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We consider a more generalized spiked covariance matrix, which is a general non-negative definite matrix with the
spiked eigenvalues scattered into spaces of a few bulks and the largest ones allowed to tend to infinity. The study is
split into two cases by whether the maximum absolute value of the eigenvector of the corresponding spikes tends
to zero or not. On one hand, if it is zero, a Generalized Four Moment Theorem (G4MT) is proposed by relaxing
the matching of the 3rd and the 4th moment to the tail probability decaying with certain rate, which shows the
universality of the asymptotic law for the spiked eigenvalues of the generalized spiked covariance model. On
the other hand, if it is not zero, the matches of the third and fourth moments in usual four moment theorem are
weakened to only requiring the match of the 4th moment. Moreover, by applying the results to the Central Limit
Theorem (CLT) for the spiked eigenvalues of the generalized spiked covariance model, we successively remove
the restrictive condition of block wise diagonal assumption on the population covariance matrix in the previous
works. This condition implies an unrealistic fact that the spiked eigenvalues and bulked eigenvalues are generated
by independent variables, respectively. Thus, the new CLT will have much better application domain.

Keywords: central limit theorem; generalized four moment theorem; high-dimensional covariance matrix;
random matrix theory; spiked model

1. Introduction

The study on the universality conjecture for the spectral statistics of random matrices, which is mo-
tivated by similar phenomena in physics, has been one of the key topics in random matrix theory. It
not only plays an important role in the local field of statistics, but has also been widely used in many
other fields, such as mathematical physics, combinatorics and computing science. In this paper, we
are going to propose a Generalized Four Moment Theorem (G4MT) to prove the universality of the
asymptotic law for the spiked eigenvalues of generalized spiked covariance matrices, and then apply
it to the Central Limit Theorem (CLT) for the spiked eigenvalues of the generalized spiked model in a
general case.

1.1. Background of universality

As well known, universality has been conjectured by many statisticians since the 1960s, including
Wigner [29], Dyson [13], and Mehta [21]; it states that local statistics are universal, implying that
the conclusions hold not only for the Gaussian Unitary Ensemble (GUE) but also the general Wigner
random matrix. It provides new ideas and techniques for the research of random matrix theory, which
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implies that to prove one result suitable for Non-Gaussian case, it is sufficient to show the same result
under the Gaussian assumption if the universality is true.

The similar universality phenomena of the bulk of the spectrum has been also investigated in many
studies, such as Soshnikov [26], Johansson [19], Ben Arous and Péché [11], Erdss et al. [14], Erd6s
et al. [15]. More recently, Tao and Vu [27] showed the universality of the asymptotic law for the local
spectral statistics of the Wigner matrix by the so called Four Moment Theorem, which assumes that
the moments of the entries match that of the complex standardized Gaussian ensemble up to the 4th
order and requires the C¢ condition satisfying the uniform exponential decay to hold. Although they
asserted that the fine spacing statistics of a random Hermitian matrix in the bulk of the spectrum are
only sensitive to the first four moments of the entries, they also conjectured that it may be possible to
reduce the number of matching moments in their theorem.

Inspired by these previous works, the G4MT is proposed by replacing the condition of matching the
3rd and 4th moments by a tail probability as detailed in Assumption (b). Then the universality of the
asymptotic law for the bulks of spiked eigenvalues of generalized covariance matrices is automatically
proved by the proposed G4MT. As an application, we also apply the proposed G4MT to the CLT for
the spiked eigenvalues in the generalized spiked covariance model.

1.2. Related works of spiked model

The spiked model in high dimensional settings is originated from the common phenomenon of large
or even huge dimensionality p compared to the sample size n, occurring in many modern scientific
fields, such as wireless communication, gene expression and climate studies. It was first proposed by
Johnstone [20] under the assumptions of high dimensionality and an identity population covariance
matrix with fixed and relatively small spikes. Then some impressive works are devoted to investigating
on the limiting properties of the spiked eigenvalues under this simplified assumption, including Baik,
Ben Arous and Péché [9], Baik and Silverstein [10], Paul [24], Bai and Yao [4], etc.

To improve the simplified assumptions, Bai and Yao [5] contributed to deal with a more general
spiked model, in which a condition of the diagonal block independence and finite 4th moments are
assumed. Efforts have also been devoted to Principal Component Analysis (PCA) or Factor Analy-
sis (FA) as a different way to improve the work on the spiked population model. For example, Bai
and Ng [1], Hoyle and Rattray [16], Onatski [22] and so on. The more general works are the recent
contributions from Wang and Fan [28] and Cai, Han and Pan [12], which both study the asymptotic
distributions of the spiked eigenvalues and eigenvectors of a general covariance matrix. However, the
result of Wang and Fan [28] only has one threshold for the spiked eigenvalues. More importantly, their
main theorems are involved with an unspecified “O,(-)” term, because they study the difference be-
tween the ratio ; /o; and 1, where A; is the corresponding sample eigenvalue. Furthermore, both of
the works in Wang and Fan [28] and Cai, Han and Pan [12] require the bounded 4th moments and
the condition p/(ne;) — 0, with «;,i =1, ..., K being the spikes, so that it limits the relationship
between the dimensionality and the spikes. On the basis of these works, we further consider a general
spiked covariance matrix, by applying the proposed G4MT to the CLT for its spiked eigenvalues, we
give the explicit CLT for the spiked eigenvalues of high-dimensional generalized covariance matrices.

