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Additive regression with parametric help
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Additive models have been studied as a way of overcoming theoretical and practical difficulties in estimating
a multivariate nonparametric regression function. Several methods have been proposed that ensure the optimal
univariate rate one can achieve in estimating univariate nonparametric functions. In this paper a new method is
proposed which reduces the constant factor in the first-order approximation of the average squared error of the
most successful existing method. The new estimator is based on an orthogonal decomposition of the underlying
regression function, with an arbitrarily chosen parametric family, under a special inner product structure arising
from the bias formula of the estimator. It is shown that the proposed method entails reduction in the constant factor
of the leading bias of the existing method while it retains the same first-order variance. These theoretical findings
are confirmed in Monte Carlo experiments.

Keywords: Additive model; bias reduction; local linear smoothing; parametric help; smooth backfitting

1. Introduction

In this paper, we propose a new method of estimating the additive regression model

Y =m1(X1) + · · · +md(Xd) + ε, (1.1)

where mj are unknown component functions and E(ε |X1, . . . ,Xd) = 0. The model (1.1) is the sim-
plest form of structured nonparametric models that successfully deal with the curse of dimensionality.
Several kernel-based methods of fitting (1.1) have been proposed and studied, which include ordinary
backfitting (Buja, Hastie and Tibshirani, 1989, Febrero-Bande and González-Manteiga, 2013, Opsomer,
2000, Opsomer and Ruppert, 1997, Sperlich, Linton and Härdle, 1999), marginal integration (Boente
and Martínez, 2017, Lee, 2004, Linton and Nielsen, 1995, Sperlich, Linton and Härdle, 1999) and
smooth backfitting (Huang and Yu, 2019, Jeon and Park, 2020, Jeon, Park and Van Keilegom, 2021a,
Jeon et al., 2022, Mammen, Linton and Nielsen, 1999, Mammen and Park, 2006, Nielsen and Sperlich,
2005). It is widely accepted that smooth backfitting (SBF) has both theoretical and practical advan-
tages, not shared by others. The idea of SBF has been further developed for other structured regression
problems (Han, Müller and Park, 2018, 2020, Han and Park, 2018, Jeon, Park and Van Keilegom, 2021b,
Lee, Mammen and Park, 2010, 2012, Lee et al., 2022, Linton, Sperlich and Van Keilegom, 2008, Park
et al., 2015, 2018, Yang and Park, 2014, Yu, Mammen and Park, 2011, Yu, Park and Mammen, 2008,
Zhang, Park and Wang, 2013).

The main idea of the new proposal is to consider a parametric family {g(·,θ) : θ ∈ RD} with a known
g : Rd × RD → R such that g(x,θ) = g1(x1,θ) + · · · + gd(xd,θ), and then apply the SBF technique to
the pseudo-response Y − g(X,θ). This would give an estimator, say m̂Y−g(X,θ), of the additive func-
tion m − g(·,θ), where m(x) = m1(x1) + · · · + md(xd), and thus produce a class of estimators of m:
{m̂Y−g(X,θ)(·) + g(·,θ) : θ ∈ RD}. It is worthwhile to note here that m̂Y−g(X,θ) + g(·,θ) � m̂Y , where
m̂Y is the result of applying the SBF technique to the genuine response Y , unless g(·,θ) ≡ 0 because
of the effect of smoothing over g(Xi,θ). It turns out that the variances of the two are the same in the
first-order while their biases differ. To take the full advantage of the parametric family, we think of the
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(unknown) parameter vector, say θ0, that minimizes the bias of m̂Y−g(X,θ) + g(·,θ), or equivalently, the
bias of m̂Y−g(X,θ) as an estimator of m − g(·,θ). If g is chosen so that there exists θnull ∈ RD such that
g(·,θnull) ≡ 0, then our approach with the help of g(·,θ0) would improve the bias of the original SBF
estimator m̂Y since the class {m̂Y−g(X,θ) + g(·,θ) : θ ∈ RD} contains m̂Y .

To demonstrate the real advantages of the above approach in theory and in practice, we consider the
local linear SBF and focus on the parametric family with D = d and

g(x,θ) := θ�g(x) = θ1 · g1(x1) + · · · + θd · gd(xd), (1.2)

where and throughout this paper g(x) := (g1(x1), . . . ,gd(xd))�. We consider such a family since it is
simple and easy to implement the idea of parametric help with. Since θ0 is unknown, we replace θ0 by
a suitable estimator, say θ̂0. Then, the resulting parametrically-helped estimator of m is given by

m̂ := m̂
Y−θ̂�0 g(X) + θ̂

�
0 g.

We show that m̂ with θ̂0 such that θ̂0 = θ0 + op(1) always improves the bias of the direct SBF estimator
m̂Y , regardless of the choice of g, while guaranteeing the same asymptotic variance as m̂Y has.

We also implement the idea of parametric help for the estimation of the individual component func-
tions mj . For the latter problem, to identify mj that we estimate, we put the constraints E mj(Xj ) = 0.
We find that the parameter vector θ0 in estimating the additive function m is different from the one
whose jth component minimizes the bias of the respective estimator of the individual centered mj . We
show that our proposals, now say m̂j , with an estimator of the latter θ0 such that θ̂0 = θ0 + op(1), also
improve the biases of the corresponding estimators of mj based on the application of the direct SBF,
again regardless of the choice of g. Both for estimating the additive regression function m and for es-
timating its components (mj : 1 ≤ j ≤ d), we devise simple consistent estimators of the corresponding
best parameter vectors θ0.

We remark that the idea of parametric help has been implemented for the estimation of univariate
regression functions by Lee et al. (2020). Although the present work is closely related to Lee et al.
(2020), it is not straightforward from the latter work. Indeed, dealing with the additive structure of
the model (1.1) and the backfitting procedure for estimating it make the problem far different from the
development of the idea for estimating a single univariate function. It turns out that simply following
the procedure of Lee et al. (2020) for each individual component mj is not a right way for estimating
the additive regression function m. This leads us to proposing two separate schemes for estimating
m and mj (Sections 4.1 and 4.2). Moreover, the method of estimating the optimal parameter value in
the univariate regression of Lee et al. (2020) is found to be not applicable to the parametric help for
estimating the individual mj in the additive model (1.1). Furthermore, in the local linear SBF estimation
of the individual components, the constraints to be put on the estimators m̂j involve the estimators of
the derivatives m′

j . Thus, the present problem requires a suitable way of implementing the parametric
help for the estimators of m′

j as well.
We also remark that the idea of using a parametric family, which we develop for estimating the

additive model (1.1), is related to the well-known two-step procedure (Fan, Wu and Feng, 2009, Glad,
1998, Gozalo and Linton, 2000, Hjort and Glad, 1995, Talamakrouni, El Ghouch and Van Keilegom,
2015, Talamakrouni, Van Keilegom and El Ghouch, 2016). However, the two approaches are quite
different since the latter considers estimating θ0 such that the underlying regression function is best
approximated by g(·,θ0). It is widely known that the success of the two-step procedure depends highly
on the choice of g, contrary to the technique of the parametric help that we study here, see e.g. Lee et al.
(2020). For this reason, we do not consider the two-step procedure for additive regression although the
problem has never been studied in the literature.



Additive regression with parametric help 3061

In the next section we collect some general features of SBF additive regression that we use to moti-
vate our proposal and to develop the associated theory. We present the main idea of the parametric help
in Section 3, and discuss its realization in Section 4. We report the results of Monte Carlo experiments
in Section 5, and give brief remarks on some extensions in Section 6. We defer all technical proofs to
the Appendix.

2. Smooth backfitting operation
Throughout this paper, we assume that the covariate vector X ≡ (X1, . . . ,Xd) has a density p supported
on [0,1]d , and each Xj has pj on [0,1], with respect to the corresponding Lebesgue measures. For a
general random variable W , we let mW denote E(W |X = ·). For various specifications of W for which
mW is an additive function, i.e., mW (x) = mW ,1(x1) + · · · + mW ,d(xd), we consider the local linear
SBF estimator of mW , which we denote by m̂W . An initial theory for the local linear SBF method
was studied by Mammen, Linton and Nielsen (1999), and recently an extensive theory for the local
polynomial SBF method and for Hilbertian responses has been developed by Jeon et al. (2022). In
this section we introduce some of the theory that are essential for motivating our proposals and for
developing their theory to be presented in Sections 3 and 4.

2.1. Local linear smooth backfitting

We describe the local linear SBF method of estimating the additive function mW =mW ,1 + · · · +mW ,d

and its (scaled) partial derivatives. Throughout this paper, we use the convention of expressing an
additive function f : [0,1]d → R with f (x) = f1(x1) + · · · + fd(xd), simply by f = f1 + · · · + fd. In the
latter expression, we interpret fj : [0,1] → R as f E

j : [0,1]d → R where f E
j (x) = fj (xj ).

Since the local linear SBF involves derivative estimation as well, we describe the method in terms
of estimating a (d + 1)-tuple of functions. This is in contrast with the case of the Nadaraya-Watson
SBF method, where the corresponding SBF technique is to estimate a single additive function. Let
mW ,1, j(u) = h · m′

W , j(u), where η′ for a univariate function η denotes its first derivative and h is the
bandwidth we use in kernel smoothing, see below. We consider the (d + 1)-tuple of functions

mtp
W (x) :=

(
mW (x),mW ,1,1(x1), . . . ,mW ,1,d(xd)

)�
,

mtp
W , j(xj ) :=

(
mW , j(xj ),0, . . . ,0,mW ,1, j(xj ),0, . . . ,0

)�
,

where mW ,1, j(xj ) appears as the ( j + 1)th entry. Then, mtp
W (x) =mtp

W ,1(x1) + · · · +mtp
W ,d

(xd). There is

one-to-one correspondence between the (d + 1)-tuple mtp
W , j and the 2-tuple (mW , j,mW ,1, j)� via

(
mW , j(xj ),mW ,1, j(xj )

)�
=Ujm

tp
W , j(xj ), 1 ≤ j ≤ d

mtp
W , j(xj ) =U�

j

(
mW , j(xj ),mW ,1, j(xj )

)�
, 1 ≤ j ≤ d,

where Uj := (u1,0, . . . ,0,u2,0, . . . ,0) are 2 × (d + 1) matrices with u1 = (1,0)� as the first column and
u2 = (0,1)� as the ( j + 1)th column.

For a baseline kernel function K supported on [−1,1], define Kh(u) := h−1K(u/h) and the normalized
kernel

Kh(u,v) :=
Kh(u − v)∫ 1

0 Kh(t − v) dt
· I[0,1]2 (u,v).
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The normalized kernel has been used in the smooth backfitting literature, e.g., Jeon and Park (2020),
Jeon et al. (2022), Mammen, Linton and Nielsen (1999), Yu, Park and Mammen (2008). It holds that

Kh(u,v) = Kh(u − v), (u,v) ∈ [2h,1 − 2h] × [0,1],∫ 1

0
Kh(u,v) du = 1, v ∈ [0,1].

(2.1)

Because of the first identity in (2.1) and the fact that
∫ 1

0 Kh(u − v) dv =
∫ 1
−1 K(t) dt for all u ∈ [h,1− h],

the interval [2h,1 − 2h] is called the interior region of the support [0,1] of pj in SBF estimation.
Writing vec(u) := (1,u)�, define 2 × 2 matrices of functions

M̂j j (xj ) := n−1
n∑
i=1

vec
(

Xi j − xj
h

)
vec

(
Xi j − xj

h

)�
· Kh(xj,Xi j ),

M̂jk(xj, xk ) := n−1
n∑
i=1

vec
(

Xi j − xj
h

)
vec

(
Xik − xk

h

)�
· Kh(xj,Xi j )Kh(xk,Xik).

Also, define p̂j and p̂1, j by

(
p̂j(xj ), p̂1, j(xj )

)� := n−1
n∑
i=1

vec
(

Xi j − xj
h

)
Kh(xj,Xi j ), 1 ≤ j ≤ d.

