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This article illustrates how indirect or prior information can be optimally used to construct a prediction region that
maintains a target frequentist coverage rate. If the indirect information is accurate, the volume of the prediction
region is lower on average than that of other regions with the same coverage rate. Even if the indirect informa-
tion is inaccurate, the resulting region still maintains the target coverage rate. Such a prediction region can be
constructed for models that have a complete sufficient statistic, which includes many widely-used parametric and
nonparametric models. Particular examples include a Bayes-optimal conformal prediction procedure that main-
tains a constant coverage rate across distributions in a nonparametric model, as well as a prediction procedure
for the normal linear regression model that can utilize a regularizing prior distribution, yet maintain a frequentist
coverage rate that is constant as a function of the model parameters and explanatory variables. No results in this
article rely on asymptotic approximations.
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1. Introduction

A standard statistical inference task is to construct a prediction region, that is, a set of plausible values
for an unobserved random object Y having sample space Y based on a realization of another random
object X having sample space X. A non-randomized procedure for constructing a prediction region is
a set-valued function X → 2Y , for example denoted by x �→ Ax , where Ax ⊂ Y is the set of predicted
values for Y when X is observed to be x.

A prediction procedure is precise if its expected volume is small, and it is accurate if its coverage
probability is high. The coverage probability of a prediction procedure x �→ Ax is typically defined
as the probability of the event Y ∈ AX . More generally, let P = {Pθ : θ ∈ Θ} be a collection of joint
probability distributions on measurable subsets of X ×Y. The coverage probability of the set-valued
function x �→ Ax for a given θ is simply Pθ (A), where A = {(x, y) : y ∈ Ax} is the graph of x �→ Ax . A
prediction procedure A for which Pθ (A) ≥ 1 − α for some target value of α and for all θ is generally
referred to as having 1−α frequentist coverage [1]. In what follows, if Pθ (A) = 1−α for all θ then A will
be referred to as a 1 − α constant coverage prediction region. Patel [20] reviews a variety of methods
for constructing prediction regions that have frequentist coverage control, the most widely-used among
them perhaps being those that are derived from pivotal quantities [17].

The precision of a prediction region can be quantified with its expected volume. Let μ be a volume
measure on measurable subsets of Y. We define the risk function of A to be the expected volume of
AX as a function of θ:

Rθ (A) = Eθ [μ(AX )]. (1)

As with confidence regions, precision can be increased at the expense of coverage, and so we com-
pare among, or optimize over, regions that share a common coverage. A prediction region A is better
than A′ if Rθ (A) ≤ Rθ (A′) and Pθ (A) ≥ Pθ (A′) for all θ, with inequality for some θ. However, as with
other types of statistical decision problems, typically there is not a uniformly best prediction region
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procedure. This motivates the identification of an optimal member of a reduced class of procedures,
or identification of a procedure that performs well in a particular region of the parameter space. As
an example of the former approach, Evans and Fraser [8] show that for the normal linear model, the
standard prediction region obtained by pivoting is, for a given coverage rate, optimal among all re-
gions that are equivariant with respect to affine transformations. Such a prediction region performs
equally well across the parameter space, in the sense that the expected volume of the prediction region
(appropriately scaled by the variance) does not depend on the model parameters.

In this article, prediction regions that share a common frequentist coverage are compared to each
other in terms of their average risk across the parameter space. The motivation for this criterion is that
in many applications there is indirect information or prior knowledge that some distributions in P are
more plausible than others. In such cases, it may be preferable to have a prediction region that performs
well for values of θ that are most plausible, at the expense of worse performance for less plausible
values. This suggests evaluating a prediction region A with a Bayes risk,

R(A) =
∫

Rθ (A) π(dθ), (2)

where π is a probability distribution that gives a large weight to θ-values for which Rθ (A) is desired to
be small.

A prediction region with a constant frequentist coverage rate and a small Bayes risk could be desir-
able in many different data analysis scenarios. First, if real prior information about θ is available, but a
region with 1 − α frequentist coverage is required, then a region that minimizes (2) while maintaining
1 − α coverage is optimal from a subjective Bayesian perspective. Another scenario where specific,
indirect information is available arises in the analysis of data from multiple populations, also known as
multilevel data analysis or small area estimation. Many methods for multipopulation inference operate
essentially by using a Bayesian procedure for each individual population based on a “prior” distribution
derived from all of the populations. More details on how the procedures described in this article may
be used for multipopulation inference appear in Section 5. Finally, for models where θ is a vector of
parameters, the distribution π could represent beliefs that the true parameters are sparse or near zero, in
the same way that commonly-used regularization penalties represent such beliefs. For example, θ could
be a vector of linear regression coefficients, many of which are suspected to be close or equal to zero.
In this case, we might prefer a prediction region that has particularly low expected volume when θ is
sparse or close to zero, over, for example, an equivariant region that has the same expected volume for
all θ-values. Calculations for and numerical examples of prediction regions for regularized regression
appear in Section 4.3. In summary, while we will refer to π as a prior distribution and R(A) as a Bayes
risk, π may or may not be a formal prior distribution that describes subjective beliefs about the value
of θ. Most generally, π can simply be viewed as a weighting function that prioritizes regions of the
parameter space.

The main result of this article is that, for many commonly-used statistical models, it is possible to
find a prediction region that maintains a target frequentist coverage rate and is also Bayes-optimal for
its coverage. Specifically, we are able to construct a set Aπ ⊂ X ×Y such that Pθ (Aπ) ≥ 1 − α for all
θ, and R(Aπ) ≤ R(A) for all sets A having the same coverage as Aπ . In particular, if Aπ has a constant
coverage rate of 1−α, then Aπ is Bayes-optimal among all 1−α constant coverage prediction regions.
Such a prediction region Aπ is Bayes-optimal among procedures that share its frequentist coverage rate.
We follow Yu and Hoff [24] by referring to such a procedure as “frequentist and Bayesian”, or FAB.
Statistical procedures of this type go back at least to Pratt [21], who constructed a constant coverage
confidence interval for the mean of a normal population that has minimum prior expected width among
intervals with the same frequentist coverage. Related to this is the “Bayes-non-Bayes compromise” of
Good [10], whereby test statistics are obtained from Bayes factors, but are compared to frequentist
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null distributions, typically via permutation. Yu and Hoff [24] and Hoff and Yu [13] extended Pratt’s
Bayes-optimal frequentist interval to multiparameter settings, in which the prior distribution may be
empirically estimated from the data using a hierarchical model, resulting in an adaptive confidence
interval procedure with guaranteed frequentist coverage, even if the hierarchical model is wrong. The
confidence interval procedures developed by Yu and Hoff [24] and Hoff and Yu [13] applied only to
means of univariate normal populations. This article shows how to construct analogous procedures
for prediction, and in a much wider class of models - those with a complete sufficient statistic. This
includes many exponential family models such as multinomial, linear regression, multivariate normal
and generalized linear models, some models with varying support, nonparametric models [2], and
others [18].

The results in this article are developed as follows: In order to find a risk-optimal prediction proce-
dure, we must first characterize the set of all prediction procedures. This is done in Section 2, where
we extend the observation of Faulkenberry [9] that when a sufficient statistic is available, a prediction
region with a desired coverage rate may be constructed by inverting the acceptance regions of a col-
lection of conditional point-null hypothesis tests. Faulkenberry also observed that prediction regions
with constant coverage must have constant conditional coverage, given a complete sufficient statistic.
Our Theorem 2.3 states that all 1 − α constant coverage prediction regions may be constructed from
level-α conditional tests, and Theorem 2.4 states that all prediction regions with common coverage as
a function of the parameter must also have common conditional coverage as a function of the complete
sufficient statistic. These results are used in Section 3, where a Bayes-optimal prediction region for a
given coverage is derived from a collection of Bayes-optimal conditional tests. This is done by first
obtaining a joint disintegration of the probability measures {Pθ : θ ∈ Θ} that define coverage, and the
non-probability measure R that defines the Bayes risk. This joint disintegration allows us to find the
risk-minimizing conditional test for each possible value of the sufficient statistic, using a variation of
the Neyman-Pearson lemma. Theorems 3.2 and 3.4 then give the form of the risk-optimal prediction
region for a given coverage function and a given constant coverage rate, respectively. Corollary 3 pro-
vides a more familiar expression for the optimal region in terms of a test statistic based on densities of
{Pθ : θ ∈ Θ} and a prior predictive density. None of these results rely on asymptotic approximations.

While the methodology in this article applies generally to models with a complete sufficient statistic,
Section 4 considers a few specific scenarios in detail, including prediction for multivariate normal and
normal linear regression models, as well as nonparametric prediction using conformity scores as de-
scribed in Jin et al. [14]. In particular, it is shown that the Bayes-optimal choice of a conformity score
is, not surprisingly, the Bayesian posterior predictive density. The resulting FAB prediction region is
Bayes optimal among nonparametric regions with constant frequentist coverage, and is of course dif-
ferent from a fully Bayesian posterior predictive region, as the latter does not have constant frequentist
coverage. In this sense, the conformal FAB approach optimally incorporates prior information while
maintaining a constant frequentist coverage rate. Additional aspects of the FAB prediction methodol-
ogy, and some directions for further research are discussed in Section 5. Proofs are in an appendix.

2. Prediction regions via sufficiency

2.1. Review of Faulkenberry’s construction

Let X and Y be random objects taking values in spaces X and Y respectively, with a joint distribution
that is a member of a model P = {Pθ : θ ∈ Θ} on X × Y. For a model P with a sufficient statistic
Z : X ×Y →Z, Faulkenberry [9] proposed constructing a 1 − α prediction region A for Y from X as
follows:
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1. For each z ∈ Z,
a) identify PY

z , the conditional distribution of Y given {Z = z}, which by sufficiency does not
depend on θ;

b) find a set Cz ⊂ Y such that PY
z (Cz) = 1 − α.

2. Let A = {(x, y) : y ∈ CZ(x,y)}, so y ∈ Ax ⇔ y ∈ CZ(x,y).

The conditional probability of the event Y ∈ AX given {Z = z} is PY
z (Cz) = 1 − α for all z, and so its

unconditional probability is equal to 1 − α as well.

Example 1. Let X ∼ N(θ, kσ2) and Y ∼ N(θ,σ2) be independent for some unknown value of θ ∈ R and
known value of σ2 > 0. For example, if X were the sample mean of a sample of size n from the N(θ,σ2)
distribution, then k = 1/n. For arbitrary k, Z = (X + kY )/(1 + k) is a complete sufficient statistic, with
Y |{Z = z} ∼ N(z,σ2/(k + 1)). For any function δ : R→ R, define for each z ∈ R the set

Cz =

⎧⎪⎪⎨⎪⎪⎩y :

����� z − y

σ/
√

k + 1
+ δ(z)

�����
2

< χ2
1,δ(z)2 ,1−α

⎫⎪⎪⎬⎪⎪⎭ , (3)

where χ2
1,δ2 ,1−α is the 1 − α quantile of the χ2

1 distribution with noncentrality parameter δ2. Then

PY
z (Cz) = 1 − α for each z. Defining A as in step 2 gives

A =

{
(x, y) :

���� x − y

σ
√

k + 1
+ δ(Z(x, y))

����2 < χ2
1,δ(Z(x,y))2 ,1−α

}
, (4)

which is a 1−α constant coverage prediction region for any choice of δ. For example, if δ is identically
zero then Ax is the standard prediction interval x ± σ

√
k + 1 ×Φ−1(1 − α/2) obtained via the pivotal

quantity X − Y , where Φ−1 is the standard normal quantile function. In Section 4 we will obtain the
function δ that minimizes the Bayes risk under a normal prior distribution for θ, and generalize the
method to multivariate normal models with unknown variance.

