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A discrete statistical model is a subset of a probability simplex. Its maximum likelihood estimator (MLE) is a
retraction from that simplex onto the model. We characterize all models for which this retraction is a rational
function. This is a contribution via real algebraic geometry which rests on results on Horn uniformization due to
Huh and Kapranov. We present an algorithm for constructing models with rational MLE, and we demonstrate it
on a range of instances. Our focus lies on models familiar to statisticians, like Bayesian networks, decomposable
graphical models and staged trees.
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1. Introduction

A discrete statistical model is a subset M of the open probability simplex �n. Each point p in �n

is a probability distribution on the finite state space {0,1, . . . , n}, that is, p = (p0,p1, . . . , pn), where
the pi are positive real numbers that satisfy p0 + p1 + · · · + pn = 1. The model M is the set of all
distributions p ∈ �n that are relevant for an application.

In data analysis, we are given an empirical distribution u = (u0, u1, . . . , un). This is the point in
�n whose ith coordinate ui is the fraction of samples in state i. The maximum likelihood estimator
(MLE) of M is a function � : �n → M that takes the empirical distribution u to a distribution p̂ =
(p̂0, p̂1, . . . , p̂n) that best explains the given observations. Here “best” is understood in the sense of
likelihood inference, so that p̂ = �(u) is the point in M that maximizes the log-likelihood function
p �→ ∑n

i=0 ui · log(pi). For any vector u in R
n+1
>0 , we set �(u) := �(u/|u|) where |u| = u0 +· · ·+un.

Likelihood inference is consistent. This means that �(u) = u for u ∈ M. This follows from the fact
that the log-likelihood function is strictly concave on �n and its unique maximizer is p = u. Hence,
the MLE � is a retraction from the simplex onto the model.

This point is fundamental for two fields at the crossroads of mathematics and data science. Informa-
tion Geometry [1] views the MLE as the nearest point map of a Riemannian metric on �n, given by the
Kullback–Leibler divergence of probability distributions. Algebraic Statistics [4,17] is concerned with
models M whose MLE � is an algebraic function of u. This happens when the constraints that define
M are given in terms of polynomials in p. In this article, we address a question that is fundamental for
both fields:

For which models M is the MLE � a rational function in the empirical distribution u?

The most basic example where the MLE is rational is the independence model for two binary random
variables (n = 3). Here, M is a surface in the tetrahedron �3. That surface is a familiar picture that
serves as a point of entry for both Information Geometry and Algebraic Statistics. Points in M are
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positive rank one 2 × 2 matrices [p0 p1
p2 p3

] whose entries sum to one. The data takes the form of a
nonnegative integer 2 × 2 matrix u of counts of observed frequencies. Hence |u| = u0+u1+u2+u3 is
the sample size, and u/|u| is the empirical distribution. The MLE p̂ = �(u) is evaluated by multiplying
the row and column sums of u:

p̂0 = (u0+u1)(u0+u2)

|u|2 , p̂1 = (u0+u1)(u1+u3)

|u|2 ,

p̂2 = (u2+u3)(u0+u2)

|u|2 , p̂3 = (u2+u3)(u1+u3)

|u|2 .

These four expressions are rational, homogeneous of degree zero and their sum is equal to 1. See [10],
Example 2, for a discussion of these formulas from our present perspective.

The surface M belongs to the class of graphical models [14]. Fix an undirected graph G whose
nodes represent random variables with finitely many states. The undirected graphical model MG is a
subset of �n, where n+1 is the number of states in the joint distribution. The graphical model MG is
decomposable if and only if the graph G is chordal. Each coordinate p̂i of its MLE is an alternating
product of linear forms given by maximal cliques and minimal separators of G. A similar formula
exists for directed graphical models, which are also known as Bayesian networks.

In both cases, the coordinates of the MLE are not only rational functions, but even alternating prod-
ucts of linear forms in u = (u0, u1, . . . , un). This is no coincidence. Huh [10] proved that if � is a
rational function then each of its coordinates is an alternating product of linear forms, with numerator
and denominator of the same degree. Huh further showed that this alternating product must take a very
specific shape. That shape was discovered by Kapranov [12], who named it the Horn uniformization.
The results by Kapranov and Huh are valid for arbitrary complex algebraic varieties. They make no
reference to a context where the coordinates are real, positive and add up to 1.

The present paper makes the leap from complex varieties back to statistical models. Building on the
remarkable constructions by Kapranov and Huh, we here work in the setting of real algebraic geometry
that is required for statistical applications. Our main result (Theorem 1) characterizes all models M in
�n whose MLE is a rational function. It is stated in Section 2 and all its ingredients are presented in a
self-contained manner.

In Section 3, we examine models with rational MLE that are familiar to statisticians, such as decom-
posable graphical models and Bayesian networks. Our focus lies on staged tree models, a far-reaching
generalization of discrete Bayesian networks, described in the book by Collazo, Görgen and Smith
[3]. We explain how our main result applies to these models. The proof of Theorem 1 is presented in
Section 4. This is the technical heart of our paper, building on the likelihood geometry of [11], §3. We
also discuss the connection to toric geometry and geometric modeling developed by Clarke and Cox
[2]. In Section 5, we present our algorithm for constructing models with rational MLE, and we discuss
its implementation and some experiments. The input is an integer matrix representing a toric variety,
and the output is a list of models derived from that matrix. Our results suggest that only a very small
fraction of Huh’s varieties in [10] are statistical models.

2. How to be rational

Let M be a discrete statistical model in the open simplex �n that has a well-defined maximum like-
lihood estimator � : �n → M. We also write � : Rn+1

>0 → M for the induced map u �→ �(u/|u|) on
positive vectors. If the n + 1 coordinates of � are rational functions in u, then we say that M has
rational MLE. The following is our main result.
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Theorem 1. The following are equivalent for the statistical model M with MLE �:

(1) The model M has rational MLE.
(2) There exists a Horn pair (H,λ) such that M is the image of the Horn map

ϕ(H,λ) : R
n+1
>0 →R

n+1
>0 .

(3) There exists a discriminantal triple (A,�,m) such that M is the image under the monomial
map φ(�,m) of precisely one orthant (9) of the dual toric variety Y ∗

A.

The MLE of the model satisfies the following relation on the open orthant Rn+1
>0 :

� = ϕ(H,λ) = φ(�,m) ◦ H. (1)

This theorem matters for statistics because it reveals when a model has an MLE of the simplest pos-
sible closed form. Property (2) says that the polynomials appearing in the numerators and denominators
of the rational formulas must factor into linear forms with positive coefficients. Property (3) offers a
recipe, based on toric geometry, for explicitly constructing such models. The advance over [10] is that
Theorem 1 deals with positive real numbers. It hence furnishes the definitive solution in the case of
applied interest.

The goal of this section is to define all the terms seen in parts (2) and (3) of Theorem 1.

