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This paper discusses predictive densities under the Kullback–Leibler loss for high-dimensional Poisson sequence
models under sparsity constraints. Sparsity in count data implies zero-inflation. We present a class of Bayes pre-
dictive densities that attain asymptotic minimaxity in sparse Poisson sequence models. We also show that our class
with an estimator of unknown sparsity level plugged-in is adaptive in the asymptotically minimax sense. For appli-
cation, we extend our results to settings with quasi-sparsity and with missing-completely-at-random observations.
The simulation studies as well as application to real data illustrate the efficiency of the proposed Bayes predictive
densities.
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1. Introduction

Predictive density is a probability density of future observations on the basis of current observations. It
is used not only to estimate future observations but also to quantify their uncertainty. It has a wide range
of application in statistics, information theory, and machine learning. The simplest class of predictive
densities is the class of plug-in predictive densities. A plug-in predictive density is constructed by
substituting an estimator into an unknown parameter of a statistical model. Another class of predictive
densities is the class of Bayes predictive densities. A Bayes predictive density is the posterior mixture of
densities of future observations. There is a vast literature on predictive density for statistical models in
finite dimensions; see Section 1.2 for the literature review. Conversely, little is known about predictive
density for statistical models in high dimensions. In prediction using sparse high-dimensional Gaussian
models, [46,47] construct several predictive densities (including a Bayes predictive density) superior
to all plug-in predictive densities.

The aim of this paper is to construct an efficient predictive density for high-dimensional sparse count
data. The efficiency of a predictive density is measured by the supremum of the Kullback–Leibler risk
under sparsity constraints. Sparsity in count data means that there exhibits an excess of zeros. See
Section 1.1 for the formulation.

The motivation for analyzing sparse count data is well known. In analyzing high-dimensional count
data, there often exhibits inflation of zeros. Data with an overabundance of zeros include samples from
agriculture [22], environmental sciences [1], manufacturing [39], DNA sequencing [14], and terrorist
attacks [14]. Another example (Japanese crime statistics) is presented in Section 4.
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1.1. Problem setting and contributions

We summarize main results with the problem formulation ahead. Let Xi (i = 1,2, . . . , n) be a current
observation independently distributed according to Po(rθi), and let Yi (i = 1,2, . . . , n) be a future ob-
servation independently distributed according to Po(θi), where θ = (θ1, . . . , θn) is an unknown param-
eter and r is a known constant. Constant r represents the ratio of the mean of the i-th (i = 1, . . . , n) cur-
rent observation to that of the i-th future observation. By sufficiency, this constant represents the ratio
of sample sizes of current observations to those of future observations. Suppose that X = (X1, . . . ,Xn)

and Y = (Y1, . . . , Yn) are independent. The densities of X and Y with parameter θ are denoted by
p(x | θ) and q(y | θ), respectively:

p(x | θ) =
n∏

i=1

{
1

xi !e−rθi (rθi)
xi

}
and q(y | θ) =

n∏
i=1

{
1

yi !e−θi θ
yi

i

}
.

Our target parameter space is the exact sparse parameter space which is defined as follows. Given
s ∈ (0, n), �[s] := {θ ∈R

n+ : ‖θ‖0 ≤ s}, where ‖ · ‖0 is the �0-norm given by ‖θ‖0 := #{i : θi > 0}.
The performance of a predictive density q̂ is evaluated by the Kullback–Leibler loss

L
(
θ, q̂(·;x)

) =
∑
y∈Nn

q(y | θ) log
q(y | θ)

q̂(y;x)
.

The corresponding risk (expected loss) is denoted by

R(θ, q̂) =
∑
x∈Nn

∑
y∈Nn

p(x | θ)q(y | θ) log
q(y | θ)

q̂(y;x)
.

The minimax Kullback–Leibler risk over �[s] is defined as

R
(
�[s]) := Rn

(
�[s]) = inf

q̂
sup

θ∈�[s]
R(θ, q̂).

To express high-dimensional settings under sparsity constraints, we employ the high dimensional
asymptotics in which n → ∞ and ηn := s/n = sn/n → 0. The value of s possibly depends on n and
thus in what follows the dependence on n is often expressed, say, s = sn.

Main theoretical contributions are summarized as follows:

(i) In Theorem 2.1, we identify the asymptotic minimax risk R(�[sn]) and present a class of Bayes
predictive densities attaining the asymptotic minimaxity;

(ii) In Theorem 2.2, we present an asymptotically minimax predictive density that is adaptive to an
unknown sparsity.

In Theorem 2.1, we find that the sharp constant in the asymptotic minimax risk is controlled by the
constant r . This constant highlights the interesting parallel between Gaussian and Poisson decision
theories as discussed in Section 1.2. In Theorem 2.2, we show that a simple plug-in approach to choose
the tuning parameter in the proposed class yields adaptive Bayes predictive densities. In addition, we
obtain the corresponding results for quasi sparse Poisson models and for settings where current obser-
vations are missing completely at random in Section 3. These extensions are important in applications.

The practical effectiveness of the proposed Bayes predictive densities is examined by both simulation
studies and applications to real data in Section 4. These studies show that the proposed Bayes predictive
densities are effective in the sense of both predictive uncertainty quantification and point prediction.
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The proposed class of predictive densities builds upon spike-and-slab prior distributions with im-
proper slab priors. Interestingly, spike-and-slab prior distributions with slab priors having exponential
tails do not yield asymptotically minimax predictive densities as Proposition 2.3 indicates. The pro-
posed predictive densities are not only asymptotically minimax but also easily implemented by exact
sampling.

1.2. Literature review

There is a rich literature on constructing predictive densities in fixed finite dimensions. Bayes predic-
tive densities have been shown to dominate plug-in predictive densities in several instances. Studies
of Bayes predictive densities date back to [2,3,48,49]. The first quantitative comparison of Bayes and
plug-in predictive densities in a wide class of parametric models is [31]. [31] showed that there exists a
Bayes predictive density that dominates a plug-in predictive density under the Kullback–Leibler loss,
employing asymptotic expansions of Bayes predictive densities; see also [25] for asymptotic expan-
sions of Bayes predictive densities. Minimax Bayes predictive densities for unconstrained parameter
spaces are studied in [4,41]. Minimax predictive densities under parametric constraints are studied in
[18,36,38]. Shrinkage priors for Bayes predictive densities under Gaussian models are investigated
in [20,30,32,45]; see also [5,19,29] for the cases where the variances are unknown. Shrinkage pri-
ors for Bayes predictive densities under Poisson models are developed in [33,35]. The cases under
α-divergence losses are covered by [13,37,43,52,57].

Relatively little is known about constructing predictive densities in high dimensions. [46,47]
construct an asymptotically minimax predictive density for sparse Gaussian models. [53] obtained
an asymptotically minimax predictive density for nonparametric Gaussian regression models under
Sobolev constraints; thereafter, [56] obtained an adaptive minimax predictive density for these models.
See also [54]. All above results employ Gaussian likelihood and the corresponding results for count
data have been not known.

Poisson models deserve study in their own right as prototypical count data modeling ([6,10,27,33,
50]). Poisson models exhibit several correspondences to Gaussian models. [10,26,27,42] find the corre-
spondence in estimation of means using the re-scaled squared loss defined as

∑n
i=1 θ−1

i (θi − θ̂i (X))2.
[21,33–35] find the correspondence in prediction using the Kullback–Leibler loss. In particular, [27,
42] find the correspondence in the asymptotic minimaxity under ellipsoidal and rectangle constraints
in high-dimensional Poisson models using the re-scaled squared loss (the local Kullback–Leibler loss).
In spite of the interesting correspondence in [27,42], the re-scaled squared loss is not compatible with
sparsity: the loss diverges if θi = 0 and θ̂i (X) �= 0 for at least one index i.

Employing the Kullback–Leibler divergence, this paper presents the results of asymptotic minimax-
ity in both estimation and prediction for sparse Poisson models, which are clearly parallel to the result
for sparse Gaussian models by [47]; see Section 2.2 for detailed discussions. This paper also covers
several new topics in predictive density under sparsity constraints: the adaptation to sparsity, quasi-
sparsity, and missing completely at random.