Faulkenberry specifically considered the case that X and Y are independent and that Z is a complete
sufficient statistic, but only sufficiency - not independence or completeness - is necessary to ensure that
a set obtained from Faulkenberry’s construction has 1 − α constant coverage. Faulkenberry considers
completeness because it provides a characterization of the set of prediction regions that have 1 − α
constant coverage, that is, regions for which Pθ (A) = 1 − α for all θ. For such a region, Faulkenberry
points out that Pθ (A|Z) = 1 − α almost surely for each θ, because Eθ [Pθ (A|Z)] = Pθ (A) = 1 − α for
all θ and Z is complete. Faulkenberry therefore concludes that, for models with a complete sufficient
statistic, a prediction region has constant coverage as a function of the parameter if and only if it has
constant conditional coverage (almost surely) as a function of the complete sufficient statistic.

Can all prediction procedures for models with a complete sufficient statistic be derived from Faulken-
berry’s construction? The answer is no, for two reasons: The first reason is that not all subsets of X×Y
can be expressed as A = {(x, y) : y ∈ CZ(x,y)} for some set-valued function C mapping Z to subsets
of Y, unless some additional conditions on Z are met. The second reason is that, as pointed out by
Dunsmore [7], there may not exist prediction procedures A with constant coverage, for example, if the
Pθ ’s are discrete distributions. In this case, coverage above or equal to 1−α may still be maintained by
choosing a Cz in Faulkenberry’s construction so that PY

z (Cz) ≥ 1−α for all z. However, while every set
with conditional coverage of at least 1 − α also has marginal coverage of at least 1 − α, the converse is
not necessarily true, even with completeness of Z: For prediction of a binomial random variable, Dun-
smore provides an example of a prediction region A for which Pθ (A) ≥ 1 − α for all θ but P(A|Z = z)
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falls below 1− α for some values of z. This means that in some cases the set of prediction regions hav-
ing coverage greater than 1− α for all θ is a proper superset of those with conditional coverage greater
than 1 − α for all z, and so the best procedure that can be obtained from Faulkenberry’s construction
may not be the best procedure obtainable.

In the remainder of this section we extend Faulkenberry’s method to address these limitations. In
the next subsection we generalize Faulkenberry’s construction to provide a complete characterization
of set-valued functions from X to subsets of Y in terms of set-valued functions from Z to subsets
of X × Y. In Subsection 2.3 we show how complete sufficiency allows for a characterization of all
procedures that have the same coverage, in terms of collections of point-null hypothesis tests that have
the same conditional size. In particular, given a candidate prediction procedure, we can characterize
the class of procedures with the same coverage, and possibly find one with lower risk.

2.2. Characterizing set-valued functions

Let X and Y be spaces. For a subset A of X × Y and element x ∈ X, the section of A at x is the set
Ax = {y : (x, y) ∈ A}, a subset of Y. The sections of A define a set-valued function X → 2Y given by
x �→ Ax . Conversely, for each x ∈ X, let Ax be a subset of Y. Every such set-valued function has a
graph A = {(x, y) : y ∈ Ax}, a subset of X ×Y. The operations of calculating the graph of a set-valued
function X → 2Y , and calculating the sections of a subset of X ×Y, are inverses of each other, and so
there is a bijection between set-valued functions from X → 2Y and subsets of X ×Y. As such, in what
follows we will use the same symbol (e.g. “A”) for a set-valued function and its graph, and whether or
not the symbol represents a function X → 2Y or a subset of X ×Y will be clear from context.

Another representation of a subset of X × Y is given by any surjective mapping Z : X × Y →Z.
Overloading notation somewhat, for each z ∈ Z let Az = A ∩ Z−1{z}. Then the mapping z �→ Az is
a set-valued function from Z to 2X×Y . Conversely, if Az is a subset of the fiber Z−1{z} for each
z ∈ Z, then ∪z∈Z Az is a subset of X ×Y. We summarize this observations and those of the preceding
paragraph as follows:

Lemma 2.1. Let Z : X × Y →Z be a surjection. Then there is a bijection between each pair of the
following sets:

1. 2X×Y;
2. set-valued functions X → 2Y;
3. set-valued functions A : Z →X ×Y for which Az ⊂ Z−1{z}.

In the next subsection, we will show how the bijection between items 2 and 3 can be used to represent
a prediction procedure (item 2) as a collection of acceptance regions of hypothesis tests (item 3).

Now recall that Faulkenberry’s method is to construct a prediction procedure A : X → 2Y from a
set-valued function C : Z → 2Y by setting A = {(x, y) : y ∈ CZ(x,y)}. Can all prediction procedures be
represented in this way? Since Lemma 2.1 shows there is a bijection between functions X → 2Y and
functions Z → 2X×Y , intuitively Faulkenberry’s representation can only be complete if somehow y

and Z(x, y) determine x, for example if Z(x, y) = x + y. In fact, such a condition is necessary and suf-
ficient for Faulkenberry’s representation to be a complete characterization of the set-valued functions
from X to 2Y , or equivalently, subsets of X ×Y:

Lemma 2.2. Let Z : X × Y → Z. A set A ⊂ X × Y can be written as A = {(x, y) : y ∈ CZ(x,y)} for
some C : Z → 2Y if and only if the function X →Z given by Zy(x) = Z(x, y) is injective for each y.
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Similarly, if x and Z(x, y) determine y, then the subsets of X ×Y can be characterized in terms of
set-valued functions from Z to 2X :

Corollary 1. A set A ⊂ X ×Y can be written as A= {(x, y) : x ∈ BZ(x,y)} for some B : Z → 2X if and
only if the function Y →Z given by Zx(y) = Z(x, y) is injective for each x.

Example 1 (Continued). For the statistic Z(x, y) = (x + ky)/(1 + k), both Zx and Zy are injective for
each x and y. Let A be a subset of X × Y, and let Cz = {y : (z × (1 + k) − ky, y) ∈ A} and Bz = {x :
(x,(z × (1 + k) − x)/k) ∈ A}. Then A= {(x, y) : y ∈ CZ(x,y)} = {(x, y) : x ∈ BZ(x,y)}.

Example 2. Let X ∼ N(θ,1) and Y |{X = x} ∼ N(θ + x,1) with unknown θ ∈ R. This is a simplified
first-order autoregressive model, for which Z(x, y) = y is a complete sufficient statistic. In this case,
Zy is not injective, but Zx is, since Zx(y) = y. Faulkenberry’s construction does not characterize the
prediction regions in this case, but a modification does: For any A ⊂ X ×Y, let B : Y → 2X be defined
as By = {x : (x, y) ∈ A}, the section of the reflection of A at y. Then clearly A = {(x, y) : x ∈ By}. A
1 − α prediction region A for Y can be constructed by choosing By so that PX

y (By) = 1 − α for each y

and then letting A = {(x, y) : x ∈ By}.

Example 3. Let X ∼ Np(0,σ2I), and let Y |{X = x} ∼ Np(θx, I), where θ ∈ R and σ2 ∈ R+ are both
unknown. This model can be seen as a simplified linear regression model with a random explanatory
variable. For this model, Z(x, y) = (‖x‖, x�y) is a complete sufficient statistic, but Zy is not injective
for any y, nor is Zx injective for any x. A subset A of X×Y cannot in general be represented as {(x, y) :
x ∈ BZ(x,y)} or {(x, y) : y ∈ CZ(x,y)} for set-valued functions B : Z → 2X or C : Z → 2Y . However,
any A ⊂ X ×Y can be expressed as A= {(x, y) : (x, y) ∈ AZ(x,y)} simply by setting Az = A∩ Z−1{z}.

To summarize, a prediction region is a set-valued function X → 2Y , or equivalently, a subset of X ×
Y. For any surjective function Z : X ×Y →Z, there is a bijection between such set-valued functions
and set-valued functions A : Z → 2X×Y for which Az ⊂ Z−1{z} for all z in Z. Furthermore, if the
function y �→ Z(x, y) is injective for each x, then there is a bijection between prediction regions and
functions that map Z to 2X . Similarly, if the function x �→ Z(x, y) is injective for each y, then there is
a bijection between prediction regions and functions that map Z to 2Y .

2.3. Characterizing regions as hypothesis tests

Let (X,F ) and (Y,G) be measurable spaces, and let (X × Y,A) be their product space, so that A =
F ⊗ G is the smallest σ-algebra containing the rectangles {F × G : F ∈ F ,G ∈ G}. As described
previously, a prediction procedure for a Y-valued random object Y from an X-valued random object X
is a set-valued function A : X → 2Y , or alternatively, a subset A of X × Y. The coverage of A under
any probability measure P on (X × Y,A) is simply P(A), which in order to be well-defined, requires
A to be A-measurable. Conversely, if A ∈ A then Ax ≡ {y : (x, y) ∈ A} is a measurable subset of Y for
each x ∈ X, that is, A : X →G [11, Theorem 34.A]. However, not all set-valued functions X →G have
A-measurable graphs. [22, Chapter 14].

Let P = {Pθ : θ ∈ Θ} be a statistical model for (X × Y,A) that has a boundedly complete regular
sufficient statistic Z : (X × Y,A) → (Z,H). Regular sufficiency means that there is a function Z ×
A → [0,1], denoted (z,A) �→ Pz(A), for which

1. Pz is a probability measure on (X ×Y,A) for all z ∈ Z;
2. PZ (A) is a version of Pθ (A|Z) for all θ ∈ Θ and A ∈ A;
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3. Pz(Z−1{z}) = 1 for P-almost all z.

Recall that Z is boundedly complete if for all bounded measurable real-valued functions f ,
Eθ [ f (Z)] = c for all θ ∈ Θ implies f (z) = c for P-almost all z. As noted by Faulkenberry [9], com-
pleteness of Z can be used to relate coverage to conditional coverage. In particular, suppose A is a
1 − α constant coverage prediction region, so that Pθ (A) = 1 − α for all θ. Since Pθ (A) = Eθ [PZ (A)],
completeness of Z implies Pz(A) = 1 − α for almost all z. Combining this with Lemma 2.1 gives the
following characterization of all 1 − α constant coverage prediction regions:

Theorem 2.3. Let Z be a boundedly complete sufficient statistic for the model P = {Pθ : θ ∈ Θ} on
(X × Y,A). A prediction region A ∈ A has constant coverage Pθ (A) = 1 − α for all θ ∈ Θ if and only
if A = {(x, y) : (x, y) ∈ AZ(x,y)} for a set-valued function A : Z → 2X×Y for which

1. ∪z∈Z Az is measurable;
2. Az is a subset of Z−1{z};
3. Pz(Az) = 1 − α for P-almost all z.

Note that each Az can be thought of as the acceptance region of a non-randomized size-α test of
Hz : (X,Y ) ∼ Pz . If such a test exists for each z, then all 1−α constant coverage prediction regions may
be expressed as inversions of such tests. If the distributions {Pz : z ∈ Z} are non-atomic, then these
size-α tests will exist for any choice of α, and so constant coverage regions will exist for any choice
of α. Even for some cases where the Pz’s are discrete, there will exist constant coverage prediction
regions for certain choices of α, as illustrated by the following example:

Example 4. Suppose Y1, . . . ,Yn+1 is an independent and identically distributed (i.i.d.) random sample
and we wish to predict Yn+1 from a realization of X = (Y1, . . . ,Yn). Let the model P on Yn+1 be such
that the probability of ties among the Yi’s is zero and that the set of unordered values of Y1, . . . ,Yn+1
constitute a boundedly complete sufficient statistic. This includes several nonparametric families [2] as
well as many parametric families [18]. Let z = {y1, . . . , yn+1} ⊂ Y be a possible value of the sufficient
statistic. Then the conditional distribution of (X,Yn+1) given Z = z has mass 1/(n+ 1)! on each permu-
tation of the vector (y1, . . . , yn+1). It is therefore possible to find a set Az for P-almost all z such that
Pz(Az) = 1 − α for any α = k/(n + 1)! with integer k between zero and (n + 1)!. However, symmetry
suggests that if (y1, . . . , yn, yn+1) ∈ Az then (yp1, . . . , ypn , yn+1) should be in Az as well, for any permu-
tation p1, . . . ,pn of 1, . . . ,n. Prediction regions with this kind of symmetry can only have constant 1−α
coverage for values α = k/(n + 1) with k ∈ {0,1, . . . ,n + 1}.

