
Bernoulli 29(3), 2023, 2392–2416
https://doi.org/10.3150/22-BEJ1546

Conditional quantiles: An operator-theoretical
approach
LUCIANO DE CASTRO1,a, BRUNO N. COSTA3,4,c, ANTONIO F. GALVAO2,b and
JORGE P. ZUBELLI3,4,d

1Department of Economics, University of Iowa, Iowa City, USA, adecastro.luciano@gmail.com
2Department of Economics, Michigan State University, East Lansing, USA, bagalvao@msu.edu
3IMPA, Rio de Janeiro, Brazil, cbrunonunes@impa.br
4Department of Mathematics, Khalifa University, Abu Dhabi, UAE, djorge.zubelli@ku.ac.ae

This paper derives several novel properties of conditional quantiles viewed as nonlinear operators. The results are
organized in parallel to the usual properties of the expectation operator. We first define a τ-conditional quantile
random set, relative to any sigma-algebra, as a set of solutions of an optimization problem. Then, well-known
properties of unconditional quantiles, as translation invariance, comonotonicity, and equivariance to monotone
transformations, are generalized to the conditional case. Moreover, a simple proof for Jensen’s inequality for con-
ditional quantiles is provided. We also investigate continuity of conditional quantiles as operators with respect
to different topologies and obtain a novel Fatou’s lemma for quantiles. Conditions for continuity in Lp and weak
continuity are also derived. Then, the differentiability properties of quantiles are addressed. We demonstrate the
validity of Leibniz’s rule for conditional quantiles for the cases of monotone, as well as separable functions. Fi-
nally, although the law of iterated quantiles does not hold in general, we characterize the maximum set of random
variables for which this law holds, and investigate its consequences for the infinite composition of conditional
quantiles.
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1. Introduction

Quantiles are of fundamental importance in several fields of theoretical and applied work such as
statistics, biostatistics, economics, finance, and decision theory, among others.1 Since the seminal paper
[17], quantile regression has become an important tool in statistical analysis for estimating conditional
quantile functions models (see, e.g., [16] and [19]). Quantile regression provides a systematic strategy
for examining how covariates influence the location, scale, and shape of the entire response distribution.
Quantiles are also important in decision theory. There has been increasing theoretical, empirical, and
experimental interest in decision under uncertainty using quantile preferences (QP). This preference
has been characterized in [22], where properties of a quantile model for individual’s behavior were
studied.2 [23] introduced the concept of quantile-preserving spread, which is a notion of risk aversion
for the quantile model that establishes a parallelism with mean-preserving spreads in the standard
expected utility framework.

Although conditional quantiles have been largely employed in multiple fields, the literature still lacks
a systematic investigation of their statistical and mathematical properties. This paper fulfills this gap.

1Quantiles have also been used in practical decision making in banking and investment (in the form of Value-at-Risk, see, e.g.,
[9] and [14]), goal-reaching problems and in mining, oil and gas industries (in the form of “probabilities of exceeding”, see, e.g.,
[1] and [11]).
2More recently, QP have been formally axiomatized in [2,28], and [6].
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We employ an operator theoretical view to define the τ-conditional quantiles, which enables us to
enlarge the theory and rigorously establish results that have not been formalized before. To use this ap-
proach, we first define the τ-conditional quantile random set as the set of solutions of an optimization
problem using the check function as the objective function, as proposed in [17]. This definition allows
computation of conditional quantiles of any finite random variable conditional on any σ-algebra. By
adjusting the argument in [33] for conditional medians, we provide the measurability of conditional
quantile random sets. From this, we define the right and left-conditional quantiles as well as demon-
strate their measurability.

Next, we show that, when restricted to Lp-spaces, conditional quantiles take value on a smaller Lp-
space. Consequently, it is possible to view them as an one parameter family of non-linear operators
mapping distinct Lp-spaces. Moreover, three equivalent definitions to conditional quantiles are offered.
Then, after defining and establishing their measurability, basic properties enjoyed by conditional quan-
tiles are investigated, such as monotonicity, idempotency, and independence.

We generalize several known properties of unconditional quantiles to the conditional case. First, we
investigate invariance properties and provide conditions for additivity of quantiles, that is, the condi-
tional quantile operator of a sum of random variables equals to the sum of the conditional quantile
of each random variable. We show that the concept of conditional comonotonicity introduced in [15]
may be useful to the conditional case. Under G-comonotonicity, we show that conditional quantiles are
additive. This result extends some findings from [10]. Furthermore, we show that positive homogeneity
and translational invariance can be used to establish additivity for each quantile. Then, we generalize
the property of invariance with respect to monotone transformation from the unconditional [see, e.g.,
16] to the conditional case. Finally, we use the operator properties of conditional quantiles and the sub-
diffferentiability of concave and convex functions to present a simple proof for Jensen’s inequality for
conditional quantiles.3

The next natural aspect of a non-linear operator to be dissected is its continuity. We investigate
the continuity of conditional quantiles as operators with respect to different topologies. We start by
describing a novel Fatou’s lemma for conditional quantiles, proving that it holds under less stringent
assumptions than its conditional expected value counterpart. As a direct consequence of this Fatou’s
lemma, we obtain conditions for the continuity of conditional quantiles with respect to almost sure
convergence. Moreover, we provide conditions for continuity of conditional quantiles in Lp spaces.
We also revisit some of the main theorems regarding the continuity of quantiles with respect to weak
convergence and enlarge it in the context of conditional weak convergence, as proposed in [31]. Overall,
the results on continuity have important practical implications, as for instance, showing the convergence
of quantiles under almost sure convergence of random variables.

We then investigate the differentiability properties of conditional quantiles. One of the most useful
properties of the expected value is its ability of exchanging the order of the integration and differentia-
tion, the well known Leibniz’s rule.4 The interchange of integration and differentiation has been exten-
sively used in applications, for example, in deriving statistical properties of the maximum likelihood
estimator [see, e.g., 12]. We extend Leibniz’s rule to quantiles and establish a novel differentiability
property that allows one to exchange the quantile and the derivative. In particular, we first show the
validity of Leibniz’ rule for monotone functions. Second, we extend this result to the case of separable
functions.

3Reference [24] establishes an analogue of the Jensen’s inequality for medians. Using a similar approach, [35] strengthens these
inequalities.
4There are required conditions to achieve such a result. In the expectation case, interchanging a derivative with an expectation (an
integral) can be established by applying the dominated convergence theorem. Intuitively, the conditions say that the derivative of
the function of interest must be bounded by another function whose integral is finite.
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Finally, we examine the analogue for the law of iterated expectations (LIE) for conditional quantiles.5

We show that the law of iterated quantiles does not hold in general, that is the LIE does not extend to
quantiles. Nevertheless, we characterize the maximum set of random variables for which this law holds,
and investigate its consequences for the infinite composition of conditional quantiles.

The theory developed in this paper may have important developments and applications in practice.
The results are theoretically important because they provide grounds for subsequent research on sta-
tistical and mathematical analysis of conditional quantiles. From a practical point of view, the results
might be useful in decision theory studies with quantile preferences, as well as establishing properties
of quantile regression models.

The remainder of the paper is organized as follows. Section 2 presents definitions and basic prop-
erties of quantiles. In Section 3, we study the invariance properties of conditional quantiles. Section 4
provides continuity results. Section 5 deals with differentiability of conditional quantiles and estab-
lishes a result that allows for interchanging the derivative and the operator. Section 6 investigates the
composition of quantiles. Finally, Section 7 concludes. We relegate all proofs to the Supplementary
Material [4].

2. Conditional quantiles: Definitions and basic properties

This section introduces the main definitions of this article, proves the measurability of the objects
and establishes their basic properties. Section 2.1 specifies basic notation. In Section 2.2, we define
conditional quantile random sets as well as right and left-quantiles. Besides, the measurability of each
object is derived. Section 2.3 demonstrates how one can visualize conditional quantiles as an one-
parameter family of operators acting on Lp-spaces. Finally, three equivalent ways to define conditional
quantiles and a set of their basic properties are provided in Section 2.4.

2.1. Notation

Throughout this article, (Ω,F ,P) will be a probability space and G and H will be σ-algebras satisfying
F ⊃ G ⊃ H . We denote by L0(Ω,F ,P;Rn) the set of measurable maps X : (Ω,F ) → (Rn,B(Rn)),
where B(Rn) stands for the Borel σ-algebra of the Euclidean space Rn. If n = 1, we will simplify
this notation to L0(Ω,F ,P). The set Lp(Ω,F ,P) ⊂ L0(Ω,F ,P) corresponds to the random variables
such that

∫
Ω
| f |pdP < ∞. For all A ⊂ Rn, we denote the set of continuous and bounded functions

f : A → R by Cb(A). We write a.s. for almost surely and, for all X ∈ L0(Ω,F ,P), supp X means the
support of the probability measure PX , where PX is the measure on R induced by X . Given a pair
(x, y) ∈ Rn × Rn, if xi ≤ yi , for all i ∈ {1, . . . ,n}, we say that x is smaller than y, denoting it by x ≤ y.
If (T,T) is a first-countable topological space, (M,M) a topological space with a partial order ≤, and
f : T → M a function, then f is said to be lower (or upper) semicontinuous provided that, for all
sequence (xn)n∈N ⊂ T , such that xn →

T
x, then f (x) ≤ lim infn∈N f (xn) (or lim supn∈N f (xn) ≤ f (x)).

We say that a property holds pointwise if it is true for every ω ∈ Ω.

