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We investigate the inference of the copula parameter in the semiparametric Gaussian copula model when
the copula component, subject to the influence of a covariate, is only indirectly observed as the response in
a linear regression model. We consider estimators based on residual ranks instead of the usual but unobserv-
able oracle ranks. We first study two such estimators for the copula correlation matrix, one via inversion
of Spearman’s rho and the other via normal scores rank correlation estimator. We show that these esti-
mators are asymptotically equivalent to their counterparts based on the oracle ranks. Then, for the copula
correlation matrix under constrained parametrizations, we show that the classical one-step estimator in con-
junction with the residual ranks remains semiparametrically efficient for estimating the copula parameter.
The accuracy of the estimators based on residual ranks is confirmed by simulation studies.
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1. Introduction

1.1. Background

Let E = (E1, . . . ,Ep)� ∈ R
p be a random vector; we assume throughout that Ek , k ∈ {1, . . . , p}

has absolutely continuous marginal distribution function Fk , and E has joint distribution func-
tion F . Sklar’s theorem (e.g., Theorem 2.10.9 in [27]) states that the dependence structure of E
can be uniquely described by its associated copula C, via

F(x) = C
(
F1(x1), . . . ,Fp(xp)

)
, x = (x1, . . . , xp)� ∈ R

p

where R denotes the extended real line. By the “inverse” Sklar’s theorem (e.g., Corollary 2.10.10
in [27]),

C(u) = F
(
F←

1 (u1), . . . ,F
←
p (up)

)
, u = (u1, . . . , up)� ∈ [0,1]p, (1.1)
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where for k ∈ {1, . . . , p}, we denote the left-continuous inverse of Fk by

F←
k (t) = inf

{
x : Fk(x) ≥ t

}
, t ∈ [0,1]. (1.2)

The copula C is equivalently the joint distribution function of the transformed random vector
(F1(E1), . . . ,Fp(Ep))�, and it remains unchanged if (univariate) strictly increasing transforma-
tions are applied to the individual components of E (see, e.g., Theorem 2.4.3 in [27]). Copulas
provide a modular approach to multivariate modeling, in that the dependence structure of a multi-
variate distribution can be summarized by a copula, irrespective of the behaviors of its marginals.
A collection of multivariate distributions in R

p is called a semiparametric copula model if they
share a copula smoothly parametrized by a finite-dimensional Euclidean parameter θ while their
marginals range over all p-tuples of absolutely continuous univariate distribution functions.

This paper focuses specifically on the semiparametric Gaussian copula model (or simply Gaus-
sian copula model), where the parametric copula is restricted to be a Gaussian copula. We say that
the random vector E ∈ R

p has a Gaussian copula if for a copula correlation matrix R ∈ R
p×p

that uniquely characterizes the copula of E,(
�−1(F1(E1)

)
, . . . ,�−1(Fp(Ep)

))� ∼Np(0,R). (1.3)

Throughout the paper the symbol “∼” denotes equality in distribution and �−1 denotes the
standard normal quantile function. By (1.3), the Gaussian copula model obviously contains all
multivariate normal distributions, and hence further encompasses all distributions that can be
obtained from multivariate normal distributions through strictly increasing transformations of
the marginals. Combining (1.1) and (1.3), simple algebra yields that the copula CR associated
with E is

CR(u) = �R
(
�−1(u1), . . . ,�

−1(up)
)
, u ∈ [0,1]p. (1.4)

Here the function �R is the distribution function of the Np(0,R) distribution.
To discuss semiparametric efficiency we will further treat the copula correlation matrix as be-

ing parametrized through R = R(θ) for the copula parameter θ ∈ � where � ⊂ R
d is some

parameter space, and d is regarded as the intrinsic dimension of R. For brevity, we will of-
ten suppress the dependence of R on θ . An important special case is when each element of the
upper-triangular portion of R is a free parameter, so d = p(p−1)/2; R is then said to obey an un-
restricted model. In contrast to the unrestricted model, by a constrained parametrization we mean
R(·) is (usually) a continuously differentiable R

p×p-valued function and � is (usually) within a
lower-dimensional Euclidean space (so d < p(p − 1)/2). Even under a constrained parametriza-
tion R(θ), in practice one often first constructs a preliminary estimator R̃ of R without assuming
any particular structure of R (i.e., as if one were working with an unrestricted model for R; see
Eq. (3.22) for an example where R̃ = R̂n for R̂n to be introduced shortly); then, one can estimate
the copula parameter θ through, for example, the pseudo-likelihood estimation or the one-step
method to be discussed later, based on the parametrization R(θ) with the preliminary estimator
R̃ as input.

The study of the Gaussian copula model has enjoyed continued interest in the last couple of
decades. In the classical fixed-dimensional setting, a major research focus has been the (asymp-
totically) semiparametrically efficient estimation of R or of the copula parameter θ when the
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marginal distribution functions Fk are left unspecified as infinite dimensional nuisance param-
eters, that is, when the problem is fully semiparametric. Progressively along the work of, for
example, [6,17,20,33], we have now a fairly complete understanding of the tight semiparametric
lower bound for R or θ . Typically, the semiparametric lower bound is larger than its counterpart
within a corresponding parametric problem with known margins, due to the loss of information
through the unknown margins. [33] also studied an estimator that achieves the semiparametric
lower bound by adapting the one-step method (see, e.g., Section 25.8 in [37]).

More recently, the Gaussian copula model has also received much attention in a graphical
model setting. Recall that the locations of the zeros of the precision matrix S (which is the inverse
of the covariance matrix) of a Gaussian random vector G encode the conditional independence
structure of the Gaussian graphical model associated with G [23]. Through (1.3), it is readily seen
that such an encoding of the Gaussian graphical model via the precision matrix naturally extends
to the Gaussian copula model [25,39]. More precisely, for a random vector E that has a Gaussian
copula with (copula) precision matrix S = R−1, its two components Ek and E� are conditionally
independent given all the other coordinates if and only if the (k, �)th element of S is zero. Thus,
inferring the graphical model associated with E is intrinsically tied to the problem of finding an
accurate estimator of S. In high dimensions, it is typically assumed that (the parametrization of)
R corresponds to a sparse inverse but is otherwise unrestricted. Finding an accurate estimator of
R in this context is important because in order to estimate S, an estimator of R almost always
serves as the input to sparsity-inducing optimization programs.

1.2. Research objective: Semiparametric Gaussian copula model adjusted
for linear regression

Suppose that a p × 1 random vector E = (E1, . . . ,Ep)� has a Gaussian copula with copula
correlation matrix R. We will refer to the case when the sample of E is directly observable as
the ordinary (semiparametric) Gaussian copula model. Now, let a p × 1 response vector Y =
(Y1, . . . , Yp)� and a q × 1 covariate vector X = (X1, . . . ,Xq)� be linked to E through the linear
regression model

Y = B�X + E, (1.5)

where B is a q × p unknown coefficient matrix. We assume throughout that X is independent
from E. As before, we will still focus on the statistical inference problem for the dependence
structure summarized in R. However, in contrast to the ordinary Gaussian copula model, assume
that we do not directly observe the sample of E. What is at our disposal instead is a sample
of the perturbed response Y and the covariate X. Such a scenario arises frequently in practice,
because we cannot realistically expect to always be able to directly observe the signal of interest,
namely E. In this case, to correctly infer about R, it is essential to adjust for the covariate. To see
this more precisely, observe that the covariances of Y and E are related as follows:

cov(Y) = B� cov(X)B + cov(E). (1.6)

Although our interest is R, not cov(E), this simple relationship nevertheless demonstrates that
the dependence structure reflected by Y is not the same as that reflected by E. Naively taking
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the copula correlation matrix calculated from the sample of Y as the estimator of the true R can
cause significant error, as our simulation study will demonstrate later.

Recall that the p components of E have univariate distribution functions F1, . . . ,Fp respec-
tively. Moreover, let the covariate X have distribution function FX. Then, the finite-dimensional
parameter B, the infinite-dimensional distribution functions F1, . . . ,Fp and FX are all nuisance
parameters in Model (1.5). At times we will refer to Model (1.5) colloquially as the “regression
setting”. To estimate R in this context, we will rely on the ranks of the residuals in a preliminary
linear regression step, or simply residual ranks, from which we construct rank-based estimators
of R. Moreover, we will show that to a large extent the complication introduced by the additional
regression structure in fact does not affect the (semiparametrically efficient) estimation of R or
of the copula parameter θ , even for estimator with a divergent score function; this theme will be
repeated throughout this paper.

Finally, as one referee pointed out, Gaussian copulas are often employed to model heavy-tailed
or highly skewed distributions. In these cases, cov(E) may no longer be an appropriate depen-
dence measure or may not even exist. In contrast, R is a copula property and is a dependence
measure that is entirely free from the specification of the marginal distributions, and could thrive
in these situations. However, in the presence of covariate, whether an additive noise model such
as our Model (1.5) is reasonable for a particular application involving heavy-tailed or skewed
E should be carefully examined. Moreover, alternative method to introduce a copula structure
into linear regression, such as the Gaussian copula regression model to be described shortly, also
exists. Nevertheless, when Model (1.5) holds, both our theoretical result and simulation study,
in particular the last example in Section 5.1, demonstrate that our residual-based procedure can
work very well even for extremely heavy-tailed or skewed E.

1.3. Relation to existing studies

1.3.1. Copula models adjusted for covariate

Gaussian copulas have been extended in a number of ways to incorporate a covariate, and we
briefly review some representative work in this area. In what follows, again Y = (Y1, . . . , Yp)�
denotes a p × 1 response vector and X = (X1, . . . ,Xq)� denotes a q × 1 covariate vector, al-
though not necessarily in a linear regression setting. We will not consider parametrically specified
marginals (e.g., [26,34]) or the case where it is R that depends on the covariate (e.g., [3]).

Recently, [7,11] treated the linear regression model (1.5) but they restricted (Y,X,E) to be
jointly multivariate normal. It is further assumed that none of the sample of Y, X, E is avail-
able. Instead, [7,11] considered a sample of (Ỹ, X̃) linked to the (unavailable) sample of (Y,X)

through strictly increasing transformations of their components. To be precise, for arbitrary inte-
ger r ≥ 1, let Gr be the collection of functions g(x1, . . . , xr ) = (g1(x1), . . . , gr(xr ))

� :Rr → R
r

such that g1, . . . , gr are all strictly increasing univariate functions. Then [7,11] studied the es-
timation of B in (1.5) from a sample of (Ỹ, X̃), where Ỹ = g(Y) and X̃ = h(X) for fixed but
unknown marginal transformations g ∈ Gp and h ∈ Gq . [7] called this model the Gaussian copula
regression model, because the observable (Ỹ, X̃) has a Gaussian copula.