In some cases for which the Pz’s are discrete there will not exist constant coverage prediction regions.
However, completeness can still be used to characterize prediction regions that have the same coverage.
Specifically, let A and A′ be two prediction regions for which Pθ (A) = Pθ (A′) for all θ ∈ Θ. Then

0 = Pθ (A) − Pθ (A′) (5)

= Eθ [PZ (A) − PZ (A′)] (6)

for all θ, which implies that Pz(A) = Pz(A′) for P-almost all z by the bounded completeness of Z .
Combining this observation with Lemma 2.1 gives the following characterization of prediction regions
with the same coverage:

Theorem 2.4. Let Z be a boundedly complete sufficient statistic for the model P = {Pθ : θ ∈ Θ} on
(X × Y,A). Sets A and A′ in A satisfy Pθ (A) = Pθ (A′) for all θ if and only if A = {(x, y) : (x, y) ∈
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AZ(x,y)} and A′ = {(x, y) : (x, y) ∈ A′
Z(x,y)} for set-valued functions A and A′ mapping Z → 2X×Y for

which

1. ∪z∈Z Az and ∪z∈Z A′
z are measurable;

2. Az and A′
z are subsets of Z−1{z};

3. Pz(Az) = Pz(A′
z) for P-almost all z.

This result allows us to characterize all prediction regions that have coverage equal to that of a given
prediction region. In the next section, this result will be used to construct regions that are Bayes-optimal
for their coverage.

3. Bayes-optimal prediction regions

3.1. Existence and uniqueness of optimal regions

As described in the Introduction, we define the risk of a prediction procedure A ∈ A under Pθ as its
expected Y-volume, so that Rθ (A) = Eθ [μ(AX )] where μ is a σ-finite measure on (Y,G). Letting PX

θ
be the marginal distribution of X under Pθ , for any A ∈ A we have

Rθ (A) =
∫
μ(Ax)PX

θ (dx) (7)

=

∫ ∫
1(y ∈ Ax) μ(dy)PX

θ (dx) (8)

=

∫ ∫
1((x, y) ∈ A)PX

θ (dx) μ(dy) (9)

by Tonelli’s theorem, and so Rθ is simply the product measure PX
θ × μ on (X × Y,A). Now let π be

a prior probability measure on the measurable space (Θ,T) for which F �→ PX
θ (F) is a T -measurable

function of θ for each F ∈ F . Then PX
π , defined by PX

π (F) =
∫

PX
θ (F) π(dθ), is a probability measure

on (X,F ). The Bayes risk R(A) of A ∈ A under π is then

R(A) =
∫

Rθ (A) π(dθ) (10)

=

∫ ∫
1((x, y) ∈ A)PX

π (dx) μ(dy), (11)

and so R is the product measure PX
π × μ on (X ×Y,A). Note that PX

π is finite and μ is σ-finite, so R is
σ-finite.

Recall that by the regular sufficiency of Z , the coverage of a prediction region A can be written as

Pθ (A) =
∫

Pz(Az) νθ (dz), (12)

where νθ is the marginal probability measure of Z under Pθ , defined as νθ (H) = Pθ (Z−1H) for H ∈ H .
In other words, the coverage probability of a region A can be represented as an average of conditional
probabilities of the sets {Az = A∩ Z−1{z} : z ∈ Z}. We now show how the Bayes risk can be similarly
represented. Let νR be the image measure of R under Z , so that νR(H) = R(Z−1H) for H ∈ H . A
collection of σ-finite measures {Rz : z ∈ Z} on (X ×Y,A) is a (Z, νR)-disintegration of R if
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1. z �→ Rz(A) is measurable for each A ∈ A;
2. Rz(Z−1{z}) = Rz(X ×Y) for νR-almost all z;
3. R(A) =

∫
Rz(A) νR(dz) for each A ∈ A.

Additionally, Rz is a probability measure for νR-almost all z if νR is σ-finite [6, Theorem 2]. As the
third item in the list indicates, a disintegration is a generalization of a regular conditional probability
distribution to σ-finite measures that are not necessarily probability measures, such as R for some
choices of μ. Just as a conditional probability distribution of Pθ allows us to write Pθ (A) as an average
over conditional probabilities {Pz(A) : z ∈ Z}, a disintegration of R allows us to write R(A) as an
average over {Rz(A) : z ∈ Z}, where each Rz is itself a measure with support on Z−1{z} ⊂ X ×Y: If a
(Z, νR)-disintegration of R exists, we can write

R(A) =
∫

Rz(A) νR(dz) =
∫

Rz(Az) νR(dz) (13)

where the last equality holds because Rz has mass only on Z−1{z} for almost all z.
The disintegration of the risk R given by (13) together with the “disintegration” of the coverage given

by (12) provide a means of constructing a 1 − α constant coverage prediction region that is optimal in
terms of the Bayes risk R, assuming the set of regions with this coverage is not empty. We first describe
the idea informally: By completeness of Z , a region A for which Pθ (A) = 1−α for all θ must also satisfy
Pz(Az) = 1− α for P-almost all z. To construct a set Aπ that is optimal among such regions, simply let
Aπz be the subset of Z−1{z} that has minimal Rz-measure among sets with Pz-measure equal to 1 − α.
By (13), the region Aπ = ∪z Aπz will then have minimal R-measure among regions with 1 − α constant
coverage. This line of reasoning can also be used to construct regions that lack constant coverage (as
will typically be the case for models having discrete distributions), but are nevertheless Bayes-optimal
in the sense that they minimize the Bayes risk among regions having the same coverage as each other,
as a function of θ.

Generally speaking, a region Aπ will be Bayes-optimal for its own coverage function if for each
z, Rz(Az) ≥ Rz(Aπz ) for any Az such that Pz(Az) = Pz(Aπz ). In other words, a subset Aπz of Z−1{z}
is optimal if no sets having greater or equal Pz-coverage have smaller Rz-risk. The form of such a
minimizing set is given by the following variant of the Neyman-Pearson lemma:

Lemma 3.1. Let P and R be probability measures on (Ω,A), and let Ã have the form

Ã = {ω : p(ω) > kr(ω)} (14)

where k > 0 and p and r are densities of P and R with respect to a common dominating measure. Then
R(A) ≥ R(Ã) for all A ∈ A such that P(A) ≥ P(Ã), with equality only if P(AΔÃ) = 0.

Applying this lemma to Pz and Rz for each z gives an Rz-optimal set Aπz for each z. Combining these
gives an R-optimal set Aπ = ∪Aπz :

Theorem 3.2. Let P = {Pθ : θ ∈ Θ} be a model on {X × Y,A} with a boundedly complete regular
sufficient statistic Z : (X ×Y,A)→ (Z,H) having marginal distributions {νθ : θ ∈ Θ} on (Z,H). Let
R be a σ-finite measure on (X × Y,A) with a σ-finite image measure νR on (Z,H) and a (Z, νR)-
disintegration {Rz : z ∈ Z}. Assume that

1. νθ (H) = 0 for all θ implies νR(H) = 0;
2. νθ � νR for all θ.



910 P. Hoff

Let Aπ ∈ A have the form

Aπ ∩ Z−1{z} ≡ Aπz = {(x, y) ∈ Z−1{z} : pz(x, y) > kzrz(x, y)} (15)

where kz > 0 and pz and rz are densities of Pz and Rz with respect to a common dominating measure.
Let A ∈ A be such that Pθ (A) = Pθ (Aπ) for all θ ∈ Θ. Then R(A) ≥ R(Aπ), with equality only if R(Aπ) =
∞ or Pθ (AΔAπ) = 0 for all θ.

The prediction region Aπ is a Bayes procedure in the sense that it minimizes a Bayes risk, but it
is also frequentist in the sense that its optimality is among procedures having the same frequentist
coverage rate. Following Yu and Hoff [24], we refer to such a procedure as being “frequentist and
Bayesian”, or FAB.

Before obtaining a less abstract form for the optimal sets {Aπz : z ∈ Z} and the resulting FAB pre-
diction region Aπ , we first discuss some of the conditions of the theorem. The starting point is the
existence of a disintegration of R. As discussed in Chang and Pollard [6], the existence of a disin-
tegration typically requires some topological assumptions about the underlying spaces. While not as
general as it could be, the following corollary of their Theorem 1 is sufficient for many applications. In
particular, the conditions on X, Y and Z are met by Euclidean spaces, most countable spaces, many
topological manifolds, and products of these spaces.

Corollary 2 (Corollary of Chang and Pollard [6, Theorem 1]). Let X and Y be complete, separable
and locally compact metric spaces, with F and G being the Borel sets. Let PX

π be a probability measure
on (X,F ), and let μ be a σ-finite Radon measure on (Y,G). Let A = F ⊗ G and define the product
measure R = PX

π × μ on (X × Y,A). Then R is a σ-finite Radon measure. Additionally, let Z : (X ×
Y,A) → (Z,H) where Z is a separable metric space and H is the Borel σ-algebra. If the image
measure νR of R under Z is σ-finite, then R has a (Z, νR)-disintegration.

We caution that the image measure νR can fail to be σ-finite if PX
π is not a proper probability

measure, even if R is σ-finite. For example, consider the case that X = Y = R, PX
π and μ are both

Lebesgue measure, and Z = X + Y . Then νR([a,b]) = ∞ for all a < b. However, if PX
π (R) = 1 (or is

finite) then νR is σ-finite.
Conditions 1 and 2 of Theorem 3.2 concern the relative absolute continuity of νR and {νθ : θ ∈ Θ}.

Condition 1 roughly means that z-values that are impossible under the model should not contribute
to the risk of a prediction procedure. More specifically, let N ∈ H be such that νθ (N) = 0 for all θ.
A competitor A to Aπ does not need to maintain Pz(Az) = Pz(Aπz ) for z ∈ N in order to maintain
Pθ (A) = Pθ (Aπ) for all θ, and so it could be that Rz(Az) < Rz(Aπz ) for z ∈ N . Without the condition,
if νR(N) > 0 it is possible that R(A) < R(Aπ). Conversely, with the condition we have νR(N) = 0, and
so R(A) ≥ R(Aπ). Condition 2 of the theorem is not completely necessary, but it does imply that Aπ is
essentially unique, in that any other set with the same coverage and risk as Aπ can only differ from Aπ

by a set of measure zero.

3.2. Optimal regions for a given level

Recall that by Theorem 2.3, every prediction region with constant coverage also has constant condi-
tional coverage. Theorem 3.2 then implies that if kz in (15) is chosen to yield a conditional coverage
rate of 1 − α for all z ∈ Z, then a Bayes-optimal 1 − α constant coverage prediction region may be
obtained. Specifically, if Aπz is defined as in (15), with kz chosen to satisfy Pz(Aπz ) = 1 − α for all z,
then the FAB region Aπ has minimum Bayes risk among all 1−α constant coverage prediction regions.
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This result does not by itself imply that Aπ is optimal among regions with non-constant coverage of
1 − α or greater, that is, regions A such that Pθ (A) ≥ 1 − α for all θ with inequality for some θ. More
generally, consider the risk optimality of Aπ among prediction regions A for which Pθ (A) ≥ Pθ (Aπ)
for all θ ∈ Θ, with inequality for some θ. Intuitively we expect R(A) to be larger than R(Aπ), since the
larger coverage probability of A should correspond to a larger volume, and hence a larger risk. However,
as discussed in Section 2.1, completeness of Z does not rule out the possibility that Pz(A) < Pz(Aπ) for
some z even if Pθ (A) ≥ Pθ (Aπ) for all θ, and so it is possible that Rz(A) < Rz(Aπ) for these values of z.
As a result, R(A) could be smaller than R(Aπ), depending on where the image measure νR on (Z,H)
places mass.