2.2. Definition and measurability

Given a random variable in a probability space (Ω,F ,P) and a σ-algebra G ⊂ F , we want to define
the conditional quantile map Qτ[X |G] : (Ω,G) → (R,B(R)). Intuitively, each realization of Qτ[X |G]

5The LIE is also known as the law of total expectation or the tower property of conditional expectations.
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should give the smallest value y such that the conditional probability satisfies P[X ≤ y |G](ω) ≥ τ, i.e.

Qτ[X |G](ω) = inf{y ∈ R : P[X ≤ y |G](ω) ≥ τ}. (1)

If G = σ(Y ), X and Y are simple random variables, X =
∑n

j=1 xi1Ai and Y =
∑n

j=1 yi1Bi , with P(Bi) > 0
for every i, then P[X ∈ · |G] is easily computed from Bayes’ formula. Consequently, the definition of
Qτ[X |G] under this condition is trivial, as well as its measurability. However, for a general G, this
definition depends on transition kernels, P[X ∈ · |G], not easily computed, satisfying the following.

1. The map P[X ∈ · |G] :Ω × B(R) → [0,1] is so that, for all ω ∈ Ω, then:

A ∈ B(R) 	→ P[X ∈ A|G](ω) is a probability measure.

2. For all fixed A ∈ B(R), then:

ω ∈ Ω 	→ P[X ∈ A|G](ω) is G-measurable.

3. For all G ∈ G and A ∈ B(R), then:

P[{X ∈ A} ∩ G] =
∫
G

P[X ∈ A|G](ω)dP|G(ω),

where P|G : G → [0,1] denotes the restriction of the probability measure to the sub-σ-algebra G.

The existence of such kernel is guaranteed by the disintegration theorem — see [27, Theorem 9, p.
117]. As an immediate consequence of this definition, we obtain that E[ f (X)|G](ω) =

∫
f (x)P[X ∈

dx |G](ω) a.s., for all f ∈ B(R)-measurable and bounded – see [21]. Even though P[X ∈ A|G] =
E[1X∈A |G] for all A ∈ B(R) a.s., P[X ∈ · |G](ω) has the advantage of being a probability measure
on B(R). Moreover, given two transition kernels, P[X ∈ · |G] and P̄[X ∈ · |G], [21] shows that there is
a set Ω′ ⊂ Ω, with full measure, such that:

P[X ∈ A|G](ω) = P̄[X ∈ A|G](ω), for all A ∈ B(R) and ω ∈ Ω′.

From now on, we assume that for all fixed X we are using the same version of P[X ∈ · |G], unless
otherwise stated.

Instead of defining the τ-conditional quantile directly by Qτ[X |G](ω) = inf{y ∈ R : P[X ≤ y |G](ω) ≥
τ}, which is the most common in the literature, in this work, we adopt an optimization problem defi-
nition, similar to that in [17]. This method leads to conditional quantile random sets. By proving that
these random sets are G-measurable, we are able to define the left and right conditional quantiles sim-
ply as their composition with some specific measurable maps. An advantage of this approach is that it
allows us to readily derive the measurability of both right and left conditional quantiles at once.

[33] shows that it is possible to define the conditional median of a random variable with respect to
some σ-algebra as a compact random set, proving its measurability with respect to the σ-algebra B(K)
over the set of compact sets of the real line K; more precisely,

B(K) = σ ({K ∈ K : K ∩ G �∅} : G ⊂ R open) ,

see [25] for more details on B(K). Based on that, we define the τ-conditional quantile random set
as the set of solutions of the following convex problem, where ρτ : R→ R stands for ρτ(x) := (τ −
1)x1[x<0] + τx1[x≥0], also known as the check function – see [17].
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Definition 2.1. Given X ∈ L0(Ω,F ,P) in a probability space (Ω,F ,P), τ ∈ (0,1) and a σ-algebra G ⊂
F , such that the conditional law of X given G is P[X ∈ · |G] :Ω×B(R) → [0,1], the τ-quantile random
set of X conditional to G is a map Γτ[X |G] : (Ω,G)→ (K,B(K)) satisfying:

Γτ[X |G](ω) = argmin
y∈R

∫ (
ρτ(x − y) − ρτ(x)

)
P[X ∈ dx |G](ω), ∀ω ∈ Ω. (2)

It is worth noting that if we choose another representative for the transition kernel P[X ∈ · |G],
then the τ-quantile random set associated to each representative coincides in a set of full probability
measure. Therefore, the above definition is unique up to a modification on a set of zero measure.

Our first result guarantees that the above map is well-defined as a compact random set, that is, takes
compact values and is measurable. We adapt the proof given in [33] for τ = 1/2.

Proposition 2.2. Given X ∈ L0(Ω,F ,P) in a probability space (Ω,F ,P), τ ∈ (0,1) and a σ-algebra
G ⊂ F , such that its transition kernel is given by P[X ∈ · |G], then Γτ[X |G](ω) is nonempty and
compact for all ω ∈ Ω. Moreover, the map Γτ[X |G] : (Ω,G)→ (K,B(K)) is measurable.

It is trivial to show that the maps inf : (K,B(K)) → (R̄,B(R̄)) and sup : (K,B(K)) → (R̄,B(R̄)) are
measurable.6 Since (Γτ[X |G])τ∈(0,1) is a family of measurable compact random sets, we can define the
left and right conditional quantile as the composition of inf and sup with Γτ[X |G]:

Definition 2.3. Given X ∈ L0(Ω,F ,P) in a probability space (Ω,F ,P), τ ∈ (0,1) and a σ-algebra G ⊂
F , such that the conditional law of X given G is P[X ∈ · |G] : Ω × B(R) → [0,1], the τ-quantile,
τ ∈ (0,1), of X conditional to G is:

Qτ[X |G](ω) = infΓτ[X |G](ω), ∀ω ∈ Ω. (3)

We also define the right conditional quantile as:

Qτ+[X |G](ω) = supΓτ[X |G](ω), ∀ω ∈ Ω. (4)

In the statistics literature, it is frequently assumed that both right and left conditional quantiles co-
incide a.s., i.e. Qτ[X |G] = Qτ+[X |G] a.s. However, the conditions that assure this equality are not
generally true for any X ∈ L0(Ω,F ,P) in a most abstract framework. To be precise, for a fixed τ ∈ (0,1),
these random variables are indistinguishable if, and only if, there exists a G-measurable set, with full
probability, such that, on it, x ∈ R 	→ P[X ≤ x |G] is strictly increasing in a neighborhood of Qτ[X |G]
– see Lemma 3.2 in the Supplementary Material [4] for more details.

Definition 2.3 includes the unconditional left and right-quantiles, when G = {∅,Ω}. In this case, we
omit the trivial σ-algebra and simply refer to Qτ[X |G] and Qτ+[X |G] as Qτ[X] and Qτ+[X], respec-
tively.

Observe now that measurability of the right and left conditional quantile are easily derived from the
fact that they are a composition of measurable maps.

Proposition 2.4. Given X ∈ L0(Ω,F ,P) in a probability space (Ω,F ,P) and a σ-algebra G ⊂ F , such
that its transition kernel is given by P[X ∈ · |G], Qτ[X |G] : Ω→ R and Qτ+[X |G] : Ω→ R are well-
defined and G-measurable random variables.

6Recall that, for K ∈ K, | infK | = | supK | = +∞ if, and only if, K =∅. Since Γτ [X |G] is non-empty, the composition of these
maps generates an R-valued random variable.
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To illustrate the concepts defined along this section, we offer some examples in the Supplementary
Material [4]. The first is designed to demonstrate how to determine the conditional quantile in a very
simple framework, with auxiliary graphs. The second, on the other hand, characterizes a particular
conditional quantile random set and, from it, obtains the associated left and right quantiles. Finally,
the third shows a concrete example where the conditional quantile of the sum of two variables equals
the sum of each individual quantile, which will be revisited in Section 3.1. See more details in the
Supplementary Material [4].

Proposition 2.4 allows us to define maps, Qτ[·|G] and Qτ+[·|G], over L0(Ω,F ,P) and taking values
on L0(Ω,G,P), which compute the τ left and right quantile of X conditional to G, for all τ ∈ (0,1).
Moreover, since, for any given X ∈ L0(Ω,F ,P), two transition kernels agree a.s.,we obtain that both
maps are well-defined a.s. Therefore, from now on, we visualize Qτ[·|G] : L0(Ω,F ,P) → L0(Ω,G,P)
and Qτ+[·|G] : L0(Ω,F ,P) → L0(Ω,G,P) as non-linear operators, and we derive their properties in the
subsequent sections.

2.3. Conditional quantiles as operators

As we showed, it is possible to define a one parameter family of non-linear operators acting on
L0(Ω,F ,P) and taking values on L0(Ω,G,P), Qτ[·|G] : L0(Ω,F ,P) → L0(Ω,G,P), for each τ ∈ (0,1).
The next proposition investigates the properties of these operators when restricted to the space
Lp(Ω,F ,P).

Proposition 2.5.

1. X ∈ Lp(Ω,F ,P), p ∈ [1,+∞), if, and only if, Qτ[X |G] ∈ Lp(Ω,G,P), for all τ ∈ (0,1), s 	→
E[|Qs[X |G]|p] is left-continuous with right-limits and:∫ 1

0
E[|Qτ[X |G]|p]dτ < +∞.

2. X ∈ L∞(Ω,F ,P) if, and only if, Qτ[X |G] ∈ L∞(Ω,F ,P), for all τ ∈ (0,1), and:

sup
τ∈(0,1)

‖Qτ[X |G]‖∞ < +∞.

3. If X ∈ Lp(Ω,F ,P), for p ∈ [1,+∞), then τ ∈ (0,1) 	→ Qτ[X |G] ∈ Lp(Ω,G,P) is left-continuous
with right-limits, as a curve in Lp(Ω,G,P).

