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Logarithmic Sobolev inequalities for finite
spin systems and applications
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We derive sufficient conditions for a probability measure on a finite product space (a spin system) to satisfy
a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as
the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with
fugacity.

This leads to two separate branches of applications. The first branch is given by mixing time estimates of
the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities.
As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup.
Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these
spin systems. We show the effect of better concentration properties by centering not around the mean, but
around a stochastic term in the exponential random graph model. From there, one can deduce a central limit
theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-
order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts.

Keywords: central limit theorem; concentration of measure; exponential random graph model; finite
product spaces; logarithmic Sobolev inequality; mixing time; spin systems

1. Introduction

Spin systems are ubiquitous in the modeling of various phenomena, ranging from toy models
to explain ferromagnetism (the Ising and the Potts model, or more generally the random cluster
model) to voter models (e.g., interpreting the Ising model as a social choice with binary options),
various network models (such as the Erdős–Renyi or the exponential random graph model) and
models with hard constraints such as the random proper coloring model or the hard-core model.

From the physical viewpoint, a spin system models a collection of particles attaining different
states and interacting with each other, so that the complete system consists of a set of configura-
tions of the form X I . Mathematically, a spin system can be described as a probability measure
μ on such a product space Y := X I , and hard constraints translate into conditions on the support
of the probability measure. Here, we consider finite spin systems, that is, the sets X (the spins)
and I (the sites) are finite.

Albeit very elementary, these finite spin systems can have a rich dependence structure among
the sites. Indeed, many toy models of statistical mechanics are defined as finite spin systems (as
the aforementioned Ising model on a finite graph). We are interested in the regimes in which the
sites exhibit behavior typical of independent random variables. To this end, we define suitable
notions of weak dependence which, on the technical side, lead to (modified) logarithmic Sobolev
inequalities.
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Based on these general results, we study two different branches of applications. Firstly, we
want to study the mixing time of the Glauber dynamics associated to a sequence of weakly
dependent spin systems (μn)n on X In which are rapidly mixing, that is, the mixing time is
O(|In| log|In|). Secondly, we study the concentration of measure phenomenon (of higher order)
for these kinds of models. From the very definition of both concepts, it is necessary to consider
a sequence of finite spin systems with increasing number of sites.

1.1. The models

Our main results are valid for arbitrary weakly dependent spin systems. At the same time,
throughout this paper we put a special focus on a number of models for which we establish
sufficient conditions for weak dependence and apply our general results. Let us emphasize that
any of the models depends on a parameter n ∈ N, so that we are considering a sequence of spin
systems with a growing number of sites. We will usually suppress this dependence on the num-
ber of sites. We sometimes specify a spin system by defining a Hamiltonian, that is, a function
H : Y →R. The spin system associated to H is given by the Gibbs measure

μ(σ) = μH (σ) = Z−1 exp
(
H(σ)

)
for Z =

∑
σ∈Y

exp
(
H(σ)

)
.

1.1.1. The exponential random graph model

The first spin system we consider is the exponential random graph model. For a thorough histor-
ical overview and asymptotic results, we refer to the well-written survey [11]. The model is an
extension of the Erdős–Rényi model to account for dependence between the edges.

For two simple graphs G1 = (V1,E1) and G2 = (V2,E2) let NG1(G2) be the number of graph
homomorphisms from G1 to G2, that is, injective maps ϕ : V1 → V2 which preserve edges.
Moreover Gn shall be the set of all simple graphs on n vertices, labeled {1, . . . , n}, and In :=
{(i, j) ∈ {1, . . . , n}2 : i < j}. Let β = (β1, . . . , βs) ∈ Rs and G1, . . . ,Gs be simple, connected
graphs Gi = (Vi,Ei). The exponential random graph model with parameters (β,G1, . . . ,Gs),
denoted by μβ , is defined as the spin system on {0,1}In associated to the Hamiltonian

Hβ(x) := n2
s∑

i=1

βi

NGi
(x)

n|Vi | .

We frequently abbreviate this as ERGM(β,G1, . . . ,Gs). By convention, G1 is the complete
graph on two vertices K2. Note that for s = 1 we obtain the Erdős–Rényi model with parameter
p = eβ(1 + eβ)−1.

For any set of parameters (β,G1, . . . ,Gs), we define the functions �β , ϕβ : [0,1] → R

�β(y) =
s∑

i=1

βi |Ei |y|Ei |−1 = β1 +
s∑

i=2

βi |Ei |y|Ei |−1,

ϕβ(y) = exp(2�β(y))

1 + exp(2�β(y))
= 1

2

(
1 + tanh

(
�β(y)

))
,



LSI for finite spin systems and applications 1865

and set |β| := (|β1|, . . . , |βs |). The function �′
|β| (i.e., the derivative of �|β|) will appear in the

condition of weak dependence in this model.