However, some models P are rich enough so that Pθ (A) ≥ Pθ (Aπ) for all θ ∈ Θ does imply that
Pz(A) ≥ Pz(Aπ) for P-almost all z, in which case Aπ is risk-optimal among all procedures with equal
or greater coverage. Models for which this is the case are those for which the set of image probability
measures {νθ : θ ∈ Θ} on (Z,H) has elements with arbitrarily high concentration on subsets of Z:

Lemma 3.3. Suppose for every ε > 0 and {νθ : θ ∈ Θ}-non-null set H ∈ H there exists a θε ∈ Θ such
that νθε (H) > 1 − ε . Then if h : (Z,H)→ (R,B(R)) is a bounded function for which

∫
h(z) νθ (dz) ≥ 0

for all θ ∈ Θ, then h(z) ≥ 0 for νθ -almost all z, for every θ ∈ Θ.

From this lemma we have the following result on the risk optimality of Aπ :

Theorem 3.4. Under the conditions of Theorem 3.2 and Lemma 3.3, if A ∈ A satisfies Pθ (A) ≥ Pθ (Aπ)
for all θ ∈ Θ, then R(A) ≥ R(Aπ), that is, Aπ is risk-optimal among prediction regions with equal or
greater coverage.

Models for which the conditions of the theorem hold include those for which the location and scale
of the distribution of Z can be set arbitrarily, such as multiparameter exponential families.

3.3. Expressions for optimal regions

We now obtain some less abstract expressions for the optimal sets {Aπz : z ∈ Z} given by (15), in the
case that the risk measure R dominates the model {Pθ : θ ∈ Θ}. In this case, it will be shown that
each Rz dominates the corresponding conditional distribution Pz , and so the optimal sets given by
(15) may equivalently be expressed as subsets of Z−1{z} such that dPz/dRz exceeds some threshold.
Each Aπz may therefore be recognized as the acceptance region of a test of Hz : (X,Y ) ∼ Pz versus
Kz : (X,Y ) ∼ Rz using the most powerful test statistic dPz/dRz .

Without loss of generality, assume PX
π is dominated by a σ-finite measure λ on (X,F ), with density

pXπ (x) > 0 for all x ∈ X (we could take λ to be PX
π ). Then R ≡ Pπ × μ� λ × μ with density pXπ . Since

Pθ � R � λ × μ for each θ, by the factorization theorem [12], there exist functions g and {hθ : θ ∈ Θ}
such that

pθ (x, y) ≡ [dPθ/d(λ × μ)](x, y) = hθ (Z(x, y)) × g(x, y). (16)

Therefore,

dPθ/dR = hθ (Z(x, y)) × g(x, y)/pXπ (x). (17)

The following theorem shows that the density of each dPz/dRz has a similar form:
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Theorem 3.5. Let λ and μ be σ-finite measures on (X,F ) and (Y,G) respectively, with product mea-
sure λ× μ on (X ×Y,F ⊗ G). Let R be a measure and {Pθ : θ ∈ Θ} be a model on (X ×Y,F ⊗ G), the
latter having regular sufficient statistic Z : (X ×Y,F ⊗ G)→ (Z,H). If

1. {Pθ : θ ∈ Θ} � R � λ × μ;
2. dR/d(λ × μ) ≡ pXπ > 0 with

∫
pXπ (x)λ(dx) = 1;

3. the image measure νR of R under Z is σ-finite;
4. R has (Z, νR)-disintegration {Rz : z ∈ Z},

then there is a common regular conditional distribution {Pz : z ∈ Z} for each element of {Pθ : θ ∈ Θ}
such that Pz � Rz for all z with density

dPz/dRz = c(z) × g(x, y)/pXπ (x), (18)

where c(z) is a positive function and g(x, y) is defined by the factorization dPθ/d(λ× μ) = hθ (Z(x, y))×
g(x, y).

These results are related to Theorem 3 of Chang and Pollard [6], which describes how the disintegra-
tion of one measure can be related to the disintegration of another measure that dominates it. We note
that completeness is not used in this lemma, and that the existence of a common regular conditional
distribution for the model is simply the definition of Z being a regular sufficient statistic. What the
lemma provides is the existence of a conditional distribution that is dominated by the disintegration of
the risk measure, and an expression for the corresponding densities {dPz/dRz : z ∈ Z}. This expression
provides the following version of Theorem 3.2, written in terms of the somewhat familiar quantities
g(x, y) and pXπ (x):

Corollary 3. Under the conditions of Theorem 3.2 and Theorem 3.5, let Aπ ∈ F ⊗ G satisfy

Aπz = {(x, y) ∈ Z−1{z} : g(x, y)/pXπ (x) > kz}. (19)

Let A ∈ A be such that Pθ (A) = Pθ (Aπ) for all θ ∈ Θ. Then R(A) ≥ R(Aπ), with equality only if
Pθ (AΔAπ) = 0 for all θ.

Practical details concerning the constructing of the FAB region Aπ for a few specific models are
described in Section 4, but we make some comments here. Having observed X = x, construction of a
1 − α FAB prediction region amounts to determining the values y ∈ Y for which g(x, y)/pXπ (x) meets
or exceeds the α quantile of g(X,Y )/pXπ (X) under Pz , the conditional distribution of (X,Y ) given Z = z,
where z = Z(x, y). Thus the region is constructed by inverting tests of (X,Y ) ∼ Pz using the test statistic
tπ(x, y) = g(x, y)/pXπ (x), and so we refer to tπ(x, y) as being a Bayes-optimal prediction statistic under
the prior distribution π. In some problems it will be more convenient or familiar to work with an
alternative statistic that corresponds to the same Bayes-optimal tests. For example, any statistic that is
a strictly increasing function of tπ(x, y) is also a Bayes-optimal prediction statistic, as is any statistic
that can be expressed as h(z) × tπ(x, y) for some positive function h(z). This implies, for example, that
pθ0(x, y)/pXπ (x) is a Bayes-optimal prediction statistic for any choice of θ0 ∈ Θ.

Construction of the FAB prediction region Aπ may be simplified in the case that the function Zx :
Y →Z defined by Zx(y) = Z(x, y) is injective. As described in Corollary 1, if Zx is injective for each
x then any prediction region A can be expressed as A = {(x, y) : x ∈ BZ(x,y)} for some B : Z → 2X ,
and therefore derived by inverting tests of Hz : X ∼ PX

z . In some cases, the optimal tests are equivalent
to most powerful tests of Hz : X ∼ PX

z versus Kz : X ∼ PX
π , and so are those that accept Hz for large

values of pXz (x)/pXπ (x), where pXz is the density of the conditional distribution of X given Z = z. We
first illustrate this with an example, and then give some general results.
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Example 5. Consider again the model in Example 1 where X ∼ N(θ, kσ2) and Y ∼ N(θ,σ2) are inde-
pendent, with σ2 known and θ ∈ R unknown. Taking the volume measure μ to be Lebesgue measure
on R, tπ(x, y) can be written as

tπ(x, y) = exp(− 1
2σ2 [x2/k + y2])/pXπ (x). (20)

Further simplification is possible in this case. For z = (x + yk)/(1 + k), tπ(x, y) can be written as

tπ(x, y) = h(z) exp(− k+1
2k2σ2 (x − z)2)/pXπ (x), (21)

which has a numerator that is proportional to the density of the N(z,σ2k2/(k + 1)) distribution - the
distribution of X given Z = z. Therefore, having observed X = x, the Bayes-optimal 1 − α constant
coverage prediction region includes y if pXz (x)/pXπ (x) exceeds its α quantile under X ∼ Pz , where z =
Z(x, y) and pXz is the conditional density of X given Z = z. In other words, a Bayes-optimal prediction
region with constant 1 − α coverage is Aπ = {(x, y) : x ∈ Bπ

Z(x,y)} where Bπz can be expressed as

Bπz = {x : pXz (x)/pXπ (x) > kz}, (22)

with kz being the α quantile of pXz (X)/pXπ (X) under X ∼ N(z,σ2k2/(k +1)). Thus Bπz is the acceptance
region of the most powerful level-α test of Hz : X ∼ PX

z versus K : X ∼ PX
π . A reasonably simple

formula for the prediction region under a conjugate prior distribution for π is given in the next section.

A similar result holds for other models where Zx is injective. For example, if the distributions {Pθ :
θ ∈ Θ} are all dominated by counting measure with densities pθ (x, y) = hθ (Z(x, y))g(x, y), then the
conditional density of X given Z = z is

pXz (x) =
∑

y′:Z(x,y′)=z hθ (Z(x, y′))g(x, y′)∑
(x′,y′):Z(x′,y′)=z hθ (Z(x′, y′))g(x′, y′)

(23)

=
∑

y′:Z(x,y′)=z
g(x, y′)/cz (24)

= g(x,Z−1
x (z))/cz, (25)

where the last equality holds by the injectivity of Zx . This means that, on {(x, y) : Z(x, y) = z}, we
have g(x, y) = czpXz (x). By plugging this into (19) we may express the FAB prediction region as Aπ =
{(x, y) : x ∈ Bπ

Z(x,y)}, where

Bπz = {x : pXz (x)/pXπ (x) > kz}. (26)

Alternatively, if {Pθ : θ ∈ Θ} has densities with respect to Lebesgue measure and Z(x, y) is differen-
tiable, then via the usual change of variables formula the density of (X,Z) under Pθ is

pX ,Zθ (x, z) = pθ (x,Z−1
x (z))/J(x, z) (27)

= hθ (z) × g(x,Z−1
x (z))/J(x, z), (28)

where J(x, z) is |dZ(x, y)/dy | evaluated at (x,Z−1
x ), and so the conditional density of X given Z = z is

pXz (x) = cz × g(x,Z−1
x (z))/J(x, z). (29)
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Therefore, on Z(x, y) = z, the Bayes-optimal test statistic (18) is equal to J(x, z)× pXz (x)/pXπ (x), and the
FAB region may be expressed as Aπ = {(x, y) : x ∈ Bπ

Z(x,y)}, where

Bπz = {x : J(x, z) × pXz (x)/pXπ (x) > k̃z}. (30)

If J(x, z) is constant in x, then Bπz can be written Bπz = {x : pXz (x)/pXπ (x) > kz}, just as with discrete
models. This will be the case if Z has the form Z(x, y) = sX (x) + sY (y), as with many exponential
family models for independent X and Y .

To summarize, when Zx is injective the optimal test statistic (18) may be written as a function
of x and z, and so the optimal acceptance regions may be written as acceptance regions of tests of
Hz : X ∼ PX

z . The inclusion of a value y into a prediction region based on observing X = x can be
determined as follows:

1. Set z = Z(x, y).
2. Test Hz : X ∼ PX

z based on observing X = x.
3. Include y in the region if Hz is accepted, otherwise exclude y from the region.

The coverage of such a region as a function of θ is 1 − Eθ [a(Z)], where a(z) is the size of the test in
Step 2. The region will be Bayes-optimal for its coverage function if the statistic used in Step 2 is one
that is equivalent to (18), which in some cases includes pXz (x)/pXπ (x) or J(x, z) × pXz (x)/pXπ (x).