As an estimator of the 2-tuple of the marginal regression function E(W |Xj = xj ) and its first derivative
multiplied by h, i.e., h · (d/dxj)E(W |Xj = xj), define

m̃W , j (xj ) := M̂j j (xj )−1 · n−1
n∑
i=1

vec
(

Xi j − xj
h

)
· Kh(xj,Xi j ) ·Wi . (2.2)

Now, we define the local linear SBF estimator m̂tp
W (x) ≡ (m̂W , m̂W ,1,1, . . . , m̂W ,1,d)� of mtp

W , where
m̂W is an additive (stochastic) function taking the form m̂W = m̂W ,1 + · · · + m̂W ,d for some univariate
(stochastic) functions m̂W , j . It is defined as m̂tp

W := m̂tp
W ,1 + · · · + m̂tp

W ,d
with

m̂tp
W , j (xj ) =

(
m̂W , j(xj ),0, . . . ,0,m̂W ,1, j(xj),0, . . . ,0

)�
,

where (m̂tp
W ,1, . . . ,m̂

tp
W ,d

) solves the following system of SBF equations: for 1 ≤ j ≤ d,

m̂tp
W , j(xj ) =U�

j m̃W , j(xj ) −
d∑

k=1,�j

∫ 1

0
U�

j M̂j j(xj )−1M̂jk(xj, xk )Ukm̂tp
W ,k

(xk) dxk . (2.3)

We note that the SBF system (2.3) gives an estimator of mtp
W , not those of the individual (d + 1)-tuples

mtp
W , j for 1 ≤ j ≤ d, or equivalently those of the individual 2-tuples (mW , j(xj ),mW ,1, j(xj )). In fact, the

individual functions mW , j summing up to mW , themselves, are not identifiable.
We note that the SBF system (2.3), expressed in terms of (d + 1)-tuples of functions m̂tp

W , j , is conve-

nient later in our theoretical development. Observing that Ujm̂
tp
W , j (xj ) = (m̂W , j(xj ), m̂W ,1, j(xj ))� and



Additive regression with parametric help 3063

UjU�
j is the two-dimensional identity matrix, we see that (2.3) is equivalent to the following equation,

now expressed in terms of 2-tuples of functions: for 1 ≤ j ≤ d,

(
m̂W , j(xj )

m̂W ,1, j(xj )

)
= m̃W , j(xj ) −

d∑
k=1,�j

∫ 1

0
M̂j j (xj)−1M̂jk(xj, xk)

(
m̂W ,k(xk )

m̂W ,1,k(xk )

)
dxk . (2.4)

The above SBF equation is more convenient than (2.3) in practical implementation.
We now turn to the estimation of the individual mW , j and mW ,1, j for 1 ≤ j ≤ d. We note that mW ,1, j

and m̂W ,1, j are identifiable, but mW , j and m̂W , j are determined only up to a constant, see Lemma 3
in the Appendix C. As identifiable components, we consider the centered versions mc

W , j such that
E(mc

W , j(Xj )) = 0. For their estimators m̂c
W , j , we put the following constraints:

∫ 1

0

(
m̂c
W , j(u)p̂j (u) + m̂W ,1, j(u)p̂1, j (u)

)
du = 0, 1 ≤ j ≤ d. (2.5)

For any (d + 1)-tuple (m̂W ,1, . . . ,m̂W ,d), which comprises m̂W = m̂W ,1 + · · · + m̂W ,d , the centered ver-
sions m̂c

W , j are uniquely determined by

m̂c
W , j(xj ) := m̂W , j(xj ) −

∫ 1

0

(
m̂W , j(u)p̂j (u) + m̂W ,1, j(u)p̂1, j (u)

)
du. (2.6)

The constraints at (2.5) are well motivated in Jeon et al. (2022).

2.2. Main theory of local linear SBF technique

We base our theory for the SBF method on the following basic assumptions on the density p of X, the
baseline kernel K and the bandwidth h.

(A1) The density function p of X is bounded away from zero and infinity on [0,1]d , and the two-
dimensional joint densities pjk of (Xj,Xk ) for 1 ≤ j � k ≤ d are continuous on [0,1]2.

(A2) The baseline kernel K ≥ 0 is symmetric, Lipschitz continuous, vanishes on R \ [−1,1], and
0 <

∫ 1
−1 K(u) du <∞. Without loss of generality, we assume

∫ 1
−1 K(u) du = 1.

(A3) The bandwidth h is asymptotic to n−1/5.

The above assumptions are standard in additive kernel regression. We may lift the symmetry assump-
tion on K with more sophisticated expression for the asymptotic bias terms of our estimators, but we
assume it just for simplicity. Without symmetry, we need to assume that K is supported on a nontrivial
interval in both of [0,1] and [−1,0].

In the following proposition, the first part is the specialization of Theorem 1 in Jeon et al. (2022)
to local linear SBF. It demonstrates that the SBF equation (2.3) determines m̂tp

W
uniquely, where the

uniqueness means that, if ftp and f̃tp solves the equation (2.3), then ftp = f̃tp a.e. on [0,1]d . For such
tuples, if both are continuous on [0,1]d , then ftp ≡ f̃tp. The second part shows that m̂tp

W is linear in the
response variable W . It helps to motivate an optimal way of utilizing the parametric model at (1.2) in
additive regression, and provides an easy way of implementing the parametrically-helped estimators,
see Section 4.

Proposition 1. Assume (A1)–(A3) and that E(|εW |α) <∞ for some α > 2, where εW :=W − E(W |X).
Then, with probability tending to one, the SBF equation (2.3) has a unique solution in the space of
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additive functions. Furthermore, the solution is linear in W: for any constants cj and random variables
Wj , it holds that m̂tp

c1W1+c2W2
= c1 · m̂tp

W1
+ c2 · m̂tp

W2
with probability tending to one.

The next proposition presents a stochastic expansion of m̂tp
W , whose proof is given in the Appendix.

To state the proposition, put

m̃A
W , j(xj ) := M̂j j (xj)−1 · n−1

n∑
i=1

vec
(

Xi j − xj
h

)
· Kh(xj,Xi j ) · εW ,i,

where εW ,i :=Wi − E(Wi |Xi). Define

N(u) :=
∫ 1

0
vec

(
v − u

h

)
vec

(
v − u

h

)�
Kh(u,v) dv,

γ(u) :=
∫ 1

0

(
v − u

h

) 2

vec
(
v − u

h

)
Kh(u,v) dv.

Proposition 2. Assume (A1)–(A3) and that E(|εW |α) < ∞ for some α > 5/2 and E(ε2
W |X = ·) is

bounded on [0,1]d . If mW , j for 1 ≤ j ≤ d are twice continuously differentiable on [0,1], then

m̂tp
W (x) −

(
mW (x),mW ,1,1(x1), . . . ,mW ,1,d(xd)

)�
=

d∑
j=1

U�
j m̃A

W , j(xj ) +
h2

2

d∑
j=1

U�
j N(xj)−1γ(xj ) · m′′

W , j(xj ) + op
(
n−2/5)

uniformly for x ∈ [0,1]d .

Next, we demonstrate the stochastic expansions of the individual component tuples. Since mtp
W , j are

not identifiable, we consider their centered versions. With mc
W , j such that E(mc

W , j(Xj )) = 0 and the
centered m̂c

W , j defined at (2.6), let

mc,tp
W , j(xj ) :=

(
mc
W , j(xj ),0, . . . ,0,mW ,1, j(xj ),0, . . . ,0

)�
,

m̂c,tp
W , j(xj ) :=

(
m̂c
W , j(xj ),0, . . . ,0,m̂W ,1, j(xj ),0, . . . ,0

)�
.

Proposition 3. Assume the conditions of Proposition 2. If mW , j for 1 ≤ j ≤ d are twice continuously
differentiable on [0,1], then

m̂c,tp
W , j(xj ) − mc,tp

W , j(xj ) =U�
j m̃A

W , j(xj ) +
h2

2
· U�

j N(xj)−1γ(xj ) · m′′
W , j(xj ) + op

(
n−2/5)

uniformly for xj ∈ [0,1].

The proof of the above proposition is given in the Appendix. We note that Proposition 3 is not direct
from Proposition 2. We need to make it clear how the constraints (2.5) for m̂c

W , j and E(mc
W , j(Xj )) = 0

for mc
W , j affect the stochastic expansion of m̂c

W , j − mc
W , j .

The following corollary is for a special case where W itself is an additive function of X, say η(X) :=
η1(X1) + · · · + ηd(Xd). Let m̂tp

η(X) be the solution of the SBF equation at (2.3) with Wi being replaced
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by η(Xi). Even though η : [0,1]d → R is additive and the response observations η(Xi) do not contain
error since εη(X) ≡ 0, m̂η(X)(x) is not equal to η(x) because of smoothing over Xi , where m̂η(X)(x) is
the first entry of m̂tp

η(X)(x). Let η1, j(xj ) := hη′j(xj ). Consider the centered version of ηj , denoted by ηcj ,
such that E(ηcj (Xj )) = 0. Also, let m̂c

η(X), j be the centered components of m̂η(X) such that

∫ 1

0

(
m̂c
η(X), j(xj )p̂j (xj ) + m̂η(X),1, j(xj )p̂1, j (xj )

)
dxj = 0.

Noting that εη(X) ≡ 0, the following corollary is immediate from Propositions 2 and 3.

Corollary 1. Assume (A1)–(A3). Suppose that ηj for 1 ≤ j ≤ d are twice continuously differentiable
on [0,1]. Then,

m̂c,tp
η(X), j (xj ) − U�

j

(
ηcj (xj ),η1, j (xj )

)�
=

h2

2
· U�

j N(xj )−1γ(xj ) · η′′j (xj ) + op
(
n−2/5)

uniformly for xj ∈ [0,1]. Furthermore, uniformly for x ∈ [0,1]d ,

m̂tp
η(X)(x) −

(
η(x),η1,1(x1), . . . ,η1,d(xd)

)�
=

h2

2

d∑
j=1

U�
j N(xj)−1γ(xj ) · η′′j (xj) + op

(
n−2/5) .

With the second part of Proposition 1, the above corollary plays an important role in motivating
the idea of the parametric help. It also serves as a basic ingredient in developing the theory for the
parametrically-helped estimators in Section 4.

3. Parametric help in additive regression

Let the regression function be denoted by m = E(Y |X = ·) : [0,1]d → R. Assume E(m(X)2) <∞ and

m(x) =m1(x1) + · · · +md(xd) (3.1)

for some univariate functions mj . We note that the individual components mj are determined under
some constraints. In this section we discuss a new approach to additive regression, i.e., the estimation
of m and its components mj . The new scheme takes the advantages of the parametric help, which we
describe below.

We choose a d-tuple of twice differentiable univariate functions, (g1, . . . ,gd), and let g : [0,1]d → Rd
defined by g(x) := (g1(x1), . . . ,gd(xd))�. Our approach is first to apply the SBF technique, described in
Section 2, to W =Y − θ�g(X) for an arbitrary θ to get m̂Y−θ�g(X) and form

m̂(x,θ) := m̂Y−θ�g(X)(x) + θ�g(x)

as a candidate estimator of m. We consider some θ0 that gives the largest bias reduction to m̂(·,θ0) in
comparison with m̂Y , or to its additive components m̂j(·,θ0) in comparison with m̂Y , j . Then, we find a
suitable estimator θ̂0 of θ0, and investigate whether the largest bias reduction achieved by m̂(·,θ0) or by
m̂j(·,θ0) is retained by m̂(·, θ̂0) or by m̂j(·, θ̂0), respectively. In this section, we develop this idea with a
general θ0 and a consistent estimator θ̂0 of θ0. Our development in this section is a foundation to the
method and theory in Section 4 where we specialize θ0 for the estimation of the regression function m
and for the estimation of its identifiable components mj , to achieve the best bias properties.
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3.1. Estimation of additive regression function

Let θ0 ∈ Rd be a general unknown vector that depends on the unknown distribution of (X,Y ) as well as
g, and θ̂0 be its estimator. We consider the following estimator of m:

m̂ := m̂
Y−θ̂�0 g(X) + θ̂

�
0 g, (3.2)

which we call the local linear SBF estimator with parametric help. Our theory for m̂ at (3.2) is de-
veloped in conjunction with the estimation of the partial derivatives of m. Recall that the local linear
smoothing technique involves its (partial) derivatives.

Let m1, j (xj ) := h · m′
j(xj ) and put mtp(x) := (m(x),m1,1(x1), . . . ,m1,d(xd))�. We note that m1, j are

uniquely identified, contrary to mj . Motivated by the observation that m̂Y−θ�0 g(X),1, j (xj ) approximates
m1, j(xj ) − h · θ0jg′j (xj) (Proposition 3), we estimate the scaled derivatives m1, j by

m̂1, j(xj ) := m̂
Y−θ̂�0 g(X),1, j (xj ) + h θ̂0j g′j(xj ), 1 ≤ j ≤ d. (3.3)

Put m̂tp := (m̂(x),m̂1,1(x1), . . . ,m̂1,d(xd))� as our estimator of the tuple mtp. Define gtp
j : [0,1] → Rd+1

by

gtp
j (xj ) :=

(
gj(xj ),0, . . . ,0,h g′j(xj ),0, . . . ,0

)�
,

where h g′j(xj ) appears at the ( j + 1)th position. Then, by (3.2) and (3.3) it holds that

m̂tp(x) = m̂tp

Y−θ̂�0 g(X)
(x) +

d∑
j=1

θ̂0j gtp
j (xj ). (3.4)

It is worthwhile to note that m̂tp
Y = (m̂Y ,m̂Y ,1,1, . . . ,m̂Y ,1,d)� is the estimator of mtp obtained by applying

the local linear SBF operation directly to the dataset {(Xi,Yi) : 1 ≤ i ≤ n}, without the parametric help.
To state our first main theorem, we make the following additional assumptions on gj , mj and Y −

m(X).