1.1.2. Vertex-weighted random graph model

A second model of random graphs – the vertex-weighted exponential random graph model – was
recently introduced in [13]. The parameter-space is three-dimensional, that is, β = (β1, β2,p) ∈
R2 ×(0,1), and the model is the spin system on Y = {0,1}n defined via the Hamiltonian

H(σ) := log

(
p

1 − p

)∑
i

σi + β1

n

∑
i �=j

σiσj + β2

n2

∑
i �=j �=k

σiσjσk.

Note that it resembles the Hamiltonian in the exponential random graph model. On the other
hand, it can also be seen as an extension of the Curie–Weiss model on the complete graph with
interactions given by a quadratic and a cubic form. We define the function

ϕβ(x) := exp(hβ(x))

1 + expβ(h(x))
= exp(β1x + β2x

2 + log(p/(1 − p)))

1 + exp(β1x + β2x2 + log(p/(1 − p)))
.

Similar to the ERGM, the derivative of ϕβ will determine whether the system is weakly depen-
dent.

1.1.3. Random coloring model

Given a finite graph G = (V ,E) and a set of colors C = {1, . . . , k}, the configuration space in the
random coloring model is the set of all proper colorings �0 ⊂ CV , that is, the set of all σ ∈ CV

such that {v,w} ∈ E ⇒ ϕv �= ϕw , and μ = μ(G,C) denotes the uniform distribution on �0.

1.1.4. Hard-core model with fugacity

Another model with hard constraints is the hard-core model with fugacity parameter λ for some
λ > 0. Given a graph G = (V ,E), the hard-core model μ is the spin system on Y = {0,1}V
satisfying

μ(σ) =
⎧⎨
⎩

Z−1
∏
i

λσi σ admissible,

0 otherwise.

Here, an admissible configuration satisfies σvσw = 0 for all {v,w} ∈ E.

1.2. Outline

The structure of this paper is as follows. We formulate the main results for mixing times in Sec-
tion 2 (see Theorems 2.1 and 2.2) and prove them in Section 5. The concentration of measure
results are given in Section 3, with Section 3.1 containing the concentration inequalities for the
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triangle count in the ERGM (Theorem 3.2) as well as the central limit theorem results (Corol-
lary 3.3). Section 3.2 discusses the central limit theorem in the Erdős–Rényi model. These results
are applications of Theorems 3.6 and 3.7 given in Section 3.3. We prove all concentration results
in Section 6. The proof of the (modified) logarithmic Sobolev inequalities in the models from
Section 1.1 can be found in Section 4.

2. Mixing times

For spin systems μ with many sites, one way to sample from these is to use the Markov chain
convergence theorem. One canonical Markov chain is the Glauber dynamics, which is a Y-valued
ergodic Markov chain (Yt )t∈N0 with reversible distribution μ. At each step, it selects a site i ∈ I
uniformly at random and updates it with the conditional probability given xi = (xj )j �=i , that is,
its transition probability is given by

P(x, y) = |I|−1
∑
i∈I

μ(yi | xi)
∏
j �=i

δxj =yj
,

where δ is the Dirac delta. Under mild conditions, if (Yt )t∈N0 is a Markov chain on a finite
space Y with a reversible measure ν, the distribution of Yt converges to ν. This convergence
can be quantified using various metrics between probability measures, and we choose the total
variation distance dTV(μ1,μ2) := supA⊂Y |μ1(A) − μ2(A)| = 1

2

∑
x∈Y |μ1(x) − μ2(x)|. In the

continuous-time case, we define the mixing time as

tmix := inf
{
t ∈ R+ : max

y∈Y
dTV

(
P t (y, ·), ν) ≤ e−1

}
.

Here, P t (y, ·) is defined as the distribution of Yt given Y0 = y.
Our proofs rely on modified logarithmic Sobolev inequalities. Let P be the transition matrix of

a Markov chain on Y and −L = I −P be its generator. If P is reversible with respect to a measure
μ, we can define the entropy functional Entμ(f ) := Eμ f logf −Eμ f log(Eμ f ) for f ≥ 0 and
the Dirichlet form E(f, g) := Eμ f (−Lg). We say that the triple (Y,P ,μ) (or in short P , if
the space and the measure are clear from the context) satisfies a modified logarithmic Sobolev
inequality with constant ρ0 (in short: mLSI(ρ0)), if for all f : Y → R+ we have

Entμ(f ) ≤ ρ0

2
E(f, logf ). (1)

The smallest ρ0 in (1) is called modified logarithmic Sobolev (or entropy) constant; see, for
example, [6] and the definition of β in [17]. It is known that the modified logarithmic Sobolev
constant can be used to bound the mixing time for the total variation distance of (the distribution
of) a Markov semigroup and its trend to equilibrium; see, for example, [6], Theorem 2.4.

