Translator Disclaimer
February 2021 Parking on a random rooted plane tree
Qizhao Chen, Christina Goldschmidt
Bernoulli 27(1): 93-106 (February 2021). DOI: 10.3150/20-BEJ1227


In this paper, we investigate a parking process on a uniform random rooted plane tree with $n$ vertices. Every vertex of the tree has a parking space for a single car. Cars arrive at independent uniformly random vertices of the tree. If the parking space at a vertex is unoccupied when a car arrives there, it parks. If not, the car drives towards the root and parks in the first empty space it encounters (if there is one). We are interested in asymptotics of the probability of the event that all cars can park when $\lfloor\alpha n\rfloor$ cars arrive, for $\alpha>0$. We observe that there is a phase transition at $\alpha_{c}:=\sqrt{2}-1$: if $\alpha<\alpha_{c}$ then the event has positive limiting probability, whereas for $\alpha>\alpha_{c}$ its probability tends to 0. Analogous results have been proved by Lackner and Panholzer (J. Combin. Theory Ser. A 142 (2016) 1–28), Goldschmidt and Przykucki (Combin. Probab. Comput. 28 (2019) 23–45) and Jones (J. Appl. Probab. 56 (2019) 1065–1085) for different underlying random tree models.


Download Citation

Qizhao Chen. Christina Goldschmidt. "Parking on a random rooted plane tree." Bernoulli 27 (1) 93 - 106, February 2021.


Received: 1 November 2019; Revised: 1 April 2020; Published: February 2021
First available in Project Euclid: 20 November 2020

zbMATH: 07282843
MathSciNet: MR4177362
Digital Object Identifier: 10.3150/20-BEJ1227

Rights: Copyright © 2021 Bernoulli Society for Mathematical Statistics and Probability


This article is only available to subscribers.
It is not available for individual sale.

Vol.27 • No. 1 • February 2021
Back to Top