Note that our Model (1.5) and that of [7,11] extend the linear regression model (1.5) in quite
distinct ways: we impose a copula structure on E while the latter imposes a copula structure on
(Y,X). This distinction reflects the different motivations of the two approaches: in our model,
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the copula component E is the object of interest and it is the object of interest that has been
perturbed. In contrast, in [7,11] the (Gaussian) E is a nuisance for estimating B. Technically, our
model is arguably more challenging because we never observe a sample of the Gaussian copula
component E directly (whereas [7,11] do observe a sample of the Gaussian copula component
(Ỹ, X̃)), but only a sample that has been perturbed by the covariate. Showing that we can still
obtain accurate estimators of R despite such perturbations is at the core of our analysis.

Beyond the Gaussian copula model, there are a number of papers dealing with copula infer-
ence, not necessarily in a linear regression setting, based on some form of ranks of residuals
adjusted for a covariate. Here we briefly address the representative papers [13,38] in the condi-
tional copula framework. They assumed that a scalar covariate X affects only the marginal dis-
tributions but not the dependence structure of a bivariate response Y, and the copula of Y when
conditioning on X is a totally unspecified (i.e., nonparametric) copula. [13,38] studied the re-
sulting empirical copula process based on the estimated conditional distribution of Y given X. It
was shown that, under suitable conditions, the empirical copula process based on such estimated
quantities has the same asymptotics as the case when the conditional distribution is known. The
conditional copula model certainly encompasses our linear regression model (1.5) as a special
case. On the other hand, while estimating, an estimator of (an element of) R is often obtained
through a multivariate rank order statistic which, after centering at R and scaling by

√
n, is then

equivalent to the integral of a particular score function (specified in Section 2.2.1) against a bi-
variate empirical copula process. However, when the score function is unbounded (as in the case
for the normal scores rank correlation estimator), the weak convergence of the empirical copula
process alone is not even sufficient to establish the asymptotic normality of the resulting integral
(see, e.g., Section 3.1 in [4]), and hence existing literature on conditional copula does not address
the objectives of our paper. Moreover, we will provide explicit rates of convergence.

A recent manuscript [29] considered pseudo-likelihood estimation for the copula parameter
(of a given parametric copula) adjusted for a parametric location-scale model, and they allowed
the score function to have non-trivial divergence. However, our new result on the rates of the
remainder terms in a decomposition of the residual empirical process in Section 3.1, and our
U -process approach in Section 3.2, enabled us to obtain much finer convergence rates.

Having discussed related literature beyond the Gaussian copula model (not necessarily in a
linear regression setting), we would like to point out that our technical analysis can easily accom-
modate different choices of score functions, and so only partially relies on the Gaussian copula
assumption. For instance, we expect that our result in Section 3.1 can be adapted to the framework
of [29] without too much difficulty. However, we believe that the prevalence of Gaussian copulas
(because of the possibilities for Spearman’s rho-based estimation and to achieve semiparametric
efficiency, and the connection to graphical models) warrants a dedicated treatment, and the spe-
cific linear regression form also allows for potential generalization to high-dimensional settings,
as we will briefly discuss in Section F in the supplement.

1.3.2. Efficient estimation in linear regression

In the regression setting, semiparametric lower bound for the copula parameter was briefly ad-
dressed in Section 6.2 in [33], but no detailed calculations (regarding differentiability in quadratic
mean, projections, etc.) were given; moreover the paper did not study semiparametrically effi-
cient estimator in this setting. We will address these problems in full details in Section 4. Semi-
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parametrically efficient estimation of the regression coefficient vector in a univariate response
linear regression model has been covered at least as early as in [5]. In all these studies, one cru-
cial ingredient that makes semiparametrically efficient estimation possible is the realization that
the tangent spaces generated by the regression coefficient and by the error term are orthogonal.
However, in contrast to our setting, in [5] the regression coefficient, rather than the error term,
was the object of interest; moreover, [5] did not consider (residual) rank-based procedures for
estimation. Thus, [5] does not address the objectives of our paper either.

1.4. Organization of the paper

Section 2 formally introduces our model and estimation procedures. Section 3 presents the
asymptotics of two estimators of the copula correlation matrix R based on the residual ranks,
one via inversion of Spearman’s rho in Section 3.2, and another via normal scores rank cor-
relation estimator in Section 3.3. The latter study is based on new result on residual empirical
process presented in Section 3.1. As has already been mentioned in Section 1.1, and as we will
elaborate in Section 3.4, these estimators are stepping stones to obtain estimators of the copula
parameter θ .

Next, Section 4 derives the semiparametric lower bound for estimating the copula parameter
θ , and then shows that the one-step method in conjunction with the residual ranks yields an
estimator that achieves this lower bound. Section 5 presents a simulation study comparing the
estimators based on the residual ranks to the oracle estimators (to be introduced in Section 2.2.1).
Section 6 concludes and Section F in the supplement provides a short discussion on the high-
dimensional extension of the current project. Due to space constraint most technical analysis and
some supporting materials are deferred to the supplement [40] and a technical report [14], as
will be explained throughout the main text. Sections in the supplement are labeled by Roman
alphabet.

1.5. Notations

We will always use � to denote inequality that holds with an absolute constant (that is, indepen-
dent of sample sizes, dimensions, and any parameter we consider) as the factor. For any positive
integer a, we use [a] to denote the set {1, . . . , a}.

For a matrix A ∈ R
p×p , we use (A)kk′ to denote its (k, k′)th element. For a two-dimensional

array of numbers akk′ , k, k′ ∈ [p], we use [akk′ ]k,k′∈[p] to denote a matrix A ∈ R
p×p with

(A)kk′ = akk′ . When acting on vectors and matrices, ‖ · ‖ denotes the Euclidean norm, and when
acting on functions, ‖ · ‖L∞ denotes the supremum norm.

2. Model setup and (residual) rank-based estimation

2.1. Formal model setup

Recall that the copula correlation matrix is parametrized as � → R
p×p : θ → R(θ) for some

parameter space � ∈ R
d . We say that (Y,X,E) has a joint law Pθ ,B,F1,...,Fp,FX if the following
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conditions hold:

(i) E has a Gaussian copula Cθ ≡ CR(θ), where CR(θ) is given in (1.4) with copula correlation
matrix R = R(θ); the inverse S(θ) of R(θ) exists. The mapping θ → R(θ) is one-to-one.

(ii) For each k ∈ [p], the kth component Ek of E has absolutely continuous marginal distri-
bution function Fk that corresponds to a marginal density function fk .

(iii) X and E are independent.
(iv) The covariate X has an absolutely continuous joint distribution function FX in R

q , corre-
sponding to a density fX. In addition, E[(X −EX)(X −EX)�] is non-singular.

(v) Equation (1.5) holds (with B ∈ R
q×p).

Throughout the paper, we assume that both p and q are fixed; the only exception occurs in Sec-
tion F in the supplement where we discuss high-dimensional generalization. The non-singularity
requirement on E[(X−EX)(X−EX)�] is the usual identification condition for linear regression
up to the intercept term, see, for example, Example 3 in [5]. With this condition (each column
of) B is identified. Then, because both Y and X are observed (and hence identified), the copula
component E, and consequently the law P, are identified as well. Moreover, with condition (iv)
above, the covariate X cannot contain an intercept term; consequently, no location constraint is
placed on the marginals F1, . . . ,Fp . Note that a nonzero intercept term is not identifiable because
a change in the intercept could equally well be a change in the marginals.

For brevity henceforth, we abbreviate Pθ ,B,F1,...,Fp,FX simply as P.

2.2. Rank-based estimation procedures

Because copulas are invariant to strictly increasing marginal transformations, it is desirable for
an estimator of R to maintain such invariance. Therefore, we concentrate on rank-based methods.
(For non-rank-based approaches, see, for example, [9] for a method based on parametric sieves
that also achieves semiparametric efficiency.) In Section 2.2.1, we review some rank-based es-
timators of R in the ordinary Gaussian copula model, and in Section 2.2.2, we develop their
counterparts in Model (1.5). We let (Yi ,Xi ,Ei ), i ≥ 1 be independent copies of (Y,X,E), with
Ei = (Ei,1, . . . ,Ei,p)�, Yi = (Yi,1, . . . , Yi,p)� and Xi = (Xi,1, . . . ,Xi,q)�.

2.2.1. Oracle estimators for the ordinary Gaussian copula model

If the sample Ei , i ∈ [n] of the copula component E were directly observable, a
√

n-consistent
and asymptotically normal estimator of R can be derived in a number of classical ways. For each
k ∈ [p], we define the empirical marginal distribution function for the kth coordinate of E, and
its rescaled version, as

Fn,k(t) = 1

n

∑
i∈[n]

1{Ei,k ≤ t}, F r
n,k(t) = 1

n + 1

∑
i∈[n]

1{Ei,k ≤ t}, t ∈ R

respectively. We need the rescaled version so that applying �−1 to it later will always result in
finite values. We will refer to Fn,k(Ei,k) and F r

n,k(Ei,k) as the (normalized) oracle ranks. Hence-
forth, the qualifier “oracle” denotes quantities that could be computed in the ordinary Gaussian
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copula model, and the qualifier “normalized,” which we will omit almost throughout, refers to
the multiplication by the factor 1/n or 1/(n + 1).

The first estimator of R ≡ [rkk′ ]k,k′∈[p] we consider is the (oracle) normal scores rank correla-
tion estimator Rn = [rn,kk′ ]k,k′∈[p], defined in, for example, Eq. (7) on page 123 in [16] as

rn,kk′ = φn

n

∑
i∈[n]

�−1(F r
n,k(Ei,k)

)
�−1(F r

n,k′(Ei,k′)
)
, ∀k, k′ ∈ [p]. (2.1)

Here φn = [n−1 ∑
i∈[n]{�−1( i

n+1 )}2]−1 = 1+O(n−1 log(n)) is a deterministic correction factor.