We will prove the following theorem, which establishes the mLSI(ρ0) for the models intro-
duced in Section 1.1, and consequently the exponential decay of the entropy along the Glauber
semigroup and the rapid mixing property thereof. Recall that rapid mixing means that the mixing
time satisfies tmix = O(|In| log|In|).
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Theorem 2.1. The Glauber dynamics satisfies a mLSI(ρ0) with ρ0 ≤ C|In| in all following spin
systems. The constant C may depend on the parameters of the spin system, but not on n.

1. Any exponential random graph model μβ such that 1
2�′

|β|(1) < 1.
2. The vertex-weighted ERGM for β := (β1, β2,p) satisfying supx∈(0,1)|ϕ′

β(x)| < 1.
3. The random coloring model μGn for any sequence of graphs Gn = (Vn,En) with uniformly

bounded maximum degree � and k ≥ 2� + 1.
4. The hard-core model with fugacity λ on any sequence of graphs Gn = (Vn,En) with

bounded maximum degree � and λ < 1
�−1 .

Consequently, the relative entropy decreases exponentially along the Glauber semigroup, that is,
for any μ-density f and the Glauber semigroup (Pt )t≥0 we have

Entμ(Ptf ) ≤ exp(−2t/ρ0)Entμ(f ).

Finally, in all the cases, the Glauber dynamics is rapidly mixing.

Let us put the results of Theorem 2.1 into context.
Concerning the exponential random graph model, we are sure that the condition 1

2�′|β|(1) < 1
is not optimal. For β2, . . . , βs ≥ 0 is was proven in [4], Theorem 5, that the Glauber dynamics
is rapidly mixing whenever there is only one solution a∗ to the equation ϕβ(a) = a satisfying
ϕ′

β(a∗) < 1, which is implied by our condition. On the other hand, Theorem 2.1 implies expo-
nential decay of the relative entropy along the Glauber semigroup and also applies to negative
parameters. The assumption 1

2�′|β|(1) < 1 is also present in [12], Theorem 6.2. In this parameter
region, the authors show convergence of the exponential random graph model to a mixture of
Erdős–Renyi graphs in the cut-metric in probability. For more details, we refer to [12].

An easy application shows that for the ERGM with s = 2 and a simple, connected graph G2

on e2 edges, the condition |β2| <
(
e2
2

)−1 guarantees rapid mixing.
Rapid mixing for the vertex-weighted exponential random graph model has been established

in [13], Theorem 7, under a similar condition as in [4].
The Glauber dynamics for the random coloring model on a sequence of bounded-degree graphs

was shown to be rapidly mixing in [21] for k ≥ 2�+ 1 via a path coupling approach. We recover
these results using the entropy method. Again, this yields exponential decay of the relative en-
tropy along the Glauber semigroup.

It was shown in [33] that if Gn = (Vn,En) is a sequence of graphs with uniformly bounded
degree � and λ < 2

�−2 , then the Glauber dynamics associated to the hard-core model with fu-
gacity λ is rapidly mixing. Interestingly, with methods closer to the Bakry–Emery theory and a
characterization of Ricci curvature for Markov chains, [16] have shown that the hard-core model
with fugacity has a positive Ricci curvature under the assumption λ ≤ 1

�
, which also implies a

mLSI(ρ0).
Theorem 2.1 is itself an application of the following general theorem. The (rather technical)

quantity β̃ and the notion of the interdependence matrix J will be defined in Section 4; see
equations (16) and (17).
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Theorem 2.2. Let μ be a spin system on Y := X I for finite sets X and I . Assume that for some
constants α1, α2 > 0 we have the lower bound on the conditional probabilities

β̃(μ) ≥ α1 (2)

and an upper bound on some interdependence matrix J

‖J‖2→2 ≤ 1 − α2. (3)

The Glauber dynamics associated to μ satisfies an mLSI(2|I|α−1
1 α−2

2 ). As a consequence, given
any μ-density f , the density ft = Ptf ((Pt )t≥0 is the Glauber semigroup) satisfies

Entμ(Ptf ) ≤ Entμ(f ) exp

(
−α1α

2
2

2|I| t

)
. (4)

Furthermore, if (μn)n is a sequence of spin systems on Yn := X In (with |In| → ∞) satisfying
(2) and (3) for some n-independent constants α1, α2, then the sequence of Glauber dynamics is
rapidly mixing.