Example 2. We first discuss Theorem 1 for a simple experiment: Flip a biased coin. If it shows heads,
flip it again. This is the model with n = 2 given by the tree diagram below. The model M is a curve in

the probability triangle �2. The tree shows its parametrization

�1 → �2, (s0, s1) �→ (
s2

0 , s0s1, s1
)

where s0, s1 > 0 and s0 + s1 = 1.

The implicit representation of the curve M is the equation p0p2 − (p0 +p1)p1 = 0. Let (u0, u1, u2) be
the counts from repeated experiments. A total of 2u0 + 2u1 + u2 coin tosses were made. We estimate
the parameters as the empirical frequency of heads, respectively, tails:

ŝ0 = 2u0 + u1

2u0 + 2u1 + u2
and ŝ1 = u1 + u2

2u0 + 2u1 + u2
.

The MLE is the retraction from the triangle �2 to the curve M given by the formula

�(u0, u1, u2) = (
ŝ2

0 , ŝ0ŝ1, ŝ1
) =

(
(2u0 + u1)

2

(2u0+2u1+u2)2
,
(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

)
.

Hence M has rational MLE. We see that the Horn pair from part (2) in Theorem 1 has

H =
⎛
⎝ 2 1 0

0 1 1
−2 −2 −1

⎞
⎠ and λ = (1,1,−1).
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We next exhibit the discriminantal triple (A,�,m) in part (3) of Theorem 1. The matrix A = (1 1 1)

gives a basis of the left kernel of H . The second entry is the polynomial

� = x2
3 − x2

1 − x1x2 + x2x3 = (x3 − x1)(x1 + x2 + x3). (2)

The third entry marks the leading term m = x2
3 . These data define the monomial map

φ(�,m) : (x1, x2, x3) �→
(

x2
1

x2
3

,
x1x2

x2
3

,−x2

x3

)
.

The toric variety of the matrix A is the point YA = {(1 : 1 : 1)} in P
2. Our polynomial � vanishes

on the line Y ∗
A = {x1 + x2 + x3 = 0} that is dual to YA. The relevant orthant is the open line segment

Y ∗
A,σ := {(x1 : x2 : x3) ∈ Y ∗

A : x1, x2 > 0 and x3 < 0}. Part (3) in Theorem 1 says that M is the image
of Y ∗

A,σ under φ(�,m). The MLE is � = φ(�,m) ◦ H .

We now come to the definitions needed for Theorem 1. Let H = (hij ) be an m × (n+1) integer
matrix whose columns sum to zero, that is,

∑m
i=1 hij = 0 for j = 0, . . . , n. We call such a matrix a

Horn matrix and denote its columns by h0, h1, . . . , hn. The following alternating products of linear
forms are rational functions of degree zero:

(Hu)hj :=
m∏

i=1

(hi0u0 + hi1u1 + · · · + hinun)
hij for j = 0,1, . . . , n.

We use the notation vh := ∏
i v

hi

i for two vectors v, h of the same size. The Horn matrix H is friendly
if there exists a real vector λ = (λ0, . . . , λn) with λi �= 0 for all i such that the following identity holds
in the rational function field R(u0, u1, . . . , un):

λ0(Hu)h0 + λ1(Hu)h1 + · · · + λn(Hu)hn = 1. (3)

If this holds, then we call (H,λ) a friendly pair, and we consider the rational function

R
n+1 →R

n+1, u �→ (
λ0(Hu)h0 , λ1(Hu)h1 , . . . , λn(Hu)hn

)
. (4)

The friendly pair (H,λ) is called a Horn pair if the function (4) is defined for all positive vectors, and
it maps these to positive vectors. If these conditions hold, then we write ϕ(H,λ) : Rn+1

>0 → R
n+1
>0 for

the restriction of (4) to the positive orthant. We call ϕ(H,λ) the Horn map associated to the Horn pair
(H,λ).

The difference between our Horn pairs and the more general pairs considered by Huh in [10] is
the positivity condition we just introduced, along with the “friendliness” condition. These conditions
guarantee that the image of the Horn map lies in the probability simplex, which is necessary for its
interpretation as a statistical model. They also imply special properties for the Horn pair; see Proposi-
tions 22 and 23 in Section 4. The examples in Section 5 show that only a fraction of Huh’s pairs (H,λ)

are Horn pairs.
Different Horn pairs may give rise to the same Horn map. For example, the Horn pair

H ′ =

⎛
⎜⎜⎝

0 2 2
2 1 0
0 −1 −1

−2 −2 −1

⎞
⎟⎟⎠ and λ′ =

(
1,−1

4
,

1

4

)
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also gives the map in Example 2. This is because the first and third rows of H ′ are collinear, causing
the cancellation of linear factors in the Horn map. Following [2], a Horn pair (H,λ) is minimal if the
matrix H has no zero rows and no pair of collinear rows.

Lemma 3. Let (H ′, λ′) be a Horn pair arising from the Horn pair (H,λ) by replacing two collinear
rows rk and r� in H such that r� = μrk with their sum rk + r� and setting

λ′
j = λjμ

μ·hkj

(1 + μ)(1+μ)hkj
for all j = 0, . . . , n.

Then the Horn maps ϕ(H ′,λ′) and ϕ(H,λ) are equal.

Proof. Let wk and w� be the linear forms associated to the rows rk and r�, respectively. Fix a col-
umn index j . We have w� = μwk and h�j = μhkj . The factors of the j th coordinates of the Horn

maps ϕ(H,λ) and ϕ(H ′,λ′) that have changed after the operation are λjw
bkj

k w
b�j

� = λjμ
μ·hkj w

(1+μ)hkj

k

for (H,λ) and λ′
j (wk + w�)

(1+μ)hkj = λ′
j (1 + μ)(1+μ)hkj w

(1+μ)hkj

k for (H ′, λ′). Equating these two
gives the desired formula. �

Every Horn map is represented by a unique minimal Horn pair. This follows by unique factorization;
see also [2], Proposition 6.11. To make a Horn pair minimal, while retaining the Horn map, we can use
Lemma 3 repeatedly, deleting zero rows as they appear.

Example 4. We illustrate the equivalence of (1) and (2) in Theorem 1 for the model described in [11],
Example 3.11. Here, n = 3 and m = 4 and the Horn matrix equals

H =

⎛
⎜⎜⎝

−1 −1 −2 −2
1 0 3 2
1 3 0 2

−1 −2 −1 −2

⎞
⎟⎟⎠ . (5)

This Horn matrix is friendly because the following vector satisfies the identity (3):

λ = (λ0, λ1, λ2, λ3) =
(

2

3
,− 4

27
,− 4

27
,

1

27

)
. (6)

The pair (H,λ) is a Horn pair, with associated Horn map

ϕ(H,λ) : R
4
>0 →R

4
>0,

⎛
⎜⎜⎝

u0
u1
u2
u3

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(u0 + 3u2 + 2u3)(u0 + 3u1 + 2u3)

3(u0 + u1 + 2u2 + 2u3)(u0 + 2u1 + u2 + 2u3)

4(u0 + 3u1 + 2u3)
3

27(u0 + u1 + 2u2 + 2u3)(u0 + 2u1 + u2 + 2u3)2

4(u0 + 3u2 + 2u3)
3

27(u0 + u1 + 2u2 + 2u3)2(u0 + 2u1 + u2 + 2u3)

(u0 + 3u2 + 2u3)
2(u0 + 3u1 + 2u3)

2

27(u0 + u1 + 2u2 + 2u3)2(u0 + 2u1 + u2 + 2u3)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(7)
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Indeed, this rational function takes positive vectors to positive vectors. The image of the map ϕ(H,λ) is
a subset M of the tetrahedron �3 = {p ∈ R

4
>0 : p0 + p1 + p2 + p3 = 1}. We regard the subset M as

a discrete statistical model on the state space {0,1,2,3}. The model M is the curve of degree 4 inside
�3 defined by the two quadratic equations

9p1p2 − 8p0p3 = p2
0 − 12p3 = 0.

