Open Access
August 2020 Sojourn time dimensions of fractional Brownian motion
Ivan Nourdin, Giovanni Peccati, Stéphane Seuret
Bernoulli 26(3): 1619-1634 (August 2020). DOI: 10.3150/19-BEJ1105

Abstract

We describe the size of the sets of sojourn times $E_{\gamma }=\{t\geq 0:|B_{t}|\leq t^{\gamma }\}$ associated with a fractional Brownian motion $B$ in terms of various large scale dimensions.

Citation

Download Citation

Ivan Nourdin. Giovanni Peccati. Stéphane Seuret. "Sojourn time dimensions of fractional Brownian motion." Bernoulli 26 (3) 1619 - 1634, August 2020. https://doi.org/10.3150/19-BEJ1105

Information

Received: 1 September 2018; Revised: 1 December 2018; Published: August 2020
First available in Project Euclid: 27 April 2020

zbMATH: 07193937
MathSciNet: MR4091086
Digital Object Identifier: 10.3150/19-BEJ1105

Keywords: fractional Brownian motion , logarithmic density , macroscopic Hausdorff dimension , pixel density , sojourn time

Rights: Copyright © 2020 Bernoulli Society for Mathematical Statistics and Probability

Vol.26 • No. 3 • August 2020
Back to Top