Clearly, the second part of Theorem 2.2 is of interest only for |In| → ∞ as n → ∞. In the
case of spin systems without hard constraints, we can rephrase the conditions (2), (3). Here, we
define I (μ) := mini∈I miny∈Y μ(yi | yi) as the minimal conditional probability.

Corollary 2.3. Let (μn)n be a sequence of Gibbs measures on configuration spaces Yn induced
by Hamiltonians Hn : Yn → R. If I (μn) ≥ α1 and ‖Jn‖2→2 ≤ 1 − α2 for some α1 ∈ (0,1), α2 ∈
(0,1) and interdependence matrices Jn, then the (sequence of) Glauber dynamics associated to
μn is rapidly mixing.

3. Concentration of measure

Informally, as stated in [31], the concentration of measure phenomenon can be described as
the phenomenon that a function of n i.i.d. random variables X1, . . . ,Xn tends to be very close
to a deterministic quantity (e.g., its expected value or median), if it is not too sensitive to one
of its parameters. The function is usually assumed to be Lipschitz continuous in some sense,
depending on a suitably adapted notion of a gradient. In other words, the distribution of any
Lipschitz function of independent random variables shows strong (more precisely: sub-Gaussian)
concentration properties. For an introduction to the concentration of measure phenomenon and
functional inequalities, we refer to the two monographs [23] and [10] and the lecture notes [32].

It is also known that the restriction to Lipschitz functions is not necessary, if one aims at
(sub)exponential tails. Already the early works of [7,8] prove Lp norm estimates for polynomials
of degree d in Rademacher random variables which grow like pd/2 (which can be translated into
tail estimates). In the setting of independent sub-Gaussian random variables the Hanson–Wright
inequality (see [20,29,36]) gives estimates for quadratic forms. In these cases, exponential tail
decay holds even though the Lipschitz condition is not satisfied, which might be regarded as
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an extension of the concentration of measure phenomenon beyond the setting of Lipschitz-type
functions. This idea has been developed in many different works, such as [1,3,9,22,30,34,35]
among others.

The concentration of measure results in this article employ the entropy method. To recall
some notions, let (Y,A,μ) be a probability space. An operator 
 : L∞(μ) → L∞(μ) is called
a difference operator if |
(af + b)| = a|
(f )| for all a > 0, b ∈ R. We say that μ satisfies a
logarithmic Sobolev inequality with respect to 
 (or in short: a 
-LSI(σ 2)), if for all bounded
and measurable functions f : Y → R we have

Entμ
(
f 2) ≤ 2σ 2

∫

(f )2 dμ. (5)

Here, Entμ(f ) is the entropy functional. The smallest σ 2 > 0 such that (5) holds is known as
the logarithmic Sobolev constant. From the two properties of a difference operator, one can infer
that a 
-LSI(σ 2) implies a Poincaré inequality

Varμ(f ) ≤ σ 2
∫


(f )2 dμ. (6)

To any function f and i ∈ I, we associate the “local variance” in the ith coordinate

dif (x)2 =
⎧⎨
⎩

1

2

∫∫ (
f (xi, y) − f

(
xi, y

′))2
dμ(y | xi) dμ

(
y′ | xi

)
for μi(xi) > 0,

0 otherwise.
(7)

Here, xi = (xj )j∈I\{i} is a generic vector in X I\{i}, μ(· | xi) denotes the conditional probability
interpreted as a measure on X , and μi is the marginal measure on X I\{i}. More generally, for
any S ⊂ I we write xS , μ(· | xS), μS for the obvious analogues.

One type of difference operator is given by |df | = (
∑

i∈I(dif )2)1/2, where |·| is the Euclidean
norm of a vector. Indeed, if (5) holds for 
(f ) = |df |, we say that μ satisfies a d-LSI(σ 2).
A second type of difference operator is given by |hf | = (

∑
i∈I(hif )2)1/2 for

hif (x) = ∥∥f (xi, y) − f
(
xi, y

′)∥∥
L∞(μ(xi ,·)⊗μ(xi ,·)). (8)

It is easy to see that if μ satisfies a d-LSI(σ 2), then it also satisfies an h-LSI(σ 2/2).
As a short remark, let us note that the definition of a d-LSI(σ 2) is consistent with the definition

using the Dirichlet form as in Section 2.
Similar to Theorem 2.1, the following theorem provides d-LSIs for all the models from Sec-

tion 1.1.