As in [11], Example 3.11, one verifies that M has rational MLE, namely � = ϕ(H,λ).

We next define all the terms used in part (3) of Theorem 1. Fix a matrix A = (aij ) ∈ Z
r×m of rank

r that has the vector (1, . . . ,1) in its row span. The connection to part (2) of Theorem 1 will be that
the rows of A span the left kernel of H . We identify the columns of A with Laurent monomials in r

unknowns t1, . . . , tr . The associated monomial map is

γA : (
R

∗)r →RP
m−1, (t1, . . . , tr ) �→

(
r∏

i=1

t
ai1
i :

r∏
i=1

t
ai2
i : · · · :

r∏
i=1

t
aim

i

)
. (8)

Here, R∗ = R\{0} and RP
m−1 denotes the real projective space of dimension m − 1. Let YA be the

closure of the image of γA. This is the projective toric variety given by A.
Every point x = (x1 : · · · : xm) in the dual projective space (RPm−1)∨ corresponds to a hyperplane

Hx in RP
m−1. The dual variety Y ∗

A to the toric variety YA is the closure of

{
x ∈ (

RP
m−1)∨ | γ −1

A (Hx ∩ YA) is singular
}
.

Here, the term singular means that the variety γ −1
A (Hx ∩ YA) has a singular point in (R∗)r . A general

point x in Y ∗
A hence corresponds to a hyperplane Hx that is tangent to the toric variety YA at a point

γA(t) with nonzero coordinates. We identify sign vectors σ ∈ {−1,+1}m with orthants in R
m. These

map in a 2-to-1 manner to orthants in RP
m−1. If we intersect them with Y ∗

A, then we get the orthants
of the dual toric variety:

Y ∗
A,σ = {

x ∈ Y ∗
A : σi · xi > 0 for i = 1,2, . . . ,m

} ⊂RP
m−1. (9)

One of these is the distinguished orthant in Theorem 1, part (3).

Example 5. Fix m = 4 and r = 2. The following matrix has (1,1,1,1) in its row span:

A =
(

3 2 1 0
0 1 2 3

)
. (10)

As in [11], Example 3.9, the toric variety of A is the twisted cubic curve in 3-space:

YA = {(
t3
1 : t2

1 t2 : t1t2
2 : t3

2

) ∈RP3 : t1, t2 ∈ R∗}.
The dual toric variety Y ∗

A is a surface in (RP3)∨. Its points x represent planes in RP
3 that are tangent

to the curve YA. Such a tangent plane corresponds to a cubic x1t
3 + x2t

2 + x3t + x4 with a double root.
Just as we recognize quadrics with a double root by the vanishing of the quadratic discriminant, a cubic
with coefficients (x1, x2, x3, x4) has a double root if and only if the following discriminant vanishes:

�A = 27x2
1x2

4 − 18x1x2x3x4 + 4x1x
3
3 + 4x3

2x4 − x2
2x2

3 . (11)
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Hence, Y ∗
A is the surface of degree 4 in (RP3)∨ defined by �A. All eight orthants Y ∗

A,σ are nonempty.
The coefficient vectors of the following eight cubics lie on different orthants:

(t + 1)2(t + 3), (t + 5)2(t − 1), (t − 1)2(t + 3), (t + 5)2(t − 8),

(t − 3)2(t + 1), (t − 1)2(t − 3), (t − 2)2(t + 3), (t + 1)2(t − 3).

For instance, the underlined cubic corresponds to the point x = (1,−1,−8,12) in the orthant Y ∗
A,σ

associated with the sign vector σ = (+1,−1,−1,+1).

Let � be a homogeneous polynomial in m variables with n + 2 monomials and m one of these
monomials. There is a one-to-one correspondence between such pairs (�,m) and pairs (H,λ) where
H is a Horn matrix of size m × (n + 1) and λ is a coefficient vector. Namely, for k = 0, . . . , n write
h+

k , respectively, h−
k for the positive, respectively, negative part of the column vector hk , so that hk =

h+
k − h−

k . In addition, let maxk(h
−
k ) be the entrywise maximum of the h−

k . We pass from pairs (H,λ)

to pairs (�,m) as follows:

m = xmaxk(h
−
k ) and � = m ·

(
1 −

n∑
k=0

λkx
hk

)
. (12)

For the converse, from pairs (�,m) to pairs (H,λ), we divide � by m and use the same equations to
determine the pair (H,λ). Note that the polynomial � being homogeneous and the matrix H being a
Horn matrix are equivalent conditions using the equations (12). Given a pair (�,m) with associated
pair (H,λ), we define the monomial map

φ(�,m) : (
R

∗)m → R
n+1, x �→ (

λ0x
h0, λ1x

h1 , . . . , λnx
hn

)
.

We now present the definition that is needed for part (3) of Theorem 1.

Definition 6. A discriminantal triple (A,�,m) consists of

1. an r × m integer matrix A of rank r having (1,1, . . . ,1) in its row span,
2. an A-homogeneous polynomial � that vanishes on the dual toric variety Y ∗

A,
3. a distinguished term m among those that occur in the polynomial �,

such that the pair (H,λ) associated to (�,m) is a Horn pair. Here, the polynomial � being A-
homogeneous means that Av = Aw for any two exponent vectors v and w of �.

All definitions are now complete. We illustrate Definition 6 for our running example:

Example 7. Let A be the 2 × 4 matrix in (10), � = �A its discriminant in (11), and m =
27x2

1x2
4 the special term. Then (A,�,m) is a discriminantal triple with associated sign vector

σ = (+1,−1,−1,+1). The orthant Y ∗
A,σ , highlighted in Example 5, is a semialgebraic surface in

Y ∗
A ⊂RP

3. This surface is mapped into the tetrahedron �3 by

φ(�,m) : (x1, x2, x3, x4) �→
(

2

3

x2x3

x1x4
,− 4

27

x3
3

x1x
2
4

,− 4

27

x3
2

x2
1x4

,
1

27

x2
2x2

3

x2
1x2

4

)
. (13)

The image of this map is a curve in �3, namely the model M in Example 4. We verify (1) by comparing
(7) with (13). The former is obtained from the latter by setting x = Hu.
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3. Staged trees

We consider contingency tables u = (ui1i2···im) of format r1 × r2 × · · · × rm. Following [4,14], these
represent joint distributions of discrete statistical models with n + 1 = r1r2 · · · rm states. Namely, the
contingency table u represents the probability distribution p := u/|u|. For any subset C ⊂ {1, . . . ,m},
one considers the marginal table uC that is obtained by summing out all indices not in C. The entries
of the marginal table uC are sums of entries in u. To obtain the entry uI,C of uC for any state I =
(i1, i2, . . . , im), we fix the indices of the states in C and sum over the indices not in C. For example, if
m = 4, C = {1,3}, I = (i, j, k, l), then uC is the r1 × r3 matrix with entries

uI,C = ui+k+ =
r2∑

j=1

r4∑
l=1

uijkl .