It is worth noting that, as an immediate consequence of the Proposition 2.5, we obtain Qτ[·|G] :
Lp(Ω,F ,P) → Lp(Ω,G,P) for all τ ∈ (0,1) and p ∈ [1,+∞].

2.4. Basic properties

We now show that Definition 2.1 of the conditional τ-quantile operator coincides with the one con-
sidered by equation (1). In fact, the next result exhibits the equivalence of different definitions for
conditional quantiles.

Theorem 2.6. The following equalities hold:

1. Qτ[X |G] = inf{Y ∈ L0(Ω,G,P) : P[X ≤ Y |G] ≥ τ} pointwise.
2. Qτ[X |G] =min{argminy∈R E[ρτ(X − y) − ρτ(X)|G]} a.s.
3. Qτ[X |G] = inf{y ∈ R : P[X ≤ y |G] ≥ τ} pointwise.
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The result in item 1 of Theorem 2.6 means that if Y ∈ L0(Ω,G,P), then we understand P[X ≤ Y |G] ≥
τ as P[X ≤ Y (ω)|G](ω) ≥ τ, for all ω ∈ Ω, and the infimum is pointwise. Furthermore, item 2 of
Theorem 2.6 assumes continuous sample paths of the objective function in the minimization problem.
Notice that (E[ρτ(X − y) − ρτ(X)|G])y∈R is a stochastic process satisfying:

E[|E[ρτ(X − y) − ρτ(X)|G] − E[ρτ(X − z) − ρτ(X)|G]|p] ≤
(

1
2
+
��1
2
− τ

��) p |z − y |p,

for all p > 1 and y, z ∈ R. Therefore, Kolmogorov’s theorem guarantees that exists a modification of
this process with continuous sample paths, see [20]. Consequently, there is no loss of generality by
imposing the continuity condition, and from now on, for each X ∈ L0(Ω,F ,P) and G ⊂ F given, we
assume that the sample paths of (E[ρτ(X − y) − ρτ(X)|G])y∈R are continuous.

We may combine Theorem 2.6 and Proposition 2.5 to obtain yet another equivalent characterization
of conditional quantile as the minimal solution of an optimization problem in Lp(Ω,F ,P).

Proposition 2.7. For all τ ∈ (0,1) and p ∈ [1,+∞], the τ-conditional quantile operator, Qτ[·|G] :
Lp(Ω,F ,P) → Lp(Ω,G,P) satisfies:

Qτ[X |G] = inf

{
Z ∈ Lp(Ω,G,P),Z ∈ argmin

Y ∈Lp (Ω,G,P)
E[ρτ(X −Y )]

}
a.s. (5)

Moreover, the optimization problem in Theorem 2.6 item 1 can be restricted to Lp(Ω,G,P).

Remark 2.8. The infimum in expression (5) is understood as the essential infimum of a family of
random variables as in [26].

The results previously derived show that, for all τ ∈ (0,1) and p ∈ [1,+∞] ∪ {0}, the τ-conditional
quantile is an invariant operator with respect to the regularity of the space, i.e. Qτ[·|G](Lp(Ω,F ,P)) =
Lp(Ω,G,P). Indeed, if X ∈ Lp(Ω,G,P), then E[ρτ(X − X)] = 0. Since, for all Y ∈ Lp(Ω,G,P),
E[ρτ(X − Y )] ≥ 0, with strict inequality when X � Y in a non-negligible set, we conclude that X is
the minimizer in Proposition 2.7. Therefore, Qτ[X |G] = X . Together with Proposition 2.5, we obtain
Qτ[·|G](Lp(Ω,F ,P)) = Lp(Ω,G,P). To further analyze its properties as an operator, next section inves-
tigates the conditions under which it is additive, as well as its other invariance properties.

The characterizations in Theorem 2.6 are the departing point for quantile regression. When estimat-
ing a linear or nonlinear quantile model, one simply replaces the population expectation in item 2 of the
theorem with the corresponding sample average and uses linear programming to solve the optimization
problem (see, e.g., [16] for details).

As an example of how each characterization may play an important role in the theory, we apply the
results in Theorem 2.6 to provide a set of basic properties for conditional quantiles.

Proposition 2.9. Let X ∈ L0(Ω,F ,P) be fixed. We have the following:

1. For each ω ∈ Ω, the map s ∈ (0,1) 	→ Qs[X |G](ω) is non-decreasing, left-continuous with
right-limits. Moreover, Qτ+[X |G](ω) = lims↓τ Qs[X |G](ω) and it can be characterized as
Qτ+[X |G](ω) = sup{y ∈ R : P[X ≤ y |G](ω) ≤ τ}, for all ω ∈ Ω.

2. For every τ ∈ (0,1), then Qτ[X |G] ∈ supp X a.s.
3. (Monotonicity) If X ≤ Y a.s., then, for all τ ∈ (0,1), Qτ[X |G] ≤ Qτ[Y |G] a.s.
4. If Y is independent of G, then Qτ[Y |G] =Qτ[Y ] a.s., for all τ ∈ (0,1).
5. (Invariance) If X is G-measurable, then Qτ[X |G] = X a.s.
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6. If g ∈ L1(R,B(R),PX ), then the following holds a.s.:7

E[g(X)|G] =
∫ 1

0
g(Qτ[X |G])dτ.

3. Invariance properties of conditional quantiles

This section investigates the invariance properties of conditional quantiles, i.e. which transformations
commute with the operator. As in the unconditional setting, we are able to demonstrate that there are
conditions that guarantee additivity (Section 3.1) and monotone invariance for this family of operators
(Section 3.2). In addition, in Section 3.3 we use these results to demonstrate a Jensen’s inequality for
conditional quantiles.

3.1. Conditions for additivity

We provide conditions under which the conditional quantile operator of a sum of random variables
equals to the sum of the conditional quantile of each random variable. First, we show how the concept
of G-comonotonicity introduced in [15] may be used to obtain this result for the sum of G-comonotonic
random variables. This is similar to the works [8] and [10] for the unconditional quantile. Second, we
generalize the concept of translational invariance and positive homogeneity for the conditional quantile
operator.

We begin with an extension of the notion of comonotonicity of a random vector appropriated to the
conditional case. Comonotonicity plays a key role in the additivity of quantiles, as it can be seen in [8]
for the unconditional quantile. Equipped with the definition of conditional comonotonicity, we show
that it is, in fact, a sufficient condition for the additivity of the conditional quantile of a sum of random
variables. Hence, we first define what are comonotonic sets.

Definition 3.1. A set A ⊂ Rn is comonotonic if for all x, y ∈ A, then either x ≤ y or y ≤ x.

[8] presents and discusses in details the concept of comonotonicity as well as its consequences to
quantiles. For a clear visualization of closed comonotonic sets in Rn, which are precisely the support
of comonotonic random variables, we present in the Supplementary Material [4] a complete character-
ization of such sets. The result shows that any closed comonotonic set, A ⊂ Rn, is the image of a map,
A = ψ ((0,1)), ψ : (0,1) → Rn, such that each component of ψ is a function that is non-decreasing, and
left-continuous with right-limits.

In the conditional framework, we define G-conditional random vector as:

Definition 3.2. Let G ⊂ F be a sub-σ-algebra, and X ∈ L0(Ω,F ,P;Rn). X is a G-comonotonic random
vector, if supp P[X ∈ · |G](ω) is comonotonic almost surely on Ω.

This definition is similar to one presented in [15] and [3], with the exception that we assume comono-
tonic support of the conditional law to be an almost surely property instead of pointwise, as they do.
We adopted a different definition because changes in the conditional law representative would not alter
the conditional comonotonicity property, since any representative would agree almost surely.

7Recall from Section 2.1 that PX is the measure on R induced by X.
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When G = {∅,Ω}, we may see that Definition 3.2 coincides with the concept of comonotonic ran-
dom variables as introduced (for n = 2) in [29], and further explored in [8]. Observe that, in this case,
there is a set of full probability measure such that, for all A ∈ B(Rn), then P[X ∈ A|G](ω) = P[X ∈ A].
Thus, supp P[X ∈ · |G](ω) = supp P[X ∈ · ] a.s., so that X is G-comonotonic if, and only if, it is
comonotonic, as it appears for instance in [8]. Furthermore, notice also that comonotonicity implies
G-comonotonicity, for all σ-algebras G ⊂ F , whereas the opposite implication is false – see a coun-
terexample in the third example in Section 1 of Supplementary Material [4].

The first result of this section is a characterization of G-comonotonic vectors similar to [3, Lemma 2].
We simply modified the results to hold a.s., agreeing to our definition of G-comonotonicity.

Lemma 3.3. Assume that (Ω,F ,P) is atomless. Let X = (X1, . . . ,Xn) ∈ L0 (Ω,F ,P;Rn). Then the fol-
lowing statements are equivalent:

1. X is G-comonotonic.
2. There exists a set Ω′ ∈ G, such that P[Ω′] = 1, and on Ω′:

P[X ≤ x |G](ω) = min
i∈{1,...,n}

P[Xi ≤ xi |G](ω), for all x ∈ Rn.

3. There exists a uniform random variable U :Ω→ (0,1) and Ω′ ⊂ Ω, with P[Ω′] = 1, such that for
all ω ∈ Ω′ and any set A ∈ B(Rn):

P[X ∈ A|G](ω) = P[(QU [X1 |G](ω), . . . ,QU [Xn |G](ω)) ∈ A].

The assumption that (Ω,F ,P) is atomless is required for condition 3 above, but conditions 1 and 2
are still equivalent without it. This atomless assumption is equivalent to the probability space (Ω,F ,P)
being rich enough to support a uniform random variable on (0,1) – see Proposition A.27 in [13], which
also provides other consequences of such assumption on the probability space. For instance, it is shown
that this assumption is equivalent to the existence of an i.i.d sequence (Yi)i∈N of random variables such
that Y1 ∼ μ, for all probability measures μ ∈ P(R,B(R)).