The correction φn is asymptotically insignificant, but with it the matrices Rn, and analogously R̂n

given later in (2.5), have unit diagonal elements, and they become genuine correlation matrices.
We can write Rn explicitly in matrix form as

Rn = φn

n

∑
i∈[n]

Z(n)
i Z(n)�

i , Z(n)
i ≡ (

�−1(F r
n,1(Ei,1)

)
, . . . ,�−1(F r

n,p(Ei,p)
))�

. (2.2)

The elements of Rn belong to multivariate rank order statistics (in this case, with score function
�−1) that are common in the literature; see [15,32] for some early references. The asymptotic
distribution of

√
n(Rn − R) is a zero mean (matrix) Gaussian; see the discussion following The-

orem 3.4. In the unrestricted model for R, the estimator Rn coincides with the pseudo-likelihood
estimator, and it is semiparametrically efficient in the ordinary Gaussian copula model. We refer
to Section 3.4 for more details, and point out that, beyond the unrestricted model, the semipara-
metric efficiency of the pseudo-likelihood estimator may or may not hold for a given constrained
parametrization R(θ).

Alternatively, we can estimate R by inversion of Spearman’s rho. As described, for example,
in [19,22], the population version of Spearman’s rho between the kth and k′th coordinates of E,
for any k, k′ ∈ [p], is defined as

ρkk′ = 3
{
P
(
(E1,k − E2,k)(E1,k′ − E3,k′) > 0

) − P
(
(E1,k − E2,k)(E1,k′ − E3,k′) < 0

)}
.

Then, let the (oracle) estimator of ρkk′ be

ρn,kk′ = 12n

n2 − 1

∑
i∈[n]

{
Fn,k(Ei,k) − n + 1

2n

}{
Fn,k′(Ei,k′) − n + 1

2n

}

= 1 − 6
n

n2 − 1

∑
i∈[n]

{
Fn,k(Ei,k) − Fn,k′(Ei,k′)

}2; (2.3)

see, for example, Eqs. (11) and (12) on page 124 in [16]. The elements ρn,kk′ , k, k′ ∈ [p] again
belong to multivariate rank order statistics (in this case, with score function

√
12(u − 1/2)). The

asymptotic distribution of
√

n[ρn,kk′ −ρkk′ ]k,k′∈[p] is a zero mean (matrix) Gaussian, and will be
hinted at following Theorem 3.3.
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Furthermore, the following well-known equality connects the elements of the copula correla-
tion matrix R = [rkk′ ]k,k′∈[p] to the elements of Spearman’s rho matrix [ρkk′ ]k,k′∈[p]:

rkk′ = 2 sin

(
π

6
ρkk′

)
, ∀k, k′ ∈ [p];

see, for example, Corollary 4.1 in [18]. A plug-in estimator of R via inversion of Spearman’s rho
is then given by Rρ

n = [rρ

n,kk′ ]k,k′∈[p] with

r
ρ

n,kk′ = 2 sin

(
π

6
ρn,kk′

)
, ∀k, k′ ∈ [p].

By the Delta method, the asymptotic distribution of
√

n(Rρ
n − R) is also a zero mean (matrix)

Gaussian.

2.2.2. Residual-based estimators for the Gaussian copula model adjusted for linear regression

In Model (1.5), the sample of the copula component E, and therefore the oracle ranks, are not
directly observable. Instead our sample consists of (Yi ,Xi ), i ∈ [n]. Therefore, we rely on this
sample to estimate the sample of E and the oracle ranks. We let B̂ = B̂(n) be an estimator (se-
quence) of B. We denote the kth column of B and B̂ by Bk and B̂k respectively. For sample size
n ∈ {1,2, . . .} and i ∈ [n], let Êi = Ê(n)

i = (Êi,1, . . . , Êi,p)� be the residual of the ith sample
defined as

Êi,k = Yi,k − B̂�
k Xi = Ei,k − (B̂k − Bk)

�Xi , ∀k ∈ [p]. (2.4)

We regard Êi as an estimator of Ei . For brevity we will suppress the dependence of Êi on n

(which it inherits from B̂). Then, for each k ∈ [p], we define the (empirical marginal) residual
distribution function for the kth coordinate of E, and its rescaled version, as

F̂n,k(t) = 1

n

∑
i∈[n]

1{Êi,k ≤ t}, F̂ r
n,k(t) = 1

n + 1

∑
i∈[n]

1{Êi,k ≤ t}, t ∈ R

respectively. We regard F̂n,k and F̂ r
n,k as the estimator of Fn,k and F r

n,k , respectively. We will

refer to F̂n,k(Êi,k) and F̂ r
n,k(Êi,k) as the (normalized) residual ranks.

Now, we let R̂n = [̂rn,kk′ ]k,k′∈[p] be the normal scores rank correlation estimator of R based
on the residual ranks given by

r̂n,kk′ = φn

n

∑
i∈[n]

�−1(F̂ r
n,k(Êi,k)

)
�−1(F̂ r

n,k′(Êi,k′)
)
, ∀k, k′ ∈ [p], (2.5)

where φn is the same as in (2.1). Similar to Rn, we can write R̂n in matrix form as

R̂n = φn

n

∑
i∈[n]

ẐiẐ�
i , Ẑi = Ẑ(n)

i ≡ (
�−1(F̂ r

n,1(Êi,1)
)
, . . . ,�−1(F̂ r

n,p(Êi,p)
))�

. (2.6)
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Note that R̂n is obtained from (2.1), or in matrix form from (2.2), through substitution of the
oracle ranks by the residual ranks.

Next, let the estimator of Spearman’s rho ρkk′ based on the residual ranks be

ρ̂n,kk′ = 1 − 6
n

n2 − 1

∑
i∈[n]

{
F̂n,k(Êi,k) − F̂n,k′(Êi,k′)

}2
. (2.7)

Similar to (2.5), ρ̂n,kk′ is obtained from (2.3) through substitution by the residual ranks. Then, a
plug-in estimator of R via inversion of Spearman’s rho, now based on the residual ranks, is given
by R̂ρ

n = [̂rρ

n,kk′ ]k,k′∈[p] with

r̂
ρ

n,kk′ = 2 sin

(
π

6
ρ̂n,kk′

)
, ∀k, k′ ∈ [p]. (2.8)

The remainder of this paper will focus on showing the closeness of the residual-based estima-
tors to their oracle counterparts (e.g., R̂n to Rn, and R̂ρ

n to Rρ
n ), and the implication for efficient

estimation under the regression setting.

3. Asymptotics of estimators of copula correlation matrix based
on residual ranks

In Section 2, we have introduced two estimators of the copula correlation matrix R based on the
residual ranks. In this section we present asymptotic results for these estimators. Some prelimi-
nary results regarding (i) residual-based estimation of Fk and (ii) the residual ranks are presented
in Section 3.1. These results concern the individual coordinates of E, in fact do not rely on the
Gaussian copula dependence structure (i.e., condition (i) under the law P described at the begin-
ning of Section 2), and could be of independent interest. The most important results of Section 3
are presented in Sections 3.2 and 3.3. First, Section 3.2 treats the estimator R̂ρ

n in (2.8) via inver-
sion of Spearman’s rho. Then, Section 3.3 treats the normal scores rank correlation estimator R̂n

in (2.5). Finally, Section 3.4 provides a short discussion, including on how, from the estimators
of R, we could obtain estimators of the copula parameter θ under constrained parametrizations
R(θ).

Because the actual proofs for Sections 3.2 and 3.3 are long, we very briefly summarize our
strategies here. Our proof for the estimator R̂ρ

n in Section 3.2 proceeds through an order-3 U -
process that arises from the expansion of the residual-based estimator around the oracle one.
This U -process approach is novel as compared to the existing methods for conditional copula
(e.g., [13,29]), though parallels could be drawn with the analysis of R-estimators via an order-2
U -process; see, for example, [28]. For analyzing R̂ρ

n , the U -process approach is advantageous
because the Hoeffding decomposition provides clear, hierarchical rates for the different terms
in the decomposition. However, the estimator R̂n considered in Section 3.3 is more difficult to
analyze with the same approach due to the unbounded score function �−1. Here we fall back
on our results established in Section 3.1 for the distance between the residual ranks and the
oracle ones in order to bound the distance between R̂n and Rn. This approach is somewhat
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analogous to (but is much more involved than) how, when no regression structure is present, [32]
derived the distribution for the distance between an oracle multivariate rank order statistic and
its expectation.

We do not require a specific form of the estimator B̂, but in order for our estimators of R to
be consistent, naturally we require B̂ to be consistent for B. Even though in linear regression
a n−1/2 convergence rate for B̂ is typical, a different convergence rate is possible. For instance,
Rousseeuw’s robust least median of squares regression introduced in [31], at least initially, yields
a slower, n−1/3 convergence rate for B̂. As another example, if we consider a case where the com-
plexity of the law P may increase with the sample size n, then δB,n could reflect the “effective”
convergence rate of B̂ in terms of n; in Section F in the supplement, this topic is briefly considered
when specifically the ambient dimensions p and q vary with n. In any case, we thought it would
be interesting to pinpoint the effect of the quality of B̂ on the convergence of our estimators. To
this end, and to demonstrate the flexibility of our estimators, we simply set the convergence rate
of B̂ as in Assumption 3.1. This assumption and some other general assumptions for this section
are collected together below. We let Xn denote the σ -field generated by the collection of random
vectors {(Yi ,Xi )}i∈[n]. All probabilities are stated under the (arbitrary but fixed) law P unless
stated otherwise.

Assumption 3.1. B̂ is Xn-measurable, and under the law P is a δ−1
B,n

-consistent estimator of B,

that is, ‖B̂ − B‖ = Op(δB,n). Here, δB,n, n ≥ 1 is a sequence of deterministic constants that is
required to satisfy log(n)/n ≤ δB,n = o(1).

Here the sole purpose for lower bounding δB,n is to simplify certain expressions later.

Assumption 3.2. For each k ∈ [p], the marginal density function fk satisfies ‖fk‖L∞ < ∞, and
is Lipschitz continuous with Lipschitz constant Lk on R.

Assumption 3.3. Under the law P,

(i) the covariate X satisfies E[‖X‖2] < ∞, that is, the second moment of ‖X‖ is finite.
(ii) If n−1/2 = o(δB,n) in Assumption 3.1, that is, if B̂ is not

√
n-consistent, then additionally

maxi∈[n] ‖Xi‖δB,n = op(1).

We remark that Assumption 3.2 holds for densities with polynomial decay of the form

fk(t) = a − 1

2

1

(1 + |t |)a (3.1)

when a > 1, and the (skewed) Gamma density with shape parameter at least 2.

3.1. Results on the residual ranks

Proposition 3.1 presents a uniform bound for the difference between the empirical process based
on the residual Êi,k’s, or simply the residual empirical process, and the empirical process based
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on the unobserved Ei,k’s. Based on Proposition 3.1, Proposition 3.2 further establishes a uniform
bound for the difference between the residual ranks F̂ r

n,k(Êi,k) and the corresponding unobserved
oracle ranks F r

n,k(Ei,k).