Such linear forms are the basic building blocks for familiar models with rational MLE.
Consider an undirected graph G with vertex set {1, . . . ,m} which is assumed to be chordal. The

associated decomposable graphical model MG in �n has the rational MLE

p̂I =
∏

C uI,C∏
S uI,S

, (14)

where the product in the numerator is over all maximal cliques C of G, and the product in the denomi-
nator is over all separators S in a junction tree for G. See [14], §4.4.1. We shall regard G as a directed
graph, with edge directions given by a perfect elimination ordering on the vertex set {1, . . . ,m}. This
turns MG into a Bayesian network. More generally, a Bayesian network MG is given by a directed
acyclic graph G. We write pa(j) for the set of parents of the node j . The model MG in �n has the
rational MLE

p̂I =
m∏

j=1

uI,pa(j)∪{j}
uI,pa(j)

. (15)

If G comes from an undirected chordal graph, then (14) arises from (15) by cancellations.

Example 8 (m = 4). We revisit two examples from on page 36 in [4], §2.1. The star graph G =
[14][24][34] is chordal. The MLE for MG is the map � with coordinates

p̂ijkl = ui++l · u+j+l · u++kl

u++++ · u2+++l

= ui+++
u++++

· u+j+l

u+++l

· u++kl

u+++l

· ui++l

ui+++
.

The left expression is (14). The right is (15) for the directed graph 1 → 4, 4 → 2, 4 → 3.
The chain graph G = [12][23][34] is chordal. Its MLE is the map � with coordinates

p̂ijkl = uij++ · u+jk+ · u++kl

u+j++ · u++k+ · u++++
= ϕ(H,λ)(u)ijkl .

This is the Horn map given by the matrix H in Figure 1 and λ = (1, . . . ,1).

The formulas (14) and (15) are familiar to statisticians. Theorem 1 places them into a larger context.
However, some readers may find our approach too algebraic and too general. Our aim in this section is
to lay out a useful middle ground: staged tree models.
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Staged trees were introduced by Smith and Anderson [16] as a generalization of discrete Bayesian
networks. They furnish an intuitive representation of many situations that the above graphs G cannot
capture. In spite of their wide scope, staged tree models are appealing because of their intuitive formal-
ism for encoding events. For an introduction, see the textbook [3]. In what follows, we study parts (1)
and (2) in Theorem 1 for staged trees.

To define a staged tree model, we consider a directed rooted tree T with at least two edges emanating
from each nonleaf vertex, a label set S = {si | i ∈ I } and a labeling θ : E(T ) → S of the edges of the
tree. Each vertex of T has a corresponding floret, which is the multiset of edge labels emanating from
it. The labeled tree T is a staged tree if any two florets are either equal or disjoint. Two vertices in T
are in the same stage if their corresponding florets are the same. From now on, F denotes the set of
florets of T .

Definition 9. Let J be the set of root-to-leaf paths in the tree T . We set |J | = n + 1. For i ∈ I and
j ∈ J , let μij denote the number of times edge label si appears in the j th root-to-leaf path. The staged
tree model MT is the image of the parametrization

φT : � → �n, (si)i∈I �→ (pj )j∈J ,

where the parameter space is � := {(si)i∈I ∈ (0,1)|I | : ∑
si∈f si = 1 for all florets f ∈ F }, and pj =∏

i∈I s
μij

i is the product of the edge parameters on the j th root-to-leaf path.

In the model MT , the tree T represents possible sequences of events. The parameter si associated
to an edge vv′ is the transition probability from v to v′. All parameter labels in a floret sum to 1. The
fact that distinct nodes in T can have the same floret of parameter labels enables staged tree models
to encode conditional independence statements [16]. This allows us to represent any discrete Bayesian
network or decomposable model as a staged tree model. Our first staged tree was seen in Example 2.
Here is another specimen.

Example 10 (n = 15). Consider the decomposable model for binary variables given by the 4-chain
G = [12][23][34] as in Example 8. Figure 1 shows a realization of MG as a staged tree model MT .
The leaves of T represent the outcome space {0,1}4. Nodes with the same color have the same associ-
ated floret. The blank nodes all have different florets. The seven florets of T are

f1 = {s0, s1}, f2 = {s2, s3}, f3 = {s4, s5}, f4 = {s6, s7}, f5 = {s8, s9},
f6 = {s10, s11}, f7 = {s12, s13}.

Next, we show that staged tree models have rational MLE, so they satisfy part (1) of Theorem 1. Our
formula for � uses the notation for I , J and μij introduced in Definition 9. This formula is known in
the literature on chain event graphs (see, e.g., [15]).

Proposition 11. Let MT be a staged tree model, and let u = (uj )j∈J be a vector of counts. For i ∈ I ,
let f be the floret containing the label si , and define the estimates

ŝi :=
∑

j μijuj∑
s�∈f

∑
j μ�juj

and p̂j :=
∏
i∈I

(ŝi )
μij .

The rational function � that sends (uj )j∈J to (p̂j )j∈J is the MLE of the model MT .
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Figure 1. A staged tree T and its Horn matrix H from Proposition 11. Entries − indicate −1.

Proof. We prove that the likelihood function L(p,u) has a unique maximum at p = (p̂j )j∈J . For a
floret f ∈ F , we fix the vector of parameters sf = (si)si∈f , and we define the local likelihood function
Lf (sf ,u) = ∏

si∈f s
αi

i , where αi = ∑
j μijuj . We have

L(p,u) =
∏
j

p
uj

j =
∏
j

∏
i

s
uj μij

i =
∏
i

s
αi

i =
∏
f ∈F

Lf (sf , u).

Since the Lf depend on disjoint sets of unknowns, maximizing L is achieved by maximizing the
factors Lf separately. But Lf is the likelihood function of the full model �|f |−1, given the data
vector (αi)si∈f . The MLE of that model is ŝi = αi/

∑
s�∈f α�, where si ∈ f . We conclude that

argmaxsf
(Lf (sf , u)) = (ŝi )si∈f and argmaxp(L(p,u)) = (p̂j )j∈J . �

Remark 12. Here is a method for evaluating the MLE in Proposition 11. Let [v] ⊂ J be the set
of root-to-leaf paths through a node v in the tree T and define u[v] = ∑

j∈[v] uj . The ratio
u[v′]
u[v] is

the empirical transition probability from v to v′ given arrival at v. To obtain ŝi we first compute the
quotients

u[v′]
u[v] for all edges vv′ with parameter label si . We aggregate them by adding their numerators

and denominators separately. This gives ŝi = (
∑

u[v′])/(
∑

u[v]), where both sums range over all edges
vv′ with parameter label si .

