Abstract
Explicit formulae are obtained for the distribution of various random partitions of a positive integer n, both ordered and unordered, derived from the zero set M of a Brownian motion by the following scheme: pick n points uniformly at random from [0,1], and classify them by whether they fall in the same or different component intervals of the complement of M. Corresponding results are obtained for M the range of a stable subordinator and for bridges defined by conditioning on 1∈M. These formulae are related to discrete renewal theory by a general method of discretizing a subordinator using the points of an independent homogeneous Poisson process.
Citation
Jim Pitman. "Partition structures derived from Brownian motion and stable subordinators." Bernoulli 3 (1) 79 - 96, February 1997.
Information