(A4) For ε :=Y − m(X), it holds that E(|ε |α) <∞ for some α > 5/2 and E(ε2 |X = ·) is bounded.
(A5) The components gj and mj for 1 ≤ j ≤ d are twice continuously differentiable on [0,1].

Theorem 1. Assume (A1)–(A5). If θ̂0 → θ0 in probability, then

m̂tp(x) − mtp(x) = m̂tp
Y−θ�0 g(X)(x) −

(
mtp(x) −

d∑
j=1

θ0jg
tp
j (xj )

)
+ op

(
n−2/5)

uniformly for x ∈ [0,1]d .

Taking the first elements of the tuples from both sides of the equation in the above theorem, we get

m̂(x) − m(x) = m̂Y−θ�0 g(X)(x) −
(
m(x) − θ�0 g(x)

)
+ op

(
n−2/5) (3.5)

uniformly for x ∈ [0,1]d . We also have

m̂1, j (xj ) − m1, j(xj ) = m̂Y−θ�0 g(X),1, j(xj ) −
(
m1, j(xj ) − θ0jg1, j (xj )

)
+ op

(
n−2/5)
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uniformly for xj ∈ [0,1]. Below, we derive a stochastic expansion of the leading term in the expansion
(3.5). Put

κh(u,v) :=
μ2(u,K) − h−1(v − u)μ1(u,K)
μ0(u,K)μ2(u,K) − μ1(u,K)2

· Kh(u,v),

where μj(u,K) =
∫ 1

0 ((v − u)/h)jKh(u,v) dv. We note that κh(xj,Xi j ) approximate the kernel weights
applied to the first entry of the 2-vector m̃W , j defined at (2.2). We also note that the first entry of the
2-vector N(xj )−1γ(xj ) equals μ2(xj, κ). Define

m̃∗
W , j(xj) := n−1

n∑
i=1

κh(xj,Xi j ) ·Wi .

Looking at (3.5) in the application of Proposition 2 to W =Y − θ�0 g(X), and noting that

εY−θ�0 g(X) =
(
Y − θ�0 g(X)

)
− E

(
Y − θ�0 g(X)|X

)
= ε,

we get the following corollary.

Corollary 2. Assume the conditions of Theorem 1. Then,

m̂(x) − m(x) =
d∑
j=1

m̃∗
ε, j(xj ) +

h2

2

d∑
j=1

μ2(xj, κ)
(
m′′

j (xj ) − θ0j g
′′
j (xj )

)
+ op

(
n−2/5)

uniformly for x ∈ [0,1]d .

According to our notation in Section 2, m̂Y is the direct local linear SBF estimator of m without
parametric help. From Proposition 2 we may get

m̂Y (x) − m(x) =
d∑
j=1

m̃∗
ε, j(xj ) +

h2

2

d∑
j=1

μ2(xj, κ) · m′′
j (xj ) + op

(
n−2/5) (3.6)

uniformly for x ∈ [0,1]d . Thus, the first-order bias of our proposal m̂(x) differs from that of m̂Y (x) by
h2 ∑d

j=1 θ0j μ2(xj, κ)g′′j (xj )/2.

3.2. Estimation of individual components

Recall that the individual components mj in the model (3.1) are identifiable up to a constant. Put

mc
j (xj ) :=mj(xj ) −

∫ 1

0
mj(u)pj (u) du, 1 ≤ j ≤ d.

Then, mc
j are uniquely determined and satisfy E(mc

j (Xj )) = 0. We may rewrite the underlying additive

model (3.1) as m(x) = E(Y ) +
∑d

j=1 mc
j (xj ). Recall also that we estimate m1, j = h m′

j by m̂1, j at (3.3).
The estimators m̂1, j are used in constructing our estimators of the centered mc

j . Indeed, our proposal
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for the estimators of the centered components mc
j are given by

m̂c
j (xj ) := m̂j(xj ) −

∫ 1

0

(
m̂j(u)p̂j (u) + m̂1, j(u)p̂1, j (u)

)
du, 1 ≤ j ≤ d, (3.7)

where (m̂1, . . . ,m̂d) is any tuple of univariate functions such that m̂1 + · · · + m̂d = m̂. We find that
estimating m1, j simply by m̂Y ,1, j and using them in (3.7) brings disharmony with the parametrically-
helped estimation of the additive function m at (3.2), which would produce non-negligible extra bias.
We note that m̂c

j satisfy

∫ 1

0

(
m̂c

j (u)p̂j (u) + m̂1, j(u)p̂1, j (u)
)

du = 0, 1 ≤ j ≤ d. (3.8)

According to Proposition 1 in Section 2.2, m̂tp is unique. By Lemma 3 in the Appendix C, m̂j in their

sum m̂ are identified up to constant, so that m̂j −
∫ 1

0 m̂j(u)p̂j(u) du are uniquely determined. Since m̂1, j
are unique and from the definition of m̂c

j at (3.7), m̂c
j are also uniquely determined. Below, we present

relevant stochastic expansions of m̂c
j , as estimators of mc

j .
The expansion in Corollary 2 does not give directly relevant expansions for the individual centered

components m̂c
j (xj ) − mc

j (xj ). Basically, each centered component in the sum function m̂(x) − m(x)
may not equal, up to op(n−2/5), to the corresponding centered component in m̂Y−θ�0 g(X)(x) − (m(x) −
θ�0 g(x)). We need to investigate how the constraints (3.8) affect the expansions of m̂c

j (xj )−mc
j (xj ). The

following theorem gives a new insight on this, which motivates a different design for θ0 from the one
for estimating the additive regression function m, see Section 4.2 below.

Theorem 2. Assume the conditions of Theorem 1. Then, it holds that, for all 1 ≤ j ≤ d,

m̂c
j (xj ) − mc

j (xj )

= m̃∗
ε, j(xj ) +

h2

2
(
μ2(xj, κ)m′′

j (xj ) − θ0j
[
μ2(xj, κ)g′′j (xj ) − E

(
μ2(Xj, κ)g′′j (Xj )

) ] )
+ op

(
n−2/5)

uniformly for xj ∈ [0,1].

According to our notation in Section 2, m̂c
Y , j is the estimator of mc

j obtained by the direct local linear
SBF without parametric help. From Proposition 3 we get

m̂c
Y , j(xj ) − mc

j (xj ) = m̃∗
ε, j(xj ) +

h2

2
μ2(xj, κ) · m′′

j (xj ) + op
(
n−2/5) (3.9)

uniformly for xj ∈ [0,1]. Thus, the first-order bias of our proposal m̂c
j (xj ) differs from that of m̂c

Y , j by
h2θ0j [μ2(xj, κ)g′′j (xj ) − E (μ2(Xj, κ)g′′j (Xj ))]/2. For the rate of convergence of m̂c

j as an estimator of
mc

j , we observe that

sup
x j ∈[0,1]

|m̃∗
ε, j(xj )| =Op

(
n−1/2h−1/2

√
log n

)
=Op

(
n−2/5

√
log n

)
.

The following corollary is an immediate consequence of Theorem 2.
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Corollary 3. Assume (A1)–(A5). Then, it holds that

max
1≤ j≤d

sup
x j ∈[0,1]

|m̂c
j (xj ) − mc

j (xj )| =Op
(
n−2/5

√
log n

)
,

4. Parametric help in action

In this section we find θ0 that allows for maximal gain from the parametric help with g in the local
linear SBF estimation of m at (3.1), and the one in the estimation of its centered components mc

j . We
also present ways of obtaining consistent estimators of them. It turns out that the ‘best’ θ0 for estimating
m is different from the one for estimating (mc

j : 1 ≤ j ≤ d).

4.1. Bias reduction in estimating m

We first note that, in the expansion in Corollary 2,

μ2(xj, κ) =
∫ 1

0

(
v − u

h

) 2

κh(u,v) dv =
μ2(xj,K)2 − μ1(xj,K)μ3(xj,K)
μ0(xj,K)μ2(xj,K) − μ1(xj,K)2

.

For xj in the interior region [2h,1 − 2h], the (incomplete) moments μj (xj,K) reduce to the com-
plete moments of K , μj (K) :=

∫
u jK(u) du. From the symmetry of the baseline kernel K , we have

then μ2(xj, κ) = μ2(K) for all xj ∈ [2h,1 − 2h]. Put m′′
+ (x) := m′′

1 (x1) + · · · + m′′
d
(xd) and g′′(x) =

(g′′1 (x1), . . . ,g′′d (xd))
�. Then, from Corollary 2, it turns out that the expected value of the squared

asymptotic bias of m̂ equals

h4

4
μ2(K)2 E

(
m′′
+ (X) − θ�0 g′′(X)

) 2
. (4.1)

We consider

θ0 ≡ (θ01, . . . , θ0d)� := argmin
θ∈Rd

E
(
m′′
+ (X) − θ�g′′(X)

) 2

=
[
E
(
g′′(X)g′′(X)�

) ] −1 · E
(
g′′(X) · m′′

+ (X)
)
.

(4.2)

For (4.1) and (4.2), we make the following additional assumption throughout this section.

(A6) max1≤ j≤d E(g′′j (Xj )2) <∞, and E(g′′(X)g′′(X)�) is invertible.

We note that θ�0 g is nothing else than the projection of m onto {θ�g : θ ∈ Rd} in the space of additive
functions Hadd equipped with the inner product 〈 f ,η〉 = E( f ′′+ (X)η′′+ (X)), where f ′′+ (x) = f ′′1 (x1)+ · · ·+
f ′′
d
(xd) for f ∈ Hadd. According to (3.6), the expected value of the squared asymptotic bias of the direct

local linear estimator m̂Y is given by h4 μ2(K)2 E(m′′
+ (X))2/4. Comparing this and (4.1) with the choice

θ0 at (4.2), we get

0 ≤ E
(
m′′
+ (X) − θ�0 g′′(X)

) 2

= E
(
m′′
+ (X)

) 2 −
[
E
(
g′′(X) · m′′

+ (X)
) ] � [

E
(
g′′(X)g′′(X)�

) ] −1 [E(
g′′(X) · m′′

+ (X)
) ]

≤ E
(
m′′
+ (X)

) 2
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with the equality holding only if E(g′′(X) · m′′
+ (X)) = 0. This means that, as long as gj are chosen so

that E(g′′(X) · m′′
+ (X)) � 0 and we use a consistent estimator θ̂0 in the construction of m̂ at (3.2), m̂

always improves the first-order bias of the direct local linear SBF m̂Y .
Now, we find a consistent estimator of θ0 defined at (4.2). Put Yθ := Y − θ�g(X) and Yθ

i := Yi −
θ�g(Xi), 1 ≤ i ≤ n. We estimate θ0 by

θ̂0 := argmin
θ∈Rd

n−1
n∑
i=1

(
Yθ
i − m̂Yθ (Xi)

) 2
. (4.3)

For a generic random variable W , recall εW =W − mW (X). We let ε̂W ,i :=Wi − m̂W (Xi). Put

ε̂g(X),i := (ε̂g1(X1),i, . . . , ε̂gd (Xd ),i)
� = g(Xi) − m̂g(X)(Xi),

where m̂g(X)(x) := (m̂g1(X1)(x), . . . ,m̂gd (Xd )(x))�. Then, using the linearity of the SBF operation as-
serted by Proposition 1 in Section 2, we find that θ̂0 at (4.3) can be given explicitly. Indeed, it can be
defined alternatively as

θ̂0 :=

(
n−1

n∑
i=1

ε̂g(X),i · ε̂�g(X),i

) −1

· n−1
n∑
i=1

ε̂g(X),i · ε̂Y ,i, (4.4)

whenever n−1 ∑n
i=1 ε̂g(X),i · ε̂�g(X),i is invertible.