Proposition 11 yields an explicit description of the Horn pair (H,λ) associated to MT .

Corollary 13. Fix a staged tree model MT as above. Let H be the (|I | + |F |) × |J | matrix whose
rows are indexed by the set I  F and entries are given by

hij = μij for i ∈ I, and

hfj = −
∑
s�∈f

μ�j for f ∈ F.

Define λ ∈ {−1,+1}|J | by λj = (−1)
∑

f hfj . Then (H,λ) is a Horn pair for MT .
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Given a staged tree T , we call the matrix H in Corollary 13 the Horn matrix of T .

Remark 14. In Corollary 13, for a floret f , let Hf be the submatrix of H with row indices {i : si ∈
f } ∪ {f }. Then H is the vertical concatenation of the matrices Hf for f ∈ F .

Example 15. For the tree T in Example 10, the Horn matrix H of MT is given in Figure 1. The
vector λ of the Horn pair (H,λ) is the vector of ones (1, . . . ,1) ∈ R

16. The rows of H are indexed by
the florets and labels

(s0, s1, f1, s2, s3, f2, s4, s5, f3, s6, s7, f4, s8, s9, f5, s10, s11, f6, s12, s13, f7).

Note that (H,λ) is not minimal. Following the recipe in Lemma 3, we can delete the rows s0, s1, f2, f3
of the matrix H by summing the pairs (s0, f2) and (s1, f3) and deleting zero rows. The result is the
minimal Horn pair (H ′, λ′), where λ′ = (−1, . . . ,−1).

Two staged trees T and T ′ are called statistically equivalent in [8] if there exists a bijection between
the sets of root-to-leaf paths of T and T ′ such that, after applying this bijection, MT = MT ′ in the
open simplex �n. A staged tree model may have different but statistically equivalent tree representa-
tions. In [8], Theorem 1, it is shown that statistical equivalence of staged trees can be determined by
a sequence of operations on the trees, named swap and resize. One of the advantages of describing a
staged tree model via its Horn pair is that it gives a new criterion to decide whether two staged trees
are statistically equivalent. This is simpler to implement than the criterion given in [8].

Corollary 16. Two staged trees are statistically equivalent if and only if their associated Horn pairs
reduce to the same minimal Horn pair.

One natural operation on a staged tree T is identifying two florets of the same size. This gives a new
staged tree T ′ whose Horn matrix is easy to get from that of T .

Corollary 17. Let T ′ be a staged tree arising from T by identifying two florets f and f ′, say by
the bijection (−)′ : f → f ′. The Horn matrix H ′ of MT ′ arises from the Horn matrix H of MT by
replacing the blocks Hf and Hf ′ in H by the block H ′

f defined by

h′
ij = hij + hi′j for si ∈ f,

h′
fj = hfj + hf ′j .

Proof. This follows from the definition of the Horn matrices for MT and MT ′ . �

Example 18. Let T ′ be the tree obtained from Example 10 by identifying florets f4 and f5 in T . Then
MT ′ is the independence model of two random variables with four states.

Now we turn to part (3) of Theorem 1. We describe the triple (A,�,m) for a staged tree model MT .
The pair (H,λ) was given in Corollary 13. Let A be any matrix whose rows span the left kernel of H ,
set m = |I | + |F |, and write s for the m-tuple of parameters (si , sf )i∈I,f ∈F . From the Horn matrix in
Corollary 13, we see that

� = m ·
(

1 −
∑
j

(−1)εj
∏
i

(
si

sf

)μij
)

,
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where f depends on i, m = lcm(
∏

i s
μij

f : f ∈ F) and εj = ∑
i μij . The sign vector σ for the triple

(A,�,m) is given by σi = +1 for i ∈ I and σf = −1 for f ∈ F . Then Y ∗
A,σ gets mapped to MT

via φ(�,m). Moreover, the map φT from Definition 9 factors through φ(�,m). Indeed, if we define
ι : � → Y ∗

A,σ by (si)i∈I �→ (si ,−1)i∈I,f ∈F , then φT = φ(�,m) ◦ ι. The following derivation is an
extension of that in [11], Example 3.13.

Example 19. Let MT be the 4-chain model in Example 10. Here, the discriminant is

� = f1f2f3f4f5f6f7

− s0s2s6s10f3f5f7 − s0s2s6s11f3f5f7 − s0s2s7s12f3f5f6 − s0s2s7s13f3f5f6

− s0s3s8s10f3f4f7 − s0s3s8s11f3f4f7 − s0s3s9s12f3f4f6 − s0s3s9s13f3f4f6

− s1s4s6s10f2f5f7 − s1s4s6s11f2f5f7 − s1s4s7s12f2f5f6 − s1s4s7s13f2f5f6

− s1s5s8s10f2f4f7 − s1s5s8s11f2f4f7 − s1s5s9s12f2f4f6 − s1s5s9s13f2f4f6.

Our notation for the parameters matches the row labels of the Horn matrix H in Figure 1. This poly-
nomial of degree 7 is irreducible, so it equals the A-discriminant: � = �A. The underlying matrix A

has format 13 × 21, and we represent it by its associated toric ideal

IA = 〈s10 − s11, s1s5f2 − s0s3f3, s1s4f2 − s0s2f3, s5s9f4 − s4s7f5, s3s9f4 − s2s7f5,

s12 − s13, s5s8f4 − s4s6f5, s3s8f4 − s2s6f5, s9s13f6 − s8s11f7, s7s13f6 − s6s11f7,

s0s2s6s11 − f1f2f4f6, s0s2s7s13 − f1f2f4f7, s0s3s8s11 − f1f2f5f6,

s0s3s9s13 − f1f2f5f7, s1s4s6s11 − f1f3f4f6, s1s4s7s13 − f1f3f4f7,

s1s5s9s13 − f1f3f5f7, s1s5s8s11 − f1f3f5f6〉.
The toric variety YA = V(IA) has dimension 12 and degree 141. It lives in a linear space of codimension
2 in P

20, where it is defined by eight cubics and eight quartics. The dual variety Y ∗
A = V(�A) is the

above hypersurface of degree seven. We have m = f1f2f3f4f5f6f7, and σ is the vector in {−1,+1}21

that has entry +1 at the indices corresponding to the si and entry −1 at the indices corresponding to
the fi .

It would be interesting to study the combinatorics of discriminantal triples for staged tree models.
Our computations suggest that, for many such models, the polynomial � is irreducible and equals the
A-discriminant �A of the underlying configuration A. However, this is not true for all staged trees, as
seen in equation (2) of Example 2. We close this section with a familiar class of models with rational
MLE whose associated � factor.

