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We show local asymptotic normality (LAN) for a statistical model of discretely observed ergodic jump-diffusion
processes, where the drift coefficient, diffusion coefficient, and jump structure are parametrized. Under the LAN
property, we can discuss the asymptotic efficiency of regular estimators, and the quasi-maximum-likelihood and
Bayes-type estimators proposed in Shimizu and Yoshida (Stat. Inference Stoch. Process. 9 (2006) 227–277) and
Ogihara and Yoshida (Stat. Inference Stoch. Process. 14 (2011) 189–229) are shown to be asymptotically efficient
in this model. Moreover, we can construct asymptotically uniformly most powerful tests for the parameters. Unlike
with a model for diffusion processes, Aronson-type estimates of the transition density functions do not hold,
which makes it difficult to prove LAN. Therefore, instead of Aronson-type estimates, we employ the idea of
Theorem 1 in Jeganathan (Sankhyā Ser. A 44 (1982) 173–212) and use the L2 regularity condition. Moreover,
we show that local asymptotic mixed normality of a statistical model is implied from that for a model generated
by approximated transition density functions under suitable conditions. Together with density approximation by
means of thresholding techniques, the LAN property for the jump-diffusion processes is proved.

Keywords: Asymptotically efficient estimator; asymptotically uniformly most powerful test; jump-diffusion
processes; local asymptotic mixed normality; L2 regularity condition; Malliavin calculus; thresholding techniques

1. Introduction

Local asymptotic normality (LAN) is an important property in asymptotic statistical theory because it
enables us to discuss asymptotic efficiency of estimators for parametric models. Hájek [14,15] showed
the convolution theorem and the minimax theorem for statistical models that satisfy the LAN property.
Both theorems give different concepts of asymptotic efficiency. The LAN property has mainly been
studied for statistical models of independent observations. In subsequent work, this property has been
extended to local asymptotic mixed normality (LAMN) so that we can address a wider class of sta-
tistical models. Jeganathan [18] showed the convolution theorem and the minimax theorem under the
LAMN property. LAN and LAMN have enabled various studies of statistical methods in addition to the
efficiency of estimators. Several works have studied the construction of asymptotically uniformly most
powerful tests under LAN or LAMN (see e.g. Choi, Hall, and Schick [5] and Basawa and Scott [3]).
Moreover, Eguchi and Masuda [9] studied the model selection problem via Schwartz-type Bayesian in-
formation criteria (BIC) and showed model selection consistency of the BIC when the statistical model
is locally asymptotically quadratic (which includes the case of LAMN).

For statistical models of discrete observations of semimartingales, Gobet [12,13] showed the LAN
and LAMN properties for diffusion processes in the high-frequency limit of observations on a fixed in-
terval and on a growing observation window, respectively. Related to processes with jumps, Aït-Sahalia
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and Jacod [1] showed the LAN property for some classes of Lévy processes, including symmetric sta-
ble processes, Kawai and Masuda [19] showed the LAN property for normal inverse Gaussian Lévy
processes, and Clément and Gloter [7] proved the LAMN property for a stochastic differential equa-
tion driven by a pure jump Lévy process whose Lévy measure is an α-stable Lev́y measure near the
origin. Statistical models of jump-diffusion processes have also been studied in several papers; Ko-
hatsu, Nualart, and Tran [20] showed the LAN property for ergodic jump-diffusion processes whose
drift coefficient depends on an unknown parameter, and Clément, Delattre, and Gloter [6] studied the
LAMN property for stochastic differential equations with jumps when the unknown parameter deter-
mines the jump structure and the jump times are deterministic and given. Jump-diffusion processes are
used for modeling various stochastic phenomena in many areas, such as econometrics, physics, and
neuroscience; among the vast literature, we refer the reader to Rao [28] and Cont and Tankov [8] and
the references therein. To our knowledge, no studies have shown the LAN property for jump-diffusion
processes with the drift coefficient, the diffusion coefficient, and the jump structure all parametrized,
and herein we focus on such a situation.

In the proofs of the LAN properties for diffusion processes by Gobet [12,13], it is crucial that tran-
sition density functions satisfy estimates from above and below by Gaussian density functions up to
constants: so-called Aronson-type estimates. Unlike diffusion processes, jump-diffusion processes do
not satisfy Aronson-type estimates in general, and hence we cannot apply Gobet’s approach. In this pa-
per, to show the LAN property for jump-diffusion processes, we instead employ the idea of Theorem 1
in Jeganathan [18], which uses the L2 regularity condition. This approach is convenient in the sense that
it does not require Aronson-type estimates for transition density functions. Though the original results
in [18] cannot be applied to triangular array observations, Theorem 2.1 in Fukasawa and Ogihara [10]
extends this result to triangular array observations, including high-frequency observations of stochastic
processes. Fukasawa and Ogihara [10] showed the LAMN property for degenerate diffusion processes
by using this result without Aronson-type estimates. However, because the L2 regularity conditions
in [10,18] are conditions for expectation, it is difficult to apply them to jump-diffusion processes whose
tail is heavier than that of diffusion processes. To solve this problem, we weaken the L2 regularity
conditions to conditions for conditional expectation that could be applied to heavy-tailed models such
as jump-diffusion processes, and we show that the LAMN property still holds under this new scheme
(Theorem 3.1).

However, there remains another serious obstacle to showing the LAN property of jump-diffusion
processes: The transition density functions of jump-diffusion processes are given by a mixture of dif-
ferent density functions depending on the jump numbers. In particular, the asymptotic behavior of the
density with no jump is quite different to that with jumps, as indicated by Kohatsu-Higa, Nualart, and
Tran [20]. They solved this problem by using Malliavin calculus for Wiener–Poisson space and stochas-
tic flows and obtained an expression for the transition density functions that contains the derivative of
jump-diffusion processes with respect to drift parameters. However, when the jump structure is also
parametrized as in our case, not only the jump coefficient but also the associated Poisson random mea-
sure may possibly be parametrized in some way, and this makes it difficult to obtain the derivative of
jump-diffusion processes with respect to jump parameters that appear in the formal expression of the
transition density functions. For this reason, it is difficult to evaluate the transition density function,
which is important for checking the assumptions of Theorem 3.1, in the same way as Kohatsu-Higa,
Nualart, and Tran [20]. To deal with this problem, we consider the approximation of transition density
functions by thresholding techniques used by Shimizu and Yoshida [30] and Ogihara and Yoshida [27]
to construct quasi-maximum-likelihood estimators and Bayes-type estimators. The thresholding tech-
niques are also used for detecting jumps in processes with jumps (see also [4,11,21,22]) and improving
the estimation accuracy of continuous components. However, it is not clear whether the LAN property
for the statistical model generated by approximated density functions implies the LAN property for
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the original model. We also provide general sufficient conditions for the property (Theorem 4.3). This
result is expected to be applicable not only to jump-diffusion models but also to various models with
tractable approximated transition density functions. See Remark 3.2 for the case of nonsynchronously
observed diffusion processes.

From the conditional-type L2 regularity condition and density approximation technique, we derive
the LAN property of jump-diffusion processes (Theorem 2.3). The result shows that the optimal rate
of convergence of the diffusion parameter is

√
n and that of the drift and jump parameters is

√
nhn,

where n and hn are the sample size and sampling step size, respectively, with nhn →∞. The threshold-
based estimators by Shimizu and Yoshida [30] and Ogihara and Yoshida [27] are typical estimators
achieving the optimal rate. Meanwhile, the choice of threshold is important in practical finite-sample
data. Shimizu [29] and Inatsugu and Yoshida [17] studied how to choose thresholds, with Shimizu [29]
verifying the estimation accuracy of the estimator of Shimizu and Yoshida [30] by numerical simulation
with different threshold levels. Also, Gloter, Loukianova, and Mai [11] gave an efficient estimator of
the drift parameter, weakening the condition nh2

n → 0, which was conventionally assumed for models
of ergodic diffusion processes and ergodic jump-diffusion processes, to nh3−ε

n → 0. The finite-sample
performance of the estimator is presented in the supplement of [11].

The rest of this paper is organized as follows. In Section 2, we give the LAN property for discrete
observations of jump-diffusion processes as the main results, and in Section 3 we state an extended
result of Theorem 1 in [18]. In Section 4, we use the results in Section 3 to construct a new scheme for
the LAMN property via transition density approximation. Finally, we give proofs of the LAN property
of jump-diffusion processes in Section 5.

2. Main results

In this section, we introduce the LAN property of jump-diffusion processes. We start with the definition
of the LAMN property.

Let N be the set of all positive integers. Let α0 ∈ Θ and {Pα,n}α∈Θ be a family of probability mea-
sures defined on a measurable space (Xn,An) for n ∈ N, where Θ is an open subset of Rd . We first
consider the following slightly weaker condition than the LAMN property. We denote by ‖·‖op the
operator norm, by Il the unit matrix of size l ∈ N, and by � the transpose operator for a matrix or a
vector.

Condition (L). The following two conditions are satisfied for {Pα,n}α∈Θ,n∈N.