The definition of the estimator θ̂0 at (4.3) is motivated by observing

n−1
n∑
i=1

(
Yθ
i − m̂Yθ (Xi)

) 2  c2
K · E

[ (
m′′
+ (X) − θ�g′′(X)

) 2]
+ (irrelevant term) (4.5)

for some constant cK depending solely on the baseline kernel K . To see the approximation at (4.5), we
note that Yθ

i =m(Xi) − θ�g(Xi) + εi so that

Yθ
i − m̂Yθ (Xi) =

(
m(Xi) − θ�g(Xi) − m̂m(X)−θ�g(X)(Xi)

)
+

(
εi − m̂ε(Xi)

)
,

where we have used the linearity of m̂W in W asserted in Proposition 1. The approximation at (4.5)
then follows from the application of (B.2) in the Appendix to η(X) = m(X) − θ�g(X). Indeed, the left
hand side of (4.5) is well approximated by

n−1
n∑
i=1

(
m(Xi) − θ�g(Xi) − m̂m(X)−θ�g(X)(Xi)

) 2
+ n−1

n∑
i=1

(
εi − m̂ε(Xi)

) 2

 c2
K · E

[ (
m′′
+ (X) − θ�g′′(X)

) 2]
+ n−1

n∑
i=1

(
εi − m̂ε(Xi)

) 2
.

The first term on the right hand side of the approximation at (4.5) is what θ0 minimizes, see (4.2), and
the second term does not involve θ.

Theorem 3. Assume (A1)–(A6). Let θ0 and θ̂0 are defined as at (4.2) and (4.4), respectively. Then,
θ̂0 → θ0 in probability.
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In the next theorem we present the asymptotic distribution of m̂(x) defined at (3.2) with θ̂0 given at
(4.4). It is an immediate consequence of Corollary 2 and Theorem 3. Recall that μj (K) =

∫
u jK(u) du

and μj(K2) =
∫

u jK(u)2 du for j ≥ 0. Define

σ2
j (xj ) :=

1
τ
· μ0

(
K2) · E(ε2 |Xj = xj)

pj(xj )
,

where τ > 0 is a constant such that n1/5h → τ.

Theorem 4. Assume (A1)–(A6). Assume also that E(|ε |α |Xj = ·) for all 1 ≤ j ≤ d are bounded on [0,1]
for some α > 5/2, and E(ε2 |Xj = ·) for 1 ≤ j ≤ d are continuous on [0,1]. Then, for each x ∈ (0,1)d ,
the distribution of n2/5(m̂(x) −m(x)) converges to the normal distribution with mean τ2μ2(K)(m′′

+ (x) −
θ�0 g′′(x))/2 and variance

∑d
j=1σ

2
j (xj ), where θ0 is defined at (4.2).

4.2. Bias reduction in estimating mc
j

Since μ2(xj, κ) = μ2(K) for all xj ∈ [2h,1 − 2h], the asymptotic bias of m̂c
j (xj ) equals

h2μ2(K)
[
m′′

j (xj ) − θ0j
(
g′′j (xj ) − Eg′′j (Xj )

) ]
/2

for all xj ∈ [2h,1 − 2h]. There is an extra term Eg′′j (Xj ) in the expansion of the jth centered individ-
ual component estimator, which is absent in the summands in the expansion of m̂(x) − m(x) given in
Corollary 2. The expected value of the squared asymptotic bias of m̂c

j equals h4 μ2(K)2 E(m′′
j (Xj ) −

θ0j [g′′j (Xj ) − Eg′′j (Xj )])2/4. For the local linear estimator m̂c
Y , j without parametric help, the expected

value turns out to be h4 μ2(K)2 E(m′′
j (Xj ))2/4. We note that the inequality E(m′′

+ (X) − θ�0 g′′(X))2 ≤
E(m′′

+ (X))2 for θ0 at (4.2), which we observed in the estimation of m, implies neither E(m′′
j (Xj ) −

θ0jg
′′
j (Xj ))2 ≤ E(m′′

j (Xj ))2 nor

E
(
m′′

j (Xj ) − θ0j
[
g′′j (Xj ) − Eg′′j (Xj )

] ) 2 ≤ E
(
m′′

j (Xj )
) 2

for any 1 ≤ j ≤ d.
To take full benefit of parametric help for estimating individual components, we consider θ0 that

is different from the one defined at (4.2). With a slight abuse of notation, we continue to denote it by
θ0. For individual component estimation, we choose θ0 = (θ01, . . . , θ0d)� with each element θ0j being
defined by

θ0j := argmin
θ j ∈R

E
(
m′′

j (Xj ) − θ j
[
g′′j (Xj ) − Eg′′j (Xj )

] ) 2
=

Cov(m′′
j (Xj ),g′′j (Xj ))

Var(g′′j (Xj ))
(4.6)

For this definition, we assume

(A6′) 0 <min1≤ j≤d Var(g′′j (Xj )2) ≤ max1≤ j≤d Var(g′′j (Xj )2) <∞.
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A projection interpretation can be given to θ0j [g′′j − Eg′′j (Xj )] similarly as for θ�0 g in Section 4.1. It is
clear that

E
(
m′′

j (Xj ) − θ0j
[
g′′j (Xj ) − Eg′′j (Xj )

] ) 2
= E

(
m′′

j (Xj )
) 2 −

Cov(m′′
j (Xj ),g′′j (Xj ))2

Var(g′′j (Xj ))

≤ E
(
m′′

j (Xj )
) 2

(4.7)

with the equality holding if and only if Cov(m′′
j (Xj ),g′′j (Xj )) = 0.

To achieve the benefit of parametric help in the individual component estimation we have discussed
above, we need to find consistent estimators of θ0j . Put

ωj ,h(u,v) :=
μ̂j ,2(u,K) − h−1(v − u)μ̂j ,1(u,K)
μ̂j ,0(u,K)μ̂j ,2(u,K) − μ̂j ,1(u,K)2

· Kh(u,v),

where μ̂j ,l(u,K) := n−1 ∑n
i=1 h−l(Xi j − u)lKh(u,Xi j ). Let m̃W , j be the marginal local linear estimators

with Wi as the response and Xi j as the covariate values. It is the first entry of m̃W , j defined at (2.2).
Then, m̃W , j(xj ) = n−1 ∑n

i=1ωj ,h(xj,Xi j ) ·Wi . Let δ̂i( j,W) :=Wi − m̃W , j(Xi j ) and

δ̂dev
i ( j,W) := δ̂i( j,W) − n−1

n∑
i=1

δ̂i( j,W).

Recall that m̂c
Y , j are the centered versions of components m̂Y , j that comprise m̂Y = m̂Y ,1 + · · · + m̂Y ,d ,

the latter being the first entry of the (d + 1)-tuple m̂tp
Y given as the solution of the local linear SBF

equation (2.3) with W =Y . We propose

θ̂0j :=

(
n−1

n∑
i=1

[
δ̂dev
i

(
j,gj (Xj )

) ] 2
) −1

· n−1
n∑
i=1

δ̂dev
i

(
j,gj (Xj )

)
· δ̂i

(
j,m̂c

Y , j(Xj )
)
. (4.8)

The definition (4.8) is motivated from the observation that, for a smooth function η, δ̂i( j,η(Xj ))
approximates well −h2μ2(Xi j, κ) · η′′(Xi j )/2. If we apply the approximation to η = gj and to η = mc

j ,
then we see that

θ̂∗0j :=

(
n−1

n∑
i=1

[
δ̂dev
i

(
j,gj (Xj )

) ] 2
) −1

· n−1
n∑
i=1

δ̂dev
i

(
j,gj (Xj )

)
· δ̂i

(
j,mc

j (Xj )
)

approximates well θ0j . Our proposal θ̂0j simply replaces δ̂i( j,mc
j (Xj )) in θ̂∗0j by δ̂i( j,m̂c

Y , j (Xj )).

Theorem 5. Assume (A1)–(A5) and (A6′). Let θ0j and θ̂0j are defined as at (4.6) and (4.8), respectively.
Then, θ̂0j → θ0j in probability for all 1 ≤ j ≤ d.

Remark 1. One may be tempted to replace δ̂dev
i ( j,gj (Xj )) by g′′j (Xi j ) − g′′j (Xj ) in the definition of θ̂0j ,

where g′′
j
(Xj ) := n−1 ∑n

i=1 g
′′
j (Xi j ). But, this does not work since then the numerator of the resulting

quantity would be of magnitude Op(h2) while the denominator converges to Var(g′′j (Xj )).
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Remark 2. One may estimate θ0j in a direct way if one is given a uniformly consistent estimator of
m′′

j . If this is the case and if we denote it by m̌′′
j , then, the estimator defined by

θ̌0j :=

∑n
i=1 m̌′′

j (Xi j )(g′′j (Xi j ) − g′′j (Xj ))∑n
i=1(g

′′
j (Xi j ) − g′′j (Xj ))2

is also consistent. For consistent estimation of m′′
j one needs to employ a higher-order local polynomial

SBF and assume a higher-order smoothness of the component functions mj , however.

Let θ̂0 := (θ̂01, . . . , θ̂0d)�. Since θ̂0 → θ0 in probability by Theorem 5, the conclusion of Theorem 2
with θ0j now defined at (4.6) still applies to m̂c

j defined at (3.7) with

m̂1, j(xj ) := m̂
Y−θ̂�0 g(X),1, j (xj ) + h θ̂0j g′j (xj ),

where θ̂0 and its components θ̂0j are defined through (4.8). Thus, the bias improvement in comparison
with the direct local linear estimator m̂c

Y , j is evidenced by (4.7). Furthermore, our proposed estimators
m̂c

j are jointly asymptotically normal, as demonstrated by the following theorem. To state the theorem,
define

βj (xj ) :=
τ2

2
· μ2(K) ·

(
m′′

j (xj) − θ0j
(
g′′j (xj ) − Eg′′j (Xj )

) )
.

Recall τ = limn→∞ n1/5h > 0.

Theorem 6. Assume the conditions of Theorem 4 with (A6) replaced by (A6′). Then, for each
x ∈ (0,1)d , the joint distribution of n2/5(m̂c

1 (x1) −mc
1 (x1), . . . ,m̂c

d
(xd) −mc

d
(xd))� converges to the mul-

tivariate normal distribution with mean vector (β1(x1), . . . , βd(xd))� and variance matrix diag(σ2
j (xj )).

5. Monte Carlo experiments
We generated the response variable Y from the following additive model:

Y = sin(2πX1) + ρ1 X1(X1 − 0.5)2(X1 − 1) + cos(2πX2) + ρ2 X2(X2 − 0.5)(X2 − 1) + ε, (5.1)

where ε ∼ N(0,σ2) with σ = 0.5, independently of Xj . We took Xj =Φ(Z j ) for j = 1,2, where Φ is the
distribution function of the standard normal distribution and

(Z1,Z2)� ∼ N2

(
(0,0)�,

(
1 0.5

0.5 1

) )
.

Note that the generated Xj are marginally uniformly distributed on [0,1] but they are dependent since
Corr(X1,X2) � 0. We made two choices for ρ1 and ρ2: ρ1 = 0,64; ρ2 = 0,12

√
3. We chose ρ1 = 64

since maxx1∈[0,1] |x1(x1 − 0.5)2(x1 − 1)| = 1/64, so that the two components sin(2 πx1) and 64 x1(x1 −
0.5)2(x1 −1) have the same amplitude from zero. The choice ρ2 = 12

√
3 was made for the same reason.

We investigated the following two scenarios for the working parametric family.

Case 1: g1(x1) = sin(2πx1), g2(x2) = cos(2πx2),

Case 2: g1(x1) = x1(x1 − 0.5)2(x1 − 1), g2(x2) = x2(x2 − 0.5)(x2 − 1).
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For estimating m, the formula at (4.2) gives θ01 = 1 − 3ρ2 A1/π2 and θ02 = 1 − 6ρ1 A2/π2 in Case 1,
and θ01 = ρ1 − 320π2 A2/7 and θ02 = ρ2 − 8π2 A1 in Case 2, where A1 = E(X2 − 0.5) sin(2πX1) and
A2 = E(X1 − 0.5)2 cos(2πX2). For estimating the individual components mc

j , the formula for θ0j at
(4.6) gives θ0j ≡ 1 in Case 1, and θ0j = ρj, j = 1,2 in Case 2.