Example 20. The multinomial distribution encodes the experiment of rolling a k-sided die m times
and recording the number of times one observed the j th side, for j = 1, . . . , k. The associated model
M is the independence model for m identically distributed random variables on k states. We have
n + 1 = (

k+m−1
m

)
. The Horn matrix H is the (k + 1) × (n + 1) matrix whose columns are the vectors

(−m, i1, i2, . . . , ik)
T where i1, i2, . . . , ik are nonnegative integers whose sum equals m. Here, A =

(1 1 · · · 1), so the A-discriminant equals �A = x0 + x1 + · · · + xk . The following polynomial is a
multiple of �A:

� = (−x0)
m − (x1 + x2 + · · · + xk)

m.
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This �, with its marked term m = (−x0)
m, encodes the MLE for the model M:

p̂(i1,...,ik) =
k∏

j=1

(∑
|I |=m uI · Ij

m
∑

|I |=m uI

)ij

Here, I ranges over all vectors in Nk that sum to m, and Ij denotes the j th entry of I .

4. Proof of the main theorem

In this section, we prove Theorem 1. For a pair (H,λ) consisting of a Horn matrix H and a coefficient
vector λ, let ϕ be the rational map defined in (4). We use ϕ and ϕ(H,λ) interchangeably in this section,
as well as φ and φ(�,m). Recall that its j th coordinate is

ϕj (v) = λj

m∏
i=1

(
n∑

k=0

hikvk

)hij

. (16)

For a fixed data vector u ∈ N
n+1, we define the likelihood function for the image of ϕ:

Lu : R
n+1 →R, v �→

n∏
j=0

ϕj (v)uj . (17)

Lemma 21. Let H = (hij ) be a Horn matrix, λ a vector satisfying (3) and u ∈ N
n+1. Then u is a

critical point of its own likelihood function Lu. Furthermore, if u′ is another critical point of Lu, then
ϕ(u) = ϕ(u′).

Proof. We compute the partial derivatives of Lu. For � = 0, . . . , n, we find

∂

∂v�

Lu(v) =
n∑

j=0

uj

Lu(v)

ϕj (v)

∂

∂v�

ϕj (v)

=
n∑

j=0

uj

Lu(v)

ϕj (v)

m∑
i=1

hij

ϕj (v)∑n
k=0 hikvk

hi�

= Lu(v)

m∑
i=1

n∑
j=0

ujhijhi�∑n
k=0 hikvk

= Lu(v)

m∑
i=1

hi�

∑n
j=0 hijuj∑n

k=0 hikvk

.

For v = u, this evaluates to zero, since the sums in the fraction cancel and the �th column of H sums
to zero. This shows that u is a critical point.

Next, let u′ be another critical point of Lu. Using terminology from [10], Theorem 1, this means
that ϕ(u′) is a critical point of the likelihood function L(p,u) of the model M defined as the image
of ϕ. The same holds for ϕ(u). By the implication (ii) to (i) in [10], Theorem 1, the model M has ML
degree one. This implies ϕ(u) = ϕ(u′). �

We use [10] to explain the relation between models with rational MLE and Horn pairs.
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Proof of Theorem 1, Equivalence of (1) and (2). Let M be a model with rational MLE �. The
Zariski closure of M is a variety whose likelihood function has a unique critical point. By [10], The-
orem 1, there is a Horn matrix H and a coefficient vector λ such that ϕ(H,λ) = �. Now, the required
sum-to-one and positivity conditions for ϕ(H,λ) are satisfied because they are satisfied by the MLE �.
Indeed, the MLE of any discrete statistical model maps positive vectors u in R

n+1
>0 into the simplex

�n. Conversely, we claim that every Horn pair (H,λ) specifies a nonempty model M with rational
MLE. Indeed, define M to be the image of ϕ(H,λ). By the defining properties of the Horn pair, we have
M ⊂ �n. Lemma 21 shows that ϕ(H,λ) is the MLE of M. �

Next, we relate Horn pairs to discriminantal triples.

Proof of Theorem 1, Equivalence of (2) and (3). We already exhibited a bijection between pairs
(H,λ) and pairs (�,m) given by Equation (12). The matrix A is the left kernel of H and forms the
triple (A,�,m). It is a matrix of size r ×m of rank r . When H is a Horn matrix, A contains (1, . . . ,1)

in its row span. This implies that the polynomial � is homogeneous, which in turn implies that it is
A-homogeneous by AH = 0.

Next, we show that the pair (H,λ) being friendly corresponds to the polynomial � vanishing on Y ∗
A.

This is part of the desired equivalence.

Claim. The pair (H,λ) is friendly if and only if the A-homogeneous polynomial � vanishes on the
dual toric variety Y ∗

A.

Proof of Claim. Let (H,λ) be friendly and A as above. The Laurent polynomial q := �/m is a ratio-
nal function on P

m−1 that vanishes on the dual toric variety Y ∗
A. To see this, consider the exponentiation

map ϕ2 : Pm−1 →R
n+1, x �→ λ ∗ xH , where ∗ is the entrywise product and xH := (xh0 , . . . , xhn). Let

f = 1 − (p0 + · · · + pn). We have q = f ◦ ϕ2. By [10], Theorems 1 and 2, the function ϕ2 maps an
open dense subset of Y ∗

A dominantly to the closure M of the image of ϕ(H,λ). Since f = 0 on M, we
have f ◦ ϕ2 = 0 on an open dense subset of Y ∗

A, hence q = 0 on Y ∗
A, so � = 0 there as well.

Conversely, let � vanish on Y ∗
A. We claim that q(x) is zero for all x = Hu in the image of the linear

map H . We may assume m(x) �= 0. We only need to show that x is in the dual toric variety Y ∗
A, since

� vanishes on it. So, let xi = ∑n
j=0 hijuj for i = 1, . . . ,m. We claim that t = (1, . . . ,1) is a singular

point of the hypersurface

γ −1
A (Hx ∩ YA) =

{
t ∈C

r
∣∣∣ m∑

i=1

xit
ai = 0

}
.

First, the point t lies on that hypersurface since the columns of H sum to zero:

m∑
i=1

xi =
m∑

i=1

n∑
j=0

hijuj =
n∑

j=0

uj

m∑
i=1

hij = 0.

For s = 1, . . . , r we have ∂
∂ts

tai = asi t
ai−es , with es the standard basis vector of Zr , and

∂

∂ts

m∑
i=1

xit
ai =

m∑
i=1

n∑
j=0

hijujasi t
ai−es =

n∑
j=0

uj

m∑
i=1

asihij t
ai−es .

This is zero at t = (1, . . . ,1) because AH = 0. �
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We now prove the rest of the equivalence. Let (H,λ) be a Horn pair, let ϕ be its Horn map and let
φ be the associated monomial map. Let M be the statistical model with MLE ϕ, so M = ϕ(Rn+1

>0 ).
We have ϕ = φ ◦ H . By Proposition 23, there exists a unique sign vector σ such that imH |

R
n+1
>0

⊆R
m
σ .