We first introduce some quantities that will appear in these propositions. For k ∈ [p], let Êk =
Ek − (B̂k − Bk)

�X, and write E[1{Ek ≤ · + (B̂k − Bk)
�X} | Xn] = E[1{Êk ≤ ·} | Xn] which

equals the conditional probability P(Êk ≤ · |Xn). Then, let the “oscillation-like” remainder term
(e.g., page 243 in [24] or Lemma 1 in [1]) common in the analysis of residual empirical process
be, for t ∈R,

r1n,k(t) = F̂n,k(t) − Fn,k(t) − P(Êk ≤ t | Xn) + Fk(t)

= 1

n

∑
i∈[n]

{
1{Êi,k ≤ t} − 1{Ei,k ≤ t} − P(Êk ≤ t | Xn) + P(Ek ≤ t)

}
. (3.2)

Analogous to (3.2), and for analyzing the estimator R̂n, let r r
1n,k be obtained by replacing F̂n,k in

r1n,k with F̂ r
n,k . Next, let the additional remainder terms be

r2n,k(t) = P(Êk ≤ t | Xn) − Fk(t) − fk(t)(B̂k − Bk)
�
E[X], t ∈R, (3.3)

r3n,k,i = Fn,k(Êi,k) − Fk(Êi,k) − Fn,k(Ei,k) + Fk(Ei,k), (3.4)

r4n,k,i = Fk(Êi,k) − Fk(Ei,k) + fk(Ei,k)(B̂k − Bk)
�(

Xi −E[X])
+ fk(Êi,k)(B̂k − Bk)

�
E[X]. (3.5)

Proposition 3.1. Under the law P, for all n ≥ 1, k ∈ [p] and t ∈R the equalities

F̂n,k(t) − Fk(t) = Fn,k(t) − Fk(t) + fk(t)(B̂k − Bk)
�
E[X] + r1n,k(t) + r2n,k(t), (3.6)

F̂ r
n,k(t) − Fk(t) = Fn,k(t) − Fk(t) + fk(t)(B̂k − Bk)

�
E[X] + r r

1n,k(t) + r2n,k(t) (3.7)

hold. If in addition Assumptions 3.1, 3.2 and 3.3(i) hold, then for all k ∈ [p],

sup
t∈R

max{|r1n,k(t)|, |r r
1n,k(t)|}

log1/2(δ−1
B,n

)n−1/2{f 1/2
k (t)δ

1/2
B,n

+ δB,n} + log(n)n−1
=Op(1), (3.8)

sup
t∈R

∣∣r2n,k(t)
∣∣ =Op

(
δ2

B,n

)
. (3.9)

Proof. The proof is deferred to Section A.1 in the supplement. �

We provide a few technical remarks about Proposition 3.1; readers more interested in our
development of residual rank-based techniques are encouraged to jump to the paragraph just
above Proposition 3.2.

• First, the decomposition (3.6) consists of the leading terms that are the first three terms
on the right-hand side, and the remainder terms r1n,k and r2n,k . Decompositions similar
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to this (but not the rates for the reminder terms) are common in the literature on residual
empirical process; see, for example, Theorem 1 in [1], Theorem 1 in [8], and Lemma 5
in [29], which consider different extensions of the classical result of, for example, The-
orem 2.3.1 in [21]. (Even in a linear regression setting, as is the case in [8], sometimes
the term n1/2fk(t)(B̂k − Bk)

�
E[X] is replaced by the asymptotically equivalent quantity

n−1/2fk(t)(B̂k − Bk)
� ∑

i∈[n] Xi . We point out that [8] in fact studied fixed design, with
fixed X�

1 , . . . ,X�
n being the rows of a n × q design matrix, so additional care is necessary

for a truly precise comparison.)
• Next, by replacing fk(t) with ‖fk‖L∞ < ∞, we can simplify (3.8) to a weaker form as

sup
t∈R

∣∣r1n,k(t)
∣∣ =Op

(
log1/2(δ−1

B,n

)
n−1/2δ

1/2
B,n

)
. (3.10)

In particular, when δB,n =O(n−1/2), (3.10) implies supt∈R |r1n,k(t)| = Op(log1/2(n)n−3/4).
In this case, supt∈R |r2n,k(t)| = Op(n

−1). Such rates on the remainder terms are strictly
faster than op(n

−1/2), and improve upon existing results in the literature. For instance, The-
orem 1 in [1], Theorem 1 in [8] and Lemma 5 in [29], when taken at face value, simply
state the remainder terms as being op(n

−1/2). We stress that such faster rates on the re-
mainder terms are important for establishing the rate (and hence equivalence) between the
residual-based estimator R̂n and the oracle Rn in Theorem 3.4.

• Finally, for t such that the term {log(δ−1
B,n

)n−1fk(t)δB,n}1/2 in the denominator on the left-

hand side of (3.8) dominates (that is, when fk(t) ≥ δB,n ∨ (log2(n) log−1(δ−1
B,n

)n−1δ−1
B,n

)),
the bound in (3.8) on r1n,k(t) and r r

1n,k(t) is additionally weighted by an approximate stan-

dard deviation factor f
1/2
k (t). (For t such that the aforementioned term no longer dominates,

the bound on r1n,k(t) and r r
1n,k(t) is Op(log1/2(δ−1

B,n
)n−1/2δB,n + log(n)n−1), which when

δB,n = O(n−1/2) is very fast at Op(log(n)n−1).) This idea of weighing further sharpens
the bound (3.8) compared to the simplified version (3.10), and is a prominent feature that
further distinguishes our result from the literature (e.g., [1,8]). It is also quite similar to
how the convergence of the standard empirical process

√
n(Fn,k − Fk) is often measured

under a stronger, weighted metric ‖ · /w‖L∞ where the weight function w can almost be
as small as the standard deviation factor (Fk ∧ (1 − Fk))

1/2 of
√

n(Fn,k − Fk); see, for ex-
ample, Lemma C.4 in the supplement. When integrating over a score function that becomes
unbounded toward the boundary (such as the function �−1 in the normal scores rank cor-
relation estimator R̂n), the weighted version (3.8) tames the unboundedness of the score
function and so allows for establishing a faster convergence rate for the resulting integral,
as can be seen from the derivation of (A.65) and (A.73) in the supplement. Again, this is
similar to how the convergence of the standard empirical process

√
n(Fn,k − Fk) under a

weighted metric can be helpful in analyzing the classical multivariate rank order statistics
with unbounded score functions (see, e.g., how [32] relies on its Lemma 4.1).

The leading term in (3.6) and (3.7) that reflects the uncertainty B̂ − B in estimating B, namely
the term fk(t)(B̂k − Bk)

�
E[X], is proportional to E[X]. Interestingly, in the corresponding term

in (3.11) in Proposition 3.2 below, E[X] is replaced by Xi − E[X]. Thus for the residual ranks
this term will behave as if the covariate X were centered. (Intuitively, a common average relating
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to all the residuals should not affect the ranks of the residuals to first order.) This centering effect
will negate the leading contribution of B̂−B to R̂n −Rn, allowing us to conclude the asymptotic
equivalence between R̂n and Rn in Theorem 3.4, as long as the rate of B̂ − B is not much slower
than n−1/2.

Proposition 3.2. Under the law P, for each n ≥ 1, k ∈ [p] and i ∈ [n] the equality

F̂ r
n,k(Êi,k) − Fn,k(Ei,k) = −fk(Ei,k)(B̂k − Bk)

�(
Xi −E[X])

+ r r
1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i (3.11)

holds. (Eq. (3.11) also holds with the substitutions of F̂ r
n,k and r r

1n,k by F̂n,k and r1n,k respec-
tively.) If in addition Assumptions 3.1, 3.2 and 3.3 hold, then for all k ∈ [p],

max
i∈[n]

|r3n,k,i |
log1/2(n)n−1/2{f 1/2

k (Ei,k)‖Xi‖1/2δ
1/2
B,n + ‖Xi‖δB,n} + log(n)n−1

=Op(1), (3.12)

max
i∈[n]

|r4n,k,i |
‖Xi‖(‖Xi‖ + ‖E[X]‖)δ2

B,n

=Op(1). (3.13)

Proof. The proof is deferred to Section A.1 in the supplement. �

Two additional remainder terms, r3n,k,i and r4n,k,i , appear in the decomposition (3.11). Similar
to the remark on the term r1n,k below Proposition 3.1, the term r3n,k,i (i) has a rate strictly faster
than op(n

−1/2) (so long as δB,n = O(n−ε) for some ε > 0) and (ii) is again weighted by an

approximate standard deviation factor f
1/2
k . We have already commented on the utilities of the

same features on r1n,k below Proposition 3.1, and these comments carry over to r3n,k,i .

3.2. Inversion of Spearman’s rho

Theorem 3.3. Assume the law P, and Assumptions 3.1, 3.2 and 3.3. Then,
√

n(ρ̂n,kk′ − ρn,kk′)

=Op
(
n1/2δ2

B,n + δB,n + n−1/2δ
1/2
B,n

log(n) + n−1/2), ∀k, k′ ∈ [p]. (3.14)

Thus, if furthermore δB,n = o(n−1/4), then
√

n(ρ̂n,kk′ − ρn,kk′) = op(1), ∀k, k′ ∈ [p].

Proof. The proof is deferred to Section A.2 in the supplement. �

Now, assume that the conditions of Theorem 3.3 hold, and the uncertainty B̂ − B is not too
large (precisely, when δB,n = o(n−1/4), which in particular allows a rate slower than n−1/2). Then
the theorem immediately yields that the asymptotic distributions of the matrices

√
n[ρ̂n,kk′ −

ρkk′ ]k,k′∈[p] relating to Spearman’s rho and its oracle counterpart
√

n[ρn,kk′ − ρkk′ ]k,k′∈[p] coin-
cide. As is well-known, the asymptotic distribution of the latter matrix is a zero mean (matrix)
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Gaussian with a correlation structure given by, e.g., Theorem 2.2 in [10]. From these observations
and the Delta method, the asymptotically normal distribution of

√
n(R̂ρ

n − R), where R̂ρ
n is the

plug-in estimator given by (2.8) via inversion of Spearman’s rho, will follow and will coincide
with that of

√
n(Rρ

n − R), where Rρ
n is the oracle counterpart of R̂ρ

n . This is our first concrete
instance where the complication introduced by the additional regression structure does not affect
the estimation of R, a theme already mentioned in Section 1.2. Moreover, when δB,n = n−1/2,
the usual parametric rate, our U -process approach in fact yields via (3.14) that ρ̂n,kk′ − ρn,kk′
converges much faster at Op(n

−1).