We discuss briefly the simulation model (5.1) in conjunction with the two choices of (g1,g2). We
first consider the case where ρ1 = ρ2 = 0, i.e., m(x) = sin(2πx1) + cos(2πx2). In this setting, Case 1
corresponds to the case where one picks by chance a working parametric family that contains the true
additive regression function m. In this case, the leading bias of m̂ vanishes since m′′

+ − θ�0 g′′ ≡ 0. From
this experiment one may be able to see how the theoretical benefit of the perfect parametric help takes
into effect in practice for estimating m. On the other hand, in Case 2, the leading bias of m̂ is not zero
and our theory tells that there is some bias reduction in comparison with the direct local liner SBF
estimator m̂Y since E(g′′(X) · m′′

+ (X)) � 0. As for the estimation of the individual components, which
are m1(x1) = sin(2πx1) and m2(x2) = cos(2πx2), Case 1 and Case 2 are truly opposite. From (4.7) and
the correlation inequality, it follows that

E
(
m′′

j (Xj ) − θ0j
[
g′′j (Xj ) − Eg′′j (Xj )

] ) 2 ≥ E
(
m′′

j (Xj )
) 2 − Var

(
m′′

j (Xj )
)

for all gj . The lower bound is achieved by the (g1,g2) in Case 1 since then Cov(m′′
j (Xj ),g′′j (Xj )) =

Var(m′′
j (Xj )). On the contrary, with gj in Case 2, g′′j are perpendicular to the respective m′′

j , i.e.,
Cov(m′′

j (Xj ),g′′j (Xj )) = E(m′′
j (Xj )g′′j (Xj )) = 0, in which case, according to our theory, there is no im-

provement in the leading biases of the estimators of the individual components. From the experiments
with ρ1 � 0 or ρ2 � 0 in (5.1), we may be able to assess the performance of the parametric help in the
intermediate cases between the best and worst scenarios.

We first compared the performance of our proposal m̂ with the direct local linear SBF estimator m̂Y .
We used the Epanechnikov kernel, K(u) = (3/4)(1 − u2)I(|u| ≤ 1), and the theoretical bandwidths h
that minimize the respective asymptotic density-weighted mean integrated squared errors

2
nh

·
∫

K(u)2 du · E
(
ε2) + h4

4

(∫
u2K(u) du

) 2

· A, (5.2)

where A = Em′′
+ (X)2 for m̂Y and A = E(m′′

+ (X) − θ01g
′′
1 (X1) − θ02g

′′
2 (X2))2 for m̂. Note that the A for

m̂ vanishes in Case 1 with ρ1 = ρ2 = 0, in which case we used the theoretical bandwidth for m̂Y in
computing m̂. As a measure of performance, we computed the Monte Carlo approximations of the inte-
grated squared bias (ISB), the integrated variance (IV) and the mean integrated squared error (MISE)
of m̄ = m̂ and m̄ = m̂Y : MISE(m̄) := ISB(m̄) + IV(m̄),

ISB(m̄) :=
∫
[0,1]2

(
M−1

M∑
i=1

m̄(i)(x) − m(x)
) 2

dx,

IV(m̄) :=
∫
[0,1]2

M−1
M∑
i=1

(
m̄(i)(x) − M−1

M∑
i=1

m̄(i)(x)
) 2

dx,

(5.3)

where m̄(i) is the estimate of m computed from the ith dataset and M = 100.
Table 1 reports the values of these measures. The results confirm our theoretical finding that m̂ has

smaller MISE than m̂Y , except in the worst scenario (Case 2 with ρ1 = ρ2 = 0) where m′′
j and g′′j are

perpendicular to each other for j = 1,2. We note that, in Case 2, the values of the MISE as well as
those of the ISB and the IV for our proposal m̂ are nearly the same for all combinations (ρ1, ρ2) =
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Table 1. The values of ISB, IV and MISE, multiplied by 103, of the direct local linear SBF estimator (m̂Y ) and of
our proposal (m̂).

Case 1 Case 2
ρ1 = 0 ρ1 = 64 ρ1 = 0 ρ1 = 64

n m̂Y m̂ m̂Y m̂ m̂Y m̂ m̂Y m̂

ρ2 = 0 100 ISB 4.27 0.23 7.73 3.96 4.27 6.56 7.73 6.56
IV 35.5 36.1 40.6 44.1 35.5 34.0 40.6 34.0

MISE 39.8 36.3 48.3 48.1 39.8 40.6 48.3 40.6

400 ISB 1.42 0.09 2.79 1.49 1.42 2.24 2.79 2.24
IV 9.02 9.09 10.0 10.8 9.02 8.54 10.0 8.54

MISE 10.4 9.18 12.8 12.3 10.4 10.8 12.8 10.8

1,000 ISB 0.72 0.04 1.46 0.77 0.72 1.12 1.46 1.12
IV 4.34 4.38 4.81 5.20 4.34 4.04 4.81 4.04

MISE 5.06 4.42 6.27 5.97 5.06 5.16 6.27 5.16

ρ2 = 12
√

3 100 ISB 4.41 4.40 7.18 5.26 4.41 6.72 7.18 6.72
IV 41.5 35.6 44.7 46.5 41.5 34.2 44.7 34.2

MISE 45.9 40.0 51.9 51.8 45.9 40.9 51.9 40.9

400 ISB 1.23 1.48 2.29 1.77 1.23 2.19 2.29 2.19
IV 10.4 8.58 11.0 11.0 10.4 8.58 11.0 8.58

MISE 11.6 10.1 13.3 13.8 11.6 10.7 13.3 10.7

1,000 ISB 0.73 0.84 1.27 0.95 0.73 1.19 1.27 1.19
IV 5.00 4.26 5.27 5.46 5.00 4.07 5.27 4.07

MISE 5.73 5.10 6.54 6.41 5.73 5.26 6.54 5.26

(0,0),(0,12
√

3),(64,0) and (64,12
√

3). This is expected. Indeed, the theoretical value of A= E(m′′
+ (X)−

θ01g
′′
1 (X1) − θ02g

′′
2 (X2))2 in (5.2) for m̂ in Case 2 does not depend on ρj for j = 1,2. Another thing

to be commented is that, in Cases 1 and 2 with (ρ1, ρ2) = (0,12
√

3), the values of the ISB for m̂ are
actually larger than those for m̂Y . This can be explained as follows. For m̂, the reduced bias E(m′′

+ (X) −
θ01g

′′
1 (X1) − θ02g

′′
2 (X2))2 < Em′′

+ (X)2 led to a larger bandwidth than for the direct local linear SBF m̂Y ,
as a consequence of taking more care of the variance part. The larger bandwidth then decreased the
variance significantly while increasing the bias slightly, and thus gave the smaller values of the MISE
for m̂ than for m̂Y . To assess the performance of the individual component estimators m̂c

j and m̂c
Y , j , we

also computed the ISB, IV and MISE for each component, replacing m̄ in (5.3) by m̂c
j and m̂c

Y , j , and
m by mc

j , for j = 1,2. We call them for the jth component, ISBj , IVj and MISEj . Table 2 reports the
values of MISE1+MISE2 together with ISB1+ ISB2 and IV1+ IV2. Basically, the lessons are the same
as those from Table 1. One thing to note is that the asymptotic mean integrated squared errors

1
nh

·
∫

K(u)2 du · E
(
ε2) + h4

4

(∫
u2K(u) du

) 2

· E
(
m′′

j (Xj ) − θ0j
(
g′′j (Xj ) − Eg′′j (Xj )

) ) 2

for m̂c
j in Case 2 now depend on ρj , contrary to the case of m̂. Thus, the theoretical values cor-

responding to those in Table 2 for PHSBF in Case 2 are all different for different combinations
(ρ1, ρ2) = (0,0),(0,12

√
3),(64,0) and (64,12

√
3), contrary to those corresponding to Table 1.
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Table 2. The values of ISB+ = ISB1+ ISB2, IV+ = IV1+ IV2 and MISE+ = MISE1+MISE2, multiplied by 103,
for the set of the direct local linear SBF component estimators ‘SBF’ (m̂c

Y ,1,m̂
c
Y ,2) and for our proposal ‘PHSBF ’

(m̂c
1 ,m̂

c
2 ).

Case 1 Case 2
ρ1 = 0 ρ1 = 64 ρ1 = 0 ρ1 = 64

n SBF PHSBF SBF PHSBF SBF PHSBF SBF PHSBF

ρ2 = 0 100 ISB+ 4.16 0.28 7.44 3.73 4.16 6.38 7.44 7.59
IV+ 43.5 33.9 49.8 43.7 43.5 41.7 49.8 42.4

MISE+ 47.6 24.2 57.2 47.4 47.6 48.2 57.2 50.0

400 ISB+ 1.42 0.09 2.92 1.49 1.42 2.19 2.92 2.46
IV+ 10.9 8.59 12.3 10.7 10.9 10.3 12.3 10.4

MISE+ 12.3 8.68 15.2 12.2 12.3 12.5 15.2 12.8

1,000 ISB+ 0.72 0.04 1.50 0.80 0.72 1.02 1.50 1.22
IV+ 5.16 4.14 5.71 5.07 5.16 4.85 5.71 4.85

MISE+ 5.88 4.18 7.21 5.87 5.88 5.97 7.21 6.07

ρ2 = 12
√

3 100 ISB+ 4.38 4.17 6.99 4.82 4.38 6.71 6.99 6.94
IV+ 53.6 38.4 58.2 50.9 53.6 41.9 58.2 42.4

MISE+ 58.0 42.6 65.2 55.9 58.0 48.6 65.2 50.3

400 ISB+ 1.24 1.16 2.44 1.59 1.24 2.18 2.44 2.45
IV+ 13.6 9.57 14.5 12.4 13.6 10.4 14.5 10.4

MISE+ 14.8 10.7 17.0 14.0 14.8 12.6 17.0 12.9

1,000 ISB+ 0.73 0.74 1.32 0.93 0.73 1.13 1.32 1.24
IV+ 6.40 2.61 6.74 5.92 6.40 4.86 6.74 4.86

MISE+ 7.13 5.35 8.06 6.85 7.13 5.99 8.06 6.10

6. Concluding remarks

We did not study the idea of the parametric help applied to the local constant SBF. One can imagine
that it is more complicated than the application to the local linear SBF since the local constant SBF
has boundary effects and its bias involves the joint density p as well, in an implicit way, see Mammen,
Linton and Nielsen (1999). Above all, it is inferior to the local linear option, practically as well as
theoretically.

The methodology and theory developed in this paper for real-valued responses Y may be extended to
responses taking values in separable Hilbert spaces H. In this general setting, the regression function
m : [0,1]d → H is structured as m = m1 ⊕ · · · ⊕ md with mj : [0,1] → H, where ⊕ is the operation of
addition on H. Also, the parametric family that helps additive regression is given by {(θ1 � g1) ⊕ · · · ⊕
(θd � gd) : θ j ∈ R,1 ≤ j ≤ d} with gj : [0,1] → H, where � is the operation of scalar multiplication.
Let 〈·, ·〉H and ‖ · ‖H denote the inner product and the associated norm of H, respectively. Then, the
parametric help with g = (g1, . . . ,gd)� is maximized by using a consistent estimator of

θ0 := argmin
θ∈Rd

E ‖m′′
1 (X1) ⊕ · · · ⊕ m′′

d (Xd) �
( (
θ1 � g′′1 (X1)

)
⊕ · · · ⊕

(
θd � g′′d (Xd)

) )
‖2
H
.

Here, a � b = a ⊕ (−1) � b for a,b ∈ H, and m′′
j and g′′j are the second-order Fréchet derivatives of mj

and gj , respectively. For the estimation of the individual components, the targets in the corresponding
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parametric help are

θ0j :=
E (〈m′′

j (Xj ),g′′j (Xj ) � Eg′′j (Xj )〉H)

E (‖g′′j (Xj ) � Eg′′j (Xj )‖2
H
)

, 1 ≤ j ≤ d.

It is straightforward to think of versions of θ̂ at (4.4) and θ̂0j at (4.8) in this Hilbertian setting. One
may also get the corresponding analogues of the theorems and corollaries in Sections 3 and 4 using the
analogues of Propositions 1, 2 and 3 that can be derived from Jeon et al. (2022).

Another extension that is immediate is to use different bandwidths hj for different covariates Xj ,
instead of a common h for all Xj . In this case, the bias part in Corollary 2 is modified to

1
2

d∑
j=1

μ2(xj, κ) h2
j

(
m′′

j (xj ) − θ0j g
′′
j (xj )

)
.

Thus, the largest gain in the estimation of m with the parametric help is attained by using a consistent
estimator of

θ0 ≡ θ0(h1, . . . ,hd) := argmin
θ∈Rd

E

[ (
d∑
j=1

h2
j

(
m′′

j (xj ) − θ j g
′′
j (xj )

) ) 2]
,

which depends on the bandwidths hj , contrary to the case of using a common bandwidth. However, for
the estimation of the individual component functions, the targets θ0j remain the same as in Section 4.2.
A further extension of the present study is to consider a nonlinear parametric family where g(x,θ) is
nonlinear in θ while it is additive in modeling the effects of X. This would only involve additional but
straightforward complication in the corresponding methodology and theory.