1. There exist a sequence {εn}n∈N of nondegenerate matrices (not necessarily symmetric), a se-
quence {Vn(α0)} of An-measurable d-dimensional vectors, and a sequence {Tn(α0)} of An-
measurable d × d symmetric matrices such that ‖εn‖op → 0 as n →∞,

Pα0 ,n(Tn(α0) is nonnegative definite) = 1 (2.1)

for any n ∈ N, and

log
dPα0+εnh,n

dPα0 ,n
− h�Vn(α0) +

1
2

h�Tn(α0)h → 0 (2.2)

as n →∞ in Pα0 ,n-probability for any h ∈ Rd .
2. There exists an almost surely symmetric, nonnegative definite d× d random matrix T(α0) such

that

L(Vn(α0),Tn(α0)|Pα0 ,n) → L(T 1/2(α0)W,T(α0)),



LAN for jump diffusion 2345

where W is a d-dimensional standard normal random variable independent of T(α0).

The following definition of the LAMN property is Definition 1 in [18].

Definition 2.1. The sequence of the families {Pα,n}α∈Θ,n∈N satisfies the LAMN condition at α = α0 ∈
Θ if Condition (L) is satisfied, εn is a symmetric, positive definite matrix and

Pα0 ,n(Tn(α0) is positive definite) = 1

for any n ∈ N, and T(α0) is positive definite almost surely.

We say that {Pα,n}α∈Θ,n∈N satisfies LAN if the LAMN condition is satisfied with a nonrandom
matrix T(α0).

For proving the LAMN property for diffusion processes by using a localization technique such as
Lemma 4.1 in Gobet [12], Condition (L) is useful because (L) for the localized model often implies (L)
for the original model. See, for example, the proofs of Theorems 2.4 and 2.5 in [10].

Now, we consider a statistical model of discretely observed jump-diffusion processes. Let Θi ⊂ Rdi
be an open set for i ∈ {1,2}, and Θ = Θ1 × Θ2. Let (Ω,F ,(Ft )t≥0,P) be a stochastic basis. We set
α = (σ,θ) ∈ Θ1 ×Θ2 and its true value is denoted by α0 = (σ0, θ0). For any α ∈ Θ, let Xα = (Xα

t )t≥0 be
an m-dimensional càdlàg F-adapted process satisfying a stochastic differential equation:

dXα
t = a(Xα

t , θ)dt + b(Xα
t ,σ)dWt +

∫
E

zNθ (dt,dz), (2.3)

where F = (Ft )t≥0, E = Rm\{0}, W = (Wt )t≥0 is an m-dimensional standard F-Wiener process, and
Nθ is a Poisson random measure on R+ × E relative to F, whose mean measure is fθ (z)dzdt with∫
E

fθ (z)dz < ∞. The coefficients a : Rm × Θ2 
→ Rm and b : Rm × Θ1 
→ Rm ⊗ Rm are measurable
functions and satisfy Assumption (H1) below. We assume that the distribution of Xα

0 does not depend
on α ∈ Θ. We denote Xt = Xα0

t and N(dt,dz) = Nθ0(dt,dz). We suppose that we observe high-frequency
data {Xkhn }nk=0 from the solution process X = (Xt )t≥0. Here, {hn}n∈N is a positive sequence with
hn → 0 and nhn →∞. We often write tk = khn below. For matrices (Mi)li=1, let

diag((Mi)li=1) =
����

M1 O O

O
. . . O

O O Ml

���	 .
Assumption (H1). The derivatives ∂ix∂

j
θa(x, θ) and ∂ix∂

j
σb(x,σ) exist and are continuous on Rm ×Θ2

and Rm × Θ1, respectively, for i, j ∈ {0,1,2,3,4} such that i + j ≤ 4. Moreover, there exist positive
constants C1 and κ such that

|a(x, θ)| ≤ C1(1 + |x |), |∂xa(x, θ)| + |b(x,σ)| + |∂xb(x,σ)| ≤ C1,

|∂ix∂
j
θa(x, θ)| + |∂ix∂

j
σb(x,σ)| ≤ C1(1 + |x |)κ

for all i, j ∈ {0,1,2,3,4} satisfying i + j ≤ 4, and (θ,θ ′,σ,σ′, x).
Assumption (H2). b(x,σ) is symmetric, positive definite, and there exists a positive constant C2 such

that

C−1
2 Im ≤ b(x,σ) ≤ C2Im
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for any x and σ.
Assumption (H3). X is ergodic; that is, there exists a stationary distribution π such that

1
T

∫ T

0
g(Xt )dt

P→
∫

g(x)dπ(x) (2.4)

as T →∞ for any π-integrable function g. Moreover,

sup
α∈Θ,t≥0

E[|Xα
t |q] <∞ (2.5)

for q > 0.

Let Fθ be a density function satisfying fθ = λFθ with some positive constant λ = λ(θ). Hereinafter,
we write the support of any function or measure g and its boundary in E as supp(g) and ∂ supp(g),
respectively. Let d(z,A) = infy∈A |z − y | for z ∈ Rm and A ⊂ Rm (d(z,∅) =∞ by convention).

Assumption (H4). 1. The zero points of Fθ do not depend on θ.
2. The derivative ∂lθλ exists and is bounded for l ∈ {0,1,2,3}.
3. There exist constants ε > 0, ρ ∈ (0,1/2), and N0 ∈ N satisfying∫

{z:d(z,∂ supp(Fθ ))≤hρ
n }

Fθ (z)dz ≤ hεn (2.6)

for all n ≥ N0.
4. The derivative ∂lθ fθ (z) exists and is continuous with respect to θ ∈ Θ2 for any l ∈ {0,1,2,3} and

z ∈ E . Moreover, there exist constants γ ≥ 0, C3 > 0, and ε ′ > 0 such that

|Fθ (z)|1{ |z | ≤ε ′ } ≤ C3 |z |γ, |∂lθ log fθ (z)|1{Fθ (z)�0} ≤ C3(1 + |z |)C3, (2.7)

|∂lθ log fθ (z1) − ∂lθ log fθ (z2)|1{Fθ (z1)Fθ (z2)�0} ≤ C3 |z1 − z2 |(1 + |z1 | + |z2 |)C3 (2.8)

for any z, z1, z2 ∈ E , θ ∈ Θ2, and l ∈ {1,2,3}.
5. supθ

∫
|z |p fθ (z)dz <∞ for any p ≥ 1, and there exists η > 0 such that

n1+ηh1+((m+γ)/2)∧1
n → 0 (2.9)

as n →∞.

Let Γ = diag((Γ1,Γ2)), where S(x,σ) = b2(x,σ),

[Γ1]i j =
1
2

∫
tr(∂σi SS−1∂σj SS−1)(x,σ0)dπ(x),

[Γ2]i j =
∫

(∂θi a)�S−1(∂θ j a)(x,α0)dπ(x) +
∫
E

∂θi fθ0∂θ j fθ0

fθ0

1{ fθ0�0}(y)dy.

Assumption (H5). Γ is positive definite.

Regarding our technical assumptions, we make some comments below.

• Under (H1), the existence and uniqueness of the solution and its Markov property are ensured (for
details, see Applebaum [2]). (H1) is also important for considering the derivatives of the flow and
Malliavin calculus on the continuous part of (2.3).
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• For sufficient conditions of ergodicity (2.4), we refer the reader to Masuda [24]. We need the
moment condition (2.5) of Xα

t uniformly in α. This condition is somewhat stronger than the one
usually assumed in studies of statistical estimation for jump-diffusion processes (estimate for only
α = α0) because evaluation of transition densities around α0 is essential for the LAN property.
However, this condition can be shown similarly to a standard procedure. See Theorem 2.2 in
Masuda [23] for the details.

• Because we cannot observe fluctuation of jumps directly, we replace it by the increments of X
exceeding a threshold on the estimation of θ. However, these increments may not belong to the
support of Fθ typically for one-sided jumps or bounded jumps. (2.6) is useful for controlling such
a (Ftj−1 -conditional) probability; for more details, see Lemma 5.3 in the appendix.

• Suppose that supθ
∫
E

Fp
θ (z)dz <∞ for some p > 1 and ∂ supp(Fθ ) = {z1, · · · , zk } for some k ∈ N,

and zj ∈ E (1 ≤ j ≤ k). Then the set {z; d(z, ∂ supp(Fθ )) ≤ hρn} is included in the union of k closed
balls centered at z1, · · · , zk of radius hρn, and hence Hölder’s inequality yields∫

{z;d(z,∂ supp(Fθ ))≤hρ
n }

Fθ (z)dz ≤
( ∫

E
Fp
θ (z)dz

) 1/p ( ∫
{z;d(z,∂ supp(Fθ ))≤hρ

n }
dz
) 1/q

≤ Ck1/qhρm/q
n ,

where q = p/(p − 1). Then (2.6) is satisfied for sufficiently large n.
• When m ≥ 2, (2.9) becomes n1+ηh2

n → 0 for some η > 0, which is almost the same as the one
usually required in the study of statistical estimation for jump-diffusion processes. We can say
the same thing when m = 1 and γ ≥ 1. This condition is weaker than the corresponding condition
in Shimizu and Yoshida [30] (γ > 3 is required). We can also consider the case m = 1 and γ ∈
[0,1). In this case, the convergence rate of hn becomes restrictive (n2+ηh3

n → 0 for some η > 0
in the worst case). These things happen because we need to detect jumps by using the increment
|Xkhn − X(k−1)hn |. Roughly speaking, for ρ ∈ (0,1/2), we have |Xkhn − X(k−1)hn | ≤ hρn with high
probability if there are no jumps in ((k−1)hn, khn]. Then we judge that jumps occur when |Xkhn −
X(k−1)hn | > hρn. If the dimension of Xt is large or γ is large, then the probability that the absolute
jump size is equal to or less than hρn becomes very small, and consequently jump detection and
approximation by thresholding densities work well. Otherwise, we must set hn to be small in order
to detect jumps.