1.3. Highlights of the paper

Highlights are mainly in two aspects: The universality and the CLT of spiked model. In the first aspect,
it takes several advantages as follows: First, when proving the universality of the asymptotic law for the
bulk of the spiked eigenvalues, it only requires the condition of matching moments up to the 2nd order
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and a rate o(x~*) of the tail probability P(|X| > x) as x — oo, which is a necessary and sufficient con-
dition in the weak convergence of the largest eigenvalue. Second, we reduce the study of universality
of an asymptotic law of the normalized spiked eigenvalues to the asymptotic law of a low-dimensional
matrix, unlike Tao and Vu [27], which considers a general function of a finite number of eigenvalues of
a large dimensional Wigner matrix under the strong C¢ condition as well as assumptions on the partial
derivatives. As a by-product, we get rid of the restrictive Co condition with uniform exponential decay.

In the other aspect, the proposed CLT demonstrates several advantages as below: First, the spiked
covariance matrix we considered is a general non-negative definite matrix with the spectrum formu-
lated in (2.1). Automatically, the diagonal block independent assumption given in Bai and Yao [4,5] is
removed. In fact, it is an unrealistic condition in practice, which is added to avoid the difficulty caused
by the dependence of spiked eigenvalues with respect to non-spiked ones. Many people have raised the
issue that whether the diagonalizing assumption is necessary, but it is open due to technical difficulties
until solved in this paper. Second, our method permits the spiked eigenvalues to be scattered into a
few bulks, any of which are larger than their related left-threshold or smaller than their related right-
threshold. So our focused work is extended to a generalized case with a few pairs of thresholds. Finally,
the spiked eigenvalues and the population 4th moments are not necessarily required to be bounded in
our work, thus meeting the actual cases better.

1.4. Outline of the paper

The rest of the paper is arranged as follows: In Section 2, the problem is described in a generalized
setting, and the phase transition for the spiked eigenvalues of generalized covariance matrix is also
presented. Section 3 gives the main results of the G4AMT and applies it to the CLT for the spiked
eigenvalues of the generalized spiked covariance matrix in high-dimensional setting. In Section 4, sim-
ulations are conducted to evaluate our work comparing with the existing works. Then, an application
to determining the number of the spikes and real data analysis are also discussed in Section 5. Finally,
we draw a conclusion in the Section 6. Detailed proofs are all provided in the Supplementary file [18].

2. Phase transition for the spiked eigenvalues of generalized
covariance matrix

Consider the random samples T, X, where
X=(xX1,...,X) =(x;5), 1<i<p,1<j=<n,

and T, is a p x p deterministic matrix. Thus T pT; = X is the population covariance matrix, which
can be seen as a general non-negative definite matrix with the spectrum formed as

Pp,1s---5Pp,jr---5Pp,p 2.1
in descending order. Let pp ji+1, - .- Pp, j+m, De equal to ag, k =1, ..., K, respectively, where J; =
{jx+1,..., jx +mg} is the set of ranks of the my-ple eigenvalue ¢ in the array (2.1). Then «q, ..., ok
with multiplicity mg, k =1, ..., K, respectively, satisfying m + --- + mg = M, a fixed integer, are

the population spiked eigenvalues of X lined arbitrarily in groups among all the eigenvalues.
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Define the corresponding sample covariance matrix of the observations T, X as
S= lT XX*T% (2.2)
=-T, o .

then S is the so-called generalized spiked sample covariance matrix.
Define the singular value decomposition of T, as

2
T,=V D 01 U, 2.3)
0 D]

where U and V are unitary matrices, D; is a diagonal matrix of the M spiked eigenvalues and D> is
the diagonal matrix of the non-spiked eigenvalues with bounded components. Since the investigation
on the limiting distribution of the spiked eigenvalues of the sample covariance matrix depends on the
characteristic equation |[AI — S| = 0, it is obvious that it only involves the right unitary matrix U but
not the left one.

Denote the eigenvalues of a p x p matrix A by {/;(A)}. The sample eigenvalues of the generalized
spiked sample covariance matrix S are sorted in descending order as

1(S). ... 1;(S). ... 1,(S).

To consider the limiting distribution of the spiked eigenvalues of a generalized sample covariance
matrix S, it is necessary to determine the following Assumptions (a)—(e):

Assumption (a). The double array {x;;,i, j = 1,2, ...} consist of i.i.d. random variables with mean O
and variance 1. Furthermore, Exl.zj = 0 for the complex case, where both x’s and T, are complex.

Assumption (b). Suppose that

flingo ‘L'4P(|x,'j| > r) =0

for the i.i.d. sample (x;1,...,x;,), i =1, ..., p, where the 4th moments may unnecessarily exist.

Assumption (c¢). The p x p matrix X =T pT; forms a sequence of population covariance matrices
{X,} and T, admits the singular decomposition (2.3). The matrix D is bounded in the spectral norm.
Moreover, denote the empirical spectral distribution (ESD) of X as H,,, which tends to a proper prob-
ability measure H as p — oo.

Assumption (d). Suppose that

max fugs PE{bxnt [*1 (x| < v/n) = u} =0, 24)
where for some constant y, I (-) is the indicator function and Uy = (uss)s=1,..., p;s=1,...,m 18 the first M
columns of matrix U defined in (2.3). The detailed explanation of Assumption (d) can be found in the

Supplement A.

Assumption (e). Assuming that p/n =c, — ¢ > 0 and both n and p go to infinity simultaneously,
the spiked eigenvalues of the matrix X, oy, ..., ag with multiplicities m1, ..., mg laying outside the
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support of H, satisfy ¢’(ax) > 0 for 1 <k < K, where

¢ (x) :x<l —i—c/ LdH(t))
x —1

is detailed in the following Proposition 2.1.