3.3. Normal scores rank correlation estimator

The analysis of the normal scores rank correlation estimator R̂n in (2.5) will involve two addi-
tional constants τ and γ . Their particular values are irrelevant for the construction of R̂n, but
they relate to Assumptions 3.4 and 3.5, the quantity δn in (3.17), and the rate in Theorem 3.4
below.

Assumption 3.4. Under the law P, the covariate X satisfies E[‖X‖2] < ∞. Moreover,
maxi∈[n] ‖Xi‖δB,n =Op(n

−τ ) for some constant τ > 1/4.

Assumption 3.4 is stronger than its counterpart Assumption 3.3 for analyzing the estimator R̂ρ
n

via inversion of Spearman’s rho, and it necessitates

δB,n =O
(
n−τ

)
. (3.15)

Typically, δB,n =O(n−1/2); then, by reasoning similar to the proof of Lemma A.3 in the supple-

ment, for any τ ≤ 1/2, Assumption 3.4 is implied by the condition E[‖X‖ 1
1/2−τ ] < ∞. Thus, if

we would further like τ = 1/4 + ε for some small ε > 0, then Assumption 3.4 is implied by a
condition slightly stronger than the finite fourth moment of ‖X‖.

Assumption 3.5. There exists a constant γ satisfying 1/2 < γ < min{2τ,1} (note that such a γ

exists when τ > 1/4) such that, for each k ∈ [p], and as δ ↓ 0,

sup
u∈(δ,1−δ)

fk ◦ F←
k (u)

u ∧ (1 − u)
= o

(
δ
− 1

γ
τ )

. (3.16)

If Assumption 3.5 is satisfied for some γ , define a partition of the interval (0,1) into A1 =
A

(n)
1 = (0, n−γ ] ∪ [1 − n−γ ,1) and A2 = A

(n)
2 = (n−γ ,1 − n−γ ). Then, we introduce the non-

decreasing sequence δn, n ≥ 1 as

δn = max
k∈[p]

∫
A2

{
fk ◦ F←

k (u)

u ∧ (1 − u)

}2{∣∣�−1(u)
∣∣ ∨ 1

}2 du. (3.17)

We elaborate on Assumption 3.5 and the quantity δn in (3.17). Assumption 3.5 requires that
at any quantile u ∈ (0,1), the marginal density fk cannot be too large compared to the value
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u ∧ (1 − u) which measures how close the quantile level u is to the boundary of the distribution
of Ek . We first provide an example where this assumption fails. If we can take τ = 1/2 (as can be
done if B̂ is

√
n-consistent and the support of X is bounded), then for Ek following the uniform

distribution, the left-hand side of (3.16) is of the order 1/δ, while if we take γ according to As-
sumption 3.5, then for the right-hand side 1/δτ/γ = 1/δ1/(2γ ) which is of a smaller order because
γ > 1/2, violating Assumption 3.5. Why is the uniform marginal distribution problematic? Re-
call the decomposition (3.11) of the distance between the residual ranks and the oracle ranks; the
first-term on the right-hand side of (3.11) tells us that a part of this distance is weighted by the
marginal density fk . The density of a uniform distribution does not decay toward the boundary;
this, when coupled with an unbounded score function �−1, leads to too large a distance between
the residual ranks and the oracle ranks for our current techniques to handle.

On the other hand, Assumption 3.5 should hold for any distribution whose density decays
reasonably fast toward the boundary. Indeed it holds for the normal density, densities with poly-
nomial decay of the form already introduced in (3.1) when a > 1, and again the Gamma density
with shape parameter at least 2. Moreover, in the first two of these cases, and in the last case with
the shape parameter larger than 2, the integral on the right hand side of (3.17) over the entire in-
terval (0,1) evaluates to a finite constant that then upper bounds all of δn, n ≥ 1. In fact, it is not
too strong to make δn = O(1) a requirement, because as we will also discuss later in Remark 2,
δn is quite similar to the left-hand side of (4.6), and the latter quantity should be finite for us to
carry out the lower bound analysis in Section 4.

We introduce

�n = log(n)n1/2−γ + log1/2(log(n)
)

log1/2(n)δB,nδ
1/2
n

+ log3/2(n)δ
1/2
B,n

+ log1/2(n)n1/2δ2
B,nδn. (3.18)

Theorem 3.4. Assume the law P, and Assumptions 3.1, 3.2, 3.4 and 3.5. Then,
√

n(̂rn,kk′ − rn,kk′) =Op(�n), ∀k, k′ ∈ [p]. (3.19)

Thus, if furthermore δn = o(n2τ−1/2 log−1/2(n)), then �n = o(1) and (component-wise)
√

n(R̂n − Rn) = op(1). (3.20)

Proof. The proof is deferred to Section A.3 in the supplement. �

Similar to the discussion following Theorem 3.3 on the estimator R̂ρ
n , Theorem 3.4 imme-

diately yields that, when the conditions of the theorem (including the one on δn) hold – with
Assumption 3.4 necessitating that the uncertainty B̂ − B is not too large, but again allow-
ing a rate slower than n−1/2 – the asymptotic distributions of the matrices

√
n(R̂n − R) =√

n[̂rn,kk′ − rkk′ ]k,k′∈[p] and its oracle counterpart
√

n(Rn − R) = √
n[rn,kk′ − rkk′ ]k,k′∈[p] co-

incide. This is our second concrete instance where the additional regression structure does not
affect the estimation of R, this time for estimator with a divergent score function. Theorem 3.1
in [20], relying on an earlier result in [32], established the asymptotic normality and covariance
of

√
n(Rn − R), from which the same properties of

√
n(R̂n − R) could follow.
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3.4. Discussion

From Section 3 alone, it appears that by our current technique, the residual-based estimator via
inversion of Spearman’s rho converges faster to its oracle counterpart at the rate (3.14) than the
residual-based normal scores estimator to its oracle counterpart at the rate (3.19). For instance,
when δB,n = n−1/2, we have already mentioned earlier that ρ̂n,kk′ − ρn,kk′ = Op(n

−1), while at
best r̂n,kk′ − rn,kk′ = Op(log3/2(n)n−3/4). The former estimator also requires weaker conditions
than the latter, cf. Assumption 3.3 for the former and Assumptions 3.4 and 3.5 for the latter.
However, we wish to point out that the asymptotic covariance of Rρ

n is larger than that of Rn

(indeed the latter is semiparametrically efficient under the unrestricted model), and hence the
asymptotic covariance of R̂ρ

n is larger than that of R̂n. Therefore, asymptotically, R̂n should still
be preferred over R̂ρ

n . Moreover, the pseudo-likelihood method and the one-step estimator will
more closely involve the estimator R̂n, as we will see in this section and in Section 4.2.

Both R̂n and R̂ρ
n are natural estimators of the parametrization R(θ) in the unrestricted model

(defined in Section 1.1) where the copula parameter θ simply corresponds to the elements in the
upper-triangular portion of R: we can just estimate θ by the corresponding elements in R̂n or R̂ρ

n .
(In the case of R̂n, this intuitive conclusion is more formally justified by the pseudo-likelihood
method described below.) Both R̂n and R̂ρ

n can also serve as the starting point to estimate θ
under constrained parametrizations R(θ); we refer to page 2 in [33] for a brief summary of
existing methods.

Of these, the pseudo-likelihood estimation (PLE) method (see [12] for an early reference) is
particularly interesting. Here, as in a parametric case, we estimate θ by the maximizer of the like-
lihood function corresponding to the density cθ of the copula distribution CR = CR(θ) in (1.4).
However, because the sample (F1(Ei,1), . . . ,Fp(Ei,p))�, i ∈ [n] from the distribution CR(θ) is
unobservable, we replace it by the residual ranks (F̂ r

n,1(Êi,1), . . . , F̂
r
n,p(Êi,p))�. Formally, given

“sample covariance matrix” R̂ ∈R
p×p , let the function M(·; R̂) : Rp×p →R be

M
(
R′; R̂

) = −1

2
log

(
det R′) − 1

2
tr
(
R′−1R̂

)
. (3.21)

Using log cθ given in (B.1) in the supplement, and the aforementioned substitutions by the resid-
ual ranks, the likelihood function at parameter value θ ′ becomes, in terms of M,

1

n

∑
i∈[n]

log cθ ′
(
F̂ r

n,1(Êi,1), . . . , F̂
r
n,p(Êi,p)

) =M
(
R

(
θ ′);φ−1

n R̂n

) + 1

2
φ−1

n p.

Then, the pseudo-likelihood estimator is defined as the M-estimator

θ̂
PLE
n = arg max

θ ′∈�

M
(
R

(
θ ′); R̂n

)
, (3.22)

where we note the appearance of the natural estimator R̂n under the unrestricted model. (In
(3.22), we have intentionally left out one factor of φn so only R̂n remains.) Consider a p-variate
normal distribution with fixed zero mean and with unknown covariance as the parameter. Then
the quantity M(R′; R̂) in (3.21) is equivalent to the likelihood function of this distribution eval-
uated at the parameter value R′ against the “sample covariance matrix” R̂. As a remark, the
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maximizer of M(R′; R̂n) over all positive definite R′ ∈ R
p×p (instead of over R(θ ′) for θ ′ ∈ �

as in (3.22)) is R̂n itself (with ones on the diagonal). Thus, in the unrestricted model, the max-

imizer θ̂
PLE
n of (3.22) is given by the corresponding off-diagonal elements in R̂n, and R(̂θ

PLE
n )

equals R̂n.

To discuss the asymptotic distribution of θ̂
PLE
n , we first introduce the oracle pseudo-likelihood

estimator θPLE
n in the ordinary Gaussian copula model. The oracle estimator θPLE

n is obtained

analogously to θ̂
PLE
n by replacing R̂n with its oracle counterpart Rn in (3.22). In the unrestricted

model, by an argument identical to the above, θPLE
n is given by the corresponding off-diagonal

elements in Rn; then, obviously, when (3.20) holds,
√

n
(̂
θ

PLE
n − θPLE

n

) = op(1). (3.23)

What happens when the parametrization R(θ) is constrained? Even though θPLE
n and θ̂

PLE
n are

solutions to two different M-estimation problems, we expect that they are close if the “inputs” Rn

and R̂n to (3.22) are close. Indeed, under (3.20), classical M-estimation theory (e.g., Theorem 3.3
in [30]) again yields (3.23). The asymptotic normality of the (oracle) pseudo-likelihood estimator
(in general copula models) was established in [12]; this, under (3.23), then implies the asymptotic

normality of
√

n(̂θ
PLE
n − θ). Furthermore, in the ordinary Gaussian copula model, the conditions

for the semiparametric efficiency of θPLE
n were established in [17,20,33] and this will also have

consequences for the semiparametric efficiency of θ̂
PLE
n ; we will come back to this point below

Proposition 4.1.