As a consequence of the characterization obtained above, we derive the following generalization of
[10, Proposition 3.1]:

Theorem 3.4. Let ψ : X ⊂ Rm × Y ⊂ Rn → R be a function such that, for all x ∈ X, then y ∈
Y 	→ ψ(x, y) is non-decreasing, left-continuous with right-limits in each argument. Then, for any G-
comonotonic random vector Y = (Y1, . . . ,Yn), whose support lies in Y, and X ∈ L0(Ω,G,P;Rm), with
support in X, and τ ∈ (0,1) fixed:

Qτ[ψ(X,Y1, ...,Yn)|G] = ψ (X, Qτ[Y1 |G], . . . ,Qτ[Yn |G] ) , a.s.

In the Supplementary Material [4], we show how the previous result may be employed in a quan-
tile regression model to characterize the conditional distribution of the dependent variable, given the
independent variables.

As a corollary of Theorem 3.4, we obtain that the τ-conditional quantile of the sum of the compo-
nents of a G-comonotonic random vector equals the sum of the individual quantiles a.s.

Corollary 3.5. Let X = (X1, . . . ,Xn) be a G-comonotonic random vector. Then, for all τ ∈ (0,1):

Qτ

[
n∑
i=1

Xi

���G] = n∑
i=1

Qτ [Xi |G] , a.s.,
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and provided that Xi ≥ 0 a.s., ∀i ∈ {1, . . . ,n}, then:

Qτ

[
n∏
i=1

Xi

���G] = n∏
i=1

Qτ [Xi |G] , a.s.

Instead of using G-comonotonicity, the following result provides a stronger version of positive ho-
mogeneity and translational invariance to establish additivity for each quantile.

Theorem 3.6. If a,b ∈ L0(Ω,G,P), then a.s.:

Qτ[a + bX |G] = a + bQτ[X |G]1{b≥0} + bQ(1−τ)+[X |G]1{b<0} .

Theorem 3.6 also holds for Qτ+[·|G], simply changing τ and (1 − τ)+ by τ+ and 1− τ, respectively.

3.2. Equivariance to monotone transformations

Continuing the discussion on invariance properties of quantiles, we generalize their invariance to mono-
tone transformation from the unconditional – given in [16] – to the conditional case. To accomplish
this, we first provide a simple version of invariance for conditional quantiles with respect to monotone
transformations. Then, we extend it to the case of monotone functions with measurable parameters.

Proposition 3.7. Suppose g : R × R→ R satisfies that, for a given x ∈ R, y ∈ R 	→ g(x, y) is non-
decreasing and left-continuous. Then, for all τ ∈ (0,1) fixed and Y ∈ L0(Ω,F ,P),

Qτ[g(x,Y )|G] = g (x,Qτ[Y |G]) a.s.

If y ∈ R 	→ g(x, y) is non-increasing and left-continuous for a given x ∈ R, then:

Qτ[g(x,Y )|G] = g
(
x,Q(1−τ)+[Y |G]

)
a.s.

Moving forward with the discussion on how G-measurable parameters influence the invariance prop-
erties, we now extend Proposition 3.7 to monotone and left-continuous functions with measurable pa-
rameters.

Proposition 3.8. Suppose that g : R ×R→ R satisfies

1. For each x ∈ R, y ∈ R 	→ g(x, y) is non-decreasing and left-continuous.
2. For each y ∈ R, x ∈ R 	→ g(x, y) is B(R)-measurable.

Then, for all X ∈ L0(Ω,G,P), Y ∈ L0(Ω,F ,P) there is a set Ω′ ∈ G, with P[Ω′] = 1, such that for all
τ ∈ (0,1) and ω ∈ Ω′

Qτ[g(X,Y )|G](ω) = g (X,Qτ[Y |G](ω)) ,

Qτ+[g(X,Y )|G](ω) = g (X,Qτ+[Y |G](ω)) .

If in item 1, the function g is non-increasing and left-continuous, and item 2 holds true, then:

Qτ[g(X,Y )|G](ω) = g
(
X,Q(1−τ)+[Y |G](ω)

)
,

Qτ+[g(X,Y )|G](ω) = g
(
X,Q(1−τ)[Y |G](ω)

)
.
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We highlight that the invariance properties obtained along this section are generalizations of known
results to conditional quantiles. Indeed, [18] presents Proposition 3.7 for the unconditional setup. We
generalize it to the conditional case for all σ-algebras. Furthermore, Proposition 3.8 extends this in-
variance to functions with measurable parameters. Moreover, if Qτ[g(X,Y )|G] =Qτ+[g(X,Y )|G], then
it is possible to show that Proposition 3.8 is a direct consequence of Proposition 3.7 and Corollary 4.2,
by proving the invariance along parameters which are simple random variables, approximating the real
parameter by them and, then, using the continuity of g and Corollary 4.2.

As an application of these results, in Section 5 we will apply the invariance of this family of operators
to derive important rules regarding the exchange in the order of derivative operator and conditional
quantiles, reinforcing that the operator-theoretical approach to this family may lead to the understanding
and enlargement of the properties enjoyed by them.

3.3. Jensen’s inequality

This section derives Jensen’s inequality for the one parameter family of operators. As a consequence
of Theorem 3.6, we are able to establish a version of Jensen’s inequality for quantiles using the same
approach adopted in the proof of this inequality for conditional mean, Lemma 1.23 in [30].

Theorem 3.9 (Jensen’s Inequality for Quantiles). Let u : R→ R be a function and τ ∈ (0,1).

1. If u is concave and τ ∈ (0, 1
2 ], then:

Qτ[u(X)|G] ≤ u
(
Qτ[X |G]

)
, a.s.

2. If u is convex and τ ∈ ( 1
2 ,1), then:

u
(
Qτ[X |G]

)
≤ Qτ[u(X)|G], a.s.

3. If u is convex and Q 1
2
[X |G] =Q 1

2+
[X |G], then:

u
(
Q 1

2
[X |G]

)
≤ Q 1

2
[u(X)|G], a.s. (6)

Conversely, if (6) holds for all u convex, then Q 1
2
[X |G] =Q 1

2+
[X |G] a.s.

We remark that [24] establishes an analogue of Jensen’s inequality for medians. Recently, [35]
strengthened these inequalities using a similar approach to the one used in [24]. Nevertheless, the re-
sults in Theorem 3.9 are obtained through a simple operator-like argument, providing a generalization
for conditional medians and demonstrating the necessity and sufficiency of continuity of conditional
quantiles at τ = 1

2 for Jensen’s inequality. Besides that, it is trivial to see that Theorem 3.9 item 1 and 2
also hold for Qτ+[·|G] operator when τ ∈ (0, 1

2 ) and τ ∈ [ 1
2 ,1), respectively.

Recall that if g : R×R→ R is regular enough, for example in Cb(R×R), then, for all X ∈ L0(Ω,G,P)
and Y ∈ L0(Ω,F ,P), the expected value of g(X,Y ), on a full probability set, with respect to G is equiva-
lent to E[g(X,Y )|G](ω) =

∫
g(X(ω), y)P[Y ∈ dy |G](ω). In other words, we may interpret X as a param-

eter that does not affect the computation of the conditional expectation. Based on this, we generalize
the former Jensen’s inequality as following.

Corollary 3.10. If u : R ×R→ R satisfies:

1. For each x ∈ R, y ∈ R 	→ u(x, y) is concave.
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2. For each y ∈ R, x ∈ R 	→ u(x, y) is continuous.
3. The function u′

2,+R × R → R, defined by u′
2,+(x, y) = limh↓0

u(x,y+h)−u(x,y)
h , is B(R × R)-

measurable.

Then, for all τ ∈ (0, 1
2 ], X ∈ L0(Ω,G,P), and Y ∈ L0(Ω,F ,P) fixed:

Qτ[u(X,Y )|G] ≤ u(X,Qτ[Y |G]), a.s.

If y ∈ R 	→ u(x, y) is convex, for all x ∈ R, and items 2 and 3 remain true, then for all τ ∈ ( 1
2 ,1):

Qτ[u(X,Y )|G] ≥ u(X,Qτ[Y |G]), a.s.

Finally, if τ = 1
2 and Q 1

2+
[Y |G] =Q 1

2
[Y |G] a.s., then:

u(X,Q 1
2
[Y |G]) ≤ Q 1

2
[u(X,Y )|G], a.s.

4. Continuity

After establishing that conditional quantiles can be viewed as operators, and investigating conditions
for their additivity, we now investigate their continuity properties. We start by describing a new Fa-
tou’s lemma for conditional quantiles, proving that it holds under less stringent assumptions than its
conditional expected value counterpart. Then, as a direct consequence of our Fatou’s lemma, we ob-
tain conditions for the continuity of conditional quantiles with respect to almost sure convergence.
Furthermore, since Proposition 2.5 guarantees that conditional quantiles are well-defined and invariant
operators on Lp spaces, i.e. Qτ[·|G] : Lp(Ω,F ,P) → Lp(Ω,G,P) for all p ∈ [1,+∞], we provide con-
ditions for the continuity of these operators under the Lp-topology. Finishing this section, we revisit
and enlarge some of the main theorems regarding the continuity of quantiles with respect to weak con-
vergence, now in the context of conditional weak convergence a.s. and its implications to conditional
quantiles.