The phase transition for each spiked eigenvalue of a generalized sample covariance matrix is detailed
in the following Proposition. To avoid the sample spikes tending to a common limit, we regulate the
spikes by the separation condition
o

k
L
aj

min

min >d, 2.5)

for some constant d > 0, when the phase transition and the CLT for the spiked eigenvalues of a gener-
alized spiked covariance matrix are studied.

For each population spiked eigenvalue o with multiplicity my and the associated sample eigenvalues
{1;(S),je Tk}, k=1,...,K, we have

Proposition 2.1. For the spiked sample covariance matrix S given in (2.2), assume that p/n = ¢, —
¢ > 0 and both the dimensionality p and the sample size n grow to infinity simultaneously. For any
population spiked eigenvalue oy, (k=1, ..., K), let

¢ (ar), if ¢’ (ax) >0,
¢ (o), if there exists o such that ¢' (o) =0
Y = and ¢' (1) <0, forall g <t < o,
¢ @y), if there exists oy such that ¢’ () =0
and ¢'(s) <0, forall oy <s < ay,

where

t
oy —t

br = b (o) :ak(l +c/ dH(t)). (2.6)
Then, it holds that for all j € Ji, {lj/Vx — 1} almost surely converges to O under the bounded 4th-
moment assumption. The conclusion also holds in probability under the Assumption (d).

The Proposition 2.1 theoretically shows that the diagonal block independent assumption

_(Zm 0
¥= ( 0 Vp-m )
in Bai and Yao [5] can be removed. The proof of Proposition 2.1 can be easily obtained following
the truncation procedure and the G4MT, which are presented in the next section. By the truncation
procedure, the limiting behavior of the sample spiked eigenvalues are the same in probability for both
the cases of the bounded 4th-moment assumption and Assumption (d). By the G4MT, it is reasonable

to assume the Gaussian entries from X; then, Proposition 2.1 is proved by the almost sure convergence
and the exact separation of eigenvalues in Bai and Silverstein [7].
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Remark 2.1. Since the convergence of ¢, — ¢ and H,, — H may be very slow, the difference /n(l; —
Y) may not have a limiting distribution. So, we usually use

¢n,k =¢u(ag) = Olk(l + ¢y / # dHn(t))a 2.7)
oy —t

instead of ¢ in Y, in particular during the process of CLT. Then, we only require ¢, = p/n, and
both the dimensionality p and the sample size n grow to infinity simultaneously, but not necessarily in
proportion.

3. Main results

The main results are in two key points: First, it is the G4MT, which shows that the samples satisfying
the Assumptions (a)—(e) lead to the same asymptotic distributions of the spiked eigenvalues of a gener-
alized spiked covariance matrix. Second, it is the CLT for the spiked eigenvalues of a high-dimensional
generalized covariance matrix under our relaxed assumptions. For ease of reading and understanding,
the G4MT is introduced during its application to the CLT for the spiked eigenvalues of a generalized
covariance matrix. The proof of G4MT will be postponed to Section D in the Supplement for the con-
sistency of reading. Before that, we also give some explanations of the truncation procedure as below.

3.1. Truncation

Let £ij = x;;1(|xij| < na+/n) and %;j = (&;; — EX;j) /o, with 02 = E|%;; — EX;j|2, where 1, — 0 with
a slow rate. We can demonstrate that it is equivalent to replace the entries of X with the truncated
and renormalized ones by Assumption (b). Details of the proof are presented in Supplement B and the
convergence rates of arbitrary moments of x;; are depicted.

Therefore, we only need to consider the limiting distribution of the spiked eigenvalues of S, which
is generated from the entries truncated at 1,+/n, centralized and renormalized. For simplicity, it is
equivalent to assume that |x;;| < n,+/n, Ex;; =0, E|xi2j| =1, and Assumption (b) is satisfied for the
real case. But it cannot meet the requirement of Exizl. = 0 for the complex case; instead, one can show
that Exizj =o(n ).

3.2. CLT for the spiked eigenvalues of generalized covariance matrix

As seen from the Proposition 2.1, there is a packet of m; consecutive sample eigenvalues {/;(S), j €
Jk} converging to a limit ¥ laying outside the support of the limiting spectral distribution (LSD),
FSH of S. Since the spiked eigenvalues may be allowed to tend to infinity in our work, and the
difference between [ (S) and v make convergence very slow as mentioned in Remark 2.1, we consider
the renormalized random vector

[;(S !
sz(ykj)/=<\/ﬁ<%_l>sjejk> (3.1

which can be seen as an improved version of the one in Bai and Yao [5]. Then, we are going to propose
a CLT for (yj, j € Ji) for a general case. Before that, we introduce some of the characteristics of the
sample spikes first.
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For the generalized spiked covariance matrix X = T, T?, consider the corresponding sample covari-

ance matrix S =TS, T},, where S, = n~!XX* is the standard sample covariance with sample size n.
By singular value decomposition of T, in (2.3), the eigen-equation is

1 1

2 2
0=|M—-S|=[A-V D 01 U*S, U D 01 v*,
0 D; 0 D]

where I denotes the identity matrix with suitable dimension. If no confusion, we omit the subscript of
the identity matrix. Set Q = U*S, U, and partition it in the same way as the form

<Q11 QlZ)é(UTS}cU] UTSXUQ)
Q1 Q» U5S,U; U38,0)°

then we have

1 1 1 1
D’Q; D’ D?Qp;D?
0= ar— 1Q11 1 1012 2

1 1 1 1
D;QxD; D;QxnD;
LoD M- DY 0 DY - D}onDE (- DY0nDH)'Dios D}
= [\I=D3 QD] ||\l =D Qi 1D; —D; Q12D (A\I — D3 Q2D3)” D3 Qy D} |.
If we only consider the sample spiked eigenvalues of S, [;,j € Jx, k =1,..., K, then |/;I —
1 1
D; Q22D | # 0, hence