Theorem 3.1. In the situation of Theorem 2.1, the spin systems under the corresponding condi-
tions satisfy a d-LSI(σ 2), where σ 2 may depend on the parameters of each model but not on n.

Actually, considering the proof of Theorem 2.1 and Theorem 3.1, one can see that both follow
the same strategy: Show that the entropy tensorizes, and apply inequalities which are straightfor-
ward to prove. In the case of the logarithmic Sobolev inequality, the constant can be much worse,
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as one has an additional dependence on α1 as given in Theorem 2.2. Aside from this dependence,
one can deduce Theorem 2.1 from Theorem 3.1.

3.1. Triangle counts in the exponential random graph model

The question of the distribution of the number of triangles in the Erdős–Rényi model is quite
classical and well studied. Therefore, it is an interesting task to find analogous results for the
exponential random graph model. Although the edges in this model are dependent, a weak de-
pendence condition should suffice to expect a similar behavior as in the case of independent edges
(e.g., see the large deviation results in [12], which in certain cases implies that an exponential
random graph model is indistinguishable from an Erdős–Rényi model in the limit). Although
large deviation results are purely asymptotic, one can still hope for similar behavior concerning
certain statistics for finite n.

Recall that the exponential random graph model is a spin system with sites In := {(i, j) ∈
{1, . . . , n}2 : i < j}. We let

(In

3

)
be the set of all possibilities of choosing three distinct edges and

Tn :=
{
{e,f, g} ∈

(
In

3

)
: e,f, g form a triangle

}
.

We define the number of triangles T3(x) := ∑
{e1,e2,e3}∈Tn

xe1xe2xe3 . Our first result are multilevel
concentration inequalities for T3 and a “linear approximation” thereof. Define μ2 := Eμβ

xexf

(for some edges e �= f ∈ In, e ∩ f �= ∅) and f1 := ∑
e∈In

(xe − Eμβ
(xe)). From the definition

of the ERGM, it is clear that μ2 is well-defined.

Theorem 3.2. Let μβ be an ERGM satisfying a d-LSI(σ 2). There exists a constant C = C(σ 2) >

0 such that for all t > 0 we have the multilevel concentration bounds

μβ

(|T3 −Eμβ
T3| ≥ t

) ≤ 2 exp

(
− 1

C
min

((
t

n3/2

)2/3

,
t

μ1n3/2
,

(
t

μ2n2

)2))
, (9)

μβ

(∣∣T3 −Eμβ
T3 − (n − 2)μ2f1

∣∣ ≥ t
) ≤ 2 exp

(
− 1

C
min

((
t

n3/2

)2/3

,
t

μ1n3/2

))
. (10)

It is interesting to note the effect of subtracting the random variable (n − 2)μ2f1. As the
variance of T3 is of order n4, a normalization by n−2 is necessary to obtain a stable variance,
and inequality (9) gives suitable tail estimates. However, the random variable T3 − Eμβ

T3 −
(n − 2)μ2f1 concentrates on a narrower range, since the variance is of order n3, and equation
(10) yields stretched-exponential tails in this case. In the Erdős–Rényi model, a short calculation
shows

Var(T3) =
(

n

3

)
p3(1 − p3) + 1

2
n(n − 1)(n − 2)(n − 3)p5(1 − p),

Var
(
T3 − (n − 2)p2f1

) =
(

n

3

)
p3(1 − p3).
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Figure 1. A comparison of the distributions of T3 − μβ (T3) (left) and T3 − μβ (T3) − (n − 2)μ2f1 (right)
for n = 100, β1 = −0.1, β2 = 0.05 and G1 = K2 (an edge), G2 = K3 (a triangle) using the Glauber
dynamics and roughly 2 million simulations.

To complement these observations, inspecting (9), we see that the normalization n−2 corresponds
to the factor n−4 in the Gaussian part, whereas the exponential and stretched-exponential part
require a normalization of n−3/2 only (see Figure 1).

The inequality (10) shows that T3 fluctuates around the linear term f1 on a lower order. This
leads to the idea of mimicking the method of Hájek projection to deduce a central limit theorem
for the triangle count from a CLT for the edge count. As far as we are aware, there are hardly any
theoretical results on the distributional limits of the subgraph counts as n → ∞ barring certain
special cases. (One such example is the edge two-star model, which can also be interpreted as an
Ising model; see [25,26].)