4. Semiparametrically efficient estimation

In this section we study the (asymptotically) semiparametrically efficient estimation of the cop-
ula parameter θ = (θ1, . . . , θd)� in R(θ). Our treatment is rooted in the classical Hàjek–Le Cam
theory of asymptotics of statistical experiments as adapted to the semiparametric setting; see, for
example, Chapter 3 in [6] or Chapter 25 in [37]. Section 4.1 is concerned with the semipara-
metric lower bound for estimating θ in the presence of the nuisance parameters B, F1, . . . ,Fp

and FX. The picture on the semiparametric lower bound is not complete without a matching
estimator (see the discussion following Definition 2.8 in [36]). Thus in Section 4.2, relying on
Theorem 3.4 developed earlier, we set out to show that the one-step estimator in conjunction
with the residual ranks is a matching estimator and so remains semiparametrically efficient for
estimating θ in the regression setting. Both by space constraint and by technical reasons outlined
below Theorem 4.2, and because the semiparametric lower bound in the regression setting was
briefly addressed in Section 6.2 in [33], we limit our presentation on this subject in Section 4.1
to some key results and we defer a full treatment to Section B in the supplement. Again all
probabilities are stated under the (arbitrary but fixed) law P unless stated otherwise.

4.1. Semiparametric lower bound

We call an estimator (sequence) θ̂n regular if it has the same asymptotic distribution under any
sequence of local alternatives (e.g., page 365 in [37]). Following Lemma 25.25 in [37], we denote
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the efficient score (function) for θ evaluated at P by l̇∗θ (·1, ·2;P) : Rp ×R
q → R

d ; then the efficient
influence function is given by I∗−1(θ)l̇∗θ (·1, ·2;P), where I∗(θ) is the efficient information matrix
I∗(θ) = E[(l̇∗θ l̇∗�

θ )(Y,X;P)]. Following Definition 2.8 and Lemma 2.9 in [36], under suitable
regularity conditions (differentiability in quadratic mean of suitable local parametric submodels
passing through P suffices), an estimator θ̂n is (asymptotically) semiparametrically efficient at
the law P (which has the built-in requirement that θ̂n is regular at this law) for estimating θ if
and only if it is asymptotically linear in the efficient influence function, that is,

√
n(̂θn − θ) = 1√

n

∑
i∈[n]

I∗−1(θ)l̇∗θ (Yi ,Xi;P) + op(1). (4.1)

By the Hàjek–Le Cam convolution theorem (e.g., Theorem 25.20 in [37]), the asymptotic distri-
bution of every regular estimator of θ (after centering at θ and scaling by

√
n) is the convolution

of Nd(0, I∗−1(θ)) and another estimator-specific probability distribution M . If an estimator θ̂n

satisfies (4.1), then with � denoting weak convergence,

√
n(̂θn − θ) �Nd

(
0, I∗−1(θ)

); (4.2)

thus, M is degenerate at 0. Therefore θ̂n is optimal among regular estimators.
Denote by l̇∗o

θ (·; θ) = (l̇∗o
θ ,m

(·; θ))dm=1 : [0,1]p → R
d the efficient score in the ordinary Gaus-

sian copula model when all margins are Unif(0,1) distributions (but when this information
is not known). This function, which determines the semiparametric lower bound in the ordi-
nary Gaussian copula model, is derived in Section 2.4 in [33]. Define the matrices of partial
derivatives Ṙ1(θ), . . . , Ṙd(θ) of R(θ), and the matrices of partial derivatives Ṡ1(θ), . . . , Ṡd(θ) of
S(θ) = R(θ)−1 by

(
Ṙm(θ)

)
kk′ = ∂

∂θm

(
R(θ)

)
kk′ ,

(
Ṡm(θ)

)
kk′ = ∂

∂θm

(
S(θ)

)
kk′ , k, k′ ∈ [p],m ∈ [d]

when they exist. Further define �−1• : [0,1]p → R
p as �−1• (u) = (�−1(u1), . . . ,�

−1(up))� for
u = (u1, . . . , up)� ∈ [0,1]p . Then specifically

l̇∗o
θ ,m(u; θ) = 1

2
�−1• (u)�

{
Dθ

(
gm(θ)

) − Ṡm(θ)
}
�−1• (u), u ∈ [0,1]p,m ∈ [d]. (4.3)

In (4.3), the vector gm(θ) = (g1,m(θ), . . . , gp,m(θ))� and the matrix Dθ (b) ∈R
p×p are

gm(θ) = −{
Ip + R(θ) ◦H S(θ)

}−1{Ṙm(θ) ◦H S(θ)
}
ιp, (4.4)

Dθ (b) = S(θ)diag(b) + diag(b)S(θ). (4.5)

In (4.4) and (4.5), ιp ∈R
p is a vector of all ones, ◦H denotes the Hadamard product, and diag(b)

denotes the diagonal matrix with the elements of b arranged on the diagonal.
As Proposition 4.1 below shows, under regularity conditions stated in Assumption 4.1, the

efficient scores in our regression setting and in the ordinary Gaussian copula model are related
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in a simple way, and the efficient information matrices in the two cases are identical. In Assump-
tion 4.1, conditions (i) to (iv) are identical to those in Assumption 2.1 in [33], and under which
the parametric Gaussian copula model for E with known, uniform margins is regular (Lemma 2.2
in [33]). On the other hand, we need the additional conditions (v) and (vi) to ensure differentiabil-
ity in quadratic mean of suitable local parametric submodels passing through P in our regression
setting.

Assumption 4.1. For the mapping θ → R(θ) : � ⊂R
d → R

p×p , suppose that

(i) � is open, and θ → R(θ) is one-to-one.
(ii) For all θ ∈ �, the inverse S(θ) of R(θ) exists.

(iii) For all θ ∈ �, the matrices Ṙ1(θ), . . . , Ṙd(θ) exist and are continuous in θ .
(iv) For all θ ∈ �, the matrices Ṙ1(θ), . . . , Ṙd(θ) are linearly independent.

Furthermore, the law P holds, and

(v) The covariate X satisfies E[‖X‖2] < ∞.
(vi) For each k ∈ [p], fk is continuous, is supported on an interval (ak, bk) where −∞ ≤

ak < bk ≤ ∞, and on this interval fk is strictly positive and continuously differen-
tiable with derivative ḟk . In addition, fk has finite information for location, that is,∫
(ak,bk)

(ḟ 2
k /fk)(t)dt < ∞. Moreover,

lim sup
ε→0

{∫
(0,1/2]

1

φ2(�−1(u))
sup

δ:|δ|≤ε

{
fk ◦ F←

k

(
(1 + δ)u

)}2 du

+
∫

(1/2,1)

1

φ2(�−1(u))
sup

δ:|δ|≤ε

{
fk ◦ F←

k

(
1 − (1 + δ)(1 − u)

)}2 du

}
< ∞. (4.6)

Remark 1. Under Assumption 4.1(ii) and (iii), the matrices Ṡ1(θ), . . . , Ṡd(θ) also exist and are
continuous in θ (e.g., the remark below Assumption 2.1 in [33]).

Remark 2. Using Inequality (C.2) in the supplement to bound the factor 1/φ2(�−1(u)) in (4.6),
it can be seen that the left hand side of (4.6) is quite similar to δn, introduced in (3.17), in
our analysis of the estimator R̂n. Likewise condition (4.6) is satisfied by the normal density,
densities with polynomial decay of the form (3.1) when a > 1, and the Gamma density with
shape parameter larger than 2. The perturbation by δ in condition (4.6) is the price we pay by
jointly perturbing the coefficient matrix B and the marginals Fk , k ∈ [p] when constructing local
parametric submodels passing through P; see Section B.2 in the supplement.

Let F• :Rp → R
p be F•(z) = (F1(z1), . . . ,Fp(zp))� for z = (z1, . . . , zp)� ∈ R

p .

Proposition 4.1. Under Assumption 4.1, the efficient score l̇∗θ (·1, ·2;P) is given by

l̇∗θ (y,x;P) = l̇∗o
θ

(
F•

(
y − B�x

); θ)
, ∀(y,x) ∈ R

p ×R
q, (4.7)

for l̇∗o
θ (·; θ) = (l̇∗o

θ ,m
(·; θ))dm=1 given in (4.3). Hence the efficient information matrix I∗(θ) coin-

cides with the one in the ordinary Gaussian copula model (given by (2.20) in [33]).
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Proof. The proof is deferred to Section B.4 in the supplement. �

The simple relationship (4.7) has practical consequence for characterizing the semiparametric
efficiency of an estimator of θ in our regression setting. We will take the pseudo-likelihood es-

timator θ̂
PLE
n from Section 3.4 as an example. Suppose that under the ordinary Gaussian copula

model the oracle pseudo-likelihood estimator θPLE
n is semiparametrically efficient. Then θPLE

n

is asymptotically linear in its efficient influence function, which by isometry (e.g., Eq. (55) in
Section 4.7 in [6]) is given by I∗−1(θ)l̇∗o

θ (F•(·); θ). Thus (4.8) given later holds with θ̂n replaced
by θPLE

n . Now we impose the regression structure, and moreover assume that (3.20) holds, which
also implies (3.23) (as discussed in Section 3.4). Then by (1.5) and (4.7), Equation (4.1) with θ̂n

replaced by θ̂
PLE
n holds as well, implying the semiparametric efficiency of θ̂

PLE
n in the regression

setting. Therefore, we have essentially reduced the characterization of the semiparametric effi-

ciency of the estimator θ̂
PLE
n to that of θPLE

n (under the ordinary Gaussian copula model), and the
latter has been extensively studied in, for example, [17,20,33]. In particular, we conclude right

away that, in the unrestricted model under the regression setting, R(̂θ
PLE
n ) = R̂n is semiparamet-

rically efficient for R, so long as (3.20) holds.