Our strategy leverages spike-and-slab priors. In the literature, it is known that the choice of slab
priors impacts on the statistical optimality [8,9,28,51]. But, the behavior has been studied only for
(sub-)Gaussian models and the corresponding results for Poisson models have remained unavailable.
In Proposition 2.3, we show that slab priors with tails as heavy as the exponential distribution suffer
from the minimax sub-optimality. In Proposition 2.4, we also show that polynomially decaying slabs
can attain the minimax optimality.

Relatively scarce are theoretical studies of zero-inflated or quasi zero-inflated Poisson models in
high dimensions in spite of their importance. [14] constructs global-local shrinkage priors for high-



Predictive density for sparse count data 1215

dimensional quasi zero-inflated Poisson models. The constructed priors have good theoretical proper-
ties of the shrinkage factors and of the multiple testing statistics. We confirm in Section 4 that our priors
broadly outperform their priors in predictive density, which indicates our priors are more suitable for
prediction. In contrast, we consider that their priors would be more suitable than our priors in multiple
testing or in interpreting shrinkage factors. We shall also mention that in this direction, interesting and
powerful extensions of [14] are now available in [23]. Appendix C in the supplementary material [55]
provides the comparison of our predictive density to the Bayes predictive density based on the prior in
[23].

1.3. Organization and notation

The rest of the paper is organized as follows. In Section 2, we present an asymptotically minimax
predictive density and an adaptive minimax predictive density for sparse Poisson models, which is the
main result in this paper. In Section 3, we present several extensions of the main result. In Section 4,
we conduct simulation studies and present application to real data. In Section 5, we give proofs of
main theorems (Theorems 2.1 and 2.2). In Section 6, we provide proofs of auxiliary lemmas used
in Section 5. All proofs of propositions in Section 2 are given in Appendix A of the supplementary
material. All proofs of propositions in Section 3 are given in Appendix B of the supplementary material.

Throughout the paper, we will use the following notations. The notation an ∼ bn signifies that an/bn

converges to 1 as n goes to infinity. The notation O(an) indicates a term of which the absolute value
divided by an is bounded for a large n. The notation o(an) indicates a term of which the absolute value
divided by an goes to zero in n. For a function f :Nn×N

n →R, the expectation Eθ [f (X,Y )] indicates
the expectation of f (X,Y ) with respect to p(x | θ)q(y | θ). Likewise, for a function g : N → R, the
expectation Eλ[g(X1)] indicates the expectation of g(X1) with respect to Po(λ). Constants c1, c2, . . .

and C1,C2, . . . do not depend on n. Their values may be different at each appearance.

2. Predictive density for sparse Poisson models

2.1. Main results

This section presents main results for prediction using sparse Poisson models: the precise description
of the asymptotic minimax risk; the construction of the class of asymptotically minimax predictive
densities; and that of adaptive minimax predictive densities. Detailed discussions are provided in the
subsequent subsection. Proofs of the theorems are presented in Section 5.

The first theorem describes the asymptotic minimax risk as well as the Bayes predictive density
attaining the asymptotic minimaxity. For r ∈ (0,∞), let

C := Cr =
(

r

r + 1

)r( 1

r + 1

)
.

For h > 0 and κ > 0, let 	[h,κ] be an improper prior of the form

	[h,κ](dθ) =
n∏

i=1

{
δ0(dθi) + hθκ−1

i 1(0,∞)(dθi)
}
,

where δ0 is the Dirac measure centered at 0.
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Theorem 2.1. Fix r ∈ (0,∞) and fix a sequence sn ∈ (0, n) such that ηn = sn/n = o(1). Then, the
following holds:

R
(
�[sn]

) ∼ Csn log
(
η−1

n

)
as n → ∞.

Further, the predictive density q	[ηn,κ] based on 	[ηn, κ] with κ > 0 is asymptotically minimax: i.e.,

sup
θ∈�[sn]

R(θ, q	[ηn,κ]) ∼R
(
�[sn]

)
as n → ∞.

The derivation of this theorem consists of (i) establishing a lower bound of R(�[sn]) based on the
Bayes risk maximization, and (ii) establishing an upper bound of it based on the Bayes predictive
density q	[ηn,κ].

The first theorem provides asymptotically minimax strategies, but the optimal strategies therein
require the true value of ηn. The second theorem presents the optimal strategies without requiring
the true value of sn, that is, adaptive minimax predictive densities for sparse Poisson models. Let
ŝn := max{1,#{i : Xi ≥ 1, i = 1, . . . , n}}, and let η̂n := ŝn/n.

Theorem 2.2. Fix r ∈ (0,∞) and κ > 0. Then, the predictive density q	[η̂n,κ] is adaptive in the asymp-
totically minimax sense on the class of exact sparse parameter spaces: i.e., for any sequence sn ∈ [1, n)

such that supn sn/n < 1 and ηn = sn/n = o(1),

sup
θ∈�[sn]

R(θ, q	[η̂n,κ]) ∼R
(
�[sn]

)
as n → ∞.

The derivation builds upon evaluating the difference between two Kullback–Leibler risks R(θ,

q	[ηn,κ]) and R(θ, q	[η̂n,κ]). We will show this difference is negligible uniformly in θ compared to
the minimax risk. To check this, we use three properties of ŝn:

• The estimate ŝn is bounded below by an absolute constant;
• The first and the second moments of |ŝn/sn − 1| are bounded above by an absolute constant;
• The estimate ŝn can capture nearly the correct growth rate of sn in the relatively dense regime,

whenever the true value of θ is outside a vicinity of 0. Specifically, we will see that

sup
θ :maxi θi>1/

√
log sn

Eθ [log sn/ŝn] = O(
√

log sn) as sn → ∞.

The first and the second properties make the difference negligible in the relatively sparse regime. The
third property makes the difference negligible in the relatively dense regime. See Section 5.3 for the
detail.

2.2. Discussions

Several discussions are provided in order.

2.2.1. Prediction and estimation, Poisson and Gaussian

Prediction and estimation: For comparison, let us consider estimating θ under the Kullback–Leibler
risk Re(θ, θ̂ ) := R(θ, q(· | θ̂ )) as in [16]. The minimax risk E(�[sn]) for estimation is defined in such
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a way that E(�[s]) := inf
θ̂

supθ∈�[s] Re(θ, θ̂ ). Since the minimax risk E(�[sn]) for estimation can be
viewed as the minimax risk for prediction when predictive densities are restricted to plug-in predictive
densities, we always have E(�[sn]) ≥R(�[sn]).

The first proposition describes the asymptotic minimax risk for estimation. This proposition high-
lights a gap between E(�[sn]) and R(�[sn]). The second proposition indicates that the same data-
dependent prior as in Theorem 2.2 yields an adaptive minimax estimator.

Proposition 2.1. Fix r ∈ (0,∞) and fix a sequence sn ∈ (0, n) such that ηn = sn/n = o(1). Then, the
following holds:

E
(
�[sn]

) ∼ e−1r−1sn log
(
η−1

n

)
as n → ∞.

Proposition 2.2. Fix r ∈ (0,∞) and κ > 0. Then, the Bayes estimator θ̂	[η̂n,κ] is adaptive in the
asymptotically minimax sense on the class of exact sparse parameter spaces: for any sequence sn ∈
[1, n) such that supn sn/n < 1 and ηn = sn/n = o(1), we have

sup
θ∈�[sn]

Re(θ, θ̂	[η̂n,κ]) ∼ E
(
�[sn]

)
as n → ∞.

According to Theorem 2.1 and Proposition 2.1, the rates (with respect to n) of minimax risks for
estimation and for prediction are identical. But, the sharp constants of these minimax risks are different
with r . The sharp constant of R(�[sn]) (i.e., C,) increases as r decreases but remains bounded above
by 1, while that of E(�[sn]) (, i.e., e−1r−1) grows to infinity as r decreases. Further, C ∼ e−1r−1 as r

increases.
Poisson and Gaussian: [47] shows the asymptotic minimax risk for prediction using sparse Gaussian

models is equal to {1/(1 + r)}sn logη−1
n with r the ratio of sample sizes of current observations to

those of future observations. Comparing our results with [47], we find interesting similarities between
sparse Gaussian and sparse Poisson models. First, the rates with respect to n of these two problems
are identical to sn logη−1

n . Second, Figures 1 and 2 show the comparisons of the exact constants of
minimax risks for sparse Poisson and Gaussian models. The vertical line indicates values of the risks
and the horizontal line indicates values of r . They show the similarity of the behavior with respect to r

of minimax risks in Poisson and Gaussian cases. An interesting observation in comparison of Poisson
and Gaussian cases is that the exact constants of predictive minimax risks in both cases get closer to 1
as r approaches to 0.