Corollary 3.3. Let μβ be an ERGM satisfying a d-LSI(σ 2). Assuming the central limit theorem(
n
2

)−1/2 ∑
e∈In

(xe −Eμβ
xe) ⇒ N (0, v2), we can infer

T3 − μβ(T3)

(n − 2)μ2

√(
n
2

) ⇒ N
(
0, v2).

Actually, the convergence can be quantified in the Wasserstein distance. Let us recall that for
two probability measures μ, ν on R with finite first moment (i.e.,

∫ |x|dμ(x) < ∞,
∫ |x|dν(x) <

∞) the Wasserstein distance is defined as

dW (μ, ν) = sup

{∫
f dμ −

∫
f dν : f ∈ Lip1

}
,

where Lip1 denotes the set of all Lipschitz-continuous functions with Lipschitz constant at
most 1. For two random variables X, Y , we define dW (X,Y ) as the Wasserstein distance be-
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tween its distributions. Define

T̃3(x) := (n − 2)−1μ−1
2

(
n

2

)−1/2 ∑
{e,f,g}∈Tn

(
xexf xg −Eμβ

(xexf xg)
)
,

L̃(x) :=
(

n

2

)−1/2 ∑
e∈In

(xe −Eμβ
xe).

Proposition 3.4. Let μβ = μ
(n)
β be an ERGM satisfying a d-LSI(σ 2) and let Z ∼ N (0, v2) for

some v2 > 0. There exists a constant C = C(σ 2) such that

dW (T̃3,Z) ≤ dW (L̃,Z) + Cn−1/2.

Consequently, a rate of convergence in the Wasserstein distance for the number of edges in the
ERGM immediately implies a rate of convergence for the number of triangles.

3.2. Central limit theorems for subgraph counts in the Erdős–Rényi model

The second application of the concentration inequalities is a central limit theorem in the classical
problem of subgraph counts in the Erdős–Rényi model. Note that the Erdős–Rényi model is a
spin system μn,p on {0,1}In with independent components and μn,p(xe = 1) = p.

Define the average degree (or average density) of a graph d(G) := maxH⊂G
|E(H)|
|V (H)| , and the

modified form d ′(G) := maxH⊂G,|E(H)|≥2
2|E(H)|−1
|V (H)|−2 . Denote by TG the number of subgraphs G

in the Erdős–Rényi random graph, that is, graph homomorphisms from G to the Erdős–Rényi
random graph. A possible representation is

TG(X) = 1

|Aut(G)|
∑

f :V →[n] injective

∏
e∈E

Xf (e) (11)

with the definition f (e) = {f (v1), f (v2)} for e = {v1, v2}. Moreover, we write (n)k := n(n −
1) · · · (n − k + 1).

Theorem 3.5. Let G = (V ,E) be any simple, connected graph. If p = p(n) satisfies p ≤ 1 − ε

for some ε > 0 and npd ′(G) log−|E|(1/p) → ∞, then

TG − μn,p(TG)

2(|Aut(G)|)−1|E|(n − 2)|V |−2p|E|−1
√(

n
2

)
p(1 − p)

⇒N (0,1).

We may replace the condition on d ′(G) in Theorem 3.5 by a condition on the maximal de-
gree d(G), though with an additional factor 6, that is, np6d(G) log−|E|(1/p) → ∞ is a sufficient
condition. This is a consequence of the inequality d(G) ≤ d ′(G) ≤ 6d(G).
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Similar calculations (and a proof of a central limit theorem for subgraph counts under nonop-
timal conditions) have been done in [27], interpreting subgraph counts as incomplete U -statistics
and using the Hoeffding decomposition to prove the CLT. However, [27], Theorem 3.1, does not
seem to be quite correct, since for triangles it requires a normalization of the subgraph count

by (n − 2)

√
p(1 − p)

(
n
2

)
, which does not converge to a normal distribution in general. As can

be seen from Theorem 3.5, the correct normalization is (n − 2)p2
√

p(1 − p)
(
n
2

)
(see also [15],

equation (1.2)). In our approach, we additionally provide a quantification, that is, we show that
T3 −Eμn,p T3 −p2(n− 2)f1 =Oμn,p (n3/2) with exponentially decaying tails. We do not believe
it is possible to derive similar results using the U -statistics approach.

Using the method of moments, [28] has shown that the convergence holds for any graph G if
and only if npd(G) → ∞ and n2(1 − p) → ∞, which is optimal.