4. Examples

4.1. Nonparametric prediction

Conformal prediction [14,23] is a method of constructing nonparametric prediction regions for a ran-
dom object Yn+1 based on X = (Y1, . . . ,Yn), in models for which Y1, . . . ,Yn+1 are exchangeable. A
generic conformal prediction region is constructed as follows: Let c : Yn+1 → R be a function that
is invariant to permutations of its first n elements. Typically, c(y1, . . . , yn+1) is chosen to be some
numerical measure of “conformity” between yn+1 and the (multi)set {y1, . . . , yn}. Having observed
(Y1, . . . ,Yn) = (y1, . . . , yn), a value yn+1 is included in the prediction region if the conformity between
yn+1 and {y1, . . . , yn} is comparable to the conformity between yi and {y1, . . . , yi−1, yn+1, yi+1, . . . , yn}
for some minimal fraction of indices i ∈ {1, . . . ,n}. Specifically, a value yn+1 is included in the 1 − α
conformal prediction region if cn+1 is greater than the α sample quantile of {c1, . . . ,cn+1}, where
ci = c(y1, . . . , yi−1, yn+1, yi+1, . . . , yn, yi). By exchangeability, the coverage probability of the resulting
prediction region is greater than or equal to 1 − α.

Conformal prediction is a special case of Faulkenberry’s method, as applied to exchangeable models.
For notational simplicity, we consider the i.i.d. case where Y1, . . . ,Yn+1 ∼ i.i.d. P ∈ P where P is a
model on (Y,G), so that the (n + 1)-fold product measure Pn+1 ≡ ×n+1

1 P is the joint distribution of
(Y1, . . . ,Yn+1). Then the multiset {Y1, . . . ,Yn+1} of unordered observed values (the “order statistics”) is a
sufficient statistic. Faulkenberry’s prediction method in this case is that, having observed (Y1, . . . ,Yn) =
(y1, . . . , yn), a value yn+1 is included in the prediction region if yn+1 is in the acceptance region of a
level-α test of Yn+1 being uniformly distributed on {y1, . . . , yn+1}, as this is the conditional distribution
of Yn+1 given {Y1, . . . ,Yn+1} = {y1, . . . , yn+1}, for any member P of P. A test that accepts values yn+1
for which cn+1 is greater than the α sample quantile of {c1, . . . ,cn+1}, is equivalent to the conformal
prediction procedure.

For many models the unordered values {Y1, . . . ,Yn+1} are not only a sufficient statistic, but a complete
sufficient statistic [2,18]. In particular, this will be the case if P is the space of probability measures
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dominated by a common measure μ, where μ is non-atomic (e.g. Lebesgue measure) or Y is countable.
In these cases, the class of all prediction regions with a given coverage function may be characterized in
terms of conditional coverage given the order statistics, and under some regularity conditions a Bayes-
optimal FAB prediction region may be found. We first derive an expression for the region assuming
that the conditions of Corollary 3 are met, and then we discuss the conditions.

Recall that Corollary 3 says that a value y is accepted into the FAB prediction region if g(x, y)/pXπ (x)
is large compared to its conditional distribution given the sufficient statistic. In the i.i.d. sampling case
being considered here where X = (Y1, . . . ,Yn) and Y = Yn+1, the function g(x, y) from the factoriza-
tion theorem is constant, and so a risk-optimal prediction region is one that accepts a value yn+1 if
pπ(y1, . . . , yn) is small compared to the conditional distribution of pπ(Y1, . . . ,Yn) given {Y1, . . . ,Yn+1} =
{y1, . . . , yn+1}, where pπ(y1, . . . , yn) is the prior predictive density of (Y1, . . . ,Yn) under the prior distri-
bution π on P. Recall from the discussion in Section 3.3 that an equivalent criterion is to accept yn+1 if
h(z)/pπ(y1, . . . , yn) is large, where h(z) is any function of the the sufficient statistic z = {y1, . . . , yn+1}.
One such function is the prior predictive density of Y1, . . . ,Yn+1, denoted by pπ(y1, . . . , yn+1), which is
constant on {Y1, . . . ,Yn+1} = {y1, . . . , yn+1} because prior predictive distributions under i.i.d. sampling
are exchangeable. Therefore, the FAB prediction region is one that accepts values yn+1 for which the
posterior predictive density pπ(yn+1 |y1, . . . , yn) = pπ(y1, . . . , yn+1)/pπ(y1, . . . , yn) is large.

More concretely, construction of a risk-optimal 1 − α prediction region proceeds as follows: The
conditional distribution of pπ(Yn+1 |Y1, . . . ,Yn) given {Y1, . . . ,Yn+1} = {y1, . . . , yn+1} has mass 1/(n + 1)
on each of the values c1, . . . ,cn+1, where ci = pπ(yi |y1, . . . , yi−1, yn+1, yi+1, . . . , yn) for i = 1, . . . ,n and
cn+1 = pπ(yn+1 |y1, . . . , yn). If α = k/(n + 1) for some integer k between zero and n + 1 and there are
no ties, then yn+1 is accepted into the 1 − α FAB prediction region if cn+1 is greater than the kth order
statistic of c1, . . . ,cn+1. This is equivalent to implementing the conformal prediction procedure using
the posterior predictive density pπ(yn+1 |y1, . . . , yn) as the conformity function.

We now provide some conditions under which the procedure described above provides a risk-optimal
prediction region. In doing so, we use the fact that the sufficient statistic may be equivalently be ex-
pressed as the empirical distribution Z of Y1, . . . ,Yn+1, so [Z(y1, . . . , yn+1)](G) ≡

∑n+1
i=1 1(yi ∈ G)/(n+1)

for G ∈ G.

Theorem 4.1. Let μ be a σ-finite Radon measure on (Y,G), where Y is a complete, separable and
locally compact metric space and G is the Borel σ-algebra. Let (P,σ(w)) be the measurable space of
probability measures on (Y,G) that are dominated by μ with σ(w) being the Borel σ-algebra under the
weak topology. Let π be a probability measure over (P,σ(w)) and let PX

π be the probability measure
on the n-fold product space (Yn,Gn) of (Y,G), defined by PX

π (G1 × · · · × Gn) =
∫ ∏n

i=1 P(Gi) π(dP).
Then

1. R = PX
π × μ is a σ-finite Radon measure;

2. the image measure νR of R under Z is σ-finite;
3. R has a (Z, νR)-disintegration.

If additionally

A1. μ is non-atomic, or Y is discrete and μ is counting measure, and
A2. PX

π and ×n
i=1μ are mutually absolutely continuous,

then Z is a complete regular sufficient statistic and a prediction region given by

Aπ(y1 ,...,yn) = {yn+1 : pπ(yn+1 |y1, . . . , yn) > kZ(y1,...,yn+1)}. (31)

is risk-optimal in that if Pn+1(A) = Pn+1(Aπ) for all P ∈ P then R(A) ≥ R(Aπ), with equality only if
Pn+1(AΔAπ) = 0 for all P ∈ P.
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Some of these conditions may be relaxed. As discussed in Chang and Pollard [6], disintegrations
of R may exist under other conditions on (Y,G). Also, Z is a complete sufficient statistic for models
other than the ones mentioned in assumption A1, as described in Bell, Blackwell and Breiman [2] and
Mattner [18].

We comment that Theorem 3.4, regarding optimality of Aπ among procedures with coverage that is
bounded below by 1 − α, does not apply to these nonparametric models because under i.i.d. sampling
the distributions {νP : P ∈ P} of Z cannot put mass on arbitrarily small subsets of Z. However, a
constant coverage conformal prediction procedure using p(yn+1 |y1, . . . , yn) as the conformity score will
be optimal among conformal procedures with equal or greater constant coverage, because all constant
coverage conformal procedures have constant conditional coverage given Z .

Finally, we note that just because the model P is nonparametric, the prior distribution π does not need
to be nonparametric for the conditions of Theorem 4.1 to hold. For example, if Y is a Euclidean space
and μ is Lebesgue measure, then a prior distribution π that has mass only on the normal distributions
yields a PX

π that satisfies assumption A2 of the theorem. A 1 − α prediction region constructed using
such a PX

π still has exact 1 − α coverage under all probability distributions dominated by Lebesgue
measure, and is expected to have a small volume if the true distribution P is a normal distribution, but
might have a large volume if P is far from normality.

4.2. Normal populations

Let X ∼ Np(θ, kΣ) and Y ∼ Np(θ,Σ) be independent. We first consider predicting Y from X in the case
that Σ is known. In this case Z = (X + kY )/(1 + k) is a complete sufficient statistic, with PX

z being the
Np(z,Σk2/(k+1)) distribution. Since Zx is injective for each x, a Bayes-optimal 1−α prediction region
can be constructed from Equation (26), so in particular, a value of y is accepted into the prediction
region if pXz (x)/pXπ (x) exceeds the α quantile of pXz (X)/pXπ (X) under X ∼ PX

z , where z = Z(x, y). If
the prior information for θ is represented by θ ∼ Np(μ,λΣ) for some μ ∈ Rp and λ > 0, then PX

π is
the Np(μ,(k + λ)Σ) distribution. After some manipulation of log pXz (x)/pXπ (x), a Bayes-optimal test
statistic is obtained:

tz(x) = ‖Σ−1/2(x − z)/v1/2 + δz ‖2 (32)

where δz = Σ−1/2(μ − z)v1/2/(λ + k/(k + 1)) with v = k2/(k + 1) and Σ1/2 is any matrix for which
Σ1/2(Σ1/2)� = Σ. Since Σ−1/2(x − z)/v1/2 ∼ N(0, I) under Hz : X ∼ PX

z , the null distribution of the
statistic is a non-central χ2

p distribution with noncentrality parameter ‖δz ‖2. Thus, a value y is included
in the prediction region if tZ(x,y)(x) is less than χ2

p, ‖δz ‖2 ,1−α, the 1 − α quantile of this distribution.
Some intuition for this statistic may be obtained by expressing it slightly differently. One useful

reëxpression is obtained by recalling that z = (x + ky)/(1 + k) on Z(x, y) = z, which gives

tZ(x,y)(x) = ‖Σ−1/2(x − y)/
√

k + 1 + δZ(x,y) ‖2, (33)

and so the Bayes-optimal 1 − α prediction region can be written

Aπx = {y : ‖Σ−1/2(x − y)/
√

k + 1 + δZ(x,y) ‖2 < χ2
p, ‖δZ (x ,y) ‖2 ,1−α}. (34)

For comparison, the usual equivariant prediction region is

AE
x = {y : ‖Σ−1/2(x − y)/

√
k + 1‖2 < χ2

p,0,1−α}. (35)
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Since δz → 0 as λ→∞, this standard region can be viewed as a limit of regions of the form (34) under
a sequence of increasingly non-informative prior distributions.