4.1. Fatou’s lemma and almost sure continuity

Fatou’s lemma for conditional expectation states that given a sequence of non-negative random vari-
ables, (Xn)n∈N ⊂ L0(Ω,F ,P), then:

E[lim inf
n∈N

Xn |G] ≤ lim inf
n∈N

E[Xn |G], a.s. (7)

As a consequence, if supn∈N Xn < C a.s., then:

E[lim inf
n∈N

Xn |G] ≤ lim inf
n∈N

E[Xn |G] ≤ lim sup
n∈N

E[Xn |G] ≤ E[lim sup
n∈N

Xn |G], a.s. (8)

In this section, we prove an analog to equation (7), substituting conditional expected value operator
by conditional quantile. Moreover, we show that the requirement to be non-negative is not mandatory.
However, to obtain an equation parallel to (8), we require the use of both Qτ[·|G] and Qτ+[·|G] oper-
ators. It is also possible to create an example where the last inequality in equation (8), with Qτ[·|G]
replacing E[·|G], is false, i.e. lim supn∈NQτ[Xn |G] > Qτ[lim supn∈N Xn |G].

We begin with an analog of Fatou’s lemma for conditional quantiles.
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Theorem 4.1. Let (Xn)n∈N be a sequence of random variables in L0(Ω,F ,P), such that infn∈N Xn and
supn∈N Xn are in L0(Ω,F ,P). For all τ ∈ (0,1) fixed, then:

Qτ[lim inf
n∈N

Xn |G] ≤ lim inf
n∈N

Qτ[Xn |G] ≤ lim sup
n∈N

Qτ[Xn |G]

≤ lim sup
n∈N

Qτ+[Xn |G] ≤ Qτ+[lim sup
n∈N

Xn |G], a.s.

As we pointed out above, the previous result establishes a chain of inequalities similar to (8).
Nevertheless, the following example shows that equation (8), with Qτ[·|G] replacing E[·|G], does
not hold when using only the operator Qτ[·|G]. Indeed, the inequality lim supn∈NQτ[Xn |G] ≤
Qτ[lim supn∈N Xn |G] is not necessarily true, except in the trivial case when Qτ[lim supn∈N Xn |G] =
Qτ+[lim supn∈N Xn |G].

Example. Let τ ∈ (0,1), and U ∈ L0(Ω,F ,P) be uniformly distributed in (0,1) independently of G.
Define, for each n ∈ N,

Xn(ω) =
1
n
1U∈[0,τ) −

(
n(ω − τ)

) 1
n 1U∈[τ,1] and X = −1U∈(τ,1]. (9)

Then it is immediate to see that Xn −→
n→∞

X pointwise, Qτ[Xn |G] = 0 and Qτ[X |G] = −1. Finally, this

implies that lim supn∈NQτ[Xn |G] > Qτ[lim supn∈N Xn |G].

This example also demonstrates that discontinuities of quantile sample paths play a crucial role in
convergence theorems. Indeed, as operators on L0(Ω,F ,P), the previous result implies that conditional
quantiles are continuous with respect to a.s. convergence, provided that τ ∈ (0,1) is a continuity point
for the sample path of the conditional quantile of the limiting random variable, s 	→ Qs[X |G], in a set
of full probability measure.

Corollary 4.2. Let (Xn)n∈N ⊂ L0(Ω,F ,P), such that Xn → X ∈ L0(Ω,F ,P) a.s. Then, for each τ ∈ (0,1)
such that Qτ[X |G] =Qτ+[X |G] a.s., we have:

Qτ[X |G] = lim
n∈N

Qτ[Xn |G], a.s.

Corollary 4.2 proves that, for each τ ∈ (0,1), Qτ[·|G] : L0(Ω,F ,P) → L0(Ω,G,P) is a continuous
operator, if restricted to random variables such x ∈ R 	→ P[X ≤ x |G] is strictly increasing a.s. and
L0(Ω,F ,P) and L0(Ω,G,P) are considered with a.s. convergence of random variables. On the other
hand, Theorem 4.1 shows that Qτ[·|G] and Qτ+[·|G] are, respectively, lower semicontinuous and upper
semicontinuous operators on L0(Ω,F ,P), taking values in L0(Ω,G,P), when both spaces are considered
with a.s. convergence. Next, we demonstrate that a similar phenomenon occurs when these operators
are restricted to Lp(Ω,F ,P), p ∈ [1,+∞).

4.2. Lp continuity

As we proved in Proposition 2.5, the operator Qτ[·|G] maps Lp(Ω,F ,P) onto Lp(Ω,G,P), for p ∈
[1,+∞]. Thus, it is natural to study continuity properties for the family of conditional quantiles op-
erators with respect to Lp-convergence. Our next proposition shows that Qτ[·|G] : Lp(Ω,F ,P) →
Lp(Ω,G,P), for all p ∈ [1,+∞) and τ ∈ (0,1), is a lower semicontinuous operator with respect Lp-
topology. Besides that, we show that the requirement for a.s. continuity of the sample paths of the
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conditional quantile of the limiting random variable, X , also guarantees Lp continuity of the oper-
ator Qτ[·|G] at X . We close this section demonstrating that Qτ[·|G] : L∞(Ω,F ,P) → L∞(Ω,G,P) is
1-Lipschitz, whereas for all p ∈ [1,+∞) the operator Qτ[·|G] : Lp(Ω,F ,P) → Lp(Ω,G,P) is not Lips-
chitz.

Proposition 4.3. For each p ∈ [1,+∞) and τ ∈ (0,1), Qτ[·|G] : Lp(Ω,F ,P) → Lp(Ω,G,P) is lower

semicontinuous with respect to Lp-convergence, i.e. if Xn
Lp

−−−−→
n→∞

X, then lim infn∈NQτ[Xn |G] ∈
Lp(Ω,G,P) and lim supn∈NQτ[Xn |G] ∈ Lp(Ω,G,P) with:

Qτ[X |G] ≤ lim inf
n∈N

Qτ[Xn |G] ≤ lim sup
n∈N

Qτ[Xn |G] ≤ Qτ+[X |G], a.s.

Furthermore, for all τ ∈ (0,1) where s 	→ E[Qs[X |G]] is continuous, then Qτ[Xn |G]
Lp

−−→ Qτ[X |G].

When p = +∞ the continuity condition for the family of conditional quantiles operator simplifies.
Recall that, by Proposition 2.5 item 2, Qτ[·|G] : L∞(Ω,F ,P) → L∞(Ω,G,P). Using Theorem 3.6 and
the monotonicity of Qτ[·|G], Proposition 2.9 item 3, we are able to repeat the argument in Lemma 4.3
in [13] to derive that this family of operators are 1-Lipschitz and, hence, continuous.

Proposition 4.4. For all τ ∈ (0,1), Qτ[·|G] : L∞(Ω,F ,P) → L∞(Ω,G,P) is a continuous non-linear
operator in L∞-norm. Moreover, Qτ[·|G] is 1-Lipschitz, i.e. for all X,Y ∈ L∞(Ω,F ,P), then:

‖Qτ[X |G] − Qτ[Y |G]‖∞ ≤ ‖X −Y ‖∞.

As claimed before, we now show that Qτ[·|G] : Lp(Ω,F ,P) → Lp(Ω,G,P) is not Lipschitz.

Example. For all τ ∈ (0,1) and p ∈ [1,+∞), let (Xn)n∈N ⊂ Lp(Ω,F ,P) and X ∈ Lp(Ω,F ,P) be as in
(9). By the dominated convergence theorem, Xn → X in Lp . Therefore, given a K ∈ (0,∞), there exists
a n0 ∈ N such that, for all n ≥ n0, ‖X − Xn‖Lp < 1

K . However, ‖Qτ[Xn |G] − Qτ[X |G]‖Lp = 1, for all
n ∈ N. Consequently, we conclude that, for all n ≥ n0,

‖Qτ[Xn |G] − Qτ[X |G]‖Lp > K ‖X − Xn‖Lp ,

and Qτ[·|G] : Lp(Ω,F ,P) → Lp(Ω,G,P) is not Lipschitz.

4.3. Weak continuity

Instead of considering L0(Ω,F ,P) with almost sure convergence, we may consider this space equipped
with the convergence in distribution. Recall that a sequence of random variables, (Xn)n∈N ⊂ L0(Ω,F ,P),
is said to converge in distribution (or weakly) to X ∈ L0(Ω,F ,P), Xn ⇒ X (or Fn ⇒ F), if, and only
if, the sequence of c.d.f.’s, (Fn)n∈N, converges pointwise at every continuity point of F, the c.d.f. of
the limiting random variable. As we are dealing with a conditional framework, a suitable concept for
conditional convergence in distribution is proposed in [31]:

Definition 4.5. A sequence of random variables, (Xn)n∈N ⊂ L0(Ω,F ,P), converges weakly to X ∈
L0(Ω,F ,P) conditional to G almost surely, Xn ⇒

G
X a.s., if there exists a setΩ′ ∈ G, with full probability

measure, such that:

P[Xn ∈ ·|G](ω) ⇒ P[X ∈ ·|G](ω), for all ω ∈ Ω′.
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Notice that, when restricted to G = {∅,Ω}, G-weak convergence a.s. reduces to weak convergence.
Thus, the results derived in this section for the conditional framework might be immediately translated
to the unconditional setup using weak convergence.

We begin by proving that conditional right and left-quantiles, when viewed as operators on
L0(Ω,F ,P) and taking values on L0(Ω,G,P), are, respectively, upper and lower semicontinuous with
respect to G-weak convergence a.s. In the unconditional framework, this result was initially proposed in
[2]. Finally, we conclude with conditions for the convergence of the quantiles for a monotone sequence
with respect to first order stochastic dominance in the conditional setup.