Figure 1. Predictive and estimative minimax risks for sparse Poisson models: the holizontal axis represents r .
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Figure 2. Predictive and estimative minimax risks for sparse Gaussian models: the holizontal axis represents r .

2.2.2. Spike-and-slab priors

Computation: Let us mention a computational advantage of using improper slab priors ahead. Bayes
predictive densities often suffer from computational intractability because they may involve several
numerical integrations. Using improper slab priors, we can avoid such a computational issue in our
set-up. In fact, the Bayes predictive density based on 	[h,κ] has the explicit form

q	[h,κ](y | x)

=
n∏

i=1

{
ωiδ0(yi) + (1 − ωi)

(
xi + yi + κ − 1

yi

)(
r

r + 1

)xi+κ(
1 − r

r + 1

)yi

}
,

where

ωi :=
{

1/
{
1 + h�(κ)/rκ

}
if xi = 0,

0 if xi ≥ 1.

The coordinate-wise marginal distribution of q	[h,κ] is a zero-inflated negative binomial distribution
and thus sampling from q	[h,κ] is easy.

Condition on slab priors: Spike and slab priors has been recently well-investigated in sparse Gaus-
sian models; see [8,9,28,51]. The existing results for sparse Gaussian models are summarized as fol-
lows:

• For point estimation, a slab prior with its tail at least as heavy as Laplace distribution yields a
rate-optimal point estimator of the sparse mean (see [28]);

• For uncertainty quantification, Laplace slab prior yields a rate sub-optimal posterior �2-moment
but Cauchy slab prior yields a rate-optimal one (see [8]).

Here we derive both necessary and sufficient conditions for the minimax prediction in sparse Poisson
models.

Consider the following condition on a prior 	: For the posterior mean θ̂	, the asymptotic equation

|θ̂	,i(x) − xi/r|
xi/r

→ 0 as xi → ∞ (1)
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holds for all i. This condition is a Poisson variant of tail-robustness of the posterior mean [7]. [23]
studies this condition and a stronger condition in the context of the global-local shrinkage. The next
proposition implies Condition (1) is necessary for the minimax prediction.

Proposition 2.3. Fix a sequence sn ∈ (0, n) such that ηn = sn/n = o(1). If a spike-and-slab prior does
not satisfy (1), then we have

sup
θ∈�[sn]

R(θ, q	)/R
(
�[sn]

) → ∞ as n → ∞.

Though Condition (1) is not sufficient, it becomes a useful criterion for checking the sub-optimality
of a given predictive density. For example, a spike-and-slab prior with an exponentially decaying slab
(e.g., Laplace slab) does not satisfy (1) and hence yields a sub-optimal predictive density.

Consider a spike-and-slab prior 	γ [η] := ∏n
i=1{(1 − η)δ0(dθi)+ ηγ (θi) dθi} with a slab density γ .

Make the following conditions on γ :

sup
λ>0

∣∣∣∣λ d

dλ
logγ (λ)

∣∣∣∣ = � < ∞ (2)

and ∫ ∞

0
e−λγ (λ)dλ < ∞. (3)

By the fundamental theorem of calculus, Condition (2) implies c1λ
−� ≤ γ (λ) ≤ C1λ

� with some
c1,C1 > 0. Condition (3) is a posterior integrability condition and is satisfied by all proper priors as
well as ours. A class of slabs satisfying (2) and (3) includes half-Cauchy, Pareto, and regularly varying
priors with index −1 discussed in [23,44]. We can easily check that spike-and-slab priors with slabs
satisfying (2) and (3) meet Condition (1) and can show they yield the optimal predictive densities.

Proposition 2.4. Fix r ∈ (0,∞) and fix a sequence sn ∈ (0, n) such that ηn = sn/n = o(1). Let 	γ [ηn]
be a spike-and-slab prior with γ satisfying (2) and (3) Then, the predictive density q	γ [ηn] based on
	γ [ηn] is asymptotically minimax: that is,

sup
θ∈�[sn]

R(θ, q	γ [ηn]) ∼R
(
�[sn]

)
as n → ∞.

Optimal scaling: Our approach uses an improper prior within their mixture and therefore the scaling
of the improper slab prior impacts on the resulting predictive density: 	[Lηn, κ] for arbitrary L > 0
produces a different predictive density that is asymptotically minimax. This arbitrariness of the scale
is well known in the objective Bayesian literature and worrisome in practice; see [15,24,40].

The next proposition provides a guideline for choosing L and removes this arbitrariness. Let

L∗ := L∗
r,κ = C/K with K := �(κ + 1)

r−κ − (r + 1)−κ

κ
.

Proposition 2.5. Fix r ∈ (0,∞) and κ > 0. Fix also a sequence sn ∈ (0, n) such that ηn = sn/n =
o(1). Then, the predictive density q	[Lηn,κ] with L > 0 and κ > 0 satisfies

sup
θ∈�[sn]

R(θ, q	[Lηn,κ]) ≤ Csn log
(
η−1

n

)− Csn logL +KsnL + ϒ (4)
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with ϒ terms that are independent of L or that are O(snηn), and L∗ minimizes the right hand sides in
(4) with respect to L.

This result shows that the scale of improper slab priors can be specified by the predictive setting
(characterized by r). Our idea here is relevant to [24]: In [24], the scale of improper priors within their
mixture is determined to yield log-posterior probabilities that coincide with log maximum likelihood
plus an Akaike factor; see also the Appendix of [40]. In this light, [24] and this paper indicate that
the specifications of the scale of improper priors within their mixture can be done from a predictive
viewpoint.

3. Extensions

We present two extensions of our results: one is quasi-sparsity; the other is missing completely at
random. These extensions are important in practice.

3.1. Quasi-sparsity

We introduce the notion of the quasi sparse parameter space. Given s ∈ (0, n) and a threshold ε > 0,
the quasi sparse parameter space is defined as �[s, ε] := {θ ∈ R

n+ : N(θ, ε) ≤ s}, where N(θ, ε) :=
#{i : θi > ε}, ε > 0. A threshold value ε determines whether the parameter value of each coordinate is
near-zero or not.

The next two propositions specifies the minimax risk over the quasi-sparse parameter space and
presents an adaptive minimax predictive density.

Proposition 3.1. Fix r ∈ (0,∞) and fix a sequence sn ∈ (0,∞) such that ηn = sn/n = o(1). Fix also a
shrinking sequence εn > 0 such that εn = o(ηn). Then, for the quasi sparse parameter space �[sn, εn],
the following holds:

R
(
�[sn, εn]

) := inf
q̂

sup
θ∈�[sn,εn]

R(θ, q̂) ∼ Csn log
(
η−1

n

)
as n → ∞.

Further, the predictive density q	[ηn,κ] based on 	[ηn, κ] with κ > 0 is asymptotically minimax: that
is,

sup
θ∈�[sn,εn]

R(θ, q	[ηn,κ]) ∼R
(
�[sn, εn]

)
as n → ∞.

Proposition 3.2. Fix r ∈ (0,∞) and κ > 0. Then, the predictive density q	[η̂n,κ] is adaptive in the
asymptotically minimax sense on the class of quasi sparse parameter spaces: that is, for any sequence
sn ∈ [1, n) such that supn sn/n < 1 and ηn = sn/n = o(1) and for any sequence εn > 0 such that
εn = o(ηn), we have

sup
θ∈�[sn,εn]

R(θ, q	[η̂n,κ]) ∼R
(
�[sn, εn]

)
as n → ∞.
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3.2. Missing completely at random

We describe prediction using sparse Poisson models when the current observation is missing com-
pletely at random (MCAR). Let ri ’s (i = 1,2, . . .) be positive random variables. Given ri (i = 1, . . . , n),
let Xi (i = 1,2, . . . , n) be a current observation independently distributed according to Po(riθi), and
let Yi (i = 1,2, . . . , n) be a future observation independently distributed according to Po(θi), where
θi (i = 1, . . . , n) is an unknown parameter. Suppose that X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) are
independent. We denote by R(θ, q̂ | {ri}) the Kullback–Leibler risk conditioned on ris. We also denote
by R(�[sn] | {ri}) the minimax Kullback–Leibler risk over �[sn] conditioned on ris.