—1

1
0= D§U§X}X*U1

1 1 1 | 1
lijl — ;U’{X{I + ;X*U2D22 (le — ;Dzz U§XX*U2D22)

7 1 -
[ éU’;X(lﬂ- ;X*U2D2U§X> X*Uy |, (3.2)

where the last equality above follows from the identity Z(Z*Z — A1) "' Z* = I+ A(ZZ* — AI)~!. Define

—1 —1
Qyr,X)= L |:tr{ (AI — lX*I‘X) }I — UTX(AI — lX*I'X) X*U1:|, 3.3)
Jn n n

where I' = U;D, U3, Let

Ok = e, (1) (34)
where
1

my(A) = / de(X) (3.5)

with F(x) being the LSD of the matrix n~'X*TX. Set R4, as an M x M Hermitian matrix, which
follows the limiting distribution of 37(¢, «, X) and is detailed in Corollary 3.1. Then, the CLT for
(yxj, J € Jx)' for a general case is proposed in the following theorem.

Theorem 3.1. Suppose that the Assumptions (a)—(e) hold with the constant @ =2 + q in Assumption
(d), where g =1 for real case and 0 for complex. The random vector y, defined in (3.1) converges
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weakly to the joint distribution of the my eigenvalues of Gaussian random matrix

1
—— [
9k[ o Jick

where @i, ¢k, Ok are defined in (2.6), (2.7) and (3.4), respectively. Moreover, [y, |xk is the kth
diagonal block of R4, corresponding to the indices {i, j € Ji}.

Proof. By the definition of (3.3), it follows from (3.2) that

L 1 -1 1
O:llel—r'l—’tr{<le—;X*FX> }1+—9M(zj,X). (3.6)

Jn

It seems natural to get that
R, X) = py(Pn i, X) +0p(1)

since (I — @ 1)/ Bk — 0.
Thus, it follows from (3.6) that

-1 ¢n,k 1 " -1
9niD} = Tt (Gl = —XTX) 1

1 1
+B1(j) +Ballj) + —=R@y (Pn.k, X) + Op(—>‘

Jn Jn
=0, (3.7)
where
1 _
Bi(lj))=(; — ¢up)D;' = ﬁqsn,kyk,-nl b (3.8)
1 -1 1 -1
Ba(l)) = Pnk tr(d)n’kl — —X*FX) I--2 tr(ljl - —X*FX) I
n n n n
1 —1
_ fn [tr(%,kl— —X*FX)
n n

—1
—( +n—%yk,-)tr{¢n,k(1 )l - %X*FX} ]1

1 ! 1 o
- Pn.k [tr(qﬁn,kl — —X*FX> - tr{¢n,k(1 + n_%ij)I - _X*FX} ]I
n n "

1 1 1 1 N -1
SR L Pni(14n Zykj)l—zx rx; |1

2 —1 —1
kj 1 1
- Mtr ¢l — =X TX) {us(1+n 2y I— -X*TX} I
n3/2 ’ n ' n

ibni 1 1 -1
- yk]f;’;’k—tr{ <¢n,k1— —X*I'X) }I—G—o(n_%)
n n n
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2 -2 -1
. 1 1 1
M Pk try  pn kI — - X*TX — Gnik—try | dupl — =XTX I
nl/2| n ' n o n ’ n

1

+olr?)

= nyl%{@%mz((ﬁk) +¢kﬂ(¢k)}l+0p(i’l_%), (3.9)

with m, defined in (3.5) and m(X) = f 1/(x — A)dF (x). The calculations are based on the formula
A~ — B~1 = A=1(B — A)B~! with A, B being two arbitrary n x n invertible matrices, and the facts
that

1 1o\ ! 1 |
—tr| gu il — -X'TX ) — —m(¢r); —tr| pp il — =XTX | — my(¢r).
n n n n

Furthermore, if consider the kth diagonal block of the item

—1 ¢n,k 1 * -
dn kD] — try | ¢l — —XTX I
n n

in (3.7), denote the analogue of m as m,,, with H substituted by the ESD H,, and ¢ by c,,, which satisfies
the equation

1 t
nk =", < n —dH,
ok = / T i, () S

by the definition of the Stieltjes transform. By the proof of Theorem 1.1 in Bai and Silverstein [8], it is
found that

1 1 -1 1
_¢n,k tf<¢n,k1— _X*FX> +¢n,kﬂn(¢n,k) :0<_> (310)
n n Jn
Note that ¢, x is the inverse of the Stieltjes transform m,, at —1/ax, we have m,, (¢, k) = — 1/, hence
¢n,k + ¢n,kﬂn (¢n,k)ak =0. 3.11)

Therefore, to complete the proof of Theorem 3.1, it is needed to derive the limiting distributions
of Qs(¢n .k, X). So the theoretical tool named G4MT is established in the following theorem, which
is used to prove the limiting distributions of €2,7(¢, x, X). For the consistence of reading, we only
introduce the theorem here, but postpone the proof to the Supplement D.

3.3. Generalized four moment theorem

The G4MT is established in the following theorem, which shows that the limiting distributions of the
spiked eigenvalues of a generalized spiked covariance matrix is independent of the actual population
distributions provided the samples to satisfy the Assumptions (a)—(e).