The optimal statistic (32) and region (34) can also be related to a fully Bayesian prediction procedure
as well. Rearranging terms in (32) gives

tZ(x,y) = ‖Σ−1/2(y − θ̂π)/v1/2
λ ‖2 × (k + 1)/vλ (36)

Aπx = {y : ‖Σ−1/2(y − θ̂π)/v1/2
λ ‖2 × (k + 1)/vλ < χ2

p, ‖δZ (x ,y) ‖2 ,1−α}, (37)

where θ̂π = (X/k + μ/λ)/(1/k +1/λ) is the posterior mean estimator of θ given X , and vλ = (λ(k +1)+
k)/(k + λ) relates to the prior predictive variance of Y − θ̂, which is vλΣ. For comparison, the posterior
predictive distribution for Y under the prior θ ∼ Np(μ,λI) is Y |{X = x} ∼ Np(θ̂π,vλΣ), and so the fully
Bayesian 1 − α prediction region with highest posterior predictive density is given by

AB
x = {y : ‖Σ−1/2(y − θ̂π)/v1/2

λ ‖2 < χ2
p,0,1−α}. (38)

However, since the distribution of ‖Σ−1/2(y − θ̂π)/v1/2
λ ‖2 (unconditionally on Z) depends on the un-

known value of θ, this fully Bayesian posterior predictive region will have frequentist coverage that
varies as a function of θ. In contrast, the FAB region is obtained by comparing (36) to its 1 − α con-
ditional quantile given Z = z in order to maintain constant frequentist coverage as a function of θ. In
particular, unlike the posterior predictive region, the region (37) is not centered around θ̂π because
the conditional quantile depends on the noncentrality parameter ‖δz ‖2, which varies as a function of
z = Z(x, y) and hence varies with y.

Some numerical comparisons of FAB regions to the standard equivariant regions are given in Figures
1, 2 and 3. The first figure displays 90% prediction intervals and widths as a function of x for the case
that p = 1, σ2 = 1, k = 1 and μ = 0. As shown in the left panel for the case that λ = 1, when x is close
to zero (as is expected under the prior distribution), the FAB interval is narrower than the equivariant
interval (λ =∞), at the cost of being wider for values of x that are less likely under the prior distribution.
The right panel of the figure summarizes the widths for a range of λ values. The biggest differences
between the FAB and equivariant intervals occur for highly informative prior distributions, that is,
when λ is small. In contrast, for large values of λ the FAB interval can be better than the usual interval
over a wide range of x values, but the improvement is smaller. Figure 2 displays analogous results for
the case that p = 2, Σ = I, k = 1 and μ = (0,0). When x is in accord with the prior distribution the
FAB region can be substantially smaller than the usual region - close to half the area in this case. As
x moves away from μ the area increases in order to accommodate both the prior distribution and the
requirement of 90% frequentist coverage. Figure 3 compares the frequentist risk of the FAB procedures
as a function of θ and λ for p = 1 and p = 2. The risk differences are smaller than the volume differences
as the former are obtained by averaging the latter over the values of X , with respect to the distribution
X ∼ Np(θ, kΣ).

In practice the covariance matrix Σ will be unknown, but estimable from available data. For example,
suppose we want to predict Y ∼ Np(θ,Σ) from X = (θ̂, Σ̂), where θ̂ ∼ Np(θ, kΣ) and νΣ̂ ∼Wishart(ν,Σ)
are independent of each other. A complete sufficient statistic for the joint distribution of Y and X is
Z = {(θ̂ + kY )/(1 + k), νΣ̂ + YY� + θ̂ θ̂�/k}. Furthermore, Zx is injective for each x, and so given a
prior distribution on (θ,Σ) one could construct a FAB prediction region from (26). However, without
going into too many details, this approach will be quite cumbersome as it involves singular conditional
distributions and an optimal test statistic that must be numerically approximated, at least for any prior
distribution on Σ of which I am aware. As an alternative, a simpler FAB statistic may be constructed
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Figure 1. Normal 90% prediction intervals for p = 1. Left panel: Intervals as a function of x for λ = 1 and λ =∞.
Right panel: Interval widths as a function of |x | for λ ∈ {.1,1,10,100,∞}. Finite values of λ correspond to FAB
procedures, λ =∞ corresponds to the standard equivariant procedure.

by replacing each appearance of Σ in (33) with estimates: Changing notation slightly, let θ̂ = X , Z =
(X + kY )/(1 + k) and consider the statistic

tZ(x,y)(x) = ‖Σ̂−1/2(x − y)/
√

k + 1 + δ̃Z(x,y) ‖2 (39)

Figure 2. Normal 90% prediction regions for p = 2. Left panel: Regions as a function of x for λ = 1 and λ =∞.
Right panel: Region areas as a function of ‖x‖ for λ ∈ {.1,1,10,100,∞}. Finite values of λ correspond to FAB
procedures, λ =∞ corresponds to the standard equivariant procedure.
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Figure 3. Expected 90% prediction region volumes as a function of x and λ for p = 1 (left panel) and p = 2 (right
panel). Finite values of λ correspond to FAB procedures, λ =∞ corresponds to the standard equivariant procedure.

where δ̃z = Σ̃−1/2(μ − z)v1/2/(vλ − v), and Σ̂−1/2 and Σ̃−1/2 are estimates of of Σ−1/2. Specifically, let
Σ̂−1/2 be the Cholesky factorization of Σ̂−1, and let Σ̃−1/2 be any other estimate of Σ−1/2 that is deter-
ministic (e.g. based on prior information) or statistically independent of θ̂ and Σ̂. It is straightforward
to show that the conditional distribution of (X −Y )/

√
k + 1 given Z = z is Np(0,Σ), and further that the

conditional distribution of Σ̂−1/2(X −Y )/
√

k + 1 given Z = z does not depend on the unknown parame-
ters (μ,Σ). Therefore, tZ(x,y) can be used to evaluate each hypothesis Hz : X ∼ PX

z , and these tests may
be inverted to obtain the approximately optimal prediction region

Ãπx = {y : ‖Σ̂−1/2(x − y)/
√

k + 1 + δ̃Z(x,y) ‖2 < qδ̃Z (x ,y) ,1−α} (40)

where qb,1−α is the 1 − α quantile of the distribution of ‖T + b‖2, where T d
= Σ̂−1/2(X −Y )/

√
k + 1. If

p = 1 then T has the t-distribution with ν degrees of freedom.

4.3. Linear regression

Suppose we wish to predict Y ∼ N(v�β,σ2) from X ∼ Nn(Uβ,σ2I) where X and Y are independent,
and v ∈ Rp and U ∈ Rn×p are fixed, non-stochastic explanatory variables. We first consider the case
that σ2 is known. In this case, Z =U�X + vY is a complete sufficient statistic, and the joint density of
(X,Y ) factorizes as pβ(x, y) = hβ(z) × g(x, y) where g(x, y) = exp{−(x�x + y2)/(2σ2)}. Under the prior
distribution β ∼ Np(0,σ2Ψ−1), the prior predictive distribution of X is Np(0,σ2(I +UΨ−1U�)). By
Corollary 3, the FAB prediction region is formed by inverting tests that accept Hz : (X,Y ) ∼ Pz when
g(x, y)/pXπ (x) is large. After some manipulation, we have

− 2σ2 logg(x, y)/pXπ (x) = y2 + x�U(U�U +Ψ)−1U�x. (41)

On Z(x, y) = z we have U�x = z − vy and so (41) can be written

− 2σ2 logg(x, y)/pXπ (x) = y2[1 + v�(U�U +Ψ)−1v] − 2yv�(U�U +Ψ)−1z + cz (42)
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where cz does not depend on y. By completing the square and rearranging, we see that an optimal test
is one that accepts Hz for small values of the statistic

tz(y) = 1
σ

√
1 + v�(U�U)−1v ×

����y − v�(U�U +Ψ)−1z
1 + v�(U�U +Ψ)−1v

����
=

√
w0
σ |y − v�[Sψ/wψ]z | (43)

where Sψ = (U�U + Ψ)−1 and wψ = 1 + v�Sψv, and so in particular S0 = (U�U)−1 and w0 = 1 +
v�(U�U)−1v. To find the critical value for this test, rewrite (43) as

tz(y) =
���√w0
σ (y − v�[S0/w0]z) + δz

��� , (44)

where δz = v�(S0/w0 − Sψ/wψ)z
√
w0/σ. Since Y |{Z = z} ∼ N(v�[S0/w0]z,σ2/w0), the critical value

qz for the level-α test using this statistic is the solution in q to the equation Φ(q − δz) −Φ(−q − δz) =
1 − α, which may be obtained numerically. The 1 − α FAB prediction region therefore consists of
y-values for which tZ(x,y)(y) ≤ qZ(x,y).

The prediction region generated by the FAB test statistic (44) bears some resemblance to the standard
equivariant 1 − α prediction region: The first term in (44) may be rearranged as follows:

y − v�[S0/w0]z = y − v�(U�U)−1(U�x + vy)/w0 (45)

= y − v� β̂/w0 − (w0 − 1)y/w0 (46)

= (y − β̂�v)/w0 (47)

where β̂ is the ordinary least-squares estimate. Therefore, the statistic may be written tz(y) = |(y −
β̂�v)/(σ√w0) + δz |, and the FAB prediction region is

Aπx = {y : |(y − β̂�v)/(σ√w0) + δZ(x,y) | ≤ qZ(x,y)}. (48)

For comparison, the equivariant region based on the pivotal quantity y − β̂�v is {y : |(y − β̂�v)/
(σ√w0)| ≤ Φ−1(1 − α/2)}. This interval is a limit of FAB intervals of the form (48): As the prior dis-
tribution becomes increasingly non-informative as the eigenvalues of Ψ go to zero, we have Sψ → S0
and wψ → w0, and so δz → 0 and qz →Φ−1(1 − α/2).

To relate the FAB region to the fully Bayesian region derived from the posterior predictive distribu-
tion of Y given X = x, note that

v�(U�U +Ψ)−1z = v�(U�U +Ψ)−1(U�x + vy) (49)

= v� β̂ψ + (wψ − 1)y (50)

where β̂ψ = (U�U + Ψ)−1U�x is the posterior mean of β given X = x under the prior distribution
β ∼ Np(0,σ2Ψ−1). The statistic (44) may therefore be written

tZ(x,y) = |y − β̂�ψv | ×
√
w0/(σwψ), (51)

and the prediction region may be expressed as

Aπx = {y : β̂�ψv − qZ(x,y)σwψ/
√
w0 < y < β̂�ψv + qZ(x,y)σwψ/

√
w0}. (52)
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This can be compared to the fully Bayesian interval as follows: The posterior distribution of β given
X = x is β|{X = x} ∼ Np(β̂ψ,σ2(U�U+Ψ)−1), which gives the posterior predictive distribution Y |{X =
x} ∼ N(β̂�ψv,σ

2wψ). The 1−α highest posterior predictive density region for Y given X = x is therefore

Ax = {y : β̂�ψv −Φ
−1(1 − α/2)σ√wψ < y < β̂�ψv +Φ

−1(1 − α/2)σ√wψ}. (53)

This posterior predictive interval is centered around the biased estimator β̂�ψv of β�v, and as a result
will have a frequentist coverage rate that varies in β. In contrast, the FAB interval (52) is not centered
around β̂�ψv, as the acceptable deviation from this estimator varies in y through qZ(x,y), which is set
conditionally in order to maintain 1 − α frequentist coverage for all values of β.

Typically the value of σ2 is unknown and must be estimated from the data. As in the previous
subsection, we forego formulating a prior distribution for σ2 and instead describe a FAB prediction
region that maintains exact 1 − α frequentist coverage for every value of β but is only approximately
risk-optimal. As an alternative to (44) consider the statistic

tz(y) = |
√
w0
σ̂ (y − v�[S0/w0]z) + δ̃z |, (54)

where δ̃z = v�(S0/w0−Sψ/wψ)z
√
w0/σ̃, with σ̂2 and σ̃2 being two estimates of σ2 that are statistically

independent of each other and of U�X . In particular, assume that νσ̂2/σ2 ∼ χ2
ν , in which case (y −

v�[S0/w0]z)
√
w0/σ̂ ∼ tν under Hz : Y ∼ PY

z . The critical value qz for a level-α test of Hz therefore
satisfies Fν(qz − δ̃z) − Fν(−qz − δ̃z) = 1 − α, where Fν is the cumulative distribution function of the tν
distribution. Rearranging terms as before, the resulting FAB prediction region can be expressed

Aπx = {y : |(y − β̂�v)/(σ̂√w0) + δ̃z | ≤ qZ(x,y)}. (55)

Appropriate values of σ̂2 and σ̃2 can often be obtained from the data at hand: For example, both
of these quantities may be obtained from a decomposition of the residual sum of squares from the
regression of X on U. Details on this approach are available from the replication files for this article
at my website. Alternatively, σ̂2 could be the usual unbiased estimate of σ2 from this regression, with
σ̃2 coming from non-stochastic prior information or other data that are independent of X .