To present mathematically unblemished results, we assume that ris are independent and identically
distributed according to a sampling distribution G, and make the following condition on G. Let EG be
the expectation with respect to G.

Condition 3.1. A sampling distribution G satisfies the following: (i) EG[r2
1 ] < ∞; (ii) EG[r−2

1 ] < ∞.

Condition 3.1 (i) is usual. Condition 3.1 (ii) excludes any distribution G highly concentrated around
0 and is not stringent. Consider a longitudinal situation in which Xi (i = 1, . . . , n) is obtained as the
sum of {Xi,j : j = 1, . . . , ri}, where ri (i = 1, . . . , n) represents the sample size in the i-th coordinate,
and for each i, Xi,j (j = 1, . . . , ri ) follows Po(θi). Condition 3.1 implies that for each coordinate there
exists at least one observation: ri ≥ 1. Note that in our real data applications (Section 4.2), Condi-
tion 3.1 (ii) is satisfied.

The following propositions describe the asymptotic minimax risk and present an adaptive minimax
predictive density. Fix an infinite sequence {ri ∈ (0,∞) : i ∈ N} such that 0 < infi ri ≤ supi ri < ∞.
For any i ∈ N, let

Ci := Cri =
(

ri

ri + 1

)ri
(

1

ri + 1

)
.

Let C := Cn = ∑n
i=1 Ci/n.

Proposition 3.3. Fix a sequence sn ∈ (0, n) such that ηn = sn/n = o(1). Under Condition 3.1, we have

plim
n→∞

R
(
�[sn] | {ri}

)
/
{
EG[C]sn log

(
η−1

n

)} = 1.

Further, the predictive density q	[ηn,κ] based on 	[ηn, κ] with 0 < κ ≤ 1 is asymptotically minimax:

plim
n→∞

R
(
�[sn] | {ri}

)
/R

(
θ, q	[ηn,κ] | {ri}

) = 1.

Proposition 3.4. Fix κ ∈ (0,1] and assume that Condition 3.1 holds. Then, the predictive density
q	[η̂n,κ] is adaptive in the asymptotically minimax sense on the class of exact sparse parameter spaces:
for any sequence sn ∈ [1, n) such that supn sn/n < 1 and ηn = sn/n = o(1),

plim
n→∞

R
(
�[sn] | {ri}

)
/R

(
θ, q	[ηn,κ] | {ri}

) = 1.

Detailed discussions for the results herein are given in Appendix D.
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Remark 3.1. We remark that the optimal scaling (in the sense of Proposition 2.5) for this set-up is L,
where

L = C/K with K = �(κ + 1)

n∑
i=1

{
r−κ
i − (ri + 1)−κ

}
/(nκ).

The derivation follows almost the same line as in the proof of Proposition 2.5 and is omitted.

4. Simulation studies and application to real data

4.1. Simulation studies

This subsection presents simulation studies to compare the performance of various predictive densi-
ties. The codes for implementing the proposed method are available at https://github.com/kyanostat/
sparsepoisson.

Consider a sparse Poisson model described as follows. Parameter θ and observations X and Y are
drawn from

θi ∼ νieS,i (i = 1, . . . , n),

X | θ ∼
n⊗

i=1

Po(rθi), Y | θ ∼
n⊗

i=1

Po(θi), and X ⊥⊥Y | θ,

respectively. Here,

• ν1, . . . , νn are independent samples from the Gamma distribution with a shape parameter 10 and
a scale parameter 1;

• S is drawn from the uniform distribution on all subsets having exactly s elements;
• ν1, . . . , νn and S are independent.

Here for a subset J ⊂ {1, . . . , n}, eJ indicates the vector whose i-th component is 1 if i ∈ J and 0
otherwise. We examine two cases for (n, s, r), and generate 500 current observations X’s and 500
future observations Y ’s. See Appendix C in the supplementary material for the results with different
choices of (n, s, r).

We compare the following four predictive densities:

• The Bayes predictive density based on 	[L∗η̂n, κ] with L∗ in Proposition 2.5;
• The Bayes predictive density based on the shrinkage prior in [33];
• The Bayes predictive density based on the Gauss hypergeometric prior in [14];
• The plug-in predictive density based on an �1-penalized estimator.

The second predictive density is shown in [33] to dominate the Bayes predictive density based on the
Jeffreys prior. This predictive density has a hyper-parameter β and in simulation studies it is fixed to
be 1. The third predictive density employs the global-local prior proposed in [14] and the specification
of the hyper-parameters follows the online support pages the authors provide.

The performance of predictive densities is evaluated by the following three measures:

• the mean of the �1 distance (
∑n

i=1 |ui − vi | for u,v ∈ R
n) between the mean of a predictive

density and a future observation,

https://github.com/kyanostat/sparsepoisson
https://github.com/kyanostat/sparsepoisson
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Table 1. Comparison of predictive densities with (n, s, r) = (200,5,1): the �1 distance, PLL, and 90%CP rep-
resent the mean �1 distance, the predictive log likelihood, and the empirical coverage probability based on a
90%-prediction set, respectively. For each result, the averaged value is followed by the corresponding standard
deviation. Underlines indicate the best performance

	[L∗η̂n,0.1] 	[L∗η̂n,1.0] GH K04 �1 (λ = 0.1)

�1 distance 18.8 (5.8) 21.9 (6.8) 104 (4.9) 96.5 (8.1) 22.1 (7.8)
PLL −15.4 (1.8) −16.1 (1.6) −66.3 (3.3) −86.2 (8.8) −Inf
90%CP (%) 92.6 (0.1) 95.8 (0.1) 92.0 (1.5) 40.5 (24.4) 49.4 (21.6)

• the predictive log likelihood, that is, the log of the value of a predictive density at sampled Y and
X, and

• the (empirical) coverage probability of Y on the basis of the joint 90%-prediction set constructed
by a predictive density.

Tables 1 and 2 show the results of the comparison. The following abbreviations are used in the tables.
The Bayes predictive density proposed in [14] is abbreviated to GH. The Bayes predictive density
proposed in [33] is abbreviated to K04. The plug-in density based on an �1-penalized estimator with
regularization parameter rλ is abbreviated to �1 (λ). The abbreviation �1 distance represents a mean
�1 distance. The abbreviation PLL represents a predictive log likelihood. The abbreviation 90%CP
represents the empirical coverage probability based on a 90%-prediction set.

The results have been summarized as follows. In regard to the �1 distances, samples from the predic-
tive density based on 	[L∗η̂n,0.1] are closer to future observations than those of three other classes of
predictive densities. In regard to the empirical coverage probabilities, the predictive densities based on
	[L∗η̂n,0.1] and the Gauss hypergeometric prior give the empirical coverage probabilities of Y that
are relatively close to the nominal level. The prediction set of the plug-in predictive density based on
the �1-penalized estimator is too narrow to cover future observations. This is mainly because for this
plug-in predictive density, an �1-penalized estimator returns zero for a coordinate at which the current
observation is zero and most of the marginal predictive intervals degenerate into zero. This degeneracy
also induces the divergence of a predictive log likelihood value of the plug-in predictive density based
on an �1-penalized estimator.

Supplemental material provides additional numerical experiments including quasi-sparse, MCAR,
large sn settings, and the comparison with the recently developed prior distribution [23]. These show
that the proposed predictive density with κ = 0.1 has stable predictive performance and this value of κ

is suggested as a good default choice.

Table 2. Comparison of predictive densities with (n, s, r) = (200,5,20): the �1 distance, PLL, and 90%CP rep-
resent the mean �1 distance, the predictive log likelihood, and the empirical coverage probability based on a
90%-prediction set, respectively. For each result, the averaged value is followed by the corresponding standard
deviation. Underlines indicate the best performance

	[L∗η̂n,0.1] 	[L∗η̂n,1.0] GH K04 �1 (λ = 0.1)

�1 distance 14.0 (4.9) 14.5 (4.5) 15.7 (1.7) 22.5 (5.2) 14.1 (4.5)
PLL −13.3 (1.6) −13.5 (1.5) −15.6 (1.5) −21.6 (2.2) −Inf
90%CP (%) 90.0 (0.0) 89.4 (0.0) 97.6 (0.7) 97.5 (1.4) 86.3 (3.9)
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4.2. Application to real data

We apply our methods to Japanese crime data from an official database called the number of crimes in
Tokyo by type and town [17]. This database reports the total numbers of crimes in Tokyo Prefecture.
They are classified by town and also by the type of crimes. A motivation for this analysis comes from
the importance of taking measures against future crimes by utilizing past crime data.