Theorem 3.2 (G4MT). Assuming that X and Y are two sets of double arrays satisfying Assumptions
(a)—(e), X and Y should share same . in condition (d), then it holds that R p1 (¢n k., X) and pr(dn i, Y)
have the same limiting distribution, provided one of them has.
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By Theorem 3.2, we may assume that X consists of entries of i.i.d. standard normal variables in
deriving the limiting distribution of 237(¢n k. X). Namely, we have the following corollary, which is
proved in the Supplement E.

Corollary 3.1. [If X satisfies the Assumptions (a)—(e) with u = 2 + q in Assumption (d), let 6y be
defined as (3.4), then Ry (¢n , X) tends to a limiting distribution of an M x M Hermitian matrix gy, ,
where Qg, /\/Ok is Gaussian Orthogonal Ensemble (GOE) for the real case, with the entries above the
diagonal being 1.1.d.N(0, 1) and the entries on the diagonal being 1.i.d.N (0, 2). For the complex case,
the R4, //O is GUE, whose diagonal entries are i.i.d. real N'(0, 1), and the off diagonal entries are
ii.d. complex CN(0, 1).

Remark 3.1. If the Assumption (d) is not met, it is weaken to the Assumption (d’), that is,
all 7wy i j1injy = limezlﬁtilumu,izﬁ,szﬂxn|4I(|x11| < /n) — 2 — g} are finite, and w; = (uy;,
Lo u p,-)’ are the ith column of the matrix Uy. Then, the conclusion of this corollary remains hold,
with the variances and covariances of the element w;; of 4, given by

(@ + DOk + 7y iiiivk, i1=j1=1lr=j2=1;
Cov(wiy ji, iy, jo) = | Ok + Txijij Vi i1=h=i#j=jh=]j;
Tx iy jiinjo Vks other cases

where 6y is define in (3.4), vy = ¢p7m> ().

For such cases, one may derive a partial G4MT by replacing the matrix X in U3X with UJY as
column to column and keeping U7X unchanged. The readers are reminded that in the definition of
7, function, the factor E|x1;[*I (Jx11| < /n) seems ought to be E|x11|*I (|x11| < n,+/n). However, it
can be shown that the limit of &, functions remain unchanged by using either one of the two. The
derivation is detailed in the Supplement E.

3.4. Completing the proof of Theorem 3.1

Now, we continue to the previous proof of Theorem 3.1. For every sample spiked eigenvalue, /;, j € Ji,
k=1,..., K, it follows from (3.7) that

0=

-1 ¢n,k 1 * -
¢n,kD1 - tr ¢n,k1 — =-X'TX 1
n n

1 1
+Bi(j) +Ba(l)) + mﬂM(qﬁn,k, X) +0,(n"2)

_ 1
i+ Gk, (Dn Uy + 75 @t (s X)

1
+ T Vi [¢n,kD_l + {¢5,km2(¢n,k) + Gnkm (bni) Y] + op(n_%) (3.12)

by the equations (3.8), (3.9) and (3.10).

By the G4MT, we can derive the limiting distribution of €7 (¢, «, X) under the assumption of Gaus-
sian entries. Details of the proof for the limiting distribution of (¢, «, X) is provided in Supplement
E. Therefore, applying Skorokhod strong representation theorem (see Skorohod [25], Hu and Bai [17]),
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we may assume that the convergence of §2,7(¢, «, X) and (3.12) are in the sense of “almost surely” by
choosing an appropriate probability space.
To be specific, by (3.12) and noting m,, (¢, k) = —1 /o, it yields

Pnk <a—" - 1)1,,11 0 0
o \ o
0
Dk
221+ amy, (hn i) oy
78
0=
0
0 0 Pnk (“—" = 1>Im,<
(0774 (074
N
("Z’l + ¢ +¢n,km)lml 0o - 0
0
2
Vij &y k1n
+ m .
0
Dk
0 T 0 < - + 4’,%,/(&2 + ¢n,kﬂ>1m1{

ok

1 1
+ WQM@””" X) +o(n"2)|.

where m, m, are the simplified notations of m (¢, x) and m, (¢, 1), respectively.

For the population eigenvalues «,, in the uth diagonal block of Dy, if u # k, then m, (¢, 1) = —1/ 0
by the definition of ¢, r, hence ¢, roy ! (ko L keeps away from 0, by the separation condition
of spikes (2.5). Moreover, ¢n’ka,:1 {14 oaxm, (¢, )} = 0 by definition. Then, multiplying n7 to the kth
block row and kth block column of the above equation, by Lemma 4.1 in Bai et al. [6], it follows that
asn — o0

0 =|[Ru(¢x. X)],, + lim i {$Fmy (1) o,

’
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where [-]xx is the kth diagonal block of a matrix corresponding to the indices {i, j € Ji}. This
shows that (ykj¢fm2(¢k),j € Ji) tends to the my eigenvalues of the my x my matrix —[Rg, lxk,
or equivalently (y;,j € Ji) tends to the eigenvalues of the my X my matrix — [, lkk /6k, Where
O = ¢£m2 (¢x), and L, is the limit of (¢, «, X) defined in Corollary 3.1. Because limiting behav-
ior keeps orders of the variables, we claim that the my ordered variables (y;, j € Jx) tend to the my
ordered eigenvalues of the matrix —[, Jxx /0%

By the strong representation theorem, we conclude that the m-dimensional real vector (yy;, j € T
converges weakly to the joint distribution of the mj eigenvalues of the Gaussian random matrix

1
—— [
9k[ o Jick

for each distant generalized spiked eigenvalue. Then, the CLT for each distant spiked eigenvalue of a
generalized covariance matrix is obtained. ]

Remark 3.2. Suppose that X satisfies the Assumptions (a),(b),(c) and (e), with the Assumption (d)
weakened as the existence of various limit r, functions in Assumption (d’). Then all the conclusions
of Theorem 3.1 still holds, but the limiting distribution of (¢, x, X) turns to an M x M Hermitian
Gaussian matrix 4, = (ws;) whose variances and covariances are defined in Remark 3.1.