3.3. The general results

Theorems 3.2 and 3.5 build upon general concentration properties in the presence of logarith-
mic Sobolev inequalities. To formulate our results, we introduce higher order differences hi1...id

for any d ∈ N by setting hi1...id f = hi1(hi2...id f ). In particular, we obtain tensors of d th order
differences h(d)f with coordinates hi1...id f . Regarding h(d)f as a vector indexed by Id , we
may define |h(d)f | as its Euclidean norm. We will write ‖f ‖p for the Lp(μ) norm of f and
‖h(d)f ‖p := ‖|h(d)f |‖p .

Theorem 3.6. Let μ be a spin system on Y = X I satisfying a d-LSI(σ 2). For any f : Y → R

and C := log(2)σ 2(de)2/2, we have

μ
(|f −Eμ f | ≥ t

) ≤ 2 exp

(
− 1

C
min

(
t2/d

‖h(d)f ‖2/d∞
, min
k=1,...,d−1

t2/k

‖h(k)f ‖2/k

2

))
. (12)

We apply Theorem 3.6 to functions which resemble multilinear polynomials, constructed in
the following way. For any d ∈ N, we define the (generalized) diagonal of the index set Id as
�d := {(i1, . . . , id ) ∈ Id : |{i1, . . . , id}| < d}. Let f : X → R and A a d-tensor with vanishing
diagonal. We can associate to f and any J ⊂ I the functions fJ , f̃J : Y →R defined via

fJ (y) =
∏
i∈J

f (yi) and f̃i (y) =
∏
i∈J

(
f (yi) −

∫
f (yi) dμ

)

and introduce the short-hand notation μJ := Eμ fJ and μ̃J := Eμ f̃J . Given (f, d,A), we con-
struct polynomials as follows: for any finite set J let

P(J ) = {
S ⊆ 2J : S is a partition of J

}
.
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Finally, we set

fd,A =
∑
I∈Id

AI

∑
P∈P(I )

gP :=
∑
I∈Id

AI

∑
P∈P(I )

(−1)M(P )
∏
J∈P|J |=1

f̃J

∏
J∈P|J |>1

μ̃J . (13)

Theorem 3.7. Let μ be a spin system on Y = X I satisfying a d-LSI(σ 2), d ∈ N,A a d-tensor
with vanishing diagonal and f : X → R with |f (x) − f (y)| ≤ c for all x, y ∈ X . Then, fd,A as
in (13) is a centered random variable, for all p ≥ 2 we have

‖fd,A‖p ≤ (
σ 2c2‖A‖2/d

2 p
)d/2 (14)

and consequently

μ
(|fd,A| ≥ t

) ≤ 2 exp

(
−

(
log(2)t

2eσ dcd‖A‖2

)2/d)
. (15)

Note that although (14) seems like an estimate similar to integrability properties of eigenfunc-
tions of the generator Lμ of the Glauber dynamics associated to μ, we do not believe that it can
be derived in a similar manner. The reason is that for a nonuniform measure μ the functions fd,A

are not eigenfunctions of Lμ, which can easily be seen in the case d = 1.
It is possible to refine the tail estimates further by considering different norms of A. As we

shall not need it in the present work, we refer to [2] and [18].

4. Weak dependence of the models

We will finally introduce the concept of weakly dependent random variables. Let μ be a spin
system on Y = X I . Define an interdependence matrix (Jij )i,j∈I as any matrix with Jii = 0 and
such that for any x, y ∈ Y with xj = yj we have

dTV
(
μ(· | xi),μ(· | yi)

) ≤ Jij . (16)

The matrix J (or any norm thereof) may be interpreted as measuring the strength of the interac-
tions between the spins in the spin system μ. (In particular, note that J = 0 is an interdependence
matrix for product measures μ.) Moreover, we need to control the minimal probabilities of the
marginal distributions of the spin system μ. To this end, define for any subset S � I and any
i /∈ S

β̃i,S(μ) := inf
xS∈X S

μS(xS)>0

inf
ySc∈X Sc

μ(ySc ,xS)>0

μ
(
(ySc )i | xS

)
. (17)

If S = ∅, this reads β̃i,∅(μ) = infy∈Y :μ(y)>0 μ(yi). The interpretation of β̃i,S(μ) is straightfor-
ward: For any admissible partial configuration xS ∈ X S , all possible marginals are supported on
points with probability at least β̃i,S(μ). Now let

β̃(μ) := inf
S�I

inf
i /∈S

β̃i,S(μ)
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be the infimum of all β̃i,S(μ). Note that if there are no hard constraints, that is, μ has full support,
we have β̃(μ) = I (μ) = mini∈I miny∈Y μ(yi | yi).