We use pickpocket data from 2012 to the first half of 2018 at 978 towns in eight wards (Bunkyo
Ward, Chiyoda Ward, Chuo Ward, Edogawa Ward, Koto Ward, Minato Ward, Sumida Ward, and Taito
Ward). Figure 3 shows total counts of pickpockets from 2012 to 2017 for all towns in the wards.
The scale of the pickpocket occurrences in each town is expressed by a gradation of colors: there
have occurred more pickpockets in a deeper-colored town over 6 years. There have not occurred any
pickpocket in white-colored towns. As seen from Figure 3, the data have zero or near-zero counts at a
vast majority of locations, while having relatively large counts at certain locations.

The experimental settings are as follows. The data at the 978 towns from 2012 to 2017 are used as
current observations. The data in the first half of 2018 are used as future observations. Since the counts
in the first half of 2018 would be considered as the half of the total counts in 2018, in general, the ratio
r of sample sizes is set as r = 12. However, some observations are missing because several towns,
though in rare cases, did not report the counts.

As in Section 4.1, we compare the proposed predictive density q	[Lη̂n,κ] (with L in Remark 3.1)
to the three existing predictive densities, that is, the Bayes predictive density GH based on a Gauss
hypergeometric prior, the Bayes predictive density K04 based on the shrinkage prior, and the plug-in
predictive density based on an �1-regularized estimator. An estimator ŝn used in q	[Lη̂n,κ] is set as
the simple estimator described before Theorem 2.2 with a slight modification: we use the mean of the
numbers of values greater than 1 in each year as ŝn. The value of κ is fixed to be 0.1 as the numerical
simulations suggest. We evaluate these predictive densities on the basis of the following two measures:

• The weighted �1 distance with the weight proportional to r between the mean vector of a predic-
tive density and the data obtained in the first half of 2018, and

• the predictive log likelihood at the data obtained in the first half of 2018.

Figure 3. Pickpocket data: (Left) Total numbers of pickpockets from 2012 to 2017 in eight wards (Bunkyo Ward,
Chiyoda Ward, Chuo Ward, Edogawa Ward, Koto Ward, Minato Ward, Sumida Ward, and Taito Ward). There
have occurred more pickpockets in a deeper-colored town over 6 years. There have occurred no pickpockets
in white-colored towns. (Right) Coordinate-wise medians of the proposed predictive density q

	[Lη̂n,0.1] for the
pickpockets in the first half of 2018.
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Table 3. Comparison of predictive densities in pickpocket data by the weighted �1 distance (W-�1 distance) and
the predictive log likelihood (PLL): underlines indicate the best performances

	[Lη̂n,0.1] GH K04 �1 (λ = 0.1)

W-�1 distance 273 293 273 297
PLL −399 −399 −429 −Inf

Table 3 shows a summary of comparisons. In all measures, the proposed predictive density
q	[Lη̂n,0.1] has the best scores. The predictive density provides not only the mean but also the other
statistics. The figure to the right of Figure 3 displays the coordinate-wise medians of the proposed
predictive density. It highlights crime spots at which many pickpockets have occurred over the past 6
year, and at the same time shows potential crime spots that the spike-and-slab prior structure suggests.

5. Proofs of main theorems

This section presents proofs for the main theorems in Section 2.

5.1. Supporting lemmas

We begin with stating the supporting lemmas. For an estimator θ̂ , let

Re(θ, θ̂ ) := R
(
θ, q(· | θ̂ )

) = Eθ

n∑
i=1

[
θi log

θi

θ̂i (X)
− θi + θ̂i (X)

]
.

For a prior 	 of θ , let

θ̂	,i(x; t) =
∫

θip(x | tθ) d	(θ)/

∫
p(x | tθ) d	(θ), i = 1,2, . . . , n,

and let θ̂	(x; t) := (θ̂	(x; t), . . . , θ̂	,n(x; t)).
The first lemma reduces bounding R(θ, q	) to bounding Re(θ, θ̂	). The proof is given in Section 6.

Lemma 5.1. Fix a prior 	 of θ . If θ̂	(x; t) based on 	 is strictly larger than 0 for any x ∈ N
n and

any t ∈ (r,1 + r), then, we have

R(θ, q	) =
∫ r+1

r

Re(tθ, t θ̂	(·; t))
t

dt.

The second and third lemma display useful formulae for Poisson random variables. The proofs are
easy and we omit them.

Lemma 5.2. Let X1 be a random variable from the Poisson distribution with mean λ. Then, we have

Eλ

[
1

X1 + 1

]
= 1 − e−λ

λ
.
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Lemma 5.3. Let X1 be a random variable from the Poisson distribution with mean λ. Then, we have

P(X1 − λ ≤ −x) ≤ exp

(
−x2

2λ

)
, 0 ≤ x ≤ λ.

5.2. Proof of Theorem 2.1

Step 1: Lower bound on R(�[sn])
The Bayes risk minimization with respect to block-independent priors will give a lower bound on
R(�[sn]). Let 	B,ν(dθ) with ν > 0 be a block-independent prior built as follows: divide {1,2, . . . , n}
into contiguous blocks {Bj : j = 1,2, . . . , sn} with each length mn := �η−1

n �. In each block Bj , draw
(θ1+mn(j−1), . . . , θmnj ) independently according to a single spike prior with spike strength ν > 0, where
a single spike prior with spike strength ν > 0 is the distribution of νeI with a uniformly random index
I ∈ {1, . . . ,mn} and a unit length vector ei in the i-th coordinate direction. Finally, set θi = 0 for the
remaining n − mnsn components.

Start with deriving the explicit form of θ̂	B,ν . Let Xj := {x(j) = (x1, . . . , xmn) : ‖x(j)‖0 ≤ 1} (j =
1,2, . . . , sn). Observe that the Bayes formula yields, for j = 1, . . . , sn − 1 and for i = 1 + mn(j −
1), . . . ,mnj ,

θ̂	B,ν ,i

(
x(j)

) =
∑mn

k=1

∫ ∏
l �=i{θxl

l }θxi+1
i dδ0(θ1) · · · dδν(θk) · · · dδ0(θmn)∑mn

k=1

∫ ∏mn

l=1 θ
xl

l dδ0(θ1) · · · dδν(θk) · · · dδ0(θmn)
. (5)

This implies that for each j = 1, . . . , sn and for each x(j) ∈ Xj ,

θ̂	B,ν ,i

(
x(j)

) =

⎧⎪⎨⎪⎩
ν/mn if

∥∥x(j)
∥∥

0 = 0,

ν if x
(j)
i �= 0 and x

(j)
k = 0 for k �= i,

0 if otherwise,

(6)

as well as that for j = 1, . . . , sn,

mnj∑
i=1+mn(j−1)

θ̂	B,ν ,i

(
x(j)

) = ν for x(j) such that
∥∥x(j)

∥∥
0 ≤ 1. (7)

Fix θ in the support of 	B,ν . Then, we have

Re(tθ, t θ̂	B,ν ) = Etθ

n∑
i=1

tθi log
θi

θ̂	B,ν ,i (X)
− t

n∑
i=1

(
θi −Etθ

[
θ̂	B,ν ,i (X)

])

=
sn∑

j=1

mnj∑
i=1+mn(j−1)

Etθ tθi log
θi

θ̂	B,ν ,i (X)
,

where the second equality holds from (7). Letting i(j) ∈ {1 + mn(j − 1), . . . ,mnj} denote the index
with θi(j) = ν, we further have

Re(tθ, t θ̂	B,ν ) ≥
sn∑

j=1

P(Xi(j) = 0)tν log
ν

ν/mn

= sne−tν tν logmn.
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This, together with Lemma 5.1, gives

R(θ, q	B,ν ) =
∫ r+1

r

Re(tθ, t θ̂	B,ν )

t
dt ≥ {

e−rν − e−(r+1)ν
}
sn logmn.

Taking expectation of R(θ, q	B,ν ) with respect to 	B,ν yields

R
(
�[sn]

) ≥ inf
q̂

∫
R(θ, q̂) d	B,ν(θ) =

∫
R(θ, q	B,ν ) d	B,ν(θ)

≥ {
e−rν − e−(r+1)ν

}
sn logmn.