Although we studied the advantage of the parametric help in the case where the underlying model
is additive, one may be also interested in what happens when the true model is not additive. Here,
we discuss the estimation of the multivariate regression function m only since it is hard to think of
individual components of a non-additive function. In the non-additive case, our proposal with the
parametric help is not actually considered as an estimator of the regression function m = E(Y |X = ·)
itself, but as an estimator of its projection onto the space of additive functions Hadd. Call the projection
m+. We believe that one still benefits from the parametric help in terms of estimating m+. To investigate
this, one first needs to derive versions of Propositions 1 and 2 for a general response variable W with
non-additive mW = E(W |X = ·). Let mW ,+ be the projection of mW onto Hadd. We continue to let m̂W

denote the solution of the SBF equation (2.4). Then, the versions of Propositions 1 and 2 basically
replace mW by mW ,+ and m′′

W , j by the second derivatives of the components of mW ,+. In the proofs
of these versions, εW ,+ :=W − mW ,+(X) takes the role of εW :=W − mW (X). One notable difference
from the additive case is that one cannot use E(εW ,+ |X) = 0 since it is no longer valid in case mW is
not additive. Instead, one has

E(εW ,+ |Xj) = 0, 1 ≤ j ≤ d (6.1)

since E(εW ,+ |X = ·) ≡ mW − mW ,+ is perpendicular to Hadd and thus

0 = E
[
E(εW ,+ |X)η(Xj )

]
= E

[
E(εW ,+ |Xj)η(Xj )

]
for all square integrable functions η. With (6.1), one may be able to prove the versions of Propositions 1
and 2. However, there are several hurdles one needs to overcome in going through other details with
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ε+ :=Y − m+(X) replacing ε. For example, for the consistency of θ̂0 (Theorem 3), one needs to prove,
in the non-additive case, that

n−1
n∑
i=1

D̂j(Xi j ) · ε+,i = op
(
n−4/5) , (6.2)

where D̂j is defined at (B.4) and ε+,i := Yi − m+(Xi). Compare (6.2) with the equations at (B.6). We
note that the second equation at (B.6) is crucially dependent upon E(εi |Xi) = 0. However, one has only
E(ε+ |Xj) = 0 from (6.1), and the second equation is no longer valid for ε+,i replacing εi . The main
reason is that D̂j(Xi j ) involves not only {X1j, . . . ,Xnj } but also {X1k, . . . ,Xnk } for all k � j. We note
that (6.2) follows if one proves

sup
D j ∈Gn

|n−1
n∑
i=1

Dj(Xi j ) · ε+,i | = op
(
n−4/5) (6.3)

for some class of functions Gn where D̂j belongs with probability tending to one. Such a class would
be for those Dj such that supx j ∈[0,1] |Dj(xj )| ≤ C1n−2/5 and |Dj(xj) − Dj(x′j )| ≤ C2n−1/5 |xj − x′j | for
all xj, x′j ∈ [0,1]. Then, one may employ a maximal inequality from the empirical process theory to
prove (6.3), where we believe one does not need E(ε+ |X) = 0 but E(ε+ |Xj) = 0 would be enough. For
this approach to work, however, the bandwidth, say b, in the construction of θ̂0 might need to be of
larger magnitude than n−1/5. If this is the case, then one needs to prove (6.2) and (6.3) with op(b4)
replacing op(n−4/5), and take Gn accordingly, which in turn requires versions of Propositions 1 and 2
for a flexible range of bandwidth. We think this is an interesting topic for future study.

Appendix A: Proofs of theorems in Section 3

A.1. Proof of Theorem 1

Using the linearity of the SBF operation asserted in Proposition 1, it holds that

m̂tp(x) − mtp(x)

= m̂tp
Y (x) −

d∑
j=1

θ̂0jm̂
tp
g j (Xj )

(x) +
d∑
j=1

θ̂0jg
tp
j (xj ) − mtp(x)

= m̂Y−θ�0 g(X)(x) −
(
mtp(x) −

d∑
j=1

θ0jg
tp
j (xj )

)
−

d∑
j=1

(θ̂0j − θ0j )
(
m̂tp

g j (Xj )
(x) − gtp

j (xj )
)
.

An application of Proposition 2 to W ≡ gj (Xj ) gives that m̂tp
g j (Xj )

(x) − gtp
j (xj ) = Op(n−2/5) uniformly

for x ∈ [0,1]d . This and the assumed consistency of θ̂0 imply the theorem.
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A.2. Proof of Theorem 2

Let (m̂1, . . . ,m̂d) be a tuple such that m̂ = m̂1 + · · · + m̂d . Then, from Theorem 1 and Lemma 3 in the
Appendix C, it holds that, for some ĉj =Op(1),

m̂j (xj ) = m̂Y−θ�0 g(X), j(xj ) + θ0j gj(xj ) + ĉj + op
(
n−2/5) (A.1)

uniformly for xj ∈ [0,1]. Also, we get that, uniformly for xj ∈ [0,1],

m̂1, j(xj ) = m̂Y−θ�0 g(X),1, j (xj ) + h θ0j g′j(xj ) + op
(
n−2/5) . (A.2)

Now, for a tuple (m̂Y−θ�0 g(X),1, . . . ,m̂Y−θ�0 g(X),d) comprising

m̂Y−θ�0 g(X)(x) = m̂Y−θ�0 g(X),1(x1) + · · · + m̂Y−θ�0 g(X),d(xd),

let m̂c
Y−θ�0 g(X), j be their centered versions satisfying the constraints (2.5) with W = Y − θ�0 g(X). Then,

by (A.1) and (A.2)

m̂c
j (xj ) = m̂c

Y−θ�0 g(X), j(xj ) + θ0j
[
gj (xj ) −

∫ 1

0

(
gj (u)p̂j(u) + hg′j (u)p̂1, j(u)

)
du

]

+ op
(
n−2/5) ,

(A.3)

uniformly for xj ∈ [0,1]. Note that the ĉj in (A.1) are canceled out in the above equation for the centered
versions.

On the other hand, applying Proposition 3 to W =Y − θ�0 g(X), we obtain

m̂c
Y−θ�0 g(X), j(xj ) =mc

Y−θ�0 g(X), j (xj) + m̃A
Y−θ�0 g(X), j (xj )

+
h2

2
μ2(xj, κ)

[
m′′

j (xj) − θ0jg
′′
j (xj )

]
+ op

(
n−2/5) (A.4)

uniformly for xj ∈ [0,1], where m̃A
Y−θ�0 g(X), j is the first element of the 2-vector m̃A

Y−θ�0 g(X), j . Since

mc
Y−θ�0 g(X), j (xj ) = mc

j (xj ) − θ0j
[
gj (xj ) −

∫ 1

0
gj (u)pj (u) du

]
,

the approximations (A.3) and (A.4) imply that, for all 1 ≤ j ≤ d,

m̂c
j (xj ) = mc

j (xj ) + m̃A
Y−θ�0 g(X), j(xj ) +

h2

2
μ2(xj, κ)

[
m′′

j (xj ) − θ0jg
′′
j (xj )

]

+ θ0j

[∫ 1

0
gj (u)pj(u) du −

∫ 1

0

(
gj (u)p̂j(u) + hg′j(u)p̂1, j (u)

)
du

]
+ op

(
n−2/5) (A.5)
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uniformly for xj ∈ [0,1]. We elaborate on the integrals in the last term in (A.5). We observe that

∫ 1

0
gj(u)pj (u) du −

∫ 1

0

(
gj (u)p̂j (u) + hg′j(u)p̂1, j (u)

)
du

=

∫
[0,1]2

[
gj (v) − gj (u) − (v − u)g′j (u)

]
pj (v)Kh(u,v) dv du +Op

(
n−1/2)

=
h2

2

∫ 1

0
μ2(u,K)g′′j (u)pj(u) du + op

(
n−2/5)

=
h2

2

∫ 1

0
μ2(u, κ)g′′j (u)pj (u) du + op

(
n−2/5) .

(A.6)

In (A.6), the first equation follows from the normalization property of the kernel Kh(·, ·) at (2.1) and the
fact that ∫ 1

0

(
gj (u)p̂j(u) + hg′j (u)p̂1, j(u)

)
du

= E
(∫ 1

0

(
gj (u)p̂j (u) + hg′j(u)p̂1, j (u)

)
du

)
+Op

(
n−1/2)

=

∫
[0,1]2

[
gj (u) + (v − u)g′j (u)

]
pj(v)Kh(u,v) dv du +Op

(
n−1/2) .

The approximation at (A.6) with (A.5) gives the theorem.

Appendix B: Proofs of theorems in Section 4

B.1. Proof of Theorem 3

Recall ε̂W ,i =Wi − m̂W (Xi). Put m�(x) :=m(x) − θ�0 g(x). We claim

n−1
n∑
i=1

ε̂m�(X),i · ε̂g j (Xj ),i = op
(
n−4/5) , 1 ≤ j ≤ d. (B.1)

It also holds that, for any additive function η,

n−1
n∑
i=1

ε̂ε,i · ε̂η(X),i = op
(
n−4/5) , 1 ≤ j ≤ d. (B.2)

The two claims give the theorem. To see this, we note that

Yθ
i − m̂Yθ (Xi) = ε̂m�(X),i + ε̂ε,i − (θ − θ0)�ε̂g(X),i .

From the definition of θ̂0 at (4.4), we may write

θ̂0 = θ0 +

(
n−1

n∑
i=1

ε̂g(X),i · ε̂�g(X),i

) −1 (
n−1

n∑
i=1

ε̂g(X),i · ε̂ε,i + n−1
n∑
i=1

ε̂g(X),i · ε̂m�(X),i

)
.
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Now, applying the second part of Corollary 1 with η(x) = gj (xj ) for each 1 ≤ j ≤ d, we get

m̂g j (Xj )(x) − gj(xj ) =
h2

2
μ2(xj, κ)g′′j (xj ) + op

(
n−2/5)

uniformly for xj ∈ [0,1]. This gives that

n−1
n∑
i=1

ε̂g(X),i · ε̂�g(X),i =
h4

4
μ2(K)2 E

(
g′′(X)g′′(X)�

)
+ op

(
n−4/5) .

This and the two claims (B.1) and (B.2) entail θ̂0 = θ0 + op(1).
It remains to prove the two claims at (B.1) and (B.2). For (B.1), recall that μ2(xj, κ) is the first entry

of the 2-vector N(xj )−1γ(xj ). We apply the second part of Corollary 1 twice to η(x) = m�(x) and to
η(x) = gj (xj ). By taking the first entries of the respective tuples in the resulting expansions, we obtain

max
1≤i≤n

| ε̂m�(X),i −
h2

2

d∑
k=1

μ2(Xik, κ)
(
m′′
k (Xik ) − θ0k g′′k (Xik )

)
| = op

(
n−2/5) ,

max
1≤i≤n

| ε̂g j (Xj ),i −
h2

2
μ2(Xi j, κ)g′′j (Xi j )| = op

(
n−2/5) .

The above two uniform expansions entail that, for each 1 ≤ j ≤ d,

n−1
n∑
i=1

ε̂m�(X),i · ε̂g j (Xj ),i

=
h4

4n

d∑
k=1

n∑
i=1

μ2(Xik, κ)μ2(Xi j, κ)
(
m′′
k (Xik) − θ0k g′′k (Xik)

)
g′′j (Xi j ) + op

(
n−4/5)

=
h4

4
μ2(K)2 E

( [
m′′
+ (X) − θ�0 g′′(X)

]
· gj (Xj )

)
+ op

(
n−4/5)

= op
(
n−4/5) ,

where the last equality follows from the definition of θ0 at (4.2).
Next, we prove (B.2). Applying Proposition 2 with W = ε and the second part of Corollary 1, and

since E(ε |X) = 0, we get

n−1
n∑
i=1

ε̂ε,i · ε̂η(X),i = n−1
n∑
i=1

εi
(
η(Xi) − m̂η(X)(Xi)

)

−
d∑
j=1

n−1
n∑
i=1

m̃ε, j(Xi j )
(
η(Xi) − m̂η(X)(Xi)

)
+ op

(
n−4/5) ,

(B.3)

where we have also used the simplification that m̃A
ε, j reduces to m̃ε, j . We prove that both terms on the

right hand side of (B.3) are of magnitude op(n−4/5). We give a proof for the second term only since the
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first one is simpler. Put

D̂j(xj ) := n−1
n∑
i=1

ωj ,h(Xi j, xj )
(
η(Xi) − m̂η(X)(Xi)

)
. (B.4)

From the second part of Corollary 1, it follows that

sup
x j ∈[0,1]

|D̂j(xj )| =Op
(
n−2/5) . (B.5)

Since D̂j(xj ) involves only Xi, 1 ≤ i ≤ n, and E(εi |Xi) = 0, we find from (B.5)

n−1
n∑
i=1

m̃ε, j(Xi j )
(
η(Xi) − m̂η(X)(Xi)

)
= n−1

n∑
i=1

D̂j(Xi j ) · εi

=Op

(√√
n−2

n∑
i=1

D̂j(Xi j )2 E
(
ε2
i |X1, . . . ,Xn

) )

=Op
(
n−9/10) .