This remark is used for the case of non-Gaussian assumptions when the population covariance matrix
has a diagonal or diagonal block structure in the following simulations.

4. Simulation study

Simulations are conducted in this section to evaluate the performance of our proposed method. Four
scenarios are considered including two cases of the population covariance matrix structure under two
different population assumptions: On one hand, the Case I assumes that X is a diagonal matrix, where
the Assumption (d) is not satisfied, but weakened as the Assumption (d’). On the other hand, the Case
11 is provided as a general form of X, where the Assumption (d) holds. They are detailed as below:

Case I: The matrix ¥ = diag(4, 3,3,0.2,0.2,0.1, 1, ..., 1) is a finite-rank perturbation of a identity
matrix I, with the spikes (4, 3, 0.2, 0.1) of the multiplicity (1, 2,2, 1), thus K =4 and M =6.

Case II: The matrix X = UpAUj is a general positive definite matrix, where A is a diagonal matrix
with the spikes (4, 3,0.2,0.1) of the multiplicity (1,2, 2, 1) as defined in Case I and Uy is the
matrix composed of eigenvectors of the following matrix

1 0 p2 pp_;
1% 1 0 pp7
pPt pp2 p 1

where p = 0.5.

For each case, the following population assumptions are studied:
Gaussian Assumption. {x;;} are i.i.d. samples from standard Gaussian population;

Binomial Assumption. {x;;} are i.i.d. samples from the binary variables valued at {—1, 1} with equal
probability 1/2, and 7, = E|xy;|* — 3 = 2.
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The simulated results are depicted as follows with 1000 replications at the values of p =500, n =
1000. As described above, we have the spikes o] =4, ap =3, o3 =0.2 and os =0.1.

First, the Remark 3.2 is applied to the Case I. For the single population spikes & =4 and a4 = 0.1,
we obtain the limiting distributions

Vi = \/ﬁ(l:;i - l) — N(O,akz)
n,k

where ¢, 1 =4.667, ¢, 4 = 0.044, and 012 =1.390, 042 = 3.950 under the Gaussian Assumption, o=
0.074, Gf = 2.414 under the Binomial Assumption.
For the spikes oy = 3 and 3 = 0.2 with multiplicity 2, we obtain that the two-dimensional random

vector
Yi= k) = (ﬁ(l*’(s) - 1>, ﬁ(w - 1)) , k=23
¢n,k ¢n,k

converges to the eigenvalues of random matrix —6 ! [, 122, where ¢, » = 3.750, 6; = 1.770 for the
spike ap = 3 and ¢, 3 = 0.075, 6 = 0.633 for the spike oz = 0.2.

Since it is difficult to show a good fit by the contour plots of the empirical density, so it is better to
choose a asymptotically normal marginal function to investigate. Because only the sum of their linear
functions is normal, then it arrives at

_yatyn

+0.5— N(0, 1);
207,¢

2,8

where 022 s = 0.847 under the Gaussian Assumption and 022 , = 0.088 under the Binomial Assumption.
and the constant 0.5 is an adjusted central parameter due to the effect of the multiple root with the
multiplicity 2. The following are the same except for the sign. Then, it follows that

yas =BT 65, N, 1):

2(73,x

where 03% ¢ = 2.370 under the Gaussian Assumption and 03% ; = 2.012 under the Binomial Assumption.

Second, for the Case II, the Theorem 3.1 is used to calculate the limiting distributions. It is easily
obtained that the calculated results of the both population assumptions are the same to the one of
Gaussian Assumption in Case I, which can well fit their corresponding limiting behaviors under the
Case II with different population assumptions.

As shown in the calculations and simulations, our approach provides the same results to the ones in
Bai and Yao [5] under the Gaussian assumption. So we only show the two scenarios where our approach
is superior to the method in Bai and Yao [5]. Firstly, our method performs slightly better for the non-
Gaussian distribution even if the diagonal independent assumption in Bai and Yao [5] holds under the
Case I. Because there is a missing item in their calculation of the variance. The simulated empirical
distributions of y» g, y4 from Binomial assumption under Case I are drawn in Figure 1 comparing to
the ones of standardized (/2 +13)/2, [,, in Bai and Yao [5], as well as their Gaussian limits. In addition,
their corresponding limiting distributions are in dashed lines.

Moreover, our proposed results are obviously better than the ones in Bai and Yao [5] for the non-
Gaussian population assumption in the Case 1. The simulated empirical distributions of y1, y» s from
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Figure 1. Case I under Binomial Assumption.

Binomial assumption under Case II are drawn in Figure 2 comparing to the ones of standardized /1,
(I + 13)/2 in Bai and Yao [5], as well as their Gaussian limits. As shown in the simulated results,
the asymptotic distribution in Bai and Yao [5] performs not well for the non-Gaussian population
assumption in the Case II. Because their method is involved with the 4th moment and the diagonal
independent assumption. Therefore, it is reasonable to theoretically remove the diagonal independent
restrictions in results of Bai and Yao [5] as illustrated in the simulations.