• For u1 ∈ Rd1 and u2 ∈ Rd2 , we have

(u1)�Γ1u1 =
1
2

∫
tr
( (∑

j

[u1]j∂σj SS−1
) 2)

(x,σ0)dπ(x),

and

(u2)�Γ2u2 =

∫ 



S−1/2
(∑

j

[u2]j∂θ j a
) 



2(x,α0)dπ(x) +

∫
E

(∑
j

[u2]j∂θ j fθ0

) 2 1{ fθ0�0}

fθ0

(y)dy.

Therefore, (H5) is satisfied if both of the following two conditions are satisfied.

1. For u1 ∈ Rd1 ,
∑

j [u1]j∂σj S(x,σ0) = 0 for any x ∈ supp(π) implies u1 = 0.
2. For u2 ∈ Rd2 ,

∑
j [u2]j∂θ j a(x,σ0) = 0 for any x ∈ supp(π) and

∑
j[u2]j∂θ j fθ0(y) = 0 for any

y ∈ E ∩ {y; fθ0(y) � 0} imply u2 = 0.
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Example 2.2. Condition (H4) is somewhat complicated, so we show some examples of Fθ that satisfy
(H4). Let λ be a smooth function of θ satisfying supθ |∂lθλ | <∞ for l ∈ {0,1,2,3} and infθ λ > 0.

1. (Normal distribution) Let

Fθ (z) =
1

(2π detΣ)m/2
exp
(
− 1

2
(z − μ)�Σ−1(z − μ)

)
,

where μ and Σ are smooth Rm- and Rm ⊗ Rm-valued functions of θ, respectively, such that
supθ (|∂lθ μ| ∨ ‖∂lθΣ‖op) < ∞ for l ∈ {0,1,2,3} and supθ ‖Σ−1‖op < ∞. Then we can easily check
(2.6)–(2.8). Therefore, (H4) is satisfied if there exists η > 0 such that{

n2+ηh3
n → 0, if m = 1,

n1+ηh2
n → 0, if m ≥ 2.

(2.10)

2. (Gamma distribution) Let m = 1 and

Fθ (z) =
1

Γ(α)βα zα−1e−z/β1{z>0},

where α and β are smooth R-valued functions of θ such that supθ (|∂lθα | ∨ |∂lθ β|) < ∞ for l ∈
{0,1,2,3}, infθ β > 0, and infθ α ≥ 1. Then ∂ supp(Fθ ) = ∅, which implies (2.6). Moreover, we
have

log fθ (z)1{z>0} =

{
(α − 1) log z − z

β
− α log β − logΓ(α) + logλ

}
1{z>0} .

If ∂θα ≡ 0 (for example, the case of exponential distributions α ≡ 1), then log fθ satisfies (2.7)
and (2.8), and (H4) holds if there exists η > 0 such that n1+ηh1+(α/2)∧1

n → 0 as n →∞.
If ∂θα � 0 for some θ ′, then (2.7) is not satisfied because limz↘0 |∂θ log fθ′(z)| →∞, and hence

(H4) does not hold.
3. (Two-sided Gamma distribution) Let m = 1 and

Fθ (z) =
1

2Γ(α1)βα1
1

zα1−1e−z/β1 1{z>0} +
1

2Γ(α2)βα2
2

(−z)α2−1ez/β2 1{z<0},

where α1, α2, β1, and β2 are smooth R-valued functions of θ such that supθ (|∂lθαj | ∨ |∂lθ βj |) <∞,
infθ βj > 0, and infθ αj ≥ 1 for l ∈ {0,1,2,3} and j ∈ {1,2}.

Similarly to the above example, (H4) holds if ∂θαj ≡ 0 for j ∈ {1,2} and there exists η > 0 such
that n1+ηh1+(α1∧α2∧2)/2

n → 0. (H4) is not satisfied if ∂θαj � 0 for some j ∈ {1,2} and θ.
4. (Inverse Gaussian distribution) Let m = 1 and

Fθ (z) =
√
δ

2πz3 exp
(
−δ(z − μ)

2

2μ2z

)
1{z>0},

where δ and μ are smooth R-valued functions of θ such that supθ (|∂lθδ | ∧ |∂lθ μ|) <∞, infθ δ > 0,
and infθ μ > 0 for l ∈ {0,1,2,3}. From ∂ supp(Fθ ) =∅, we have (2.6). Because log fθ (z)1{z>0} is
expressed as

log fθ (z)1{z>0} =
1
2

{
log δ − log(2π) − 3 log z − δ

(
z
μ2 − 2

μ
+

1
z

) }
1{z>0},
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(H4) holds if ∂θδ ≡ 0 and there exists η > 0 such that n1+ηh2 → 0. If ∂θδ � 0 for some θ, then (H4)
does not hold because limz↘0 |∂θ log fθ′(z)| →∞. We can also consider this two-sided version.

As the other examples, similarly to the first example of the normal distribution, if Fθ has no zero
points, bounded and away from zero near the origin uniformly in θ, then (H4) holds under (2.10) in
addition to somewhat standard conditions (the second inequality of) (2.7), (2.8) and the inequality
supθ

∫
|z |p fθ (z)dz <∞ for any p > 1.

Let {Pα,n}α,n be the family of probability measures generated by (Xα
khn

)n
k=0.

Theorem 2.3. Assume (H1)–(H5). Then, {Pα,n}α,n satisfies LAN at α = α0 with T(α0) = Γ and εn =
diag(n−1/2Id1,(nhn)−1/2Id2 )).

Remark 2.4. Theorem 9.1 in Chapter II of Ibragimov and Has’minskiı̆ [16] yields the convolution
theorem for this model. We can see that Γ−1 coincides with the asymptotic variances of the quasi-
maximum-likelihood estimator α̂n = (σ̂n, θ̂n) and the Bayes-type estimator α̃n = (σ̃n, θ̃n) in Shimizu
and Yoshida [30] and Ogihara and Yoshida [27], respectively. Then we can show that these estimators
are asymptotically efficient in the sense of the convolution theorem. The finite-sample performance of
the former estimator is presented for example in [29] with tuning methods of the threshold.

Remark 2.5. Because α̂n is asymptotically efficient and the asymptotic covariance of σ̂n and θ̂n is
equal to zero, Theorem 2.3 allows us to construct Wald-type tests testing H : σ = σ0 (resp. θ = θ0)
against K : σ � σ0 (resp. θ � θ0). These tests are asymptotically uniformly most powerful in the sense
of Sections 4 and 5 in Choi, Hall, and Schick [5] (see Section 7 and Theorems 2 and 3 in [5]) (although
the scaling matrix εn is assumed to be Id/

√
n in [5], their proofs remain valid for our setting).

Remark 2.6. We can generalize Theorem 2.3 when the jump part in (2.3) is given by
∫
E

c(Xα
t−, z, θ) ×

Nθ (dt,dz) under similar conditions to [H6], [H7], and [G1] in Ogihara and Yoshida [27] by introducing
the function Ψθ (y, x) in Shimizu and Yoshida [30] and Ogihara and Yoshida [27]. However, we adopt
c(x, z, θ) = z in our setting to avoid excessive complexity.

In the rest of this section, we construct the thresholding quasi-likelihood function that is essential
for showing Theorem 2.3. Define (Xα,c

t )t≥0 = (Xα,c
t ,x )t≥0 by the solution of the following stochastic

differential equations: Xα,c
0 = x and

dXα,c
t = a(Xα,c

t , θ)dt + b(Xα,c
t ,σ)dWt .

Hereinafter, the transition density function of (Xα,c
t )t≥0 is written as pc,t−sx,α (y). Obviously, (Xα,c

t )t≥0
corresponds to the continuous part of X , and the theoretical results for its flow and pc,t−sx,α (y) are pre-
sented in the appendix. By conditioning the number of jumps on the interval (tj−1, tj], pj (xj−1, xj,α),
the density function of P(Xα

tj
∈ ·|Xα

tj−1
= xj−1) can be decomposed as

pj(xj−1, xj,α) = p0
j (xj−1, xj,α) + p1

j (xj−1, xj,α) +
∞∑
l=2

p2
l, j(xj−1, xj,α), (2.11)
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where

p0
j (xj−1, xj,α) = e−λhn p

c,tj−tj−1
x j−1,α (xj ),

p1
j (xj−1, xj,α) = λe−λhn

∫ tj

tj−1

∫ ∫
p
c,τ−tj−1
x j−1,α (x)Fθ (y)p

c,tj−τ
x+y,α (xj )dxdydτ,

p2
l, j(xj−1, xj,α) =

λle−λhn

l!