(B.6)

This completes the proof of (B.2).

B.2. Proof of Theorem 5

First, we note that m̃A
Y , j = m̃ε, j . By applying Proposition 3 to W =Y , we get

max
1≤i≤n

| m̂c
Y , j(Xi j ) − mc

j (Xi j ) −
h2

2
μ2(Xi j, κ)m′′

j (Xi j ) + m̃ε, j(Xi j ) | = op
(
n−2/5) .

This gives

max
1≤i≤n

| δ̂i
(
j,m̂c

Y , j(Xj )
)
+

h2

2
μ2(Xi j, κ)m′′

j (Xi j ) − δ̂i
(
j,m̃ε, j(Xj )

)
| = op

(
n−2/5) .

Also, we note that

max
1≤i≤n

| δ̂i
(
j,gj (Xj )

)
+

h2

2
μ2(Xi j, κ)g′′j (Xi j ) | = op

(
n−2/5) .

It suffices to prove then

n−1
n∑
i=1

δ̂dev
i

(
j,gj (Xj )

)
· δ̂i

(
j,m̃ε, j(Xj )

)
= op

(
n−4/5) . (B.7)

To prove (B.7), put

Δ̂i, j := n−1
n∑

i′=1

[
δ̂dev
i′

(
j,gj (Xj )

)
− n−1

n∑
i′′=1

ωj ,h(Xi′′ j,Xi′ j)δ̂dev
i′′

(
j,gj (Xj )

) ]
ωj ,h(Xi′ j,Xi j ).
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Then, the left hand side of (B.7) equals T := n−1 ∑n
i=1 Δ̂i, j · εi . We claim

n−1
n∑
i=1

Δ̂2
i, j =Op

(
n−4/5) . (B.8)

Since Δ̂i, j for all i depend on solely on X1j, . . . Xnj , we get E(T |X1j, . . . Xnj ) = 0. From (B.8) we also
have

Var(T |X1j, . . . Xnj ) = n−2
n∑
i=1

Δ̂2
i, j · E

(
ε2
i |Xi j

)
=Op

(
n−9/5) .

This proves (B.7).
It remains to prove the claim (B.8). Define

Aj (xj ) := n−1
n∑
i=1

ωj ,h(Xi j, xj) · δ̂dev
i

(
j,gj (Xj )

)
,

Bj(xj ) := n−1
n∑
i=1

ωj ,h(Xi j, xj) · Aj(Xi j ).

Then, Δ̂i, j = Aj(Xi j ) − Bj(Xi j ). It suffices to prove

sup
x j ∈[0,1]

|Aj(xj )| =Op
(
h2) , sup

x j ∈[0,1]
|Bj(xj )| =Op

(
h2) . (B.9)

To prove the first assertion in (B.9), we note that

sup
1≤i≤n

|δ̂dev
i

(
j,gj (Xj )

)
| ≤ sup

1≤i≤n
|δ̂i

(
j,gj (Xj )

)
| + n−1

n∑
i=1

sup
1≤i≤n

|δ̂i
(
j,gj (Xj )

)
|

≤ 2 sup
1≤i≤n

|δ̂i
(
j,gj (Xj )

)
|.

Recall that δ̂i( j,gj (Xj )) = −h2

2 μ2(Xi j, κ)g′′j (Xi j )+op(h2) uniformly for 1 ≤ i ≤ n. Since the assumption
(A2) on the baseline kernel K ensures that supu∈[0,1] |μ2(u, κ)| ≤ C1 for some absolute constant 0 <
C1 < ∞, we get sup1≤i≤n |δ̂i( j,gj (Xj ))| = Op(h2) and thus sup1≤i≤n |δ̂dev

i
( j,gj (Xj ))| = Op(h2). Since

there exists an absolute constant 0 < C2 <∞ such that

n−1
n∑
i=1

|ωj ,h(Xi j, xj)| ≤ C2 · n−1
n∑
i=1

Kh(Xi j, xj ), (B.10)

this completes the proof of the first assertion in (B.9). The second assertion in (B.9) follows immedi-
ately from (B.10) and the first assertion.

Appendix C: Further technical details
Here, we bring in relevant function spaces in our theoretical development in Sections 2–4, together
with some linear operators mapping M to Mj and Madd to itself, which pertain to the SBF operation
that we described in Section 2. We also present the proofs of Propositions 1–3 in Section 2.
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C.1. Function spaces

Let vec(u) := (1,u1, . . . ,ud)� for u = (u1, . . . ,ud) ∈ Rd and define

M(x) := p(x) ·
∫
vec(u)vec(u)�

d∏
k=1

K(uk ) du.

The space that embodies all function tuples considered in our paper is the collection all (d + 1)-tuples
of real-valued functions

M :=
{
ftp : ftp(x) =

(
f 0(x), f 1,1(x), . . . , f 1,d(x)

)� for real-valued functions

f 0 and f 1, j defined on [0,1]d,
∫
[0,1]d

ftp(x)�M(x)ftp(x) dx <∞
}
.

We endow M with the inner product

〈
ftp,gtp〉

2 :=
∫
[0,1]d

ftp(x)�M(x)gtp(x) dx, ftp,gtp ∈ M ,

and let ‖ · ‖2 be the induced norm.
Now, we introduce function spaces pertaining to additive functions and individual component func-

tions. Let Madd be the subspace of M such that, for ftp ∈ Madd,

f 0(x) = f1(x1) + · · · + fd(xd), f 1, j (x) = f1, j(xj )

for some univariate functions fj and f1, j . Now, let Mj be the subspaces of Madd ⊂ M containing ftp

such that f 0(x) = fj(xj ), f 1,k(x) ≡ 0 for all k � j and f 1, j(x) = f1, j(xj ) for some univariate functions
fj and f1, j . Below throughout this paper, when we say f = f̃ for f , f̃ ∈ M , we mean that ‖ f − f̃ ‖2 = 0.
Since not all points in a rectangle with non-empty interior lie on a common hyperplane inRd , ‖ftp‖2 = 0
is equivalent to that ftp(x) = 0 a.e. for x ∈ [0,1]d , provided that p is bounded away from zero.

C.2. Smooth backfitting linear operators

Recall vec(u) = (1,u)� ∈ R2 and define

Mj j (xj ) := pj (xj ) ·
∫

vec(u)vec(u)�K(u) du.

The Mj j (xj ) are considered as approximations of M̂j j (xj ). Define πj : M →Mj by

πj
(
ftp) (xj ) :=U�

j Mj j (xj )−1Uj

∫
[0,1]d−1

M(x)ftp(x) dx−j, ftp ∈ M .

It can be shown that each πj : M → Mj is a projection operator, provided that pj (xj) > 0 for all
xj ∈ [0,1]. Put T = (I − πd) ◦ (I − πd−1) ◦ · · · ◦ (I − π1) : Madd →Madd.

To introduce sample versions of the projection operators, let

M̂(x) := n−1
n∑
i=1

vec

(
Xi − x

h

)
vec

(
Xi − x

h

)� d∏
k=1

Kh(xk,Xik).
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Define π̂j : M →Mj by

π̂j
(
ftp) (xj ) :=U�

j M̂j j (xj )−1Uj

∫
[0,1]d−1

M̂(x)ftp(x) dx−j, ftp ∈ M .

Put T̂ := (I − π̂d) ◦ (I − π̂d−1) ◦ · · · ◦ (I − π̂1) : Madd → Madd, where I : M → M is the iden-
tity map. Then, the SBF equation at (2.3) can be expressed in terms of m̂tp

W = (m̂W ,1 + · · · +
m̂W ,d,m̂W ,1, j, . . . ,m̂W ,1,d)� and

r̂W ,+ :=
d∑
j=1

(I − π̂d) ◦ · · · ◦ (I − π̂j+1)U�
j m̃W , j, (C.1)

where we interpret (I− π̂d)◦ · · · ◦ (I− π̂j+1) = I for j = d. Indeed, the SBF equation at (2.3) is equivalent
to

m̂tp
W = T̂

(
m̂tp

W

)
+ r̂W ,+. (C.2)

For an operator L : Madd →Madd, define its operator norm by

‖L‖op := sup
{
‖L

(
ftp) ‖2 : ftp ∈ Madd with ‖ftp‖2 = 1

}
.

C.3. Basic lemmas and their proofs

Lemma 1. Assume that p is bounded away from zero and infinity on [0,1]d . Then, there exists a
constant 0 < c <∞ depending only on d such that, for all ftp ∈ Madd, there exists ftp

j ∈ Mj, 1 ≤ j ≤ d,

such that ftp = ftp
1 + · · · + ftp

d
and max1≤ j≤d ‖ftp

j ‖2 ≤ c‖ftp‖2. Furthermore, ‖T ‖op < 1.

Proof. The projection operators πj : Mk → Mj restricted to Mk for k � j are compact since they are
Hilbert-Schmidt. According to Proposition A.4.2 in Bickel et al. (1993), Madd is closed in M . The
first part of the lemma is then an immediate consequence of applying Theorem 3.1 in Blot and Cieutat
(2016). The second part follows from an application of Theorem 4.6 in Xu and Zikatanov (2002).

Lemma 2. Assume that pj is continuous and bounded away from zero and infinity on [0,1]. Let ftp
j (x) ≡

ftp
j (xj ) = ( fj(xj ),0, . . . ,0, f1, j(xj ),0, . . . ,0)� for ftp

j ∈ Mj . Likewise, let fc,tpj be defined by fc,tpj (xj ) :=

( f cj (xj ),0, . . . ,0, f1, j,0, . . . ,0)
� ∈ Mj , where f cj (xj ) := fj(xj ) −

∫ 1
0 ( fj(u)p̂j (u) + f1, j (u)p̂1, j (u)) du.

Then, for any ε > 0 it holds that ‖ftp
j
‖2

2 ≥ (1 − ε)‖fc,tp
j

‖2
2 with probability tending to one.

Proof. Let cj =
∫ 1

0 ( fj (u)p̂j(u) + f1, j (u)p̂1, j (u)) du. Then, ‖(cj,0, . . . ,0)�‖2
2 for the norm defined in

Section C.1 equals c2
j . This gives

‖ftp
j ‖

2
2 = ‖fc,tpj ‖2

2 + c2
j + 2cj

∫ 1

0

(
first row ofM(x)

)
· fc,tpj (x) dx. (C.3)

By the definition of fc,tpj and noting that
∫ 1

0 (first row of M̂(x)) · ftp
j (x) dx is nothing else than cj , we get

∫ 1

0

(
first row of M̂(x)

)
· fc,tpj (x) dx = 0.
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Thus, applying Hölder’s inequality we obtain

∫ 1

0

(
first row ofM(x)

)
· fc,tpj (x) dx

=

∫ 1

0

(
first row of

[
M(x) − M̂(x)

] )
· fc,tp

j
(x) dx

≥ −
(∫ 1

0

(p̂j(xj ) − pj(xj ))2

pj(xj )
dxj +

∫ 1

0

p̂1, j(xj )2

pj(xj )
dxj

) 1/2

·
(∫ 1

0

(
f cj (xj )

2 + f1, j (xj )2
)
pj (xj ) dxj

) 1/2

≥ −d̂nj · ‖fc,tpj ‖2

(C.4)

for some stochastic sequence {d̂nj } such that 0 ≤ d̂nj = op(1). For the second inequality in (C.4) we
have used the facts that p̂j(xj ) = μ0(xj,K)pj (xj ) + op(1) and p̂1, j = μ1(xj,K)pj (xj ) + op(1) uniformly
for xj ∈ [0,1] and that μ0(xj,K) = 1 and μ1(xj,K) = 0 for all xj ∈ [2h,1 − 2h] and they are bounded on
[0,1]d . From (C.3) and (C.4) it follows that

‖ftp
j ‖

2
2 = ‖fc,tpj ‖2

2 ·
(
1 − d̂2

nj

)
+

(
d̂nj · ‖fc,tpj ‖2 − |cj |

) 2

≥ ‖fc,tpj ‖2
2 ·

(
1 − d̂2

nj

)
.