From the proof of the above claim, we know that imH ⊆ Y ∗
A. Together, we have

M = ϕ
(
R

n+1
>0

) = φ(imH |
R

n+1
>0

) ⊆ φ
(
Y ∗

A,σ

)
.

By [10], Theorems 1 and 2, we have φ(Y ∗
A) ⊆M′, where M′ is the real part of ϕ(Cn+1). We also have

φ(Y ∗
A,σ ) ⊆R

n+1
>0 by definition of the orthant. Thus φ(Y ∗

A,σ ) ⊆M′ ∩R
n+1
>0 . Every element in the latter

set is a fixed point of the rational function ϕ, by a similar argument as in Lemma 21 for complex space.
Hence M′ ∩R

n+1
>0 = M, so φ(Y ∗

A,σ ) ⊆M.
Finally, if (A,�,m) is a discriminantal triple then (H,λ) is a Horn pair by definition. This completes

the proof of Theorem 1. �

In the next two propositions, we formulate simple criteria to decide whether the image of the map
ϕ(H,λ) associated to a Horn matrix H and a coefficient vector λ is a statistical model. These are essential
for constructing models with rational MLE in Algorithm 1.

Proposition 22. Let (H,λ) be a friendly pair. If there exists a vector u0 ∈ R
n+1 such that ϕ(u0) > 0,

then we have ϕ(u) > 0 for all u in R
n+1
>0 where it is defined.

Proof. The function ϕ is homogeneous of degree zero. It suffices to prove that each coordinate of ϕ(u)

is a positive real number, for all vectors u with positive integer entries. Indeed, every positive u in
R

n+1 can be approximated by rational vectors, which can be scaled to be integral. The open subset
U = ϕ−1(�n) of Rn+1 contains u0 by our assumptions. If U = R

n+1, then we are done. Else, U has
a nonempty boundary ∂U . By continuity, ∂U ⊆ ϕ−1(∂�n). The likelihood function Lu for the data
vector u vanishes on ∂U .

We claim that Lu has a critical point in U . The closed subset U is homogeneous. Seen in projective
space P

n, it becomes compact. The likelihood function Lu is well defined on this compact set in P
n,

since it is homogeneous of degree zero, and Lu vanishes on the boundary. Hence the restriction Lu|U
is either identically zero or it has a critical point in U . But, since u0 ∈ U is a point with Lu(u0) �= 0,
the second statement must be true.

Pick such a critical point u′. Since U is open in R
n+1, the point u′ is also critical point of Lu. By

Lemma 21 and since u′ ∈ U , we have ϕ(u) = ϕ(u′) > 0. �

Proposition 23. Let (H,λ) be a friendly pair, with no zero or collinear rows in H . Then (H,λ) is a
Horn pair if and only if for every row ri of H all nonzero entries of ri have the same sign σi , and the
sign vector σ = (σi) satisfies λjσ

hj > 0 for all columns j .

Proof. Let (H,λ) be a Horn pair. Let �1, . . . , �k be the linear forms corresponding to the rows in
H that have both positive and negative entries. Since �1 has positive and negative coefficients, there
exists a positive vector u such that �1(u) = 0. Since (H,λ) is minimal, we may choose u > 0 such that
�1(u) = 0 but �k′(u) �= 0 for all k′ �= 1. The form �1 appears in the numerator of some coordinate of ϕ,
making this coordinate zero at u. But this contradicts the fact that (H,λ) is a Horn pair. Therefore, we
cannot have rows with both positive and negative entries. The inequalities λjσ

hj > 0 then follow from
the definition of a Horn pair by evaluating ϕ(u) for some positive vector u.

Conversely, if the sign vector σ is well-defined, the inequalities λjσ
hj > 0 imply that ϕ(u) > 0 for

all positive u. Hence (H,λ) is a Horn pair. �
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Every model with rational MLE arises from a toric variety YA. In some cases, the model is itself
a toric variety YC . It is crucial to distinguish the two matrices A and C. The two toric structures are
very different. For instance, every undirected graphical model is toric [4], Proposition 3.3.3. The toric
varieties YC among staged tree models MT were classified in [5]. The 4-chain model MT = YC is
itself a toric variety of dimension 7 in P

15. But it arises from a toric variety YA of dimension 12 in P
20,

seen in Example 19.
Toric models with rational MLE play an important role in geometric modeling [2,6]. Given a matrix

C ∈ Z
r×(n+1) and a vector of weights w ∈ R

n+1
>0 , one considers the scaled projective toric variety YC,w

in RP
n. This is defined as the closure of the image of

γC,w : (
R

∗)r → RP
n, (t1, . . . , tr ) �→

(
w0

r∏
i=1

t
ci0
i ,w1

r∏
i=1

t
ci1t

i , . . . ,wn

r∏
i=1

t
cin

i

)
. (18)

The set MC,w of positive points in YC,w is a statistical model in �n. There is a natural homeomorphism
from the toric model MC,w onto the polytope of C. This is known in geometry as the moment map.
For a reference from algebraic statistics, see [4], Proposition 2.1.5. In geometric modeling, the pair
(C,w) defines toric blending functions [13].

It is desirable for the toric blending functions to have rational linear precision [2,13]. The property is
rare and it depends in a subtle way on (C,w). Garcia-Puente and Sottile [6] established the connection
to algebraic statistics. They showed that rational linear precision holds for (C,w) if and only if the
statistical model MC,w has rational MLE.

Example 24. The most classical blending functions with rational linear precision live on the triangle
{x ∈R

3
>0 : x1+x2+x3 = 1}. They are the Bernstein basis polynomials

m!
i!j !(m − i − j)!x

i
1x

j

2 x
m−i−j

3 for i, j ≥ 0, i + j ≤ m. (19)

Here, C is the 3 × (
m+1

2

)
matrix whose columns are the vectors (i, j,m − i − j). The weights are

w(i,j) = m!
i!j !(m−i−j)! . The toric model MC,w is the multinomial family, where (19) is the probability

of observing i times 1, j times 2 and m − i − j times 3 in m trials. This model has rational MLE, as
seen in Example 20. Again, notice the distinction between the two toric varieties. Here, YA is a point

in P
m, whereas YC is a surface in P

(
m
2

)
−1.

Clarke and Cox [2] raise the problem of characterizing all pairs (C,w) with rational linear precision.
This was solved by Duarte and Görgen [5] for pairs arising from staged trees. While the problem
remains open in general, our theory in this paper offers new tools. We may ask for a characterization
of discriminantal triples whose models are toric.