∫ tj

tj−1

· · ·
∫ tj

tj−1

∫
· · ·
∫

p
c,τ̃1−tj−1
x j−1,α (z1)Fθ (z2) · · · p

c,tj−τ̃l
z2l−1+z2l ,α

(xj )

×
( 2l∏
j=1

dzj

) ( l∏
k=1

dτk

)
.

Here, τ1, · · · , τl are the jump times, and τ̃1, · · · , τ̃l are τ1, · · · , τl sorted in ascending order.
From (H4), there exist ρ ∈ (1/4,1/2) and η′ > 0 such that n1+η′

h1+(m+γ)ρ
n → 0. We write Ln = {x ∈

R
m | |x | ≤ hρn}. For ρ ∈ (0,1/2), Shimizu and Yoshida [30] constructed a thresholding quasi-likelihood

function based on the-jump-detection rule |Xtj − Xtj−1 | > hρn or not, and here we do the same. More
specifically, we define the thresholding quasi-likelihood function by

p̃j(α) = p̃j(α, xj, xj−1) = p0
j (xj−1, xj,α)1Ln (Δxj ) + p1

j (xj−1, xj,α)1Lc
n
(Δxj ), (2.12)

where Δxj = xj − xj−1. The results in Section 4 show that the LAN property of {Pα,n}α,n at α = α0
follows from that of {P̃α,n}α,n at α = α0 being induced by the thresholding quasi-likelihood function.

3. LAMN property via a conditional L2 regularity condition
To show Theorem 2.3, we extend Theorem 1 of Jeganathan [18] and Theorem 2.1 of Fukasawa and
Ogihara [10], who studied sufficient conditions for the LAMN property. For our purpose, it is sufficient
to develop a theory for LAN models, but we consider general LAMN models because the results in this
and the following section can be developed for LAMN models without complexity.

We provide sufficient conditions for the LAMN property that are more useful than those in Theo-
rem 1 of [18] and Theorem 2.1 of [10] for dealing with jump-diffusion processes. Some of the assump-
tions in Theorem 1 of [18] and Theorem 2.1 of [10] are written with respect to expectations, whereas
our new conditions are based on conditional expectations, which are convenient for heavy-tailed noise.
There are many statistical models of stochastic processes that satisfy not the LAN property but the
LAMN property. The results in this section are expected to be useful for showing the LAMN property
not only for jump-diffusion models but also for other models of stochastic processes.

Let (mn)∞n=1 be a sequence of positive integers. For any n, let {Xn, j}mn

j=1 be a sequence of complete,
separable metric spaces. Let Xn =Xn,1 × · · · ×Xn,mn and An = B(Xn), where B(Xn) denotes the Borel
σ-algebra of Xn. We consider statistical experiments (Xn,B(Xn), {Pα,n}α∈Θ). Let Xj = Xn, j : Xn →
Xn, j be the natural projection, X̄j = X̄n, j = (X1, · · · ,Xj ), X̄n, j =Xn,1 × · · · × Xn, j , A0,n = {∅,Xn}, and
A j ,n is the minimal sub σ-algebra of An for which X̄j is A j ,n-measurable for 1 ≤ j ≤ mn. Suppose
that there exists a σ-finite measure μn, j on Xn, j such that Pα,n(X1 ∈ ·) � μn,1 and Pα,n(Xj ∈ ·| X̄j−1 =

x̄j−1) � μn, j for 2 ≤ j ≤ mn and x̄j−1 ∈ X̄n, j−1.
Let Eα = Eα,n denote the expectation with respect to Pα,n, and let pj = pj ,n be conditional density

functions defined by

p1(α) =
dPα,n(X1 ∈ ·)

dμn,1
, pj(α) =

dPα,n(Xj ∈ · | X̄j−1 = x̄j−1)
dμn, j

(2 ≤ j ≤ mn).
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Then, we can see that ∫
pj (α)g(x̄j−1, xj )dμn, j = Eα[g(X̄j−1,Xj )| X̄j−1 = x̄j−1] (3.1)

almost surely for any bounded Borel function g : X̄n, j → R.
Next, we describe our assumptions for the LAMN property. Let εn be a d × d nondegenerate matrix,

and let αh = α0 + εnh for h ∈ Rd .

Assumption (A1). There are random vectors �ξnj(α0) : X̄n, j → R such that for every h ∈ Rd ,

mn∑
j=1

∫ [
ξnj(α0,h) −

1
2

h�ε�n �ξnj(α0)
] 2

dμn, j → 0 (3.2)

as n →∞ in Pα0 ,n-probability, where ξnj(α0,h) =
√

pj(αh) −
√

pj (α0).

To show the LAMN property, we need to identify the limit distribution of log(dPα′,n/dPα,n) under
Pα,n. This involves the log-likelihood ratio of different probability measures, which is difficult to deal
with for stochastic processes in general. Gobet [12] dealt with this problem for discretely observed
diffusion processes by using estimates from below and above by Gaussian density functions (Aronson
estimates) to show the LAMN property. Condition (A1) also involves transition density functions with
different values of the parameter. However, if pj is a positive-valued C2(Θ) function, an estimate similar
to (2.6) in [10], we can replace the left-hand side of (3.2) with a quantity in which the probability
measure of expectation and pj in the integrand have the same parameter value αsh (s ∈ [0,1]), and
therefore we do not need Aronson-type estimates for transition density ratios. Thus, a scheme with the
L2 regularity condition does not require Aronson-type estimates, which is one of the advantages of this
scheme. Furthermore, Condition (A1) is the estimate for conditional expectation unlike (A1) in [10].
Therefore, it is much easier to show (A1) compared with (A1) in [10] under the heavy-tailed behavior
of jump-diffusion processes.

Define

ηj(x̄j−1, xj) =
{ �ξnj(α0)/

√
pj(α0), if pj(α0) � 0,

0, otherwise.

We use abbreviation ηj both for the random variable ηj(X̄j−1,Xj ) and for the function ηj (x̄j−1, xj ) when
there is no confusion; the same is true for other functions of (x̄j−1, xj ). Moreover, let

Tn = ε�n
mn∑
j=1

Eα0[ηjη
�
j |A j−1,n]εn, and Vn = ε

�
n

mn∑
j=1

ηj . (3.3)

We consider the following conditions in addition to (A1).

Assumption (A2). There exists n0 ∈ N such that Eα0 [|ηj |2 |A j−1,n] < ∞ and Eα0 [ηj |A j−1,n] = 0,
Pα0 ,n-almost surely for every 1 ≤ j ≤ mn and n ≥ n0.

Assumption (A3). For every ε > 0 and h ∈ Rd ,

mn∑
j=1

Eα0[|h
�ε�n ηj |21{ |h�ε�n η j |>ε } |A j−1,n] → 0

as n →∞ in Pα0 ,n-probability.
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Assumption (A4). There exists a random d × d symmetric matrix T such that

P(T is nonnegative definite) = 1

and

L((Vn,Tn)|Pα0 ,n) → L(T 1/2W,T),

where W ∼ N(0, Id) independent of T .

Conditions (A2)–(A4) are similar to Conditions (A2)–(A5) in [10]. However, (A3) and (A4) in [10]
are replaced by estimates for conditional expectations and a tightness property that is trivially satisfied
under (A4). It is natural to weaken such conditions of expectations to conditions of conditional expec-
tations and tightness because the LAMN property is the result of convergences in probability and in
distribution. Under these assumptions, we can show the following extension of Theorem 1 in [18]. The
proof is left to the appendix.

Theorem 3.1. Assume (A1)–(A4). Then the family {Pα,n}α,n satisfies Condition (L) with Tn and Vn

in (3.3). If further T in (A4) is positive definite almost surely and εn is a symmetric, positive definite
matrix for any n ∈ N, then {Pα,n}α,n satisfies the LAMN property at θ = θ0.

Remark 3.2. As in Remark 2.1 of [10], if Condition (L) is satisfied, εn is symmetric and positive
definite for any n ∈ N, and T is positive definite almost surely, then we can easily show the LAMN
property by replacing Tn with �Tn = Tn1{Tn is positive definite} + Id1{Tn is not positive definite}.

4. LAMN property via transition density approximation

Theorem 3.1 is an important tool for showing Theorem 2.3 because this result requires neither Aronson-
type estimates nor an expectation-type L2 regularity condition. The another important issue in showing
Theorem 2.3 is handling the mixture of density functions that behave quite differently depending on
the jump numbers. To deal with this issue, we use the thresholding techniques developed by Shimizu
and Yoshida [30] and Ogihara and Yoshida [27]. We approximate the transition density functions of
jump-diffusion processes with thresholding density functions whose asymptotic behaviors are much
easier to deal with. We will show that the LAN property of the original model is proved under some
conditions on the approximating density functions.

Let p̃1(α) = p̃1(α, x1) and p̃j(α) = p̃j(α, xj, x̄j−1) be nonnegative-valued functions such that p̃1(α, ·)
is measurable and the mapping (x̄j−1,A) 
→

∫
A

p̃j (α, xj, x̄j−1)μn, j(dxj ) is a transition kernel for 2 ≤ j ≤
mn. We emphasize that p̃1(α, ·) and p̃j(α, ·, x̄j−1) are not supposed to be probability measures. This
is important in the sense that we can consider normalized probability measures on sets that do not
contain original rare events. We introduce associated normalizing constants d1(α) =

∫
p̃1(α)μn,1(dx1)

and dj(x̄j−1,α) =
∫

p̃j(α)μn, j(dxj) for 2 ≤ j ≤ mn. Assume dj (x̄j−1,α) is nonzero and finite for any
(x̄j−1,α), and let P̃α,n be a probability measure defined by P̃α,n =

∏mn

j=1(p̃j (α)/dj(α))(
⊗mn

j=1μn, j(dxj)),
where x̄0 =∅.