We say that μ is (α1, α2)-weakly dependent, if for some interdependence matrix J

β̃(μ) ≥ α1 and ‖J‖2→2 ≤ 1 − α2.

Theorem 4.1. Let μ be a (α1, α2)-weakly dependent spin system.

1. For any function f : Y → R+ vanishing outside of suppμ, we have

Entμ(f ) ≤ 1

α1α
2
2

∑
i∈I

∫
Entμ(·|xi)

(
f (xi, ·)

)
dμ(x). (18)

2. μ satisfies mLSI(ρ0) for ρ0 := 2|I|α−1
1 α−2

2 .
3. μ satisfies LSI(σ 2) for σ 2 := log(α−1

1 )(log(2)α1α
2
2)−1.

Proof of Theorem 4.1. (1): The entropy tensorization property has been established in [24] (see
also [19], Theorem 4.2, with a better constant). The condition on the full support of μ can be
weakened by adapting the definition of β in [19], Theorem 4.2.

(2): Let us define �0 := suppμ, where supp is the support of μ, that is, supp(μ) := {y ∈ Y :
μ(y) > 0}. The first part yields for any f : Y → R vanishing outside of �0

Entμ(f ) ≤ 1

α1α
2
2

∑
i∈I

∫
Entμ(·|xi )

(
f (xi, ·)

)
dμ(x). (19)

This is equivalent to the fact that on the probability space (�0,μ), any function f : �0 → R+
satisfies the same inequality, which we shall work with from now on. For any probability measure
(�,F, ν) and any function f such that f, ef ∈ L2(ν), we have by Jensen’s inequality and the
symmetry in the covariance

Entν
(
ef

) ≤ Covν

(
f, ef

) =
∫ (∫ (

f (y) − f (x)
)
dν(x)

)
ef (y) dν(y). (20)

Apply the inequality (20) to the integral on the right-hand side of equation (19) to get

Entμ
(
ef

) ≤ 1

α1α
2
2

∑
i∈I

∫ (∫ (
f (x) − f (xi, y)

)
dμ(y | xi)

)
ef (x) dμ(x). (21)

Finally, observe that for the transition matrix P and the generator −L = I − P of the Glauber
dynamics (on �0) we have

E
(
ef , f

) = Eμ

(
ef (−Lf )

) =
∫ ∑

y∈�0

(
f (x) − f (y)

)
P(x, y)ef (x) dμ(x)

= 1

|I|
∑
i∈I

∫∫ (
f (x) − f (xi, y)

)
dμ(y | xi)e

f (x) dμ(x),

so that (21) may be rewritten as Entμ(ef ) ≤ |I|
α1α

2
2
E(ef , f ), which yields the claim.
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(3): For any i ∈ I , any y ∈ Y with μ(y) > 0 the measure μ(· | yi) is a measure on X with
minx∈X μ(x | yi) ≥ α1, and so [6], Remark 6.6, yields

Entμ(·|yi )

(
g2) ≤ −2 log(α1)

log(2)
Varμ(·|yi )(g),

which plugged into equation (18) leads to

Entμ
(
f 2) ≤ 2

− log(α1)

log(2)α1α
2
2

∑
i∈I

∫
Varμ(·|yi )

(
f (yi, ·)

)
dμ(y)

= 2σ 2
∫ ∣∣df (y)

∣∣2
dμ(y). �

Next, we prove that all the models defined in Section 1.1 satisfy the conditions of Theorem 4.1.

Proposition 4.2. If β is such that 1
2�′|β|(1) < 1, then μβ satisfies the conditions of Theorem 4.1.

Proof of Proposition 4.2. It is convenient to introduce some notation for the exponential random
graph model. For any graph x ∈ Gn and any edge e = (i, j) ∈ In, let xe+ (resp., xe−) be the graph
with edge set E(xe+) = E(x) ∪ e (E(xe−) = E(x) \ e respectively). For any function f : Gn →
R we define the discrete derivative in the eth direction as def (x) = f (xe+) − f (xe−). More
generally, given edges e1, . . . , ek we define de1···ek

recursively, that is, de1···ek
f = de1(de2···ek

f ).
It is easy to see that the definition does not depend on the order of the edges and deef = 0. The
partial derivatives of the Hamiltonian are given by

deH(x) = 2β1 + n2
s∑

i=2

βi

n|Vi |
(
NGi

(xe+) − NGi
(xe−)

)
.

Now we use the fact if Gi injects into xe−, then it also injects into xe+, and hence the
sum is only nonzero if the edge e is essential for the injection, and write