Translator Disclaimer
August 2022 Stochastic zeroth-order discretizations of Langevin diffusions for Bayesian inference
Abhishek Roy, Lingqing Shen, Krishnakumar Balasubramanian, Saeed Ghadimi
Author Affiliations +
Bernoulli 28(3): 1810-1834 (August 2022). DOI: 10.3150/21-BEJ1400


Discretizations of Langevin diffusions provide a powerful method for sampling and Bayesian inference. However, such discretizations require evaluation of the gradient of the potential function. In several real-world scenarios, obtaining gradient evaluations might either be computationally expensive, or simply impossible. In this work, we propose and analyze stochastic zeroth-order sampling algorithms for discretizing overdamped and underdamped Langevin diffusions. Our approach is based on estimating the gradients, based on Gaussian Stein’s identities, widely used in the stochastic optimization literature. We provide a comprehensive oracle complexity analysis – number noisy function evaluations to be made to obtain an ϵ-approximate sample in Wasserstein distance – of stochastic zeroth-order discretizations of both overdamped and underdamped Langevin diffusions, under various noise models. Our theoretical contributions extend the applicability of sampling algorithms to the noisy black-box settings arising in practice.


Download Citation

Abhishek Roy. Lingqing Shen. Krishnakumar Balasubramanian. Saeed Ghadimi. "Stochastic zeroth-order discretizations of Langevin diffusions for Bayesian inference." Bernoulli 28 (3) 1810 - 1834, August 2022.


Received: 1 June 2021; Published: August 2022
First available in Project Euclid: 25 April 2022

Digital Object Identifier: 10.3150/21-BEJ1400

Keywords: Bayesian inference , derivative-free or zeroth-order sampling , Langevin diffusion , Monte Carlo sampling , stochastic MCMC


This article is only available to subscribers.
It is not available for individual sale.

Vol.28 • No. 3 • August 2022
Back to Top