (T ))p]

∑
u∈

⋃∞
t=0N

k×{0,1}t , j≥2

E

[
ξ
pβ
uj

]
≤ E [(ht (T ))p]

∑
u∈

⋃∞
t=0N

k×{0,1}t
E

[
ξ
pβ
u

]

≤ E [(ht (T ))p]
�
�E

⎡⎢⎢⎢⎢⎣
∑
j≥0

ξ
pβ
j

⎤⎥⎥⎥⎥⎦���
k

E

[
∞∑
t=0

(
ξ
pβ
0 + ξ

pβ
1

) t ]
→ 0 as k→∞

since E [ht (T )p] <∞ and E
[ ∑

j≥0 ξ
pβ
j

]
< 1. Hence, for any ε > 0 and p > 1/β,

P

(
dm

GH

(
T k,T

)
> ε

)
≤ ε−pE

[ (
dm

GH

(
T k,T

) ) p]
→ 0

as k →∞. Therefore, due to the embedding of (T k, k ≥ 0) into T , T k →T a.s. as k →∞.

4.7. Attraction of the RDE and the proof of Theorem 4.2

Theorem 4.2 claims a general convergence to a unique fixpoint. Under Assumption (A) of initial distri-
butions concentrated on trivial trees, Proposition 4.5 and Lemma 4.8 establish a two-step convergence
as first n →∞ for subtrees of Tn spanned by leaves up to depth k ≥ 1 and then k →∞. To complete the
proof of Theorem 4.2, we need a tightness result, and we need to lift Assumption (A). For the former,
we show that the supremum of the height moments of Tn is finite, employing the recursive construction
of CRTs for a generalised string defined in a similar manner as in the discussion before Proposition 4.7.
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Lemma 4.9. Under Assumption (A), the sequence of trees (Tn,n ≥ 0) satisfies

E

[
sup
n≥0

ht (Tn)p
]
<∞ for all p > 0. (20)

Proof. The idea of the proof is to construct a CRT T̂ whose height dominates ht(Tn) for all n ≥ 0.
Indeed, we apply the recursive construction of CRTs (cf. the construction of T in Section 4.6) to the
generalised string ζ̂ obtained by modifying the definition of ζ in (18). Specifically, note that we can
write the locations on the string in (19) as

Xu = lim
t→∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

v1...vk ∈{0,1}k : v1...vk ≺u1...uk
v1...vk−1vk�u1...uk−11

∑
vk+1...vk+t ∈{0,1}t

ξ
β
v1...vk+t

Yv1...vk+t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
To define X̂u, we replace limt→∞ by supt≥0. In the same way, we define the length of the string as

L̂0
∞ := supt≥0

∑
u∈{0,1}t ξ

β
uYu. If Yu = m a.s., we have E[(L̂0

∞)
p] < ∞ by Lemma 4.4 and Doob’s Lp-

inequality. In the general case, we split Yu = m + (Yu − m) and argue as in the proof of Proposition 4.5
(and the proof of Lemma 4.4) to see that E[(L̂0

∞)
p] <∞ for all p > 0.

This ensures that each atom on ζ̂ is placed at the furthest position away from the left end point which
appears in the course of the construction of Tn,n ≥ 0. As a consequence, using ζ̂ instead of ζ in the
recursive construction, coupled by being derived derived from the same (ξu,u ∈ U) and (Yu,u ∈ U), all
distances from leaves and branch points to the root will be larger than in any of the trees Tn,n ≥ 0.

Applying Theorem 4.6 to the generalised string ζ̂ , we obtain a CRT T̂ which has finite height mo-
ments of all orders. By the underlying coupling, ht(Tn) ≤ ht(T̂ ) for all n ≥ 0, i.e., the claim follows.

Corollary 4.10. Consider the sequences of trees (Tn,n ≥ 0) and (T k
n ,n ≥ k), k ≥ 0, where we recall

that, for n ≥ k, T k
n is the subtree of Tn spanned by the root and the leaves up to depth k. Then, for any

ε > 0,

lim
k→∞

lim sup
n→∞

P

(
dm

GH

(
T k
n ,Tn

)
> ε

)
= 0. (21)

Proof. Let T k
n,u \ {ρ

k
n,u},u ∈

⋃n−k−1
t=0 N

k × {0,1}t × {2,3, . . .}, denote the subtrees of Tn \T k
n , n ≥ k +1:

Tn \ T
k
n =

⋃
u∈

⋃n−k−1
t=0 Nk×{0,1}t×{2,3,...}

T k
n,u \ {ρ

k
n,u}.