Maximizing the right-hand side in the above inequality with respect to ν presents the desired lower
bound R(�[sn]) ≥ Csn logmn, which completes Step 1.

Step 2: Upper bound on R(�[sn])
Let 	 be an i.i.d. prior 	 and consider the coordinate-wise Kullback–Leibler risk of the Bayes predic-
tive density q	:

ρ(λ) := Eλ log

[
exp(−λ)λY1/Y1!

q	∗(Y1 | X1)

]
, λ > 0,

where q	(yi | xi) is the marginal distribution of q	. Consider the following high-level condition on 	:

Condition 5.1. There exist constants K ≥ 1, C1,C2,C3,C4 > 0, C5 < K , C6 > 0 not depending on n

for which we have

(P1) C1ηn ≤ θ̂	,i(Xi; t) ≤ C2ηn for Xi = 0;
(P2) C3 ≤ θ̂	,i(Xi; t) ≤ C4 for 1 ≤ Xi ≤ K ;
(P3) 0 < (Xi − C5)/t ≤ θ̂	,i(Xi; t) ≤ (Xi + C6)/t for K < Xi .

Under this condition, it will be shown that

• ρ(0) = O(ηn);
• supλ>0 ρ(λ) ≤ (C + o(1))sn logη−1

n ,

from which we will conclude

R
(
�[sn]

) ≤ sup
θ∈�[sn]

R(θ, q	) = (n − sn)ρ(0) + sn sup
λ>0

ρ(λ)

≤ (n − sn)O(ηn) + (
C + o(1)

)
sn logη−1

n .

Note that for 	[ηn, κ] with κ > 0, the Bayes formula gives

θ̂	[ηn,κ],1(x1; t) = 0x1+1 + ηn�(x1 + κ + 1)/tx1+κ+1

0x1 + ηn�(x1 + κ)/tx1+κ
=

⎧⎪⎪⎨⎪⎪⎩
ηn�(κ + 1)/tκ+1

1 + ηn�(κ)/tκ
, x1 = 0,

x1 + κ

t
, x1 ≥ 1,

thereby implying 	[ηn, κ] satisfies Condition 5.1.
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For λ > 0 and t ∈ (r, r + 1), let ρ̂(λ, x1; t) := tλ log{λ/θ̂	,1(x1; t)} − tλ + t θ̂	,1(x1; t). Lemma 5.1
gives

ρ(λ) ≤
∫ r+1

r

Etλ1X1=0

{
λ log

λ

θ̂	,1(X1; t)
− λ + θ̂	,1(X1; t)

}
dt︸ ︷︷ ︸

=:A1

+
∫ r+1

r

Etλ11≤X1≤K

{
λ log

λ

θ̂	,1(X1; t)
− λ + θ̂	,1(X1; t)

}
dt︸ ︷︷ ︸

=:A2

+
∫ r+1

r

Etλ1K<X1

{
λ log

λ

θ̂	,1(X1; t)
− λ + θ̂	,1(X1; t)

}
dt︸ ︷︷ ︸

=:A3

. (8)

From (P1) in Condition 5.1, we have

A1 ≤ {
e−rλ − e−(r+1)

}{
logη−1

n + logC−1
1 + logλ

}+ C2ηn. (9)

From (P2) in Condition 5.1, we get

A2 ≤
K∑

k=1

(r + 1)kλk

k! e−rλ
{
λ logλ + λ logC−1

3 + C4
}
. (10)

To bound A3, for r ∈ (r, r + 1), we write the integrand in A3 as

Etλ1K<X1

{
λ log

λ

θ̂	,1(X1; t)
− λ + θ̂	,1(X1; t)

}
= Etλ1K<X1λ log

{
λ/θ̂	,1(X1; t)

}︸ ︷︷ ︸
=:A3,1

+Etλ1K<X1

[−λ + θ̂	,1(X1; t)
]︸ ︷︷ ︸

=:A3,2

.

Lemma 5.2, together with Jensen’s inequality, yields

A3,1 = Etλ1K<X1

[
λ log

tλ

X1 + 1

]
+ Etλ1K<X1

[
λ log

X1 + 1

X1 − C5

]

≤ λ
(
1 − e−tλ

)+
K∑

k=0

(r + 1)kλk

k! e−rλλ| log tλ| + Etλ1K<X1

[
λ log

X1 + 1

X1 − C5

]

≤
K∑

k=0

(r + 1)kλk+1

k! e−rλ
{
max

{| log rλ|, ∣∣log(r + 1)λ
∣∣}}

︸ ︷︷ ︸
=:F1(λ,r)

+Etλ1K<X1

[
λ log

X1 + 1

X1 − C5

]
︸ ︷︷ ︸

=:A3,1,1

.

If C5 ≤ −1, then A3,1,1 is bounded above by 0. So, we can assume C5 > −1. Observe that there exists
some c1 > 1 depending only on K and C5 such that we have (X1 + 1)/(X1 − C5) < c1 for X1 > K .
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This gives

A3,1,1 ≤ λ log c1.

This bound is crude for large λ, and we consider another bound for large λ. Take λ◦ in such a way that
(rλ◦) − (rλ◦)3/4 − C5 > 0 and rλ◦ > 1. Then Lemma 5.3 yields, for λ > λ◦,

A3,1,1 ≤ e−(rλ)1/2/2λ log c1 + λ log

{
1 + 1 + C5

(rλ) − (rλ)3/4 − C5

}
.

Thus, we obtain A3,1,1 ≤ F2(λ, r) with

F2(λ, r) :=
⎧⎨⎩λ log c1, λ ≤ λ◦,

e−(rλ)1/2/2λ log c1 + λ log

{
1 + 1 + C5

(rλ) − (rλ)3/4 − C5

}
, λ > λ◦,

which, together with simple bounds on A3,1,1 and A3,2, gives

A3 ≤ F1(λ, r) + F2(λ, r) +
∑
k>K

(tλ)ke−tλ(k + C6)

r(k!) . (11)

Taking the limit as λ → 0 in the right-hand sides of (9), (10), and (11) gives ρ(0) = O(ηn). Maxi-
mizing upper bounds in (9), (10), and (11) with respect to λ yields supλ>0 ρ(λ) ≤ (C + o(1)) logη−1

n .
Thus, we obtain the desired upper bound

R
(
�[sn]

) ≤ (n − sn)O(ηn) + (
C + o(1)

)
sn logη−1

n ,

which completes the proof.

5.3. Proof of Theorem 2.2

Let p̄ := ∑sn
j=1(1 − e−rθ[j ])/sn, where θ[j ] (j = 1, . . . , sn) denotes the j -th largest component of {θi :

i = 1, . . . , n}.
5.3.1. Supporting lemma: Properties of ŝn

We start with summarizing the behaviour of ŝn which is an important ingredient of the proof. The proof
is given in Section 6.

Lemma 5.4. The following hold for θ ∈ �[sn]:
(a) ŝn ≥ 1;
(b) max{Eθ |ŝn/sn − 1|,Eθ |ŝn/sn − 1|2} ≤ 3;
(c) If sn ≥ 4 and θ[1] ≥ 1/

√
log sn, then, for sufficiently large n depending only on r ,

Eθ log(sn/ŝn) ≤ c1 max
{√

log sn, sn exp(−c2sn/ log sn)
}

with positive constants c1 and c2 depending only on r .

This lemma indicates that ŝn is not so far from sn. In the sparse region (i.e., sn = o(n1/2)), properties
(a) and (b) are sufficient to prove Theorem 2.2. In the dense region (i.e., sn > cn1/2 for any c > 0),
property (c) is additionally required.
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5.3.2. Proving Theorem 2.2

Decompose the difference between the Kullback–Leibler divergences in such a way that

R(θ, q	[η̂n,κ]) − R(θ, q	[ηn,κ]) =
n∑

i=1

Eθ log

{
q	[ηn,κ],i (Yi | Xi)

q	[η̂n,κ],i (Yi | Xi)

}
︸ ︷︷ ︸

:=Di

=
∑
i∈A

Di +
∑
i /∈A

Di, (12)

where for θ ∈ �[sn], let A := A(θ) = {i : θi �= 0}. The following three steps give an upper bound on
the right-hand side of (12). In all steps, we use the following expression of q	[h,κ]:

q	[h,κ](y | x)

=
n∏

i=1

{
ωiδ0(yi) + (1 − ωi)

(
xi + yi + κ − 1

yi

)(
r

r + 1

)xi+κ(
1 − r

r + 1

)yi

}
, (13)

where

ωi :=
{

1/
{
1 + h�(κ)/rκ

}
if xi = 0,

0 if xi ≥ 1.