Let Kn, j ∈ A j ,n for 1 ≤ j ≤ mn − 1. Let Dj ,h(x̄j−1, t) = dj (x̄j−1,αth) for t ∈ [0,1] and h ∈ Rd such
that (αth)t∈[0,1] ⊂ Θ. Let

ζ l,hj ,t =
( d
dt )

l p̃j (αth)
p̃j(αth)

1{p̃ j (αth )�0}

for l ∈ N and h ∈ Rd .
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Assumption (B1). For any ε > 0, there exists N ∈ N such that

sup
α∈Θ

Pα,n(∪mn−1
j=1 Kc

n, j) < ε (4.1)

and

sup
α∈Θ

P̃α,n(∪mn−1
j=1 Kc

n, j) < ε (4.2)

for n ≥ N . Moreover,

mn max
1≤ j≤mn

sup
α∈Θ, x̄ j−1∈X̄j−1(Kn , j−1)

∫
|pj(α) − p̃j(α)|μn, j(dxj) → 0 (4.3)

as n →∞.

Here and in the following, we ignore x̄0 ∈ X̄0(Kn,0) in the range of the supremum. (B1) implies
that P̃α,n approximates Pα,n well except on a rare event. A typical example of a rare event is that
x1, . . . , xn, . . . have large magnitude. On such an event, it is often difficult to evaluate a difference in
mass measured by P̃α,n and Pα,n. As for an application to jump-diffusion processes, we set

Kn, j =

{
(xl)nl=0 ⊂ R

m(n+1)




 max
0≤l≤ j

|xl | ≤ nδ
}

for small enough δ > 0, and this makes it possible to obtain (4.3). For more details, see Section 5.1.
Because the approximation probability measure P̃α,n contains normalizing constants d1, . . . ,dmn , to

check (4.2) may seem cumbersome. Then the following lemma is helpful.

Lemma 4.1. Assume (4.3), that p̃j(α, xj, x̄j−1) ≤ pj(α, xj, x̄j−1) μn,1 ⊗ · · · ⊗ μn, j-almost everywhere in
x̄j for any α, and that for any ε > 0, there exists N ∈ N such that (4.1) for n ≥ N. Then, for any ε > 0,
there exists N ′ ∈ N such that (4.2) for n ≥ N ′.

The following theorem ensures that the LAMN property of (P̃α,n)α,n implies the LAMN property
of (Pα,n)α,n under (B1). Let ‖P −Q‖ = sup | f | ≤1 |

∫
f dP −

∫
f dQ | for probability measures P and Q.

Theorem 4.2. Assume (B1). Then, supα∈Θ‖Pα,n − P̃α,n‖ → 0 as n →∞. If further, for any ε > 0 and
h ∈ Rd , there exists δ > 0 such that

lim sup
n→∞

P̃α0 ,n

(
dP̃αh ,n

dP̃α0 ,n

< δ

)
< ε, (4.4)

then

log
dPαh ,n

dPα0 ,n
− log

dP̃αh ,n

dP̃α0 ,n

→ 0

as n →∞ in Pα0 ,n- and P̃α0 ,n-probability for any h ∈ Rd .

For a vector x = (x1, · · · , xk ), we denote ∂lx = ( ∂l

∂xi1 · · ·∂xil
)k
i1 , · · · ,il=1.
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Assumption (B2). For any h ∈ Rd , there exists N ∈ N such that ( d
dt )

lpj(αth), ( d
dt )

l p̃j(αth), and
∂lt Dj ,h exist and are continuous for n ≥ N , t ∈ [0,1], and l ∈ {0,1,2} almost everywhere in x̄j−1 ∈
X̄j−1(Kn, j−1). Moreover, there exists δ > 0 such that

sup
|t | ≤δ, x̄ j−1∈X̄j−1(Kn , j−1)

∫
|ζ l,hj ,t | p̃j(αth)μn, j(dxj) <∞ (4.5)

and

m1/l
n max

1≤ j≤mn

sup
t∈[0,1], x̄ j−1∈X̄j−1(Kn , j−1)

|∂lt Dj ,h(x̄j−1, t)| → 0 as n →∞ (4.6)

for l ∈ {1,2} and n ≥ N .

Lebesgue’s dominated convergence theorem yields (4.6) if

m1/l
n max

1≤ j≤mn

sup
t∈[0,1], x̄ j−1∈X̄j−1(Kn , j−1)

∫
|∂lαpj (αth) − ∂lα p̃j(αth)|μn, j(dxj ) → 0 (4.7)

for h ∈ Rd , l ∈ {1,2,3}, and n ≥ N (see (C.8) and (C.9) in the supplementary material for the details
[26]). For the setting in Section 2, it is not easy to check (4.7) because of the heavy-tailed behavior. So
we directly check (4.6) in Section 5.

Let (ei)di=1 be the standard unit vectors in Rd , and let

η̃j (x̄j−1, xj ) = (ζ1,e1
j ,0 , · · · , ζ

1,ed
j ,0 )1X̄j−1(Kn , j−1)(x̄j−1).

Let Ẽα denote the expectation with respect to P̃α,n. Let

T̃n =
mn∑
j=1

Ẽα0 [η̃j η̃
�
j |A j−1,n] and Ṽn =

mn∑
j=1

η̃j . (4.8)

We further assume the following conditions.

Assumption (B3). Ẽα0 [|ζ
1,h
j ,t |

2 |A j−1,n] <∞ and the zero points of p̃j do not depend on α ∈ Θ P̃α0 ,n-
almost surely for 1 ≤ j ≤ mn, and

mn∑
j=1

sup
t∈[0,1]

Ẽαth
[|ζ2,h

j ,t |
2 + |ζ1,h

j ,t |
4 |A j−1,n] → 0

as n →∞ in P̃α0 ,n-probability.
Assumption (B4). There exists a random d × d symmetric matrix T such that

P[T is nonnegative definite] = 1

and

L((Ṽn, T̃n)|P̃α0 ,n) → L(T 1/2W,T),

where W ∼ N(0, Id) independent of T .
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Conditions (B3) and (B4) are conditions for the asymptotic behavior of functions of ∂t p̃j (not ∂t pj).
This fact is important when we discuss the LAN property of jump-diffusion procesess in the following
section. While the asymptotic behavior of the transition density functions of jump-diffusion processes
is difficult to deal with, that of thresholding density functions is much easier to handle. The next
theorem ensures that we need to consider only the latter when we show the LAMN property of the
original model; the proof is left to the appendix.

Theorem 4.3. Assume (B1)–(B4). Then, the family {Pα,n}α,n of probability measures satisfies Con-
dition (L) with T̃n and Ṽn in (4.8). If further T in (B4) is positive definite almost surely and εn is
symmetric and positive definite for any n ∈ N, then {Pα,n}α,n satisfies the LAMN property at α = α0.

If T is nonrandom (which corresponds to the case of LAN), we can simplify Condition (B4).

Assumption (B4′). There exists a nonrandom d × d symmetric, nonnegative definite matrix T such
that T̃n →T in P̃α0 ,n-probability.

Corollary 4.4. Assume (B1)–(B3) and (B4′). Then {Pα,n}α,n satisfies Condition (L). If further T in
(B4′) is positive definite and εn is symmetric and positive definite for any n ∈ N, then {Pα,n}α,n satisfies
the LAN property at α = α0.

Remark 4.5. Even when T is random, Sweeting [31] is useful for not having to check the convergence
of Ṽn in (B4).

Remark 4.6. We expect that such techniques of transition density approximation can be applied to
models other than jump-diffusion models, and we expect the following examples of applications.

1. If we can find an approximation of the transition density function of a statistical model such that
the asymptotic behavior of the approximation can be specified, then these techniques enable us
to show the LAMN property of the statistical model. One such example is the statistical model
of nonsynchronously observed diffusion processes in Ogihara [25]. The likelihood function is
given by the integral of the likelihood function for synchronized observations with respect to
unobserved variables. The LAMN property for this model is shown by introducing the likelihood
approximation obtained by cutting off the domain of integration, and identifying the asymptotic
behavior of the approximated likelihood function (see Lemma 4.3 and subsequent discussions
in [25]). So the techniques in this section enable us to simplify the proof of LAMN for this
model.

2. The integrals in the left-hand side of (3.2) are functionals of x̄j−1, and the L2 regularity conditions
in [18] or [10] are not applicable if convergence of the expectation of these integrals cannot be
shown. We expect this to be the case when we consider estimation of Lévy driven stochastic
differential equations or stochastic volatility diffusion models because the functionals of x̄j−1
seem to follow heavy-tailed distributions. In such models, the LAMN property is shown by our
approach if the likelihood or its approximation satisfies (B1)–(B4).