5. Application and real data analysis

5.1. An application to determine the number of the spikes

Since the spiked model is closely related to PCA, it has important applications to the statistical infer-
ences in many scientific fields. For example, to reconstruct the original signals in wireless communi-
cation, to rebuild the observed assets into a low-dimensional set of unobserved variables, which are
the factors in economics, and so on. One of the basic but important statistical inferences in these ap-
plications is to determine the number of principal components / signals / factors, that is, the number of

spiked eigenvalues.
As formulated in (2.1), we propose to estimate the number of the spikes, M, by our result in Theo-

rem 3.1. First, for every sample eigenvalue [;, j € Jx, it follows from Theorem 3.1 that

ﬁ<@ — 1> ~N(0, 1),

Ok \ ®n,k

where okz = 2/6 under our Assumption (a)—(e) and akz = 20k + 7y jjjjvi) /9,3 under the assumptions
of the diagonal or diagonal block independence with the bounded spikes and the 4th moments.

Histogram by Ours

hq"'
/ “
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/| A
A-‘il Illh_ ] L . B
-2 0 2 -2 0 2 -2 0 2

Y1 (Y21+7v22)/2 standardized |4 standardized (I;+15)/2

Histogram by Bai&Yao Histogram by Bai&Yao

0.4

density
density

Figure 2. Case II under Binomial assumption.
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Then, for every sample eigenvalue /;, we can calculate an corresponding interval

(o (252 )]

where z0.0s5, z0.95 are the 5% and 95% quantiles of the standard normal distribution. If /; € C;, then
it is concluded that the population eigenvalues in according to /; is a spike; Otherwise, it is not a
spike. Similarly, the same procedures are conducted for all the sample eigenvalues, and consequently
a sequence of intervals {C;, j =1,..., p} are obtained. Therefore, we propose an estimator for the
number of the spikes, M, as follows

P
Mo = ZIU./EC./)'
j=1

However, ¢y in (2.6) and ak2 calculated by Theorem 3.1 or Remark 3.1 cannot be directly obtained
by their expressions in practice, because they are involved with the unknown population spikes ay, k =
1,..., K. Therefore, we refer to the work in Bai and Ding [3] and obtain the estimator of c. Then, we
provide the estimated interval C ; and My = Zle I 1jeC))’ which is feasible in practice.

In fact, by the first equation in (3.7), it asyfnptotically holds that [; +I;m(lj)ax =0, so we get
&y = —1/m(l;). Since the number of spikes is fixed, the LSD of n~!X*TX is approximately the same
as the one of the matrix n~ ! X*UDU*X. Therefore, we further define r; 7 =\l; —1;|/max(l;, ;) and let
Jo=1{j:rij<02foranyi=1,...,p.},¢=(p—I|Tl)/n. Then we adopt

A 1 3 _
i) =——= D =17
p Ol igTpi=1

which is a good estimator of m(l;). The setting Jp is selected to avoid the effect of multiple roots,
which makes the estimations of the population spikes inaccurate. The constant 0.2 is a more suitable
threshold value of the ratio based on our simulated results. Moreover, we obtain the estimator of n(/;)
as below i (l;) = —(1 — ¢)/1; + cm(l;). Finally, we obtain the estimator of oy, which is expressed as

a = —1/m(l;).
Without extra efforts, the following estimators are automatically obtained that qASk = ¢ (ax) and

1< . 1- .
CCORED SRR CARS ; €+ e

i=1 k

1< . 1— .
i)=Y =07 (0 = ?c + e (o)

i=1 k

So the estimators of oy, ¢ for the renewal interval c ; can be expressed by the above estimations.

Through our approach, not only can we estimate the number of the spikes more accurately, but
we can also give the estimations of the population spikes, as well as the limits of the sample spiked
eigenvalues. More importantly, we can also provide the specific locations of these spikes.
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5.2. Numerical results for Section 5.1

For the two cases of X designed in Section 4 with M = 6, we use the method provided in Section 5.1
to estimate the number of the population spikes under different population assumptions in Section 4.

To evaluate the performance of our approach, we shall compare it with some existing methods.
Since the method in Onatski [22] provides a better estimator than that in Bai and Ng [1], and Cai,
Han and Pan [12] shows that their approach performs better than that in both of Onatski [22] and Bai,
Choi and Fujikoshi [2], so we only consider the procedure proposed in Cai, Han and Pan [12] and the
method introduced by Passemier and Yao [23], which are simply denoted as CHP and PY in the tables,
respectively.

The following Tables 1-4 report the estimator of the number of the spikes and its corresponding
frequency by three methods. Furthermore, it provides the locations and estimates of the population
spikes by our method. As shown in the tables, our method can give an accurate estimate of the number
of the spikes in a large probability, while the other two methods fail to detect the very small spikes.
That’s because they both assume that the population spikes are the larger eigenvalues, satisfying that
ay > - > oy > Pp Myl > > pp,p. However, it makes sense to detect all the spiked eigenvalues,
including the minimal ones. For example, the original system with all the same eigenvalues has changed
after the input of some signals. If we want to test which part in the system have changed, then it is
equivalent to find out all the spiked eigenvalues. In addition, our method has an advantage over other
methods, that is, it also presents the the estimations of the population spikes, and the specific locations
of these spikes in the tables.