Theorem 4.6. For all τ ∈ (0,1), the operators Qτ[·|G] : L0(Ω,F ,P) → L0(Ω,G,P) and Qτ+[·|G] :
L0(Ω,F ,P) → L0(Ω,G,P) are weakly lower and upper semicontinuous, respectively. Moreover, Xn ⇒

G
X

a.s. if, and only if, there exists a set Ω′ ∈ G, such that P(Ω′) = 1 and on it:

Qτ[X |G] ≤ lim inf
n∈N

Qτ[Xn |G] ≤ lim sup
n∈N

Qτ[Xn |G] ≤ lim sup
n∈N

Qτ+[Xn |G] ≤ Qτ+[X |G],

for all τ ∈ (0,1).

We conclude this section discussing how Theorem 4.6 may be used to determine the convergence of
quantiles along monotone sequences of random variables. In order to prove a monotone convergence
theorem, we must first define what it means for a random variable to converge from above or below. To
achieve this, we use the first order stochastic dominance concept adapted to the conditional setting.

Definition 4.7 (Conditional First Order Stochastic Dominance). Let X,Y ∈ L0(Ω,F ,P), then X �G
Y , if there exists Ω′ ∈ G, with full probability measure, such that:

P[X ≤ x |G](ω) ≤ P[Y ≤ x |G](ω), for all x ∈ R and ω ∈ Ω′.

Notice that, in particular, if X ≥ Y a.s., then X �G Y . Moreover, the definition of conditional first
order stochastic dominance gives rise to a natural definition of monotone convergence for sequences
of random variables. A sequence of random variables (Xn)n∈N ⊂ L0(Ω,F ,P) is first order increasing if
Xn+1 �G Xn for all n ∈ N. If this happens and, additionally, Xn ⇒

G
X a.s., we write Xn ↑D X . Similarly,

a sequence of random variables (Xn)n∈N is first order decreasing if Xn+1 �G Xn for all n ∈ N. In this
case, we write Xn ↓D X when Xn ⇒

G
X a.s.

Equipped with the concepts defined above, we are now able to provide sufficient and necessary
conditions that assure convergence for a conditional first order monotone sequence of random variables.

Proposition 4.8. Let Π = {Xn}n∈N be a conditional first order monotone sequence of random vari-
ables. Then, (Xn)n∈N is G-weakly convergent a.s. if, and only if, there exists a Ω′ ∈ G, with full proba-
bility, and, for all ε > 0, there is a m(ε,ω) > 0 such that:

sup
X∈Πτ∈(ε ,1−ε ]

|Qτ[X |G](ω)| ≤ m(ε,ω) and sup
X∈Πτ∈[ε ,1−ε )

|Qτ+[X |G](ω)| ≤ m(ε,ε),

for all ω ∈ Ω′.
Furthermore, if it is convergent, then there is a X ∈ L0(Ω,F ,P) and Ω′ ∈ G, with full measure, such

that on it:

Qτ[X |G] ≤ lim
n∈N

Qτ[Xn |G] ≤ Qτ+[X |G], for all τ ∈ (0,1).
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Finally, if Xn ↓D X (or Xn ↑D X) then Qτ[Xn |G] ↓ Qτ[X |G] a.s. (or Qτ[Xn |G] ↑ Qτ[X |G] a.s.) at
every τ ∈ (0,1) such that Qτ[X |G] =Qτ+[X |G] a.s.

5. Interchanging quantiles and derivatives: Leibniz’s rule
One of the most useful properties of the expected value is its ability of interchanging the order of
integration and differentiation, also referred to as “Leibniz’s rule.” Interchanging a derivative with
an expectation (an integral) can be established by applying the dominated convergence theorem. The
interchange of integration and differentiation has been extensively used in applications; for example, in
deriving statistical properties of the maximum likelihood estimator [see, e.g., 12].

Since quantiles are not linear, the commutation of derivatives and quantiles is not clear at a first
glance. In fact, as we show below, it might fail. Nevertheless, making this interchange may be useful in
optimization problems, where the quantile is either in the objective function or in the constraints. For in-
stance, consider the problem maxx Qτ[h(x,Y )|G] for some differentiable function (x, y) ∈ R2 	→ h(x, y).
This problem might appear in statistics, decision theory, economics and operations research, see, e.g.,
[32] and [7]. The first order condition would invite one to calculate the derivative d

dxQτ[h(x,Y )|G].
Interchanging quantile and derivative leads to the more familiar expression Qτ

[
∂
∂x h(x,Y )|G

]
, where

the derivative of h can be directly used.
In this section, we show those invariance properties may be used extensively to prove differentiability

of the quantile along a family of functions in the support of a random variable. Moreover, we are able
to provide an example where the differentiation under the expectation sign fails, even though we may
interchange the differentiation and the quantile functional for all τ ∈ (0,1). Section 5.1 deals with the
Leibniz rule for monotone functions and it is related to Section 3.2. Section 5.2 uses Section 3.1 to
separable functions to generate the same result.

5.1. Leibniz’s rule for monotone functions

Recall that given a stochastic process (Xt )t∈V , we call (X̄t )t∈V its modification if:

P[Xt = X̄t ] = 1, for all t ∈ V .

Our first result is accomplished by applying Proposition 3.7 to obtain a differentiable modification
of the process (Qτ[h(x̄,Y )|G])x̄∈V in a neighbourhood V of x.

Theorem 5.1. Let X ⊂ R, Y ⊂ R, h : X ×Y → R and x ∈ X such that:

1. There exists an open neighbourhood of x ∈ V ⊂ R, such that y ∈ Y 	→ h(x̄, y) is non-decreasing
and left-continuous for all x̄ ∈ V ∩X.

2. x̄ 	→ h(x̄, y) is differentiable at x, for all y ∈ Y.

Then, for all τ ∈ (0,1) and Y ∈ L0(Ω,F ,P), whose support lies in Y, the stochastic process
(Qτ[h(x̄,Y )|G])x̄∈V∩X admits a modification differentiable a.s. at x so that:

d
dx

Qτ[h(x,Y )|G] =
∂h
∂x

(x,Qτ[Y |G]).

Moreover, if in condition 1 above h is non-increasing and left-continuous, then, the stochastic pro-
cess (Qτ[h(x̄,Z)|G])x̄∈V∩X , for all τ ∈ (0,1), admits a modification differentiable a.s. at x so that:

d
dx

Qτ[h(x,Y )|G] =
∂h
∂x

(x,Q(1−τ)+[Y |G]).
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In many situations, we are interested in differentiating h under the Qτ functional. Instead of exploit-
ing the linearity, which is the key tool for the expectation, we may obtain such result just using again
the invariance of conditional quantiles to monotone transformation.

Corollary 5.2. Let h : X ×Y → R be a function, τ ∈ (0,1) and Y ∈ L0(Ω,F ,P), so that its support is in
Y. If h satisfies:

1. There exists an open neighbourhood of x ∈ V ⊂ R, such that y ∈ Y 	→ h(x̄, y) is non-decreasing
and left-continuous, for all x̄ ∈ V ∩X.

2. x̄ ∈ V ∩X 	→ h(x̄, y) is differentiable at x, for all y ∈ Y.
3. y ∈ Y 	→ ∂h

∂x (x, y) is non-decreasing and left-continuous.

Then, there is a modification of the stochastic process (Qτ[h(x̄,Y )|G])x̄∈V∩X so that:

d
dx

Qτ[h(x,Y )|G] =Qτ

[ ∂h
∂x

(x,Y )
���G] , a.s.

If in item 3 above ∂h
∂x (x, ·) is non-increasing and left-continuous, then there is a modification of the

stochastic process (Qτ[h(x̄,Y )|G])x̄∈V∩X so that:

d
dx

Qτ[h(x,Y )|G] =Q(1−τ)+
[ ∂h
∂x

(x,Y )
���G] , a.s.

Moreover, if in condition 1 h is non-increasing and left-continuous, then there is a modification of
the stochastic process (Qτ[h(x̄,Y )|G])x̄∈V∩X so that:

d
dx

Qτ[h(x,Y )|G] =Q(1−τ)+
[ ∂h
∂x

(x,Y )
���G] , a.s.

Finally, if in addition to the previous change in item 1, in item 3 above ∂h
∂x (x, ·) is non-increasing and

left-continuous, then there is a modification of the process (Qτ[h(x̄,Y )|G])x̄∈V∩X so that:

d
dx

Qτ[h(x,Y )|G] =Qτ

[ ∂h
∂x

(x,Y )
���G] , a.s.

5.2. Leibniz’s rule for separable functions

Instead of exploring the monotonicity property, we may apply the translational invariance and homo-
geneity of quantiles to investigate the interchanging of differentiation and Qτ . In the following result,
assuming a separability condition on h, we are able to provide conditions for differentiability of the pro-
cess (Qτ[h(x̄,Y )|G])x̄∈V with respect to the parameters x̄, as well as for the interchange of derivative
and quantiles in this setting.

Theorem 5.3. Let h : X ×Y → R be such that there are η : Y → R, φ : X → R and ψ : X → R with
h(x, y) = φ(x) + ψ(x)η(y), for all x ∈ X and y ∈ Y. Assume that Y ∈ L0(Ω,F ,P), so that its support is
in Y, and both ψ and φ are differentiable at x.

1. If ψ(x̄) ≥ 0, for all x̄ ∈ V ∩ X in an open neighbourhood V of x, then the stochastic process
(Qτ[h(x̄,Y )|G])x̄∈V∩X admits a modification differentiable at x, so that:

d
dx

Qτ[h(x,Y )|G] = φ′(x) + ψ′(x)Qτ[η(Y )|G].
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Additionally, if ψ′(x) ≥ 0, then the stochastic process (Qτ[h(x̄,Y )|G])x̄∈V∩X has a modification
differentiable at x ∈ X so that:

d
dx

Qτ[h(x,Y )|G] =Qτ

[ ∂h
∂x

(x,Y )
���G] , a.s.