Step 1: Bounding Di for i /∈A. From (13), we have

Di = Eθ log

{
1 + η̂n�(κ)/rκ

1 + ηn�(κ)/rκ

}
+Eθ log

[
1 + {ηn�(κ)/rκ }{r/(r + 1)}κ
1 + {η̂n�(κ)/rκ }{r/(r + 1)}κ

]
. (14)

Since log(1 + x) ≤ x for x > 0, we have

Eθ log

{
1 + η̂n�(κ)/rκ

1 + ηn�(κ)/rκ

}
≤ Eθ log

{
1 + (η̂n − ηn)�(κ)/rκ

1 + ηn�(κ)/rκ

}
≤ Eθ log

{
1 + ηn|ŝn/sn − 1|�(κ)

rκ

}
≤ ηn

�(κ)

rκ
Eθ |ŝn/sn − 1|

≤ c1ηn with c1 := 3
�(κ)

rκ
(15)

where the last inequality follows from Lemma 5.4 (b). Observe that

{ηn − η̂n}{�(κ)/(r + 1)κ}
1 + ηn{�(κ)/(r + 1)κ } ≤ ηn�(κ)/(r + 1)κ

1 + ηn�(κ)/(r + 1)κ
≤ �(κ)

1 + �(κ)
.

Then, together with the inequality

− log(1 − x) ≤ {
1/(1 − U)2}x2 + x for 0 < x ≤ U with some 0 < U < 1,
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this observation gives

Eθ log

[
1 + {ηn�(κ)/rκ }{r/(r + 1)}κ
1 + {η̂n�(κ)/rκ }{r/(r + 1)}κ

]
≤ −Eθ log

[
1 − {ηn − η̂n}{�(κ)/(r + 1)κ }

1 + ηn{�(κ)/(r + 1)κ }
]

≤ ηn

�(κ)

(r + 1)κ
Eθ |η̂n/ηn − 1| +

[{
1 + �(κ)

}
ηn

�(κ)

(r + 1)κ

]2

Eθ |η̂n/ηn − 1|2

≤ c2ηn with c2 := 3
�(κ)

(r + 1)κ
+ 3

[{
1 + �(κ)

} �(κ)

(r + 1)κ

]2

, (16)

where the last inequality follows from Lemma 5.4 (b). Combining (15) and (16) with (14) yields

Di ≤ c3ηn with c3 := c1 + c2 for i /∈A. (17)

Step 2: Bounding Di for i ∈ A. Consider the following four cases: (i) Xi = 0, Yi = 0; (ii) Xi ≥ 1,
Yi = 0; (iii) Xi = 0, Yi ≥ 1; (iv) Xi ≥ 1, Yi ≥ 1. In Case (i), we have

log

{
q	[ηn,κ],i (Yi | Xi)

q	[η̂n,κ],i (Yi | Xi)

}
= log

{
1 + η̂n�(κ)/rκ

1 + ηn�(κ)/rκ

}
+ log

[
1 + {ηn�(κ)/rκ }{r/(r + 1)}κ
1 + {η̂n�(κ)/rκ }{r/(r + 1)}κ

]
≤ |ŝn/sn − 1| + log

[
1 + �(κ)/(r + 1)κ

]
, (18)

where we use the inequalities

log

{
1 + η̂n�(κ)/rκ

1 + ηn�(κ)/rκ

}
≤ log

{
1 + |η̂n − ηn|�(κ)/rκ

1 + ηn�(κ)/rκ

}
≤ |ŝn/sn − 1|

and

log

[
1 + {ηn�(κ)/rκ }{r/(r + 1)}κ
1 + {η̂n�(κ)/rκ }{r/(r + 1)}κ

]
≤ log

[
1 + {

ηn�(κ)/rκ
}{

r/(r + 1)
}κ]

≤ log
[
1 + �(κ)/(r + 1)κ

]
.

Similarly, we get the following evaluations: In Case (ii),

log

{
q	[ηn,κ],i (Yi | Xi)

q	[η̂n,κ],i (Yi | Xi)

}
= 0. (19)

In Case (iii),

log

{
q	[ηn,κ](Yi | Xi)

q	[η̂n,κ](Yi | Xi)

}
≤ log(sn/ŝn) + |ŝn/sn − 1|. (20)

In Case (iv),

log

{
q	[ηn,κ](Yi | Xi)

q	[η̂n,κ](Yi | Xi)

}
= 0. (21)
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From (18)–(21), we have, for i ∈A,

Di ≤ 2Eθ |ŝn/sn − 1| + log
[
1 + �(κ)/(r + 1)κ

]+Eθ

[
1Xi=0,Yi≥1 log(sn/ŝn)

]
≤ 6 + log

[
1 + �(κ)/(r + 1)κ

]+Eθ

[
1Xi=0,Yi≥1 log(sn/ŝn)

]
, (22)

where the last inequality follows from Lemma 5.4 (b).
Step 3. Combining (17) and (22) with (12) gives

R(θ, q	[η̂n,κ]) ≤ R(θ, q	[ηn,κ]) + c3(n − sn)ηn + sn
{
6 + log

[
1 + �(κ)/(r + 1)κ

]}
+

∑
i∈A

Eθ

[
1Xi=0,Yi≥1 log(sn/ŝn)

]
≤ R(θ, q	[ηn,κ]) + c4sn +

∑
i∈A

Eθ

[
1Xi=0,Yi≥1 log(sn/ŝn)

]︸ ︷︷ ︸
:=Ti

, (23)

where c4 := c3 + 6 + log[1 + �(κ)/(r + 1)κ ]. We will show∑
i∈A

Ti = o
(
sn log(n/sn)

)
. (24)

Since the number of indices in A is bounded above from sn, it suffices to show Ti = o(log(n/sn))

uniformly in θ ∈ �[sn] and i ∈A. First, consider the case with sn = o(n1/2). Since log(sn/ŝn) ≤ log sn
from Lemma 5.4 (a), we get

Ti ≤ log sn = o
(
log(n/sn)

)
. (25)

Next consider the case with sn > cn1/2 for any c > 0. Since log(sn/ŝn) ≤ log sn from Lemma 5.4 (a),
we get, for θ ∈ �[sn] such that θ[1] ≤ 1/

√
log sn,

Ti ≤ Eθ

[
1Yi≥1 log(sn/ŝn)

] ≤ (
1 − e−θ[1]) log sn ≤ θ[1] log sn ≤ √

log sn. (26)

Using Lemma 5.4 (c), we have, for θ ∈ �[sn] such that θ[1] ≥ 1/
√

log sn,

Ti ≤ Eθ

[
log(sn/ŝn)

] ≤ c5
√

log sn, (27)

where c5 is the constant depending only on r appearing in Lemma 5.4 (c). From (25)–(27), we obtain
(24) and thus complete the proof.

6. Proofs of auxiliary lemmas

This section provides proofs of Lemmas 5.1 and 5.4.

Proof for Lemma 5.1. Let 	 be a prior of θ and suppose that the Bayes estimate θ̂	(x; t) based on
	 is strictly larger than 0 for any x ∈ N

n and any t ∈ (r, r + 1).
Observe that the Kullback–Leibler risk is decomposed as

R(θ, q	) = Eθ

[
log

{
s(Y,X | θ)

s	(Y,X)

}]
−Eθ

[
log

{
p(X | θ)

p	(X)

}]
,
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where s(y, x | θ) = p(x | θ)q(y | θ), s	(y, x) := ∫
s(y, x | θ) d	(θ), and p	(x) := ∫

p(x | θ) d	(θ).
For z ∈ N

n and t ∈ (r, r + 1), let p(z | θ; t) := ∏n
i=1 e−tθi (tθi)

zi−1/zi ! and let p	(z; t) := ∫
p(z |

θ; t)	(dθ). From the sufficiency reduction, we have

Eθ

[
log

{
s(Y,X | θ)

s	(Y,X)

}]
= Eθ

[
log

{
p(X + Y | θ; r + 1)

p	(X + Y ; r + 1)

}]
.