Table 1. Estimations about the spikes: Case I under Gaussian Assumption

Frequency of Mo

My 1 2 3 4 5 6 7
p =200 PY 0.358 0 0.642 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.024 0.943 0.033

Locations
(1, 2,3, 198, 199, 200)
Estimates of spikes
ap Qs a3 ay as Qg
3.993 3.207 3.014 0.202 0.198 0.098
Frequency of MO

p =400 PY 0.371 0 0.629 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.027 0.928 0.045

Locations
(1, 2,3, 198, 199, 200)

Estimates of spikes
ap a a3 ay as Qg
3.930 3.052 3.015 0.206 0.186 0.117
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Table 2. Estimations about the spikes: Case I under Binomial Assumption

Frequency of Mo

M 1 2 3 4 5 6 7
p =200 PY 0.622 0 0.378 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0
Ours 0 0 0 0 0.054 0.943 0.003
Locations
(1,2, 3, 198, 199, 200)
Estimates of spikes
ap @y a3 Q4 as ag
4.025 3.091 2.951 0.194 0.185 0.099
Frequency of Mo
p =400 PY 0.640 0 0.360 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0
Ours 0 0 0 0.005 0.073 0.910 0.012
Locations
(1,2, 3, 198, 199, 200)
Estimates of spikes
ay ay as ay as dg
4.018 3.008 2.876 0.207 0.194 0.101

5.3. Real data analysis

Now we apply the procedure of determining the number of the spikes proposed in Section 5.1 to the ac-
tual data titled as “Early stage of Indians Chronic Kidney Disease(CKD)”! The data came from records
collected by a hospital in India over a period of about 2 months, which consists of 400 observations
and 25 variables. The first 24 variables X ..., X»4 are independent variables, which rerecord the var-
ious laboratory indicators and hospital records, including age, blood pressure (bp), specific gravity
(sg), albumin (al), sugar (su), red blood cells (rbc), pus cell (pc), pus cell clumps (pcc), bacteria (ba),
blood glucose random (bgr), blood urea (bu), serum creatinine (sc), sodium (sod), potassium (pot),
hemoglobin (hemo), packed cell volume (pcv), white blood cell count (wc), red blood cell count (rc),
hypertension (htn), diabetes mellitus (dm), coronary artery disease (cad), appetite (appet), pedal edema
(pe), anemia (ane). The 25th variable is the dependent variable to indicate whether the patient has
chronic kidney disease(ckd).

We apply our method to determine the number of the spikes of the covariance matrix X generated
from the standardized data of the first 24 variables with 114 observations (For simplicity, we have only
chosen 114 observations without missing values). Then, we obtain the following results in the Table 5.

As seen from the Table 5, if we define the singular value decomposition of X as ¥g = UAoU’, and
u; is the ith column of the orthogonal matrix U, then the factors generated from independent variables
X =(X;..., X24) canbe roughly divided into three groups: one group has a greater impact with larger

I'The data is downloaded from https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease.
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Table 3. Estimations about the spikes: Case II under Gaussian Assumption

Frequency of MO

My 1 2 3 4 5 6 7
p =200 PY 0.375 0 0.625 0 0 0 0
n =1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.019 0.950 0.031

Locations
(1,2, 3, 198, 199, 200)
Estimates of spikes
& ay a3 Q4 as dg
4.080 3.122 2.909 0.208 0.191 0.010

My 1 2 3 4 5 6 7
p =400 PY 0.356 0 0.644 0 0 0 0
n =1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.025 0.927 0.048

Locations
(1, 2, 3, 198, 199, 200)
Estimates of spikes
al Qs a3 ay as Qg
3.949 3.217 2.887 0.231 0.188 0.102

spiked eigenvalues, like u’lX, u’2X; Another group of much weaker effects, like u;X, i=18,...,24;
The last group that may have most of the same effects, like u;X, i =3, ..., 17. Furthermore, if we use

the data with the missing values made up, the experimental results may be more accurate. To make up
for missing values, one can use the miss Forest function in the package missForest.

6. Conclusion

In this paper, we propose a G4AMT for a generalized spiked covariance matrix, which shows the uni-
versality of the asymptotic law for its spiked eigenvalues. Through the concrete example of the CLT of
normalized spiked eigenvalues, we illustrate the basic idea and procedures of the G4MT to show the
universality of a limiting result related to the large dimensional random matrices. Unlike Tao and Vu
[27], we avoid the estimates of high-order partial derivatives of an implicit function to the entries of the
random matrix, and thus, the strong condition C¢ of sub-exponential property is avoided. Moreover,
the required 4th moment condition is reduced to a tail probability in Assumption (b), which is neces-
sary for the existence of the largest eigenvalue limit. Without the constraint of the existence of the 4th
moment, we only need a more regular and minor condition (2.4) on the elements of U;. On the one
hand, our result has much wider applications than Bai and Yao [4], Bai and Yao [5]; on the other hand,
the result of Bai and Yao [5] shows the necessity of the condition (2.4) for the total universality.
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Table 4. Estimations about the spikes:Case /I under Binomial Assumption

Frequency of Mo

M 1 2 3 4 5 6 7
p =200 PY 0.343 0 0.657 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0
Ours 0 0 0 0 0.018 0.980 0.002
Locations
(1,2, 3,198, 199, 200)
Estimates of spikes
ap @y a3 Q4 as ag
3.838 3.275 2.922 0.216 0.192 0.098
Frequency of Mo
p =400 PY 0.374 0.001 0.625 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0
Ours 0 0 0 0 0.041 0.952 0.007
Locations
(1,2, 3, 198, 199, 200)
Estimates of spikes
ay ay as ay as dg
4.123 3.211 3.001 0.216 0.195 0.096
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Supplementary Material

Supplement to “Generalized four moment theorem and an application to CLT for spiked eigen-
values of high-dimensional covariance matrices” (DOI: 10.3150/20-BEJ1237SUPP; .pdf). We pro-
vide the detailed explanation of Assumption (d), some necessary lemmas and the proofs of Theorem 3.2
and Corollary 3.1.

Table 5. Estimations of the number, sizes and locations of the spikes by the real data

Number: 9
Location: (1,2, 18,19, 20, 21, 22, 23, 24)
Sizes: (3(1 5[2 &3 &4 &5 6‘6 5[7 &8 (3(9

10.818 2.143 0.219 0.166 0.124 0.101 0.064 0.048 0.009
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