4.2. Semiparametrically efficient estimator

By Proposition 4.1 and Eq. (4.1), an estimator θ̂n is semiparametrically efficient at the law P for
estimating θ if and only if

√
n(̂θn − θ) = 1√

n

∑
i∈[n]

I∗−1(θ)l̇∗o
θ

(
F•(Ei ); θ

) + op(1). (4.8)

The one-step method that updates an initial
√

n-consistent estimator θ∗
n to produce an efficient

estimator has a long history; see, for example, Section 25.8 in [37] for a textbook treatment. In the
ordinary Gaussian copula model, [33] constructed and established the semiparametric efficiency
of an one-step estimator (see [35] for a different update technique). In the regression setting,
because we would like the one-step estimator to be constructed on the residual ranks, we require
the initial estimator θ∗

n to be so constructed as well, as stated in Assumption 4.2. Section 3.4
discusses some natural candidates for the initial estimator θ∗

n; the pseudo-likelihood estimator is
one such example.

Assumption 4.2. The initial estimator θ∗
n is constructed from the (rescaled) residual ranks

F̂ r
n,k(Êi,k), i ∈ [n], k ∈ [p]. Moreover,

√
n(θ∗

n − θ) =Op(1) under P.

For an estimator θ∗
n of θ , let θ̃n be a discretized version of θ∗

n obtained by rounding θ∗
n to the

nearest n−1/2
Z

d grid. The one-step estimator is defined as

θ̂
OSE
n = θ̃n + I∗−1(̃θn)

{
φn

n

∑
i∈[n]

l̇∗o
θ

(
F̂ r

n,1(Êi,1), . . . , F̂
r
n,p(Êi,p); θ̃n

)}
, (4.9)
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where the second term on the right is the update term. The one-step estimator above is essentially
obtained from (3.3) in [33] via substitution of the (for us, unobservable) oracle ranks F r

n,k(Ei,k)

by the (rescaled) residual ranks F̂ r
n,k(Êi,k). Just as in the ordinary Gaussian copula model, by

Proposition 4.2 below the one-step estimator above is semiparametrically efficient for θ now in
the regression setting.

Remark 3. The update term in (4.9) conforms a usual representation of the one-step method,
but can also be rewritten explicitly in terms of the normal scores rank correlation estimator R̂n.
To see this, the mth component, m ∈ [d], of the term in the curly bracket in (4.9) can be written
alternatively as 1

2 tr({Dθ̃n
(gm(̃θn)) − Ṡm(̃θn)}R̂n).

Proposition 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Moreover assume the conditions
in Theorem 3.4 (including the one on δn), so (3.20) holds. Then (under P) the one-step estimator

θ̂
OSE
n satisfies (4.1) (or equivalently (4.8)) and (4.2) with θ̂n replaced by θ̂

OSE
n . In particular,

θ̂
OSE
n is a semiparametrically efficient estimator of θ at P.

Proof. The proof is deferred to Section B.5 in the supplement. �

Interestingly, by Proposition 4.2 and under the extra conditions in Theorem 3.4, the one-step

estimator θ̂
OSE
n satisfies (4.8) and hence is asymptotically linear in the efficient influence func-

tion I∗−1(θ)l̇∗o
θ (F•(·); θ) in the ordinary Gaussian copula model. Thus, it appears as if (with the

extra conditions in Theorem 3.4) the task of estimating θ is no more difficult under the additional
regression structure. Even without a dedicated lower bound analysis (as in Section 4.1), these ob-
servations already suggest that the semiparametric lower bound in our regression setting should
largely coincide with that in the ordinary Gaussian copula model. This is partially why we decide
to defer the formal but somewhat tedious lower bound analysis that supplements Section 4.1 to
Section B in the supplement. In contrast to the discussion above, the analysis in Sections 4.1

and B does not require a matching, efficient estimator such as the θ̂
OSE
n , and so in particular does

not require the associated conditions in Theorem 3.4 (such as that placed by Assumption 3.4
which potentially requires bounded moment of ‖X‖ higher than the second order).

5. Numerical performance

We carried out a small simulation study to demonstrate the finite-sample accuracy of our estima-
tion procedures based on the residual ranks. We consider first an unrestricted model in Section 5.1
and then, for constrained parametrization R = R(θ), a Toeplitz model in Section 5.2 and a factor
model in Section 5.3.

5.1. Unrestricted model

In this scenario, we first consider an unrestricted model with p = 3 where each of the d =
p(p − 1)/2 elements of the upper-triangular portion of R is a free parameter. We defer a brief
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discussion of a higher dimensional case p = 10 to the very end of this section. Specifically, for
p = 3,

• We generate R so that the elements in the upper-triangular portion of R are drawn indepen-
dently from a normal distribution with standard deviation 0.5; we repeat this procedure if
necessary until we obtain a positive definite matrix. The particular R generated is

R =
⎛
⎝1.0000 0.2674 0.1791

0.2674 1.0000 0.1709
0.1791 0.1709 1.0000

⎞
⎠ .

We next specify the nuisance parameters that will be taken from the following set of possible
combinations (not every single combination will be studied):

• For the q ×p coefficient matrix B (recall that p = 3), we consider q = 2 or q = 10. For each
case, the elements of B are drawn independently from a standard normal. The particular B
generated are recorded in Section E.1 in the supplement.

• The distribution function FX of the covariate X ∈ R
q is either a multivariate normal dis-

tribution or a multivariate t -distribution (with 3 degrees of freedom) whose covariance or
shape matrix has unit diagonal elements and off-diagonal elements equal to ρ = 0.1,0.5 or
0.9.

• The marginal distribution functions Fk , k ∈ [p] of E are chosen to have either the same
standard normal or the Cauchy distribution (i.e., t -distribution with 1 degree of freedom),
or these distributions scaled by a constant factor 1/5.

For each combination studied, N = 1000 Monte-Carlo repetitions are performed, with sample
sizes n = 50 or n = 250. For each repetition, an independent sample of N (0,R) distribution is
drawn, and the marginals of this sample are subsequently adjusted according to the specification
of Fk , k ∈ [p] above to produce the sample of E. Next a sample of X is drawn independently
from E. Finally, the sample of Y is determined via (1.5).

Note that when estimating B, the copula component E is considered as the noise, and in-
tuitively a smaller copula component should yield better estimation of B. In contrast, in the
estimation of R the copula component is instead considered as the signal. Our current theory
does not reveal which effect will dominate (as we simply take the rate ‖B̂ − B‖ as given and
do not consider the special, possibly E-dependent properties that B̂ may have). Therefore, for
the marginal distributions, the scaling by 1/5 is intended to clarify the effect of the scale of the
copula component on the estimation of R.

We focus on the comparison between the normal scores rank correlation estimator R̂n, which
coincides with the pseudo-likelihood estimator in this scenario as discussed in Section 3.4, and its
oracle counterpart Rn based on the (unobservable) oracle ranks. Compared to R̂n, the estimator
R̂ρ

n via inversion of Spearman’s rho performs slightly worse. We omit presenting the results
related to R̂ρ

n , except at the very end of this section when we consider p = 10.
Our first simulation considers the case q = 2 and ρ = 0.1, and also considers the effect of

different regression methods on the estimation of B which in turn affects the estimation of R. The
results are summarized in Figure 1. In particular, in each subfigure, the results for B̂ produced
using the ordinary least squares (OLS) are plotted in the first six boxplots, while those produced
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Figure 1. Simulation results for the unrestricted model for (p, q) = (3,2) and ρ = 0.1. The meanings of
the labels and of ρ are explained in the main text. All subfigures are produced with the y-axis in logarithm
scale.

using the least absolute deviation (LAD, or equivalently quantile regression at the quantile level
0.5) are plotted in the next six boxplots. These two six-boxplot sets share a common x-label
pattern. Each x-label is a two-tuple that indicates the distribution of the covariate X and the
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marginal distribution functions Fk , k ∈ [p] of E. The first letter in the two-tuple is either “n” or
“3,” which indicates that X is either drawn from the multivariate normal or from the multivariate
t -distribution (with 3 degrees of freedom) respectively as described earlier. The second letter in
the two-tuple is either “n”, “1”, “n/5” or “1/5,” which indicates that each of Fk , k ∈ [p] is either
the standard normal, the Cauchy distribution, the standard normal scaled by 1/5, or the Cauchy
distribution scaled by 1/5 respectively, again as described earlier.

The performance of the estimators is measured by various Frobenius norms. The first row in
Figure 1 plots ‖R̂n − R‖F . Here we additionally consider a naive estimator RY

n , which is the
normal scores rank correlation estimator produced directly from a sample of Y without taking
into account the covariate X. The particular sample of Y is taken from the “(n,1)” specification
described above. The performances of the oracle estimator Rn and the naive estimator RY

n are
denoted by “Ora.” and “Y” on the x-label, respectively. For the second row, we plot the ratio
‖R̂n−R‖F /‖Rn−R‖F , and for the third row we consider the estimation of B and plot ‖B̂−B‖F .
In Figure 1, all three rows consist of two columns corresponding to sample sizes n = 50 and
n = 250 respectively, and all subfigures are produced with the y-axis in logarithm scale.

From the first row of Figure 1, we immediately observe that the naive estimator RY
n performs

substantially worse than any of the other estimators, even though the sample of Y is produced
with a light-tailed X and a heavy-tailed E to intentionally minimize the perturbation by the
sample of X on the sample of E. For this reason we exclude the naive estimator in subsequent
simulation studies.

Next, from the third row of Figure 1 and also as expected, when E is heavy-tailed the OLS pro-
duces a rather inaccurate estimator B̂ of B, which further leads to inaccurate (relatively speaking
especially at n = 250) estimator R̂n of R. On the other hand, when E is light-tailed, the OLS pro-
duces a somewhat more accurate estimator B̂ of B than the LAD, but this leads to no appreciable
improvement in the estimator R̂n. The latter phenomenon is also expected because our studies
have shown that the rate of B̂ − B does not affect the estimation of R (at the first order). We thus
also exclude B̂ produced by the non-robust OLS in future studies.

Having considered the case q = 2 and ρ = 0.1, and excluded the naive estimator and the
estimators involving the OLS estimation of B, we now consider more correlated covariates with
higher ρ, and also possibly larger covariate dimension. Specifically, Figure 1 in Section E.1 in
the supplement presents the results for the common value of ρ = 0.5 and for (p, q) = (3,2)

or (p, q) = (3,10), while Figure 2 in the same section presents the results for the same (p, q)

specifications but for ρ = 0.9. Collectively, these latter results and the ones from Figure 1 show
that, as long as a reasonable B̂ (such as that from the LAD) is used in computing the residual
ranks, the estimator R̂n is nearly as good as the oracle estimator Rn, even with high covariate
dimension q = 10 (which results in a total number of q × p = 30 free parameters in B) and high
correlation ρ = 0.9 among the covariates at a relatively small sample size n = 50. Moreover,
within each figure the estimators R̂n under various specifications of the distribution of X and the
marginals of E perform quite similarly.