However, if ψ′(x) < 0, then the stochastic process (Qτ[h(x̄,Y )|G])x̄∈V∩X has a modification
differentiable at x ∈ X so that:

d
dx

Qτ[h(x,Y )|G] =Q(1−τ)+
[ ∂h
∂x

(x,Y )
���G] , a.s.

2. If ψ(x̄) ≤ 0, for all x̄ ∈ V ∩ X in an open neighborhood V of x, then the stochastic
(Qτ[h(x̄,Y )|G])x̄∈V∩X admits a modification differentiable at x, such that:

d
dx

Qτ[h(x,Y )|G] = φ′(x) + ψ′(x)Q(1−τ)+[η(Y )|G].

Moreover, if ψ′(x) ≥ 0, then the process (Qτ[h(x̄,Y )|G])x̄∈V∩X has a modification differen-
tiable at x ∈ X so that:

d
dx

Qτ[h(x,Y )|G] =Q(1−τ)+
[ ∂h
∂x

(x,Y )
���G] , a.s.

Nevertheless, if ψ′(x) < 0, then the process (Qτ[h(x̄,Y )|G])x̄∈V∩X has a modification differen-
tiable at x ∈ X so that:

d
dx

Qτ[h(x,Y )|G] =Qτ

[ ∂h
∂x

(x,Y )
���G] , a.s.

3. If ψ(x) = 0, x̄ ∈ V ∩ X 	→ ψ(x̄) is either non-decreasing or non-increasing in a neighborhood
V ⊂ X of x, and ψ′(x)Qτ[η(Y )|G] = ψ′(x)Q(1−τ)+[η(Y )|G] a.s., then the stochastic (Qτ[h(x̄,
Y )|G])x̄∈ V∩X admits a modification differentiable at x, such that:

d
dx

Qτ[h(x,Y )|G] = φ′(x) + ψ′(x)Qτ[η(Y )|G], a.s.

Beyond that, the process (Qτ[h(x̄,Y )|G])x̄∈V∩X has a modification differentiable at x ∈ X so
that:

d
dx

Qτ[h(x,Y )|G] =Qτ

[ ∂h
∂x

(x,Y )
���G] , a.s.

We conclude with two examples, restricting ourselves to the unconditional framework. The first
example shows explicitly when it is not possible to differentiate Qτ[h(x,Z)].

Example. Let Y be a random variable such that P[Y = 1] = P[Y = −1] = 1
2 , and h : R × {−1,1} → R:

h(x, y) = xy. Fixed τ ∈ ( 1
2 ,1), then:

Qτ[h(x,Y )] = xQτ[Y ]1x≥0 + xQ(1−τ)+[Y ]1x<0

= |x |,

since Qτ[Y ] = 1 and Q(1−τ)+[Y ] = −1. It is clear that x 	→ Qτ[h(x,Y )] is not differentiable at 0.
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Our second example in this section exhibits that we may have Qτ[∂h∂x (x,Y )] =
d
dxQτ[h(x,Y )], though

d
dxE[h(x,Y )] � E[∂h∂x (x,Y )].

Example. Let Y be a random variable whose support is supp Y = (0,1) and its law is given by:

P[Y ∈ A] =
∫
A

y−
1
2

2
dy, for all A ∈ B((0,1)).

Suppose h : R+ × (0,1) → R is the function h(x, y) = ln(x + y) + 2 y
x+y . Then, E[h(x,Y )] = ln(x + 1) for

all x ≥ 0. In particular, d
dxE[h(x,Y )] = 1

x+1 for all x ≥ 0 and, consequently, d
dxE[h(0,Y )] = 1.

Now observe that ∂h
∂x (0,Y ) =

−1
Y . This implies that:

E
[ ∂h
∂x

(0,Y )
]
= −∞ � 1 =

d
dx

E[h(x,Y )]
����
x=0

.

Therefore, it is not possible to differentiate under the integral sign. Nevertheless, for all τ-quantile,
τ ∈ (0,1), one is able to do it.

Notice that ∂h
∂y (x, y) =

1
x+y +

2x
(x+y)2 > 0 and, consequently, y ∈ (0,1) 	→ h(x, y) is strictly increasing

and continuous for all x ∈ R+ fixed. Secondly, x 	→ h(x, y) is differentiable everywhere. Finally, y 	→
∂h
∂x (0, y) is strictly increasing, because ∂2h

∂y∂x (0, y) =
1
y2 > 0. Therefore, Corollary 5.2 assures that:

d
dx

Qτ [h(x,Y )]
����
x=0
=Qτ

[
∂h
∂x

(0,Y )
]
, for all τ ∈ (0,1).

6. Composition of conditional quantiles

Along this section, we investigate the behavior of the composition of conditional quantiles with respect
to different σ-algebras. Firstly, Section 6.1 exhibits a general counterexample to the “law of iterated
quantiles”, which would be the analog of the “law of iterated expectations” to conditional quantiles.
Besides that, we describe the properties of the domains where the “law of iterated quantiles” holds,
building an analogy to the projection approach to both expected values and quantiles. Lastly, Section 6.2
analyzes the problem of countable compositions of conditional quantiles along a filtration. As we will
show, this problem is much more complex than its expected value counterpart, since the “law of iterated
quantiles” is generally false. We also provide two distinct conditions for the existence of the limit of
infinitely many compositions of conditional quantiles.

6.1. The law of iterated quantiles

Recall that given σ-algebras F ⊃ G ⊃ H and a random variable X ∈ L1(Ω,F ,P), the law of iterated
expectations – also known as the law of total expectation or the tower property, [34] – is the following
equality:

E[E[X |G]|H] = E[X |H] = E[E[X |H]|G], a.s.

This equation can be interpreted as a commutative relation between the maps E[·|H] : L1(Ω,F ,P) →
L1(Ω,H,P) and E[·|G] : L1(Ω,F ,P) → L1(Ω,G,P).
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For the conditional quantiles, recall that Qτ[Qτ[X |H]|G] = Qτ[X |H], due to Proposition 2.9 item
5 and Qτ[X |H] ∈ L0(Ω,H,P). However, as we pointed out and the following result shows, in general,
the law of iterated quantiles, Qτ[Qτ[X |G]|H] =Qτ[X |G], does not hold unrestrictedly in a wide class
of probability spaces.

Proposition 6.1. Suppose that (Ω,F ,P) is a probability space, such that F is a non-trivial σ-algebra
on Ω and τ ∈ (0,1). If there are disjoint sets {Ai}3

i=1 ⊂ F , with P[Ai] = pi ∈ (0,1), i = 1,2 and 3,
satisfying:

1. A1 ∪ A2 ∪ A3 =Ω;
2. 0 < p1 < τ;
3. τ − p1 ≤ p2 < τ − τp1;

then, there are a random variable X ∈ L0(Ω,F ,P) and sub-σ-algebras H ⊂ G ⊂ F , so that:

Qτ[Qτ[X |G]|H] �Qτ[X |H]. (10)

Although Proposition 6.1 shows a negative result for a general law of iterated quantiles, we are able
to characterize the maximal set where it holds by analyzing the family of conditional quantile operators
as a family of non-linear projections.

Recall that, when restricted to L2(Ω,F ,P) random variables, the conditional expectation may be
computed from a specific class of optimization problems. According to this formulation, for all sub-σ-
algebras S ⊂ F , then:

E[X |S] = argmin
Y ∈L2(Ω,S,P)

E[|X −Y |2],

which is the minimization of the L2 distance between a set and a point. In particular, E[·|S] may
be seen as a linear projection from L2(Ω,F ,P) onto L2(Ω,S,P). Denoting by πL2(Ω,S,P) = E[·|S] and
π2

L2(Ω,S,P)(X) = πL2(Ω,S,P)(X) ◦ πL2(Ω,S,P)(X), this projection fulfills:

π2
L2(Ω,S,P)(X) = πL2(Ω,S,P)(X), for all X ∈ L2(Ω,F ,P),

πL2(Ω,S,P)(X) = X, for all X ∈ L2(Ω,S,P).

Furthermore, restated in terms of projections, the law of iterated expectations is then just a commu-
tative property enjoyed by projection operators,

πL2(Ω,H,P) ◦ πL2(Ω,G,P)(X) = πL2(Ω,G,P)(X) =πL2(Ω,G,P) ◦ πL2(Ω,H,P)(X).

Similarly, the conditional median may also be seen as a non-linear projection when restricted to
L1(Ω,F ,P), projecting it onto L1(Ω,S,P). Indeed, by Proposition 2.7 the conditional median satisfies:

Q 1
2
[X |S] = inf

{
Z ∈ argmin

Y ∈L1(Ω,S,P)

1
2

E
[
|X −Y |

] }
.

This characterization shows that conditional medians are the minimal random variables that mini-
mize the L1 distance between a closed convex subset, L1(Ω,S,P), and a point X ∈ L1(Ω,F ,P). More-

over, defining Q 1
2
[·|S] = π

1
2
L1(Ω,S,P) : L1(Ω,F ,P) → L1(Ω,S,P), then π

1
2
L1(Ω,F,P) is both an idempotent
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non-linear operator and invariant on L1(Ω,F ,P) – see item 5 in Proposition 2.9.8 Consequently,

π
1
2
L1(Ω,S,P) ◦ π

1
2
L1(Ω,S,P)(X) = π

1
2
L1(Ω,S,P)(X), for all X ∈ L1(Ω,F ,P)

π
1
2
L1(Ω,S,P)(X) = X, for all X ∈ L1(Ω,S,P).