Some risk comparisons are displayed in Figure 4. A single 100 × 75 matrix U was randomly gener-
ated, with columns that were correlated but having zero mean and unit variance. Expected widths of
regions for predicting Y ∼ N(v�β,σ2) were computed, where v ranged over the rows of U. The expected
interval widths were averaged over these values of v to obtain an average Bayes risk. This was done for
σ2 = 1 and under prior distributions β ∼ N75(0, τ2I), where τ2 ranged from 1/10 to 10. The horizontal
light gray line in the figure gives the average width of the standard equivariant interval (labeled with
τπ =∞), which is constant as a function of τ2. The medium gray line gives the average Bayes risk of
the approximately optimal FAB procedure, given by (55), as a function of τ (labeled τπ = τ). For the
lowest value τ2 = 1/10, the FAB interval has an average expected width that is about 10% smaller than
the equivariant interval. As τ2 increases the risk remains below that of the equivariant interval but the
improvement decreases, in accord with our understanding of the equivariant interval as a limit of FAB
intervals.

We briefly consider the performance of the FAB procedure when the prior distribution is not in
accord with the actual value of β. We expect that the FAB procedure will improve upon the equivariant
interval as long as the prior distribution π is sufficiently diffuse, i.e. the prior variance τ2 used to
construct the FAB region is not much smaller than the true magnitude of β. However, using a very
diffuse prior will not provide much of a risk improvement over the equivariant interval. Since the risk
improvements are achieved when τ2 is small, it is more useful to consider the potential downside to
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Figure 4. Bayes risk comparisons of 90% FAB and equivariant prediction intervals for the normal linear model,
averaged across vectors of explanatory variables. The horizontal gray line is the risk of the equivariant interval.
The medium gray line is the average Bayes risk of the FAB interval. The black line is the average Bayes risk of a
FAB interval using an overly-concentrated prior distribution.

using a prior distribution that is overly concentrated around zero. An example of this behavior is given
by the black line in Figure 4, which gives the Bayes risk of a FAB procedure for which the “true” τ2

(the one used to compute the Bayes risk) is four times that of τ2
π , the value used to construct the FAB

region. The figure indicates that, for these values of U and σ2, an overly-concentrated prior distribution
still yields a FAB region that improves upon the equivariant interval for small values of τ2, but can be
worse for larger values. However, we reiterate that even if the prior distribution is misspecified, the
FAB procedure will still maintain 1 − α frequentist coverage for each value of β, no matter how large
or small.

5. Discussion

The FAB prediction procedure introduced in this article allows for incorporation of prior or indirect
information while still maintaining a target frequentist coverage rate. In many cases, the FAB procedure
is Bayes-risk optimal among procedures with a given frequentist coverage rate. In practice, this means
that a FAB prediction region will have a smaller expected volume than other regions with the same
coverage rate, if there is not a large discrepancy between the prior distribution and the population from
which the data are to be sampled. If there is a large discrepancy, the FAB region will still maintain the
target frequentist coverage rate but could have a volume that is large compared to other procedures. This
raises the question of when, in practice, would one be confident enough in their prior distribution to use
a FAB procedure? One possibility is with multipopulation scenarios, where the “prior distribution” for
a population may be obtained using data from the others, perhaps via a hierarchical model. Specifically,
suppose (Xj,Yj ) ∼ Pθ j independently for j ∈ {1, . . . ,p}. For prediction of Yj from Xj , one could fit a
hierarchical model for the parameters θ1, . . . , θp using data X1, . . . ,Xj−1,Xj+1, . . . ,Xp . The hierarchical
model provides indirect information about θ j that can be used to construct a FAB prediction region.
The resulting region for Yj will still maintain frequentist coverage because the prior distribution for θ j
is obtained from data that are statistically independent of (Yj,Xj ). This type of approach has been used
before for frequentist confidence interval construction for univariate normal populations [5,24]. In those
applications, FAB confidence intervals maintain population-specific frequentist coverage guarantees,
while being narrower than standard frequentist procedures on average across populations.
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The FAB prediction regions in this article are constructed with a conditional representation of cov-
erage via the conditional distributions {Pz : z ∈ Z}. If Pz(Az) = 1 − α for P-almost all z, then Pθ (A)
must have 1− α coverage for all θ. A reviewer has suggested that this conditional representation might
also be useful for investigating robustness of procedures to deviations from modeling assumptions. For
example, if we have only Pz(Az) ≈ 1 − α, or that this holds only for some z, then the actual cover-
age could be computed as

∫
Pz(Az) νθ (dz). This representation might also provide a way to develop

procedures that have approximate 1 − α coverage.
In addition to the aforementioned topics, other areas of further research include development of

methods for specific models, such as general and generalized linear models, exponentially parame-
terized random graph models for networks, and the contamination models described in Mattner [18].
Nontrivial details to be worked out for each model include identification of optimal test statistics as
well as efficient computational methods for inverting the tests to construct a prediction region. Addi-
tionally, in models for which the conditions of Theorem 3.4 do not hold, there remains the interesting
open question of whether or not a FAB prediction region can have larger Bayes risk than a region with
equal or greater coverage.

Computer code to construct FAB prediction regions for the multivariate normal and normal linear
regression models is available at https://github.com/pdhoff/FABPrediction.

Proofs

Proof of Lemma 2.1. First we show that the function that maps each set-valued function to its graphs
is a bijection. To see that this function is surjective, note that for any subset A of X ×Y, the graph of
the set-valued function x �→ Ax , where Ax = {y : (x, y) ∈ A}, is A. To see that it is injective, suppose
that two set-valued functions, say x �→ Ax and x �→ A′

x , are not the same. Then there exists an x̃ for
which Ax̃ � A′

x̃ , and so there is a ỹ that is an element of one but not the other. Suppose ỹ is in Ax̃ but
is not in A′

x̃ . Then (x̃, ỹ) is in the graph of x �→ Ax but not that of x �→ A′
x .

Now we show that the function that maps a set-valued function z �→ Az to ∪z∈Z Az is a bijection
from item 3 to item 1. To see that it is surjective, note that for a given subset A of X ×Y the set-valued
function z �→ Az with Az = A ∩ Z−1{z} satisfies ∪z∈Z Az = A. To see that it is injective, suppose the
functions z �→ Az and z �→ A′

z , are not the same, and that Az and A′
z are subsets of Z−1{z} for each z.

Then there exists a z̃ for which Az̃ � A′
z̃ , and so there is a point (x̃, ỹ) with z̃ = Z(x̃, ỹ) that is an element

of one but not the other. Suppose (x̃, ỹ) is in Az̃ but is not in A′
z̃ . Then (x̃, ỹ) must be in ∪z∈Z Az because

it is in Az̃ . But (x̃, ỹ) cannot be in ∪z∈Z A′
z , because it is not in A′

z̃ , and the condition that A′
z ⊂ Z−1{z}

for each z precludes (x̃, ỹ) from being in A′
z for any z other than z̃.

Proof of Lemma 2.2. Let Zy be injective. Then any A ⊂ X × Y can be written as A = {(x, y) : y ∈
CZ(x,y)} where Cz = {y ∈ f (Z−1(z)) : (Z−1

y (z), y) ∈ A}, where f is the canonical projection map
from 2X×Y → 2Y . Conversely, suppose Zy is not injective for a particular y ∈ Y. Then there ex-
ists {xa, xb} ⊂ X with xa � xb but for which Z(xa, y) = Z(xb, y). Now let A include (xa, y) but not
(xb, y). Then if C is to represent A, we must have y ∈ CZ(xa ,y). This would imply y ∈ CZ(xb ,y), since
Z(xa, y) = Z(xb, y). So C cannot represent A, since (y, xb) � A by assumption.

Proof of Corollary 1. Apply Lemma 2.2 with the roles of X and Y interchanged.

Proof of Theorem 2.3. Suppose Pθ (A) = 1 − α for all θ. For each z ∈ Z define Az = A ∩ Z−1{z}.
Then ∪Az = A ∈ A and Az ⊂ Z−1{z} so conditions 1 and 2 are satisfied. By regular sufficiency, the

https://github.com/pdhoff/FABPrediction
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set H1 = {z : Pz(Z−1{z}) = 1} has Pθ -probability one for each θ, and by completeness, the set H2 =

{z : Pz(A) = 1 − α} also has Pθ -probability one for each θ. Therefore, the set H = H1 ∩ H2 has Pθ -
probability one for each θ. For each z in H, we therefore have Pz(Az) = Pz(A) = 1−α, and so condition
3 is satisfied. Conversely, suppose {Az : z ∈ Z} defines a set-valued function that satisfies conditions
1, 2 and 3. Let A = ∪z∈Z Az and note that A ∩ Z−1{z} = Az by condition 2. Let H = {z : Pz(Az) =
1 − α} ∩ {z : Pz(Z−1{z}) = 1}. By condition 3 and regular sufficiency of Z , νθ (H) = 1 for all θ, where
νθ is the marginal probability measure of Z under Pθ . For all θ we therefore have

Pθ (A) =
∫

Pz(A) νθ (dz) =
∫
H

Pz(A∩ Z−1{z}) νθ (dz) (56)

=

∫
H

Pz(Az) νθ (dz) (57)

=

∫
H
(1 − α) νθ (dz) = 1 − α. (58)

Proof of Theorem 2.4. The proof is essentially the same as that of Theorem 2.3 and so is omitted.

Proof of Lemma 3.1. For sets A and Ã described in the lemma,

0 ≤ P(A) − P(Ã) = P(A∩ Ãc) − P(Ac ∩ Ã). (59)

Similarly, R(A) − R(Ã) = R(A∩ Ãc) − R(Ac ∩ Ã). The first term in this difference is

R(A∩ Ãc) =
∫
A∩Ãc

r(ω)λ(dω) (60)

≥
∫
A∩Ãc

[p(ω)/k]λ(dω) = P(A∩ Ãc)/k . (61)

As for the second term in the risk difference, in the case that P(Ac ∩ Ã) > 0 we have

P(Ac ∩ Ã)/k =
∫
Ac∩Ã

[p(ω)/k]λ(dω) >
∫
Ac∩Ã

r(ω)λ(dω) = R(Ac ∩ Ã) (62)

because r(ω) < p(ω)/k on Ã. Therefore, if P(Ac ∩ Ã) > 0, we have R(A∩ Ãc) ≥ P(A∩ Ãc)/k, R(Ac ∩
Ã) < P(Ac ∩ Ã)/k, and so

R(A) − R(Ã) = R(A∩ Ãc) − R(Ac ∩ Ã) (63)

> [P(A∩ Ãc) − P(Ac ∩ Ã)]/k ≥ 0. (64)

In the case that P(Ac ∩ Ã) = 0 we must also have R(Ac ∩ Ã) = 0 since r(ω) < p(ω)/k on Ã. The risk
difference in this case is then just R(A ∩ Ãc), which was already shown to be greater than or equal to
P(A ∩ Ãc), which is greater than or equal to P(A ∩ Ãc), which is zero in this case. Therefore, the risk
difference is positive and can only be zero if P(AΔÃ) = 0.