5. Proof of the LAN property for jump-diffusion processes

In this section, we show the LAN property of jump-diffusion processes based on the scheme proposed
in Section 4. We approximate the genuine likelihood by a thresholding likelihood that can roughly
distinguish whether the increments contain at least one jump or not. We introduce some conventions
used in the rest of this paper.



2356 T. Ogihara and Y. Uehara

• For a matrix A and a vector v, we denote element (i, j) of A by [A]i j and element i of v by [v]i .
We often regard an r-dimensional vector v as an r × 1 matrix.

• C and Cp denote generic positive constants whose values may vary depending on context.

From now on, we show the LAN property of jump-diffusion processes by applying Corollary 4.4
with the transition density function pj(α) and the thresholding quasi-likelihood function

p̃j (α) = p̃j(α, xj, xj−1) = p0
j (xj−1, xj,α)1Ln (Δxj ) + p1

j (xj−1, xj,α)1Lc
n
(Δxj ).

In this setting, dj =
∫

p̃jdy ≤ 1 and Proposition A.4 in the supplementary material ensure dj > 0 under
(H1) and (H2). We also remark that we set p0(x0,α) = 1 and μn,0 = P(Xα

0 ∈ ·), and can ignore p0 when
we apply Corollary 4.4 because the distribution of Xα

0 does not depend on α by the assumption. Let
εn = diag(n−1/2Id1,(nhn)−1/2Id2 )) and Tn = nhn.

5.1. Verifying Conditions (B1) and (B2)

First we observe (B1). For a constant δ ∈ (0,1/4), we define

Kn, j =

{
(xl)nl=0 ⊂ R

m(n+1)




 max
0≤l≤ j

|xl | ≤ nδ
}

and K ′′
n, j = {xj ∈ Rm | |xj | ≤ nδ}.

For this set, (4.1) follows from the following lemma.

Lemma 5.1. Assume (H3). Then for any ε,δ > 0, there exists a positive integer N such that

sup
α∈Θ

P
(
(Xα

tk
)nk=0 ∈ ∪

n−1
j=1 Kc

n, j

)
= sup

α∈Θ
P
[

max
0≤k≤n

|Xα
tk
| > nδ

]
< ε

for all n ≥ N.

Proof. Pick a positive constant q fulfilling qδ > 1. Then Chebyshev’s inequality gives

sup
α∈Θ

P
[

max
k

|Xα
tk
| > nδ

]
≤ 1

nqδ
sup
α∈Θ

E
[
max
k

|Xα
tk
|q
]
≤ n1−qδ sup

t ,α
E[|Xα

t |q] → 0

as n →∞.

Next we observe (4.3). Note that by the definition of the threshold quasi-likelihood p̃j(α) and Markov
property of X , we can replace the supremum over X̄j−1(Kn, j−1) by the supremum over K ′′

n, j−1 in (4.3).
Under (H1)–(H4), Proposition A.4 in the supplementary material implies that∫

|pj − p̃j |dxj =
∫

p0
j1Lc

n
(Δxj)dxj + P(Nθ ((tj−1, tj] × E) ≥ 2) +

∫
p1
j1Ln (Δxj )dxj

≤ Ch2
n + 1 − e−λhn (1 + λhn)

+ P(Nθ ((tj−1, tj] × E) = 1 and |Xα
tj
− Xα

tj−1
| ≤ hρn |Xα

tj−1
= xj−1)

for any xj−1 ∈ K ′′
n, j−1 and α ∈ Θ, where C does not depend on xj−1. By applying the triangular inequal-

ity, we have

|Xα
tj
− Xα

tj−1
| ≥ |Xα

τj − Xα
τj−| − |Xα

τj− − Xα
tj−1

| − |Xα
tj
− Xα

τj |,
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where τj denotes the first jump time on (tj−1, tj]. Hence, by using (H4), we obtain

P(Nθ ((tj−1, tj] × E) = 1 and |Xα
tj
− Xα

tj−1
| ≤ hρn |Xα

tj−1
= xj−1)

≤ P(Nθ ((tj−1, tj ] × E) = 1 and |Xα
τj− − Xα

tj−1
| + |Xα

tj
− Xα

τj | > hρn |Xα
tj−1
= xj−1)

+ P(Nθ ((tj−1, tj] × E) = 1 and |Xα
τj − Xα

τj−| ≤ 2hρn |Xα
tj−1
= xj−1)

≤ Ch2
n + λhne−λhn

∫
|z | ≤2hρ

n

Fθ (z)dz

≤ Ch2
n +Ch1+(m+γ)ρ

n = o(n−1)

(5.1)

for xj−1 ∈ K ′′
n, j−1. Hence we obtain (4.3) and Lemma 4.1 yields (4.2). Thus (B1) holds.

We next check (B2). For each l ∈ {0,1,2,3}, we have

sup
t

∫
|∂lt p̃j(αth)|dxj ≤ sup

t

∫
{|∂lt p0

j ,t |1Ln (Δxj) + |∂lt p1
j ,t |1Lc

n
(Δxj )}dxj,

where plj ,t = plj(xj−1, xj,αth). Proposition A.2 and Remark A.3 in the supplementary material lead to

sup
t

∫
|∂lt p0

j ,t |dxj <∞.

It follows from Proposition A.2 in the supplementary material and (H4) that∫
|∂tp1

j ,t |dxj

≤
∫ ∫ tj

tj−1

∫ ∫ 



∂t pc,τ−tj−1
x j−1,αth

p
c,τ−tj−1
x j−1,αth

(x) +
∂t fθth

fθth
1{ fθth�0}(y) +

∂t p
c,tj−τ
x+y,αth

p
c,tj−τ
x+y,αth

(xj )






× p
c,τ−tj−1
x j−1,αth

fθth p
c,tj−τ
x+y,αth

dxdydτdxj +
Ch2

n√
Tn

≤ Cn−1/2hn(1 + |xj−1 |)C +
Chn√

Tn

∫
(1 + |y |)C fθth (y)dy

+Cn−1/2
∫ tj

tj−1

∫ ∫
(1 + |x + y |)Cp

c,τ−tj−1
x j−1,αth

fθth dxdydτ +
Ch2

n√
Tn

<∞,

(5.2)

where (σth, θth) = αth . In a similar manner, we can obtain supt
∫
|∂lt p1

j ,t |dxj <∞ for l ∈ {0,1,2,3} by
Remark A.3 in the supplementary material and (H4), and thus (4.5) holds. Dj ,h can be decomposed as

Dj ,h = 1 − e−λthhn [1 + λthhn] +
∫

(p̃j(αth) − p0
j ,t − p1

j ,t )dxj, (5.3)
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where λth = λ(θth). Because


∂lt (e−λthhn [1 + λthhn])



 = 



∂l−1

t

(
λthh2

ne−λthhn
∂θλ(θth) · h

√
Tn

) 



 =O(h2
n)

for l ∈ {1,2}, Hölder’s inequality gives

|∂lt Dj ,h | ≤



∂lt (e−λthhn [1 + λthhn])




 + ∫ |∂lt (p̃j(αth) − p0
j ,t − p1

j ,t )|dxj

≤ Ch2
n +

∫ 



∂lt p0
j ,t

p0
j ,t





p0
j ,t1Lc

n
dxj +

∫ 



∂lt p1
j ,t

p1
j ,t





p1
j ,t1Ln dxj

≤ Ch2
n +

(∫ 



∂lt p0
j ,t

p0
j ,t





pp0
j ,tdxj

) 1/p (∫
1Lc

n
p0
j ,tdxj

) 1/q

+

(∫ 



∂lt p1
j ,t

p1
j ,t





pp1
j ,tdxj

) 1/p (∫
1Ln p1

j ,tdxj

) 1/q

(5.4)

for xj−1 ∈ K ′′
n, j−1, where p,q > 1 with 1/p + 1/q = 1.

Proposition A.2 in the supplementary material, Jensen’s inequality, and a similar argument to (5.2)
yield ( ∫ 



∂lt pkj ,t

pkj ,t





ppkj ,tdxj

) 1/p
≤ Cp(1 + |xj−1 |)Cp · 1√

nhkn

for k ∈ {0,1}. Then as in (5.1), we have

|∂lt Dj ,h | ≤ o(n−1) +CnδCp (nhn)−1/2h(1+(m+γ)ρ)/qn

≤ o(n−1) +Cnε (nhn)−1/2h1+(m+γ)ρ
n = o(n−1)

for xj−1 ∈ K ′′
n, j−1 and q satisfying (1+ (m+ γ)ρ)/q > 1+ (m+ γ)ρ− ε/2, where ε is a positive constant

satisfying nε+1+(m+γ)ρ = o(1) (δ in Kn, j should be reset to satisfy δCp < ε/2 for Cp and ε). Therefore,
we have (4.6), and hence (B2) holds true.

5.2. Verifying Conditions (B3) and (B4′)

In this subsection, we look at Conditions (B3) and (B4′). Let f̃t (y) = hne−λthhn fθth (y). Then we have

p1
j ,t = h−1

n

∫ tj

tj−1

∫ ∫
p
c,τ−tj−1
x j−1,αth

(x) f̃t (y)p
c,tj−τ
x+y,αth

(xj )dxdydτ.