5. Constructing models with rational MLE

Part (3) in Theorem 1 allows us to construct models with rational MLE starting from a matrix A that
defines a projective toric variety YA. To carry out this construction effectively, we propose Algorithm 1.
In most cases, the dual variety Y ∗

A is a hypersurface, and we can compute its defining polynomial �A,
the discriminant [7]. The polynomial � in a discriminantal triple can be any homogeneous multiple of
�A, but we just take � = �A. For all terms m in �A, we check whether (A,�A,m) is a discriminantal
triple. We implemented this algorithm in Macaulay2 [9], and our code is available online at [18].
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Algorithm 1: From toric varieties to statistical models
Input : An integer matrix A of size r × m with (1, . . . ,1) in its row span
Output: An integer n and a collection of statistical models M(�) = (�(�), I (�)), where

�(�) : Rn+1 →R
n+1 is a rational MLE for M(�), and I (�) ⊆R[p0, . . . , pn] is the

defining prime ideal of M(�).
1 Compute the A-discriminant �A ∈ Z[x1, . . . , xm];
2 n ← # terms(�A) − 2;
3 models ← {};
4 for 0 ≤ � ≤ n + 1 do
5 m ← terms(�A)�;
6 q ← 1 − �A/m;
7 for 0 ≤ j ≤ n do
8 λj ← coefficients(q)j ;
9 hj ← exponent_vectors(q)j ;

10 �
(�)
j ← (u �→ λj

∏m
i=1(

∑n
k=0 hikuk)

hij );

11 end
12 H ← (hij );

13 Choose any positive vector v in R
n+1
>0 ;

14 if �
(�)
j (v) > 0 for j = 0,1, . . . , n then

15 Compute the ideal I (�) of the image of �(�);
16 models ← models ∪ {(�(�), I (�))};
17 end
18 end
19 return models;

Lines 1 and 15 of Algorithm 1 are computations with Gröbner bases. Executing Line 15 can be very
slow. It may be omitted if one is satisfied with obtaining the parametric description and MLE �(�) of
the model M�. For the check in Line 14, we rely on Proposition 22 for correctness. A check based on
the criterion in Proposition 23 is also possible.

Example 25 (r = 2, m = 4). For distinct integers α,β, γ > 0 with gcd(α,β, γ ) = 1 let

Aα,β,γ =
(

1 1 1 1
0 α β γ

)
.

We ran Algorithm 1 for all 613 such matrices with 0 < α < β < γ ≤ 17. Line 1 computes the discrim-
inant �A of the univariate polynomial f (t) = x1 + x2t

α + x3t
β + x4t

γ . The number n + 2 of terms
of these discriminants equals 7927/613 = 12.93 on average. Thus a total of 7927 candidate triples
(A,�A,m) were tested in Lines 12 to 21. Precisely, 123 of these were found to be discriminantal
triples. This is a fraction of 1.55%. Hence, only 1.55% of the resulting complex varieties permitted by
[10] are actually statistical models.

Here is a typical model that was discovered. Take α = 1, β = 4, γ = 7. The discriminant

�A = 729x4
2x6

3 − 6912x3
1x7

3 − 8748x5
2x4

3x4 + 84 672x3
1x2x

5
3x4 + 34 992x6

2x2
3x2

4

− 351 918x3
1x2

2x3
3x2

4 − 46 656x7
2x3

4 + 518 616x3
1x3

2x3x
3
4−823 543x6

1x4
4
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has 9 terms, so n = 7. The term m is underlined. The associated model is a curve of degree ten in �7. Its
prime ideal I (�) is generated by 18 quadrics. Among them are 15 binomials that define a toric surface
of degree six: 49p1p2 − 48p0p3,3p0p4 − p2

2, . . . ,361p3p7 − 128p2
5. Inside that surface, our curve is

cut out by three quadrics, like 26 068p2
2 +73 728p0p5 +703 836p0p6 +234 612p2p6 +78 204p4p6 +

612 864p0p7 + 212 268p2p7 + 78 204p4p7 − 8379p2
7.

Example 26 (r = 3, m = 6). For any positive integers α, β , γ , ε, we consider the matrix

A =
⎛
⎝0 α β 0 γ ε

0 0 0 1 1 1
1 1 1 1 1 1

⎞
⎠ .

The discriminant �A is the resultant of two trinomials x1 + x2t
α + x3t

β and x4 + x5t
γ + x6t

ε . We ran
Algorithm 1 for all 138 such matrices with 0 < α < β ≤ 17, 0 < γ < ε ≤ 17, gcd(α,β) = gcd(γ, ε) =
1. The number n + 2 of terms of these discriminants equals 2665/138 = 19.31 on average. Thus a total
of 2665 candidate triples (A,�A,m) were tested in Line 13. Precisely, 93 of these are discriminantal
triples. This is only 3.49%.

We now shift gears by looking at polynomials � that are multiples of the A-discriminant.

Example 27 (r = 1, m = 4). We saw in Examples 2 and 20 that interesting models arise from the
matrix A = (1 1 · · · 1) whose toric variety is just a point. Any homogeneous multiple � of the linear
form �A = x1 + x2 + · · · + xm can be the input in Line 1 of Algorithm 1. Here, taking � = �A results
in the model given by the full simplex �m−2.

Let m = 4 and abbreviate xa = x
a1
1 x

a2
2 x

a3
3 x

a4
4 and |a| = a1+a2+a3+a4 for a ∈ N

4. We conducted
experiments with two families of multiples. The first uses binomial multipliers:

� = (
xa + xb

)
�A or � = (

xa − xb
)
�A,

where |a| = |b| ∈ {1,2, . . . ,8} and gcd(xa, xb) = 1. This gives 1028 polynomials �. The numbers of
polynomials of degree 2, 3, 4, 5, 6, 7, 8, 9 is 6, 21, 46, 81, 126, 181, 246, 321. For the second family,
we use the trinomial multiples

� = (
xa + xb + xc

)
�A or � = (

xa + xb − xc
)
�A,

where |a| = |b| = |c| ∈ {1,2,3} and gcd(xa, xb, xc) = 1. Each list contains 4 quadrics, 104 cubics and
684 quartics. We report our findings in Table 1.

All 12 Horn pairs in the first family represent the same model, up to permuting coordinates. All are
coming from the six quadrics of the family. The model is the surface in �4 defined by the 2 × 2 minors

Table 1. Horn pairs from families of multiples of �A = x1 +· · ·+xm

Family Pairs (�,m) Horn pairs Percentage

(xa − xb)�A 8212 12 0.15%
(xa + xb)�A 8218 0 0%
(xa + xb − xc)�A 8678 8 0.01%
(xa + xb + xc)�A 8968 0 0%
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of the matrix (
p0 p1 p2

p0+p1+p2 p3 p4
). This is a staged tree model similar to Example 2, but now with three

choices at each blue node instead of two. The eight Horn pairs in the third family represent two distinct
models. Four of the eight Horn pairs represent a surface in �5 and the rest represent a surface in �6.

Our construction of models with rational MLE starts with families where r and m are fixed. However,
as the entries of the matrix A go up, the number n + 1 of states increases. This suggests the possibility
of listing all models for fixed values of n. Is this list finite?

Problem. Suppose that n is fixed. Are there only finitely many models with rational MLE in the
simplex �n? Can we find absolute bounds, depending only on n, for the dimension, degree and number
of ideal generators of the associated varieties in P

n?

Algorithm 1 is a tool for studying these questions experimentally. At present, we do not have any
clear answers, even for n = 3, where the models are curves in a triangle.
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