Then, for any ε > 0 and p > 1/β,

P

(
dm

GH

(
T k
n ,Tn

)
> ε

)
≤ ε−pE

[
max

u∈
⋃n−k

t=0 N
k×{0,1}t×{2,3,...}

ht
(
T k
n,u

) p]
≤ ε−p

∑
u∈

⋃n−k−1
t=0 Nk×{0,1}t×{2,3,...}

E

[
ξ
pβ
u

]
E
[
ht

(
Tn−|u |

) p]
.

By Lemma 4.9, it remains to show that

lim
k→∞

lim sup
n→∞

∑
u∈

⋃n−k−1
t=0 N

k×{0,1}t×{2,3,...}

E

[
ξ
pβ
u

]
= 0, (22)
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First, note that the left-hand side of (22) is bounded above by

lim
k→∞

sup
n≥k+1

∑
u∈Nk

n−k−1∑
t=0

∑
v∈{0,1}t×{2,3,...}

E

[
ξ
pβ
uv

]
, (23)

where we also slightly rewrote the expression. By the fact that (ξuj, j ≥ 0),u ∈ U, are i.i.d., we have

E

[
ξ
pβ
uv

]
= E

[
ξ
pβ
u

]
E

[
ξ
pβ
v

]
≤ E

[
ξ
pβ
u

]
E

[
ξv

]
,

where we used ξv < 1 a.s. and pβ > 1 in the last inequality.
Furthermore, as

∑
j≥0 ξvj = 1,

n−k−1∑
t=0

∑
v∈{0,1}t×{2,3,...}

E

[
ξv

]
≤

n−k−1∑
t=0

(E [ξ0 + ξ1])
t ≤

∞∑
t=0

(E [ξ0 + ξ1])
t = (1 − E [ξ0 + ξ1])

−1

where we also used the i.i.d. property of the (ξvj, j ≥ 0), v ∈
⋃n−k−1

t=0 {0,1}t , and E [ξ0 + ξ1] < 1. Hence,
(23) can be further bounded above by

(1 − E [ξ0 + ξ1])
−1 lim

k→∞

∑
u∈Nk

E

[
ξ
pβ
u

]
= (1 − E [ξ0 + ξ1])

−1 lim
k→∞

(
E

[∑
i≥0

ξ
pβ
i

] ) k
. (24)

As pβ > 1 and 0 ≤ ξi < 1 a.s. for all i ≥ 0, E
[ ∑

i≥0 ξ
pβ
i

]
< 1, and we conclude that (24) is 0.

We are now ready to prove our final result.

Corollary 4.11. Under Assumption (A), let (Tn,n ≥ 0) be as above, and let T be the tree from Propo-
sition 4.7. We have the convergence

Tn →T in probability as n →∞

in the marked Gromov–Hausdorff topology.

Proof. Let ε > 0, and use the triangle inequality twice to get, for n ∈ N and k ≤ n,

P(dm
GH(Tn,T) > 3ε) ≤ P(dm

GH(Tn,T
k
n ) > ε) + P(dm

GH(T
k
n ,T

k ) > ε) + P(dm
GH(T

k,T) > ε).

All three terms converge to 0 as n → ∞, and then k → ∞, cf. Proposition 4.5, Lemma 4.8 and
Corollary 4.10.

Theorem 4.2 is now a direct consequence of Corollary 4.11.

Proof of Theorem 4.2. Let η ∈ P∞(Tm) be a general distribution of a marked R-tree. For a marked R-
tree (T0,d0, ρ0, x0) ∼ η, we define the induced distribution η◦ ∈ P∞(T

tr
m) as the distribution of �ρ0, x0�.

We construct coupled sequences (Tn,n ≥ 0) and (T ◦
n ,n ≥ 0) from the same recursive tree framework

((ξui,i ≥ 0),u ∈ U) and from coupled systems of i.i.d. η- and η◦-distributed trees, according to (15),
with T0 ∼ η and T◦

0 = �ρ0, x0� ∼ η◦. Then T0 \T
◦

0 consists of subtrees of heights bounded by ht(T0). By
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construction, Tn \T ◦
n consists of subtrees of heights bounded by the maximum of ξu-scaled independent

copies of ht(T0). Hence,

E
[ (

dm
GH(Tn,T

◦
n )

) p]
≤ E [(ht(T0))

p]
�
�E

⎡⎢⎢⎢⎢⎣
∑
j≥0

ξ
pβ
j

⎤⎥⎥⎥⎥⎦���
n

→ 0,

as n → ∞. By Corollary 4.11, we have T◦
n → T and hence Tn → T in probability as n → ∞ in the

marked Gromov–Hausdorff topology. Uniqueness follows from the attraction property.
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