Introducing the random variable Zt from
⊗n

i=1 Po(tθi) (t ∈ (r, r + 1)), we get

R(θ, q	) =
∫ r+1

r

d

dt
E

[
log

{
p(Zt | θ; t)
p	(Zt ; t)

}]
dt.

Therefore, it suffices to show

d

dt
E

[
log

{
p(Zt | θ; t)
p	(Zt ; t)

}]
= Re(tθ, t θ̂	(·; t))

t
, t ∈ (r, r + 1). (28)

Differentiating E[log{p(Zt | θ; t)/p	(Zt ; t)}] with respect to t yields

E
[
log

{
p(Zt | θ; t)/p	(Zt ; t)

}] = E

[{
d logp(Zt | θ; t)

dt

}
log

{
p(Zt | θ; t)
p	(Zt ; t)

}]
+E

[
d logp(Zt | θ; t)

dt

]
−E

[
d logp	(Zt ; t)

dt

]
. (29)

Let ei be the unit length vector in the i-th coordinate direction (i = 1, . . . , n). Together with the simple
fact that

p	(Zt + ei; t)/p	(Zt ; t) = θ̂	,i(Zt ; t),
Hudson’s lemma (E[∑n

i=1(Zt,i − 1)f (Zt )] = E[∑n
i=1 tθif (Zt + ei)] for any function f : Nn → R)

yields

E
[{

d logp(Zt | θ; t)/dt
}

log
{
p(Zt | θ; t)/p	(Zt ; t)

}]
= E

[{
n∑

i=1

Zt,i − 1 − tθi)

t

}
log

{
p(Zt | θ; t)/p	(Zt ; t)

}]

= E

∑
i=1

θi

[
log

{
p(Zt + ei | θ; t)/p(Zt | θ; t)}− log

{
p	(Zt + ei; t)/p	(Zt )

}]
= E

n∑
i=1

θi log
{
θi/θ̂	,i(Zt ; t)

}
. (30)

Similarly, the identity (d/dt) logp	(x; t) = −∑n
i=1{θ̂	,i(x; t) − xi + 1} gives

E

[
d

dt

{
logp(Zt | θ; t)}] = E

[
n∑

i=1

Zt,i − 1 − tθi

t

]
and

E

[
d

dt

{
logp	(Zt ; t)

}] = E

[
−

n∑
i=1

θ̂	,i(Zt ; t) − Zt,i + 1

t

]
.

(31)

Combining identities (30) and (31) with (29) gives (28), which completes the proof. �
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Proof of Lemma 5.4. Property (a) is obvious by definition. Consider the bias of ŝn − sn. Decompose
#{i : Xi ≥ 1} in such a way that #{i : Xi ≥ 1} = ∑sn

j=1 Zj with independent Bernoulli random variable
Zj (j = 1, . . . , sn) having the success probability 1 − exp(−rθ[j ]). This decomposition gives

−
sn∑

j=1

e−rθ[j ] ≤ Eθ (ŝn − sn) ≤ 0. (32)

Consider the variance of ŝn − sn. Since

−1 +
sn∑

j=1

(Zj −EZj ) ≤ (ŝn −Eθ ŝn) ≤ 1 +
sn∑

j=1

(Zj −EZj ),

we have

Eθ

∣∣∣∣ ŝn −Eθ ŝn

sn

∣∣∣∣2 ≤ 1

s2
n

+
sn∑

j=1

e−rθ[j ](1 − e−rθ[j ])

s2
n

. (33)

Given that sn ≥ 1, we get max{E|ŝn/sn − 1|,E|ŝn/sn − 1|2} ≤ 3 from (32) and (33), which shows (b).
By the layer-cake representation and since

∑sn
j=1 Zj ≤ ŝn, we have

Eθ log
ηn

η̂n

=
∫ log sn

0
P

(
log

ηn

η̂n

> x

)
dx

=
∫ 1

1/sn

P(ŝn < βsn)
dβ

β
≤

∫ 1

1/sn

P

(
sn∑

j=1

Zj < βsn

)
dβ

β
.

Together with the Hoeffding inequality, this yields

Eθ log
ηn

η̂n

≤
∫ 1

1/sn

P

(
sn∑

j=1

Zj −E

[
sn∑

j=1

Zj

]
< (β − p̄)sn

)
dβ

β

≤
∫ 1

1/sn

1

β
exp

{−2sn(β − p̄)2}dβ =
∫ 1

1/sn

exp
(
f (β)

)
dβ, (34)

where f (β) := −2sn(β − p̄)2 − logβ .
We employ the following bound on f (β) to obtain an upper bound on the right-hand side in (34).

Lemma 6.1. If p̄2 > 1/sn and sn ≥ 4, then we have

f (β) ≤ max
[
f (1/sn), f

{
(1/2)

(
p̄ +

√
p̄2 − 1/sn

)}]
for 1/sn ≤ β ≤ 1.

Proof of Lemma 6.1. Observe that we have

f ′′(β) > 0 for 1/sn ≤ β < 1/
√

2sn,

f ′′(β) ≤ 0 for 1/
√

2sn ≤ β ≤ 1,
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and

f ′(β) ≥ 0 for max
{
1/sn, (1/2)

(
p̄ −

√
p̄2 − 1/sn

)} ≤ β < (1/2)
(
p̄ +

√
p̄2 − 1/sn

)
,

f ′(β) ≤ 0 for (1/2)
(
p̄ +

√
p̄2 − 1/sn

) ≤ β ≤ 1,

where the first two inequalities follow from f ′′(β) = −4sn + 1/β2, and the last two inequalities follow
from f ′(β) = −4sn(β − p̄) − 1/β and (1/2)(p̄ − √

p̄2 − 1/sn) < 1/sn. This observation gives the
desired inequality. �

Go back to proving (c). Observe that p̄2 > 1/sn for n ≥ N with sufficiently large N depending only
on r , because the assumption θ[1] ≥ 1/

√
log sn implies that p̄ ≥ 1 − exp{−rθ[1]} ≥ c̃1/

√
log sn with c̃1

depending only on r for sufficiently large n depending only on r . Thus, Lemma 6.1, together with (34),
gives

Eθ log
ηn

η̂n

≤ exp

[
max

{
f (1/sn), f

(
p̄ +√

p̄2 − 1/sn

2

)}]
for n ≥ N. (35)

Simple calculations yield

f (1/sn) = −2̃c2
1sn/ log sn + 2̃c1/

√
log sn − 2/sn + log sn

≤ −c̃2sn/ log sn + log sn + c̃3 (36)

with constants c̃2 and c̃3 depending only on c̃1, as well as

f
{(

p̄ +
√

p̄2 − 1/sn
)
/2)

} = − sn

2

(
p̄ −

√
p̄2 − 1/sn

)2 − log
p̄ + √

p̄2 − 1/sn

2

= − 1

2sn(p̄ + √
p̄2 − 1/sn)2

− log
p̄ +√

p̄2 − 1/sn

2

≤ −1/
(
2snp̄

2)− log(p̄/2)

≤ −c̃4(log sn)/sn + log(
√

log sn) + c̃5 (37)

with constants c̃4 and c̃5 depending only on c̃1. Combining (36) and (37) with (35) completes the
proof. �

7. Discussion and conclusions

We have studied asymptotic minimaxity in sparse Poisson sequence models. We have presented Bayes
predictive densities that are adaptive in the asymptotically minimax sense.

Proposition 2.4 shows that spike-and-slab priors based on polynomially decaying slabs give asymp-
totically minimax predictive densities. This implies that the spike-and-slab approach is useful for sparse
count data analysis. At the same time, asymptotic minimaxity does not tell which slab prior is the best,
and selecting a single slab prior seems to require the other metrics, say, the computational complexity
or the robustness. From the viewpoint of computational complexity, predictive densities based on our
slab priors are easily implemented by exact sampling and are a good starting choice. [23] investigate
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Bayesian tail robustness and derive yet another interesting heavy-tailed prior in the global-local shrink-
age literature. It would also be helpful to understand more about similarities and differences between
our work and [23] from the predictive perspective.

We can consider more general sparsity in count data. Quasi sparsity with a non-shrinking spike
component is one such example. If the value of the spike component is known, a slight modification of
our method would work. If the value is unknown, further consideration would be necessary.
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