For the general case, i.e. τ ∈ (0,1), the conditional quantile operator may also be seen as the minimal
minimizer of a quasimetric, which differs from a metric by not being symmetric. Indeed, fixed τ ∈ (0,1),
define the quasimetric dτ : L1(Ω,F ,P) × L1(Ω,F ,P) → R+ by:

dτ(X,Y ) = E[ρτ(X −Y )].

It is immediate to see that dτ is, indeed, a quasimetric, since it satisfies the following items 1 and 3,
though not 2 – except when τ = 1

2 :

1. dτ(X,Y ) ≥ 0 and dτ(X,Y ) = 0 if, and only if, X =Y a.s.
2. dτ(X,Y ) = dτ(Y,X) for all X,Y ∈ L1.
3. dτ(X,Y ) ≤ dτ(X,Y ) + dτ(Y,Z), for all X,Y,Z ∈ L1.

Actually, item 2 above can be replaced by dτ(X,Y ) = d1−τ(Y,X), for the general case. Restated in
this way, the conditional quantile is the minimal minimizer of the distance, measured by a quasimetric
dτ , between a point and a closed – in L1-norm – convex set, L1(Ω,S,P):

Qτ[X |S] = inf

{
Z ∈ argmin

Y ∈L1(Ω,S,P)
dτ(X,Y )

}
.

Because the τ-conditional quantile is both an idempotent operator, invariant on its image – Propo-
sition 2.9 item 5 – and a minimizer of a quasimetric between a convex closed set and a point, we
conclude that it may also be seen as a nonlinear projection. Indeed, abusing the terminology from the
L2 framework, we will call any pair (H, πH ), or simply πH , a projection onto H, if H ⊂ L1(Ω,F ,P) is a
closed convex set, in L1-norm, and πH : L1(Ω,F ,P) → H is an idempotent non-linear operator invariant
on H. Thus, for all τ ∈ (0,1) the pair (L1(Ω,S,P), πτ

L1(Ω,S,P)) defined by πτ
L1(Ω,S,P) = Qτ[·|S] is, due to

Propositions 2.9 item 5 and Proposition 2.5 item 1, a (generalized) projection onto L1(Ω,S,P).
Using the terminology of commutative algebra, the commutator of two maps A, B is known as

[A,B] = A ◦ B − B ◦ A. Thus, the set of random variables such that the law of iterated conditional
quantiles holds can be defined by:

Cτ
H,G =

{
X ∈ L1(Ω,F ,P) :

[
πτ

L1(Ω,H,P), π
τ
L1(Ω,G,P)

]
= 0

}
.

Fixed τ ∈ (0,1), the formulation of conditional quantiles as projections allows us to characterize
the domains of L1(Ω,F ,P) where the law of iterated quantiles holds as the set where two projections
commute with the following properties.

Proposition 6.2. Fixed τ ∈ (0,1) and H ⊂ G ⊂ F σ-algebras, then:

1. L1(Ω,H,P) ⊂ L1(Ω,G,P) ⊂ Cτ
H,G . This last inclusion is proper provided that there is at least one

variable independent of G, i.e. L1(Ω,G,P)� Cτ
H,G

8In fact, the invariance property, item 5 in Proposition 2.9, implies the idempotency property.
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2. Given any a ∈ L1(Ω,H,P), b ∈ L∞(Ω,H,P), with b ≥ 0 a.s., and X ∈ Cτ
H,G , then a + bX ∈ Cτ

H,G .
In particular, Cτ

H,G is a cone.

6.2. Infinite composition of conditional quantiles

The non-validity of the law of iterated quantiles has further consequences on the dynamics of composed
conditional quantiles. In finance and economics, the iteration of conditional quantiles along a filtration
emerges naturally as way of modeling, in a consistent way, a dynamic decision process based on the
quantiles of random outcomes – see e.g. [5]. Nevertheless, the behavior of the infinity composition of
the conditional quantiles is still unknown. In this section, we show that this composition of conditional
quantiles has a richer structure than the infinite composition of conditional expectations, being able
to provide a concrete example where the infinite composition of conditional quantiles may lead to a
random variable which is infinity a.s. Besides that, we derive conditions for the existence of a finite
and measurable random variable which is the limit of the infinite composition of conditional quantiles
either when E[X |Ft ] − E[X |Ft−1] is independent of Ft−1, for all t ∈ N, or when X ∈ L∞(Ω,F ,P).

The law of iterated expectations is a powerful tool when considering the dynamics of conditional
expectation of a random output variable, X ∈ L1(Ω,F ,P). Suppose, for instance, that we have a filtered
probability space,

(
Ω,F ,(Ft )t∈N∪{0},P

)
, with F = F∞ and F0 = {∅,Ω}. Thus, for any n < m ∈ N, the

law of iterated expectation implies that:

E[E[. . .E[X |Fm] . . . |Fn+1]|Fn] = E[X |Fn]. (11)

Consequently, we obtain that E[X |Fn] = limm↑+∞ E[E[. . .E[X |Fm] . . . |Fn+1]|Fn].
For the conditional quantile, however, even in the finite case, an equation similar to (11) does not

have to hold. Beyond that, as the following example show, there exist a random variable and filtration
such that limm↑+∞ Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn] diverges a.s. except when τ = 1

2 .

Example. Let
(
Ω,F ,(Fn)n∈N∪{0},P

)
be such that (Bt )t≥0 :Ω→ R is a Brownian Motion, T > 0 fixed,

t0 = 0, tn − tn−1 =
6T
π2n2 , for n ∈ N, and Fn = σ(Bs : 0 ≤ s ≤ tn). Define X = BT , then, fixed n ≥ 0, for

all m > n – see the details in the Supplementary Material [4]:

Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn] = Btn +
���
√

6T
π

m−n∑
j=1

1
j
+
√

T − tm
���Qτ[N(0,1)].

Hence, because
∑m−n

j=1
1
j −→
m→∞

+∞ and
√

T − tm −→
m→∞

0, we conclude that:

lim
m→+∞

Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn] =
⎧⎪⎪⎨⎪⎪⎩
−∞, if τ < 1

2
Btn , if τ = 1

2
+∞, if τ > 1

2 .

The preceding computation on the example given above suggests that, for some particular cases, the
series

∑
j≥1 ‖E[X |Fj ] − E[X |Fj−1]‖L1 may play an important role for the existence of

lim
m→+∞

Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn].

Indeed, our next results exhibit this connection.
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Proposition 6.3. Let
(
Ω,F ,(Ft )t∈N∪{0},P

)
be a filtered probability space, with F∞ = F . Define H ⊂

L1(Ω,F ,P), such that if X ∈ H, then:

1.
∑

j≥1 ‖E[X |Fj ] − E[X |Fj−1]‖L1 < +∞.
2. E[X |Fj ] − E[X |Fj−1] independent of Fj−1, ∀ j ≥ 1.

Then, for all X ∈ H and τ ∈ (0,1), limm→+∞ Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn] ∈ L1(Ω,Fn,P), and:

lim
m→+∞

Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn] = E[X |Fn] +
∑
j≥1

Qτ[E[X |Fn+j ] − E[X |Fn+j−1]], a.s.

Although restrictive, the assumption of independent increments permits us to compute explicitly
each iteration of the conditional quantile. Instead of explicitly calculating each iteration, we may bound
them. In order to do so, we will restrict the random variables to L∞(Ω,F ,P). In this domain, we are
able to show that, for the sequence of compositions (Qτ[Qτ[. . .Qτ[X |Fm] . . . |Fn+1]|Fn])m>n, at least
lim inf and lim sup exist and are finite a.s. This is a direct consequence of the fact that this sequence is
bounded a.s. by ±‖X ‖+∞, due to Proposition 2.5 item 2. Moreover, we are also able to provide a subset
where both lim inf and lim sup agree, leaving the question whether they agree on all L∞(Ω,F ,P).

Proposition 6.4. Let (Ω,F ,(Ft )t∈N∪{0},P) be a filtered probability space, with F∞ = F . Then, for
each n ∈ N∪ {0}, both operators lim infm∈NQτ[. . .Qτ[·|Fm] . . . |Fn] : L∞(Ω,F ,P) → L∞(Ω,Fn,P) and
lim supm∈NQτ[. . .Qτ[·|Fm] . . . |Fn] : L∞(Ω,F ,P) → L∞(Ω,Fn,P) are well-defined non-linear opera-
tors. Moreover, they agree on ∪n∈N∪{0}L∞(Ω,Fn,P), where the closure is taken in L∞-norm.

7. Conclusion

This paper investigates the properties of conditional quantiles viewed as nonlinear operators. The re-
sults are organized in parallel to the usual properties of the expectation operator. We generalize well-
known properties of unconditional quantiles to the conditional case, such as translation invariance,
comonotonicity, and equivariance to monotone transformations. Moreover, we provide a simple proof
for Jensen’s inequality for conditional quantiles.

Continuity and differentiability of the conditional expectation operator are widely used in practice.
Therefore, we extend these concepts to conditional quantiles. We investigate continuity of conditional
quantiles as operators with respect to different topologies. We obtain a novel Fatou’s lemma for quan-
tiles, provide conditions for continuity in Lp , and also weak continuity. Moreover, we also investigate
the differentiability properties of quantiles. We show the validity of the Leibniz’s rule for conditional
quantiles for the cases of monotone, as well as separable functions.

Finally, we investigate the validity of the law of iterated expectations – also known as law of total
expectation or tower property – to the quantile case. We show that the law of iterated quantiles does
not hold in general. Nevertheless, we characterize the maximum set of random variables for which this
law holds, and investigate its consequences for the infinite composition of conditional quantiles.

The results in this paper are intended to shed new light and be useful for applications of quantiles,
such as decision theory in statistics and economics, risk management in finance, and applications in
quantile regression. To exemplify further prospects of some of the results derived in this paper, the
Supplementary Material provides brief applications in analysis and quantile regression.
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