Next, we consider the case p = 10 and q = 2 or q = 10, and bring the estimators via inversion
of Spearman’s rho into comparison. Here we only consider the case when the distribution func-
tion FX is a multivariate t -distribution (with 3 degrees of freedom) whose shape matrix has unit
diagonal elements and off-diagonal elements equal to ρ = 0.5, and when the marginal distribu-
tion functions Fk , k ∈ [p] are the Cauchy distribution. We again consider N = 1000 Monte-Carlo
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Table 1. Medians, the 25% and the 75% quantiles of the Frobenius norm of the deviations of the four
estimators described in the maintext from the true R. The values associated with the oracle estimators are
obviously the same for q = 2 and q = 10, and hence are omitted for the latter case.

n Rn Rρ
n R̂n R̂ρ

n

q = 2
50 1.24 (1.14, 1.39) 1.31 (1.19, 1.45) 1.27 (1.15, 1.40) 1.33 (1.20, 1.46)

250 0.55 (0.49, 0.61) 0.58 (0.53, 0.64) 0.56 (0.50, 0.61) 0.58 (0.53, 0.64)

q = 10
50 1.40 (1.26, 1.53) 1.48 (1.33, 1.61)

250 0.56 (0.50, 0.62) 0.59 (0.53, 0.65)

repetitions and sample sizes n = 50 or n = 250. We randomly generate each element in the upper-
triangular portion of R to be either 1/4 or −1/4, each with probability 1/2, until we obtain a
positive-definite matrix. We randomly generate the elements in B to be either 1 or −1, each with
probability 1/2. The same R and B are kept for all the N = 1000 Monte-Carlo repetitions.

We consider four estimators in total: the residual-based normal scores (rank correlation) es-
timator R̂n and the residual-based estimator via inversion of Spearman’s rho R̂ρ

n , and their two
oracle counterparts Rn and Rρ

n . We compare their performances, summarized in Table 1, by the
Frobenius norm of the deviations of these estimators from the true R. In this larger p setting,
again the performances of the residual-based estimators closely follow their oracle counterparts,
even at q = 10. Moreover, for both the oracle version and the residual-based version, the es-
timator via inversion of Spearman’s rho lags slightly behind the normal scores estimator. This
follows from theoretical prediction simply because the normal scores estimators (whether the or-
acle version or the residual-based version) are semiparametrically efficient, while the estimators
via inversion of Spearman’s rho are not.

Finally, we consider a case with highly skewed E. Our setup here is entirely identical to the
previous case involving Spearman’s rho, except that we take any positive entry in the sample of E
to the third power. This results in an extremely heavy-tailed and skewed distribution. The perfor-
mance of the same four estimators considered in the previous case is summarized in Table 2. As
we can see from the table, the performance of our residual-based estimators is hardly affected, a
testament to their remarkable robustness.

5.2. Toeplitz model

Our first scenario for constrained parametrization considers a Toeplitz model, which is a (p−1)-
parameter model with θ = (θ1, . . . , θp−1)

� such that (R)kk′ = θ|k−k′| for k �= k′. We consider the
case p = 4, which is particularly interesting because as stated in [33], here the oracle pseudo-
likelihood estimator θPLE

n of θ in the ordinary Gaussian copula model can be quite inefficient.
Specifically, [33] verified that at the particular value θ = θ∗ = (0.4945,0.4593,−0.8462)�, the
asymptotic relative efficiencies of θPLE

n with respect to the information bound are equal to 18.3%,
19.8%, 96.9% for θ1, θ2 and θ3 respectively. Recall that the oracle pseudo-likelihood estimator
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Table 2. Medians, the 25% and the 75% quantiles of the Frobenius norm of the deviations of the four
estimators described in the maintext from the true R, now with highly skewed E but otherwise with con-
ditions identical to those corresponding to Table 1. Again, the values associated with the oracle estimators
are obviously the same for q = 2 and q = 10, and hence are omitted for the latter case.

n Rn Rρ
n R̂n R̂ρ

n

q = 2
50 1.24 (1.14, 1.39) 1.31 (1.19, 1.45) 1.28 (1.15, 1.41) 1.34 (1.21, 1.46)

250 0.55 (0.49, 0.61) 0.58 (0.53, 0.64) 0.55 (0.49, 0.61) 0.58 (0.53, 0.64)

q = 10
50 1.44 (1.29, 1.56) 1.52 (1.37, 1.65)

250 0.56 (0.51, 0.62) 0.59 (0.53, 0.65)

and the pseudo-likelihood estimator θ̂
PLE
n have the same asymptotic distribution (see Section 3.4),

the efficient information matrices in the ordinary Gaussian copula model and in our regression
setting coincide (see Proposition 4.1), and the one-step estimator (discussed in Section 4.2) is

semiparametrically efficient. Thus, the one-step estimator should substantially outperform θ̂
PLE
n .

For our specific simulation study, we let θ = θ∗ be as discussed in the last paragraph, and
specify the nuisance parameters similar to Section 5.1:

• The q × p coefficient matrix B is as generated in Section 5.1, now with p = 4, and again
with q = 2 and q = 10. The particular B generated are recorded in Section E.2 in the sup-
plement.

• The distribution function FX is a multivariate t -distribution (with 3 degrees of freedom)
whose shape matrix has unit diagonal elements and off-diagonal elements equal to ρ = 0.5
or 0.9.

• The marginal distribution functions Fk , k ∈ [p] are the Cauchy distribution.

We again consider N = 1000 Monte-Carlo repetitions and sample sizes n = 50 or n = 250.
Figure 2 presents the results when ρ = 0.5 and (p, q) = (4,2). Figure 3 in Section E.2 in the

supplement presents the results for the same ρ but for (p, q) = (4,10). Figures 4 and 5 in the
same section present the results for the same (p, q) specifications but for ρ = 0.9. The �th row
of each figure, where � ∈ {1,2,3}, considers the estimation of θ�, and compares the deviations
of the oracle pseudo-likelihood estimator, the oracle one-step estimator, the pseudo-likelihood
estimator, and the one-step estimator (as indicated by the x-labels) from θ�.

Similar to [33], but in our regression setting, we observe that the one-step estimators outper-
form the respective pseudo-likelihood estimators in particular for θ�, � = 1 or 2, just as expected.
More importantly, at least when the covariate dimension is low with q = 2, the one-step estima-
tors perform almost as well as the corresponding oracle one-step estimators. When the covariate
dimension is high with q = 10, both the one-step estimators and the respective pseudo-likelihood
estimators start out with a relatively large bias when the sample size is small, but the bias im-
proves at a larger sample size.
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Figure 2. Simulation results for the Toeplitz model under the parameters specified in the main text, for
(p, q) = (4,2) and ρ = 0.5.

5.3. Factor model

Our second scenario for constrained parametrization is a factor model which states that R admits
a low-rank plus diagonal decomposition as R = ��� +D where � ∈R

p×r with r < p and D is a
diagonal matrix with non-negative diagonal elements. We consider a simple case with p = 5 and
r = 1. Then � = θ = (θ1, . . . , θ5)

� is identified (when at least three elements of θ are nonzero to
the precise; see Theorem 5.5 in [2]), so long as we fix the sign of θ1. (For identification conditions
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in a general factor model, see, for example, [2].) Example 5.5 in [33] shows that (under the factor
model) the oracle pseudo-likelihood estimator θPLE

n is semiparametrically efficient for θ . By the
earlier discussion following Proposition 4.1, we then conclude that the residual-based pseudo-

likelihood estimator θ̂
PLE
n is also semiparametrically efficient for θ in the regression setting.

For our specific simulation study, we first construct R and the copula parameter θ as follows.
We set θ∗ = (1,−1,1,1,1)�, D∗ a diagonal matrix with elements 1, . . . ,5 on the diagonal, and
the covariance matrix R∗ = θ∗θ∗� + D∗. Then, we let R be the correlation matrix corresponding
to R∗. Specifically, we let D̃ be a scaling diagonal matrix with diagonal elements equal to the
reciprocal of the square root of the diagonal elements of R∗, that is, we let the diagonal elements
of D̃ be 1/

√
2, . . . ,1/

√
6. Then, R = D̃R∗D̃. Finally we set the copula parameter

θ = D̃θ∗ = (0.707,−0.577,0.500,0.447,0.408)�.

We again consider N = 1000 Monte-Carlo repetitions but only sample size n = 250, and q = 2
or q = 10. The nuisance parameters are specified as follows:

• We randomly generate the elements in B to be either 1 or −1, each with probability 1/2.
The same B is kept for all the N = 1000 Monte-Carlo repetitions.

• The distribution function FX is a multivariate t -distribution (with 3 degrees of freedom)
whose shape matrix has unit diagonal elements and off-diagonal elements equal to ρ = 0.5.

• The marginal distribution functions Fk , k ∈ [p] are the Cauchy distribution.

The performance of the estimators θPLE
n = (θPLE

n,1 , . . . , θPLE
n,5 )� and θ̂

PLE
n = (θ̂PLE

n,1 , . . . , θ̂PLE
n,5 )� of

θ = (θ1, . . . , θ5)
� is compared in the two panels, corresponding to q = 2 and q = 10 respectively,

in Figure 3. In each panel, we plot the deviations θPLE
n,m − θm and θ̂PLE

n,m − θm next to each other,
and sequentially for m = 1, . . . ,5. Even under q = 10, we can hardly discern any significant
deterioration of the residual-based estimator as compared to its oracle counterpart. (Some minor
differences do exist, such as the slightly larger distance between the whiskers for θ̂PLE

n,5 at q = 10
as compared to the same estimator at q = 2 and its oracle counterpart.)

Figure 3. Simulation results for the factor model under the parameters specified in the main text, for
(p, q) = (5,2) or (p, q) = (5,10), and ρ = 0.5.
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6. Conclusion

In this paper, we have studied the (semiparametrically efficient) estimation of the copula param-
eter in the Gaussian copula model when adjusted for linear regression. We have provided explicit
rates for the distances between the residual-based estimators R̂ρ

n and R̂n on the one hand, and
their oracle counterparts on the other. Under mild condition on B̂, the residual-based estima-
tors and their oracle counterparts are asymptotically equivalent. New result on residual empirical
process, which could be of independent interest, is also derived. Finally, we have shown that the
one-step estimator in conjunction with the residual ranks remains semiparametrically efficient.
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