This completes the proof of the lemma.

Lemma 3. Let fj : [0,1] → R for 1 ≤ j ≤ d. If
∑d

j=1 fj(xj ) = 0 for a.e. x ∈ [0,1]d , then fj(xj ) = cj a.e.

for xj ∈ [0,1], where cj are constants such that
∑d

j=1 cj = 0. If in addition each fj satisfies E( fj(Xj )) =
0, then fj(xj ) = 0 a.e. for xj ∈ [0,1] for all 1 ≤ j ≤ d.

Proof. We prove only the first part of the lemma since the second part is immediate from the first one.
For the first part, we prove f1(x1) = c1 for some constant c1 a.e. for x1 ∈ [0,1]. Put S := {x ∈ [0,1]d :
f1(x1) + f−1(x−1) = 0}, where f−1(x−1) :=

∑d
j=2 fj(xj ) and x−1 := (x2, . . . , xd) for x = (x1, . . . , xd).

For an arbitrary measurable set D ⊂ R, put

A ≡ A(D) := f −1
1 (D) =

{
x1 ∈ [0,1] : f1(x1) ∈ D

}
,

B ≡ B(D) := f −1
−1 (D) =

{
x−1 ∈ [0,1]d−1 : − f−1(x−1) ∈ D

}
.

Since f1(x1) + f−1(x−1) = 0 on S, we get

(
A× [0,1]d−1) ∩ S =

(
[0,1] × B

)
∩ S

=
[ (

A× [0,1]d−1) ∩ S
]
∩

[ (
[0,1] × B

)
∩ S

]
= (A× B) ∩ S.

(C.5)
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Let Lebq denote the q-dimensional Lebesgue measure for q ≥ 1. Then, from (C.3) and since Lebd(S) =
1, we obtain

Leb1(A) = Lebd
(
A× [0,1]d−1)

= Lebd(A× B)

= Leb1(A) · Lebd−1(B).

(C.6)

Similarly, we get Lebd−1(B) = Leb1(A) · Lebd−1(B). This and (C.6) entail that

Leb1(A) = Leb1
(

f −1
1 (D)

)
= 0 or 1

for any measurable set D ⊂ R. Since Leb1( f −1
1 (R)) = 1 and it cannot happen that Leb1( f −1

1 (D)) > 0
and Leb1( f −1

1 (Dc)) > 0, the set R is an atom of the measure μ defined by μ(E) := Leb1( f −1
1 (E)).

According to Lemma 10.17 in Aliprantis and Border (2006), there exists a singleton {c1} ⊂ R such that
Leb1( f −1

1 ({c1})) > 0. Since Leb1( f −1
1 ({c1})) must be either 0 or 1, we conclude Leb1( f −1

1 ({c1})) = 1,
which means f1(x1) = c1 a.e. for x1 ∈ [0,1]. This concludes the proof of the lemma.

C.4. Proof of Proposition 1

We only outline the proof. It can be shown that ‖π̂j − πj ‖op = op(1). This implies ‖T̂ − T ‖op = op(1).
By the second part of Lemma 1 we get that

‖T̂ ‖op < τ with probability tending to one for some 0 < τ < 1. (C.7)

We note that r̂W ,+ defined at (C.1) belongs to Madd with probability tending to one. Indeed, we may
prove that there exists a constant 0 < C < ∞ such that ‖r̂W ,+‖2 < C with probability tending to one.
From the SBF equation at (C.2) and by (C.7), it holds that

m̂tp
W =

∞∑
r=0

T̂r (r̂W ,+) ∈ Madd (C.8)

with probability tending to one, where the convergence of the series is in ‖ · ‖2. This proves the first
part of the proposition.

To prove the second part, observe from the definition (2.2) that m̃c1W1+c2W2 , j = c1 · m̃W1 , j + c2 ·
m̃W2 , j . From the definition (C.1), r̂W ,+ is also linear in W . From (C.8) and the fact that T̂ is a linear
operator, so are T̂r for all r ≥ 2 as well, we may conclude that m̂tp

W is linear in W .

C.5. Proof of Proposition 3

Define Δ̂
c,tp
j , which takes values in Mj , by

Δ̂
c,tp
j (xj ) := m̂c,tp

W , j (xj ) − mc,tp
W , j (xj ) − U�

j m̃A
W , j(xj ) −

h2

2
· U�

j N(xj)−1γ(xj ) · m′′
W , j(xj ). (C.9)

Let Δ̂cj and Δ̂1, j be the first and the ( j + 1)th entries of Δ̂
c,tp
j . Below, we prove

sup
x j ∈[0,1]

|Δ̂c,tpj (xj )| = op
(
n−2/5) , 1 ≤ j ≤ d. (C.10)
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Put Δ̂
c,tp
+ (x) :=

∑d
j=1 Δ̂

c,tp
j (xj ) = (Δ̂c1 + · · · + Δ̂c

d
, Δ̂1,1, . . . , Δ̂1,d)�. Along the lines of the proof of

Theorem 4.1 in Jeon and Park (2020), we may prove that, uniformly for xj ∈ [0,1],

Δ̂
c,tp
j (xj ) +

d∑
k=1,�j

∫ 1

0
U�

j M̂j j (xj )−1M̂jk(xj, xk)Uk · Δ̂
c,tp
k (xk ) dxk = op

(
n−2/5) , (C.11)

or equivalently π̂j(Δ̂
c,tp
+ )(xj ) = op(n−2/5), for all 1 ≤ j ≤ d. This gives

Δ̂
c,tp
+ (x) = T̂

(
Δ̂
c,tp
+

)
(x) + op

(
n−2/5) (C.12)

uniformly for x ∈ [0,1]d . Since ‖T̂ ‖op ≤ τ with probability tending to one for some 0 < τ < 1, as we
have seen in the proof of Proposition 1, we get

‖Δ̂c,tp+ ‖2 = op
(
n−2/5) . (C.13)

Now, according to Lemma 1, there exists a constant 0 < c < ∞ depending only on the dimension d
and Δ̃tp

j = (Δ̃j,0, . . . ,0, Δ̃1, j,0, . . . ,0)� ∈ Mj such that Δ̂
c,tp
+ = Δ̃

tp
1 + · · · + Δ̃tp

d and max1≤ j≤d ‖Δ̃
tp
j ‖2 ≤

c‖Δ̂c,tp+ ‖2. Furthermore, by Lemma 2 it holds that, for any ε > 0,

max
1≤ j≤d

‖Δ̃c,tpj ‖2 ≤ (1 − ε)−1 · max
1≤ j≤d

‖Δ̃tp
j ‖2 (C.14)

with probability tending to one, where Δ̃c,tpj = (Δ̃cj ,0, . . . ,0, Δ̃1, j,0, . . . ,0)� with

Δ̃cj (xj ) = Δ̃j(xj ) −
∫ 1

0

(
Δ̃j(u)p̂j (u) + Δ̃1, j(u)p̂1, j (u)

)
du.

We note that

0 =
∫ 1

0

(
Δ̃cj (xj )p̂j(xj ) + Δ̃1, j (xj )p̂1, j(xj )

)
dxj =

∫ 1

0

(
p̂j(xj ), p̂1, j(xj )

)
· Uj Δ̃

c,tp
j (xj ) dxj, (C.15)

satisfying the constraints (2.5) for Δ̃cj . Since Δ̂
c,tp
+ = Δ̃

tp
1 + · · ·+ Δ̃

tp
d and p(x) > 0 on [0,1]d , we get from

Lemma 3 that Δ̂
c,tp
j − Δ̃tp

j ≡ (cj,0, . . . ,0)� ∈ Rd+1 on [0,1] for some constant cj . Likewise, Δ̂
c,tp
j − Δ̃c,tpj ≡

(c′j,0, . . . ,0)
� ∈ Rd+1 on [0,1] for some constant c′j . We claim

∫ 1

0

(
p̂j(xj ), p̂1, j (xj )

)
· Uj Δ̂

c,tp
j (xj ) dxj = op

(
n−2/5) . (C.16)

This with (C.15) entails c′j = op(n−2/5) since
∫ 1

0 p̂j (xj ) dxj = 1, so that ‖Δ̂c,tpj − Δ̃c,tpj ‖2 = op(n−2/5).
From this with (C.13) and (C.14) we get

‖Δ̂c,tpj ‖2 ≤ ‖Δ̂c,tpj − Δ̃c,tpj ‖2 + ‖Δ̃c,tpj ‖2 = op
(
n−2/5) , 1 ≤ j ≤ d.

Now, from (C.11) and an application of Hölder’s inequality, we may conclude (C.10) since

sup
x j ∈[0,1]

|Δ̂c,tpj (xj )| ≤
∑

k=1,�j

‖Δ̂c,tpk ‖2 · Op(1) + op
(
n−2/5) = op

(
n−2/5) .
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It remains to prove the claim (C.16). We multiply the row vector (p̂j (xj ), p̂1, j(xj ))Uj on both sides of
the defining equation (C.9) for Δ̂

c,tp
j and then integrate them. We first note that, due to the constraints

(2.5),

∫ 1

0

(
p̂j (xj ), p̂1, j(xj )

)
Uj · m̂c,tp

W , j(xj ) dxj = 0. (C.17)

Next, for the targets mc,tp
W , j we use E(mc

W , j(Xj )) = 0 to obtain

∫ 1

0

(
p̂j(xj ), p̂1, j(xj )

)
Uj · mc,tp

W , j(xj ) dxj

= n−1
n∑
i=1

∫ 1

0

(
mc
W , j(xj ) + (Xi j − xj )m′

W , j(xj ) − mc
W , j(Xi j )

)
Kh(xj,Xi j ) dxj

+Op
(
n−1/2)

= −
∫
[0,1]2

(
mc
W , j(v) − mc

W , j(xj) − (v − xj)m′
W , j(xj )

)
Kh(xj,v)pj(v) dv dxj

+Op
(
n−1/2)

= − h2

2

∫
u2K(u) du ·

∫ 1

0
pj(xj )m′′

W , j(xj ) dxj + op
(
n−2/5) .

(C.18)

It can be also shown that∫ 1

0

(
p̂j (xj), p̂1, j (xj )

)
Uj · U�

j N(xj )γ(xj ) · m′′
W , j(xj ) dxj

=

∫
u2K(u) du ·

∫ 1

0
pj(xj )m′′

W , j(xj ) dxj + op(1).
(C.19)

Furthermore, for the stochastic term U�
j m̃A

W , j , the standard arguments in kernel smoothing give

∫ 1

0

(
p̂j (xj ), p̂1, j(xj )

)
Uj · U�

j m̃A
W , j (xj ) dxj =Op

(
n−1/2) . (C.20)

The results (C.17)–(C.20) conclude (C.16).

C.6. Proof of Proposition 2

Recall the definition of the centered components m̂c
W , j at (2.6). Also, note that mc

W , j(xj ) =mW , j(xj ) −
E(mW , j(Xj )), where (mW , j : 1 ≤ j ≤ d) is any tuple that comprises mW = mW ,1 + · · · +mW ,d . It holds
that

mW (x) =
d∑
j=1

mc
W , j(xj ) + E(W),
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m̂W (x) =
d∑
j=1

m̂c
W , j(xj ) +

d∑
j=1

∫ 1

0

(
m̂W , j(u)p̂j(u) + m̂W ,1, j(u)p̂1, j (u)

)
du.

The proposition follows from Proposition 3 if we prove

d∑
j=1

∫ 1

0

(
m̂W , j(u)p̂j (u) + m̂W ,1, j(u)p̂1, j (u)

)
du = E(W) + op

(
n−2/5) . (C.21)

To prove (C.21), we observe that the first row of M̂j j (xj ) equals (p̂j(xj ), p̂1, j(xj )). Also, by the normal-

ization property of the kernel Kh(·, ·), the first row of
∫ 1

0 M̂jk(xj, xk ) dxj reduces to (p̂k(xk ), p̂1,k(xk )).
Thus, by multiplying M̂j j (xj ) on both sides of the SBF equation (2.4), then integrating both sides with
respect to xj and comparing the first entries of the resulting quantities, we get that

d∑
j=1

∫ 1

0

(
m̂W , j(xj )p̂j(xj ) + m̂W ,1, j(xj )p̂1, j(xj )

)
dxj = n−1

n∑
i=1

∫ 1

0
Kh(xj,Xi j ) dxj ·Wi

= n−1
n∑
i=1

Wi

= E(W) +Op
(
n−1/2) .

Here, we have also used the normalization property of the kernel that
∫ 1

0 Kh(u,v) du = 1 for all v ∈ [0,1].
This completes the proof of the proposition.
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