By Proposition A.4 in the supplementary material, we can see that p1
j ,t > 0 and hence p̃j(αth) > 0 for

any xj−1, xj ∈ Rm and t ∈ [0,1]. Therefore, we have

∂lθ p̃j

p̃j
(αth) =

∂lθp0
j ,t

p0
j ,t

1Ln (Δxj ) +
∂lθp1

j ,t

p1
j ,t

1Lc
n
(Δxj ).



LAN for jump diffusion 2359

For notational simplicity, we write

Φt
j(ϕ(xj−1, x, y, xj, τ))

= h−1
n

∫ tj

tj−1

∫ ∫
ϕ(xj−1, x, y, xj, τ)p

c,τ−tj−1
x j−1 ,αth

(x) f̃t (y)p
c,tj−τ
x+y,αth

(xj )dxdydτ

for an integrable function ϕ. Then we can write

∂θp1
j ,t

p1
j ,t

=
1

p1
j ,t

Φt
j

(
∂θ f̃t

f̃t
(y) +

∂θp
c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)
+
∂θp

c,tj−τ
x+y,αth

(xj)

p
c,tj−τ
x+y,αth

(xj )

)
, (5.5)

and

∂2
θ p1

j ,t

p1
j ,t

=
1

p1
j ,t

Φt
j

(
∂2
θ f̃t
f̃t

(y) +
∂2
θ p

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)
+
∂2
θ p

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )
+ 2
∂θp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)
∂θ f̃t

f̃t
(y)

+ 2
∂θp

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )
∂θ f̃t

f̃t
(y) + 2

∂θp
c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )

∂θp
c,τ−tj−1
x j−1 ,αth

(x)

p
c,τ−tj−1
x j−1 ,αth

(x)

)
.

(5.6)

We consider the limit of each term in the right-hand side. The following lemmas and proposition are
useful when we deduce the limit of each term. We interpret ∂lθ f̃t/ f̃t (z) = 0 if f̃t (z) = 0 or z = 0 for
l ∈ {1,2}.

Lemma 5.2. Assume (H1)–(H4). Then there exists n0 ∈ N such that∫ 



 1
p1
j ,t

Φt
j

(
∂lθp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)

)
1Lc

n





4/l p̃j (αth)dxj ≤ Ch4−l
n (1 + |xj−1 |)C,

∫ 



 1
p1
j ,t

Φt
j

(
∂lθp

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )

)
1Lc

n





4/l p̃j (αth)dxj ≤ Ch4−l
n (1 + |xj−1 |)C

for any xj−1 ∈ Rm, n ≥ n0, t ∈ [0,1], 1 ≤ j ≤ n, and l ∈ {1,2}.

Proof. Jensen’s inequality and Proposition A.2 in the supplementary material yield that∫ 



 1
p1
j ,t

Φt
j

(
∂lθp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)

)
1Lc

n





4/l p̃j(αth)dxj

≤
∫
Φt

j

(



∂lθp
c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)





4/l) dxj

= λthe−λthhn

∫ tj

tj−1

∫ 



∂lθp
c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)





4/lpc,τ−tj−1
x j−1,αth

(x)dxdτ

≤ Ch4−l
n (1 + |xj−1 |)C
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for any xj−1 ∈ Rm.
Similarly, Proposition A.2 in the supplementary material and (H4) yield∫ 



 1

p1
j ,t

Φt
j

(
∂lθp

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )

)
1Lc

n





4/l p̃j(αth)dxj

≤
∫
Φt

j

(



∂lθp
c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )





4/l) dxj

≤ Ch2−l
n

∫ tj

tj−1

∫ ∫
(1 + |x + y |)Cp

c,τ−tj−1
x j−1,αth

(x) f̃t (y)dxdydτ

≤ Ch4−l
n (1 + |xj−1 |)C

for any xj−1 ∈ Rm. We also used the fact∫
(1 + |x |)Cp

c,τ−tj−1
x j−1,αth

(x)dx = E[(1 + |Xαth ,c
τ−tj−1,x j−1

|)C] ≤ C(1 + |xj−1 |)C

by a similar argument to Proposition 3.1 in Shimizu and Yoshida [30].

Let ΔjNθ = Nθ ((tj−1, tj ] × E).

Lemma 5.3. Assume (H1)–(H4). Then, there exist positive constants ι and C such that for all j ∈
{1, . . . ,n} and xj−1 ∈ K ′′

n, j−1,

sup
α∈Θ

P
(
Xα
tj
− xj−1 ∈ {z : Fθ (z) = 0} ∪ {0}




ΔjNθ = 1,Xα
tj−1
= xj−1

)
≤ Chιn. (5.7)

Proof. Let ρ be the one in (H4). For the jump time τj on (tj−1, tj] and large enough n, (H4) and a
similar argument to (5.1) yield

P
(
Xα
tj
− xj−1 ∈ {z |Fθ (z) = 0} ∪ {0}|ΔjNθ = 1,Xα

tj−1
= xj−1

)
≤ P
( {

Xα
tj
− xj−1 ∈ {z |Fθ (z) = 0} ∪ {0}

}
∩
{


Xα

tj
− Xα

τj + Xα
τj− − xj−1




 ≤ hρn
}





ΔjNθ = 1,Xα
tj−1
= xj−1

)
+ P
(


Xα

tj
− Xα

τj + Xα
τj− − xj−1




 > hρn



ΔjNθ = 1,Xα

tj−1
= xj−1

)
≤ P
(
d(Xα

τj − Xα
τj−, ∂ supp(Fθ )) ≤ hρn




ΔjNθ = 1,Xα
tj−1
= xj−1

)
+ P
(
|Xα

τj − Xα
τj−| ≤ hρn




ΔjNθ = 1,Xα
tj−1
= xj−1

)
+Ch2

n

≤ hεn +Ch(m+γ)ρn +Ch2
n .



LAN for jump diffusion 2361

Proposition 5.4. Assume (H1)–(H4). Then there exist a positive constant C, n0 ∈ N, and ε ∈ (0,1) such
that

∫ 



∂lθp1
j ,t

p1
j ,t

−
∂lθ f̃t

f̃t
(Δxj )





4/l1Lc
n

p̃j (αth)dxj1K′′
n , j−1

(xj−1) ≤ Ch1+ε
n (1 + |xj−1 |)C, (5.8)

∫ 



∂lσp1
j ,t

p1
j ,t





4/l1Lc
n

p̃j (αth)dxj1K′′
n , j−1

(xj−1) ≤ Chn(1 + |xj−1 |)C, (5.9)

∫ 



∂σ∂θp1
j ,t

p1
j ,t





21Lc
n

p̃j (αth)dxj1K′′
n , j−1

(xj−1) ≤ Chn(1 + |xj−1 |)C (5.10)

for t ∈ [0,1], xj−1 ∈ Rm, l ∈ {1,2}, 1 ≤ j ≤ n, and n ≥ n0.

Proof. Let Q j =Q j(xj−1) = {xj ∈ E | f̃t (Δxj ) � 0} ∪ {0}. From Assumption (H4), Q j does not depend
on t. First we set l = 1. We decompose the following:

∫ 



∂lθp1
j ,t

p1
j ,t

−
∂lθ f̃t

f̃t
(Δxj )





41Lc
n

p̃j (αth)dxj1K′′
n , j−1

=

∫ {



∂θp1
j ,t

p1
j ,t

− ∂θ f̃t
f̃t

(Δxj )




41Q j (xj ) +





∂θp1
j ,t

p1
j ,t





41Qc
j
(xj )
}

1Lc
n

p̃j(αth)dxj1K′′
n , j−1
.

(5.5), Jensen’s inequality, (2.8), and Lemma 5.2 yield

∫ 



∂θp1
j ,t

p1
j ,t

− ∂θ f̃t
f̃t

(Δxj )




41Q j (xj )1Lc

n
p̃j(αth)dxj1K′′

n , j−1

≤ C
∫ 



 1

p1
j ,t

Φt
j

(
∂θ f̃t

f̃t
(y) − ∂θ f̃t

f̃t
(Δxj )

) 



41Q j (xj )p1
j ,tdxj1K′′

n , j−1
+Ch3

n(1 + |xj−1 |)C

≤ C
∫
Φt

j

(



∂θ f̃t
f̃t

(y) − ∂θ f̃t
f̃t

(Δxj )




4) 1Q j (xj )dxj1K′′

n , j−1
+Ch3

n(1 + |xj−1 |)C

≤ C
∫
Φt

j(|y − Δxj |4(1 + |y | + |Δxj |)C )dxj1K′′
n , j−1
+Ch3

n(1 + |xj−1 |)C .

(5.11)

Obviously, |y − Δxj |4 ≤ C |xj − x − y |4 +C |x − xj−1 |4, and we can easily see that

∫
|xj − x − y |pp

c,tj−τ
x+y,αth

(xj )dxj = Ex+y[|Xαth ,c
tj−τ − x − y |p] ≤ C(tj − τ)p/2(1 + |x + y |)p .
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Hence it follows that∫
Φt

j(|y − Δxj |4(1 + |y | + |Δxj |)C )dxj1K′′
n , j−1

≤ Ch−1
n

∫ tj

tj−1

∫ ∫
(tj − τ)2(1 + |x + y |)Cp

c,τ−tj−1
x j−1,αth

(x) f̃t

× (1 + |y |)C(1 + |x + y − xj−1 |)Cdxdydτ

+Ch−1
n

∫ tj

tj−1

∫ ∫
p
c,τ−tj−1
x j−1,αth

(x) f̃t |x − xj−1 |4(1 + |y |)C(1 + |x + y − xj−1 |)Cdxdydτ.