Proof of Theorem 3.2. Let Az = A ∩ Z−1{z} for each z. By regular sufficiency and completeness,
there exists a set HP ∈ H such that νθ (HP) = 1 for all θ and Pz(Aπz ) = Pz(Az) for all z ∈ HP . Let
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HR = {z : Rz(Z−1{z}) = 1 − Rz(Z−1{z}c) = 1}, that is, the subset of Z for which Rz is a probability
measure concentrated on Z−1{z}. Now νR(Hc

P) = 0 by assumption 1, and νR(Hc
R) = 0 by Theorem 2 of

Chang and Pollard [6], and so νR((HP ∩ HR)c) = 0 as well. This implies that

R(A) =
∫

Rz(A) νR(dz) =
∫
HP∩HR

Rz(Az) νR(dz) (65)

≥
∫
HP∩HR

Rz(Aπz ) νR(dz) = R(Aπ), (66)

where the second line holds because Rz(Z−1{z}c) = 0 for all z ∈ HR, and the third line holds because
for z ∈ HP ∩ HR, Rz is a probability measure (z ∈ HR), Pz(Az) = Pz(Aπz ) (z ∈ HP), and so by Lemma
3.1 and the form of Aπz , we have Rz(Az) ≥ Rz(Aπz ).

Condition 2 implies almost sure uniqueness of Aπ as a minimizer of risk, as long as the risk is finite:
Suppose R(Aπ) < ∞ and R(A) = R(Aπ). Then the set {z : Rz(Az) > Rz(Aπz )} has νR-measure zero.
This implies that this set also has νθ -measure zero for every θ by condition 2, and so Rz(Az) = Rz(Aπz )
with probability one under each νθ . But by Lemma 3.1, Rz(Az) = Rz(Aπz ) is only possible for a given
z if Pz(AzΔAπz ) = 0. Therefore, we must have Pz(AzΔAπz ) = 0 with νθ -probability one for each θ.
Therefore, equality of finite risks implies

Pθ (AΔAπ) =
∫

Pz(AΔAπ) νθ (dZ) (67)

=

∫
Pz(AzΔAπz ) νθ (dZ) = 0. (68)

Proof of Corollary 2. Let γ be a σ-finite Radon measure on a metric space Ω with Borel sets A, and
let Z : (Ω,A)→ (Z,H) be a measurable function. Theorem 1 of Chang and Pollard [6] says that if H is
countably generated and contains the singleton sets, and the image measure ν of γ under Z is σ-finite,
then γ has a (Z, ν) disintegration. Corollary 2 is a corollary of this theorem if, under the assumptions
of the corollary,

1. R is a σ-finite Radon measure on the product σ-algebra A = F ⊗ G, and
2. H is countably generated and contains the singleton sets.

Item 2 holds under the assumption that Z is a separable metric space and H the Borel σ-algebra.
Regarding item 1, since PX

π and μ are both σ-finite, so is their product measure R. Also, since X is
complete and separable then any probability measure on (X,F ), including PX

π , is a Radon measure
[3, Theorem 1.4]. By assumption, μ is also a σ-finite Radon measure. Now let B be the Borel sets of
X × Y under the product topology, and recall that A ⊂ B in general. By Lang [16, Theorem 9.6.3],
assuming X and Y are σ-compact, there exists a unique Radon measure R̃ on B that matches R on A.
But since X and Y are separable spaces, A = B [4, Theorem 6.4.2]. Therefore, R = R̃ and so R is a
Radon measure.

Proof of Lemma 3.3 . Define Nδ = {z : h(z) < −δ} for δ > 0. We will first show that νθ (Nδ) = 0 for
all θ by contradiction. Suppose Nδ is non-null. Then by the assumption, for any ε > 0 there exists a θε
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such that νθε (Nδ) > 1 − ε . This implies∫
h(z) νθε (dz) =

∫
Nδ

h(z) νθε (dz) +
∫
N c

δ

h(z) νθε (dz) (69)

< −δ(1 − ε) + ‖h‖∞ε (70)

which is less than zero for ε < δ/(δ + ‖h‖∞). Therefore, if
∫

h(z) νθ (dz) ≥ 0 for all θ, then νθ (Nδ) = 0
for all δ > 0 and θ. Now note that {z : h(z) < 0} = ∪∞

k=1N1/k , and so

νθ ({z : h(z) < 0}) = νθ (∪∞
k=1N1/k ) = lim

k→∞
νθ (N1/k ) = 0 (71)

because N1/k ⊂ N1/(k+1) and νθ (N1/k ) = 0 for all positive integers k.

Proof of Theorem 3.4. Let A ∈ A satisfy Pθ (A) ≥ Pθ (Aπ) for all θ ∈ Θ. Then
∫
(Pz(A) − Pz(Aπ)) ×

νθ (dz) is non-negative for all θ, and so by Lemma 3.3, Pz(A) ≥ Pz(Aπ) almost surely νθ for each θ.
By Lemma 3.1 we then also have Rz(A) ≥ Rz(Aπ) almost surely νθ for each θ, which implies Rz(A) ≥
Rz(Aπ) almost everywhere νR by Assumption 1 of Theorem 3.2. Finally, this gives

R(A) − R(Aπ) =
∫

(Rz(A) − Rz(Aπ)) νR(dz) ≥ 0. (72)

Proof of Theorem 3.5. The density of Pθ with respect to R is hθ (Z(x, y))g(x, y)/pXπ (x), and so

Pθ (A) =
∫
A

hθ (Z(x, y))[g(x, y)/pXπ (x)]R(dx dy)

=

∫ (∫
A

hθ (Z(x, y))[g(x, y)/pXπ (x)]Rz(dx dy)
)
νR(dz)

=

∫
hθ (z)

(∫
A
[g(x, y)/pXπ (x)]Rz(dx dy)

)
νR(dz) ≡

∫
hθ (z)Qz(A) νR(dz),

where we have defined for each z the measure Qz on (X × Y,F ⊗ G) such that [dQz/dRz](x, y) =
g(x, y)/pXπ (x). By Fubini’s theorem, Qz(X ×Y) is finite for νR-almost all z since Pθ (X ×Y) is finite.
Additionally, since Rz concentrates on Z−1{z} for νR-almost all z and Qz � Rz for each z, we have
that Qz concentrates on Z−1{z} for νR-almost all z as well.

The measures {Qz : z ∈ Z} can be related to a conditional distribution {Pz : z ∈ Z} for the family
{Pθ : θ ∈ Θ}, which then gives an expression for dPz/dRz . First, note that {hθ (z)Qz : z ∈ Z} gives a
{Z, νR}-disintegration of Pθ . For H ∈ H ,

νθ (H) ≡ Pθ (Z−1H) =
∫

hθ (z)Qz(Z−1H) νR(dz) (73)

=

∫
hθ (z)

(∫
1(Z(x, y) ∈ H)Qz(dx dy)

)
νR(dz) (74)

=

∫
H

hθ (z)
∫

Qz(dx dy) νR(dz) (75)

=

∫
H

hθ (z)Qz(X ×Y) νR(dz), (76)
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and so [dνθ/dνR](z) = hθ (z)Qz(X ×Y). Therefore, continuing from (73) we have

Pθ (A) =
∫

hθ (z)Qz(A) νR(dz)

=

∫
[Qz(A)/Qz(X ×Y)]hθ (z)Qz(X ×Y) νR(dz)

=

∫
[Qz(A)/Qz(X ×Y)] νθ (dz) ≡

∫
Pz(A) νθ (dz) (77)

so that Pz is a probability measure on (X × Y,A). We now show that {Pz : z ∈ Z} is a regular con-
ditional probability distribution of Pθ given Z for each θ. First, Pz(Z−1{z}) = 1 for νR-almost all z
and so also for νθ -almost all z for each θ, since Pθ � R for each θ. Additionally, the map z → Pz(A)
is measurable for each A ∈ A. To see this, recall that z → Rz(A) is measurable by assumption, and
so z →

∫
f (x, y) Rz(dxdy) is measurable for any simple function f . Letting fk(x, y) ↑ g(x, y)/pXπ (x) as

k →∞ we have Qz(A) = limk→∞
∫

fk (x, y)Rz(dxdy), so z �→ Qz(A) is a limit of measurable functions
and so is measurable. Thus, z �→ Pz(A) =Qz(A)/Qz(X ×Y) is measurable as well. Finally,

dPz/dRz = [Qz(X ×Y)]−1dQz/dRz = [Qz(X ×Y)]−1g(x, y)/pXπ (x). (78)

Proof of Corollary 3. The corollary results from plugging in the form of dPz/dRz from Theorem 3.5
into the expression for the optimal set in Theorem 3.2.

Proof of Theorem 4.1. By Corollary 2, item 3 will be true if items 1 and 2 are true. Regarding item
1, the risk measure R = PX

π × μ is a σ-finite Radon measure by the same arguments as in the proof of
Corollary 2. Regarding item 2, first we show that the sufficient statistic Z is a measurable map from
(Yn+1,Gn+1) to (Z,H), where Z is the subset of P consisting of measures with n+1 or fewer support
points and H is the σ-algebra generated by the weak topology on Z. Because Y is separable, Z with
this topology can be separably metrized [19, Theorem 6.2]. In this case, H is the same as the σ-algebra
generated by sets of the form {P ∈ P : P(G) < c} for c ∈ [0,1], G ∈ G [15]. Let H be such a set. Then
Z−1H = {(y1, . . . , yn+1) ∈ Yn+1 :

∑
1(yi ∈ G)/(n + 1) < c}, which is a measurable subset of Gn+1.

Let νR be the image measure of R under Z , defined by νR(H) = R(Z−1H) for H ∈ H . For any G ∈ G,
define HG = {P ∈ Z : P(G) = 1}. Then Z−1HG = {(y1, . . . , yn+1) ∈ Yn+1 : {y1, . . . , yn+1} ⊂ G} = Gn.
Therefore, νR(HG) = PX

π (Gn) × μ(G), which is less than infinity if μ(G) < ∞. Now by σ-finiteness
of μ, there exists a countable set {Gk : k ∈ N} ⊂ G such that ∪∞

1 Gk =Y, Gk ⊂ Gk+1 and μ(Gk) <∞
for each k ∈ N. Therefore, νR(HGk

) <∞ for each k ∈ N as well. We now show ∪kHGk
=Z: Because

∪kGk =Y, for each y ∈ Y there is some ky such that y ∈ Gl for all l ≥ ky . Let z ∈ Z, and let y1, . . . , ym
be the support points of z (m could be n + 1 or smaller). Then z ∈ HG∗

k
where k∗ =max{ky1, . . . , kym }.

Thus ∪kHGk
= Z, and so νR is σ-finite. The assumptions of Corollary 2 are met and so R has a

(Z, νR)-disintegration.
Complete sufficiency of Z under assumption A1 follows from Bell, Blackwell and Breiman [2].

The remaining conditions for Aπ to be risk-optimal for its coverage function are conditions 1 and 2
of Theorem 3.2 and condition 1 of Theorem 3.5. Assumption A2 immediately implies the last two of
these. The remaining condition is that if Pn+1(Z−1H) = 0 for each P ∈ P, we must have νR(H) = 0.
Assumption A2 implies something stronger, that for E ∈ Gn+1, Pn+1(E) = 0 for all P ∈ P implies
R(E) = 0, or conversely, that R(E) > 0 implies there exists a P ∈ P such that Pn+1(E) > 0. To see
this, recall that σ-finiteness of μ implies the existence of a strictly positive function f on Y for which∫

f (y)μ(dy) = 1. Let P be the measure on (Y,G) with density f with respect to μ, and Pn+1 its n + 1-
fold product measure. Then Pn+1(E) > 0 if μn+1(E) > 0 or equivalently, if R(E) > 0.
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