Moreover, we similarly obtain the inequality∫
|x − xj−1 |pp

c,τ−tj−1
x j−1,αth

(x)dx = Ex j−1[|X
αth ,c
τ−tj−1

− xj−1 |p] ≤ C(τ − tj−1)p/2(1 + |xj−1 |)p,

and hence we have∫
Φt

j(|y − Δxj |4(1 + |y | + |Δxj |)C)dxj1K′′
n , j−1

≤ C
∫ tj

tj−1

(tj − τ)2
∫

p
c,τ−tj−1
x j−1,αth

(x)(1 + |x |)C(1 + |x − xj−1 |)Cdxdτ

+C
∫ tj

tj−1

∫
p
c,τ−tj−1
x j−1,αth

(x)|x − xj−1 |4(1 + |x − xj−1 |)Cdxdτ

≤ Ch3
n(1 + |xj−1 |)C +C

∫ tj

tj−1

(τ − tj−1)2dτ(1 + |xj−1 |)C

≤ Ch3
n(1 + |xj−1 |)C .

(5.12)

From the Cauchy–Schwarz inequality, (H4), Lemma 5.3, and a similar estimate to (5.11), we obtain∫ 



∂θp1
j ,t

p1
j ,t





41Qc
j
(xj )1Lc

n
p̃jdxj1K′′

n , j−1

≤

√√√∫ 



∂θp1
j ,t

p1
j ,t





8p1
j ,tdxj

×
√

P
({

Xtj − xj−1 ∈ {z ∈ E | f̃t (z) = 0} ∪ {0}
}
∩
{
ΔjNθ = 1

}
|Xtj−1 = xj−1

)
1K′′

n , j−1

≤ Ch1+ι/2
n (1 + |xj−1 |)C,

(5.13)

so that ∫ 



∂θp1
j ,t

p1
j ,t

− ∂θ f̃t
f̃t

(Δxj)




41Lc

n
p̃j(αth)dxj1K′′

n , j−1
(xj−1) ≤ Ch(1+ι/2)∧3

n (1 + |xj−1 |)C .
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Next, we show (5.8) for l = 2. A similar argument to Lemma 5.2 yields

∫ 



 1
p1
j ,t

Φt
j

(
∂θPj ,t

Pj ,t

∂θ f̃t
f̃t

(y)
) 



21Lc

n
p̃j(αth)dxj1K′′

n , j−1

≤

√∫
Φt

j

(



∂θPj ,t

Pj ,t





4) dxj

√∫
Φt

j

(



∂θ f̃t
f̃t

(y)




4) dxj1K′′

n , j−1
≤ Ch2

n(1 + |xj−1 |)C,

where Pj ,t = p
c,τ−tj−1
x j−1,αth

(x) or p
c,tj−τ
x+y,αth

(xj ).
Together with Jensen’s inequality, (5.6), Lemma 5.2, (H4), and a similar argument to (5.12), we have

∫ 



∂2
θ p1

j ,t

p1
j ,t

−
∂2
θ f̃t
f̃t

(Δxj )




21Q j (xj )1Lc

n
p̃j(αth)dxj1K′′

n , j−1

≤ C
∫ 



 1

p1
j ,t

Φt
j

(
∂2
θ f̃t
f̃t

(y) −
∂2
θ f̃t
f̃t

(Δxj )
) 



21Q j (xj )p1

j ,tdxj1K′′
n , j−1
+Ch2

n(1 + |xj−1 |)C

≤ C
∫
Φt

j(|y − Δxj |2(1 + |y | + |Δxj |)C)dxj +Ch2
n(1 + |xj−1 |)C

≤ Ch2
n(1 + |xj−1 |)C .

Together with a similar argument to (5.13), we obtain (5.8) for l = 2.
For the estimate for ∂lσp1

j ,t , we first have

∂σp1
j ,t

p1
j ,t

=
1

p1
j ,t

Φt
j

(
∂σp

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )
+
∂σp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)

)
,

∂2
σp1

j ,t

p1
j ,t

=
1

p1
j ,t

Φt
j

(
∂2
σp

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )
+
∂2
σp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)
+ 2
∂σp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)

∂σp
c,tj−τ
x+y,αth

(xj)

p
c,tj−τ
x+y,αth

(xj)

)
.

Thanks to Jensen’s inequality and Proposition A.2 in the supplementary material, we obtain

∫ 



∂σp1
j ,t

p1
j ,t





41Lc
n

p̃j(αth)dxj1K′′
n , j−1

≤ C
∫
Φt

j

(



∂σp
c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )
+
∂σp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)





4) dxj1K′′
n , j−1

≤ Chn(1 + |xj−1 |)C
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and∫ 



∂2
σp1

j ,t

p1
j ,t





21Lc
n

p̃j(αth)dxj1K′′
n , j−1

≤ C
∫
Φt

j

(



∂2
σp

c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )
+
∂2
σp

c,τ−tj−1
x j−1 ,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)
+ 2
∂σp

c,τ−tj−1
x j−1,αth

(x)

p
c,τ−tj−1
x j−1,αth

(x)

∂σp
c,tj−τ
x+y,αth

(xj )

p
c,tj−τ
x+y,αth

(xj )





2) dxj1K′′
n , j−1

≤ Chn(1 + |xj−1 |)C .

Similarly, we have ∫ 



∂σ∂θp1
j ,t

p1
j ,t





21Lc
n

p̃j(αth)dxj1K′′
n , j−1

≤ Chn(1 + |xj−1 |)C .

Proposition 5.5. Assume (H1)–(H4). Then (B3) holds true.

Proof. (C.2) and Proposition A.2 in the supplementary material and Proposition 5.4 yield

n∑
j=1

sup
t∈[0,1]

D−1
j ,h

∫
(|ζ2,h

j ,t |
2 + |ζ1,h

j ,t |
4)p̃j (αth)dxj1K′′

n , j−1

≤ C
n∑
j=1

sup
t∈[0,1]

D−1
j ,h

∫ (



1n ∂2
σ p̃j

p̃j





2 + 



 1
Tn

∂2
θ p̃j

p̃j





2 + 



 1
√

nTn

∂θ∂σ p̃j

p̃j





2
+

1
n2





∂σ p̃j

p̃j





4 + 1
T2
n





∂θ p̃j

p̃j





4) p̃j (αth)dxj1K′′
n , j−1

≤ C
T2
n

n∑
j=1

sup
t∈[0,1]

D−1
j ,h

∫ (



∂2
θ f̃t
f̃t





2 + 



∂θ f̃t
f̃t





4) (Δxj )1Lc
n

p̃j(αth)dxj1K′′
n , j−1
+ op(1).

Then (C.2) in the supplementary material, (B1), (H4), and a similar argument to (5.12) yield the con-
clusion because ∂2

θ f̃t/ f̃t = ∂2
θ log f̃t + (∂θ log f̃t )2.

We turn to observe (B4′). Let p̃j ,0 = p̃j(α0). (B1), (C.2) in the supplementary material, Proposi-
tion 5.4, and the Cauchy–Schwarz inequality yield

n∑
j=1

D−1
j ,0

∫
η̃j η̃

�
j p̃j ,0dxj

=

n∑
j=1

D−1
j ,0

∫ �����
∂σ p0

j ,0(∂σ p0
j ,0)

�

n(p0
j ,0)

2 1Ln

∂σ p0
j ,0(∂θ p

0
j ,0)

�

n
√
hn(p0

j ,0)
2 1Ln

∂θ p
0
j ,0(∂σ p0

j ,0)
�

n
√
hn(p0

j ,0)
2 1Ln

∂θ f̃0∂θ f̃
�

0
nhn f̃

2
0

(Δxj)1Lc
n
+

∂θ p
0
j ,0(∂θ p

0
j ,0)

�

nhn(p0
j ,0)

2 1Ln

����	 p̃j ,0dxj + op(1).
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Hence, (B4′) follows if we show

1
n

n∑
j=1

D−1
j ,0

∫ ∂σp0
j ,0(∂σp0

j ,0)
�

(p0
j ,0)2

1Ln p̃j ,0dxj →P̃α0 ,n Γ1, (5.14)

1
nhn

n∑
j=1

D−1
j ,0

∫ {
∂θ f̃0∂θ f̃ �0

f̃ 2
0

(Δxj )1Lc
n
+
∂θp0

j ,0(∂θp0
j ,0)

�

(p0
j ,0)2

1Ln

}
p̃j ,0dxj →P̃α0 ,n Γ2, (5.15)

1
n
√

hn

n∑
j=1

D−1
j ,0

∫ ∂σp0
j ,0(∂θp0

j ,0)
�

(p0
j ,0)2

1Ln p̃j ,0dxj →P̃α0 ,n 0. (5.16)

Proofs of (5.14)–(5.16) are given in the supplementary material, which complete the proof of Theo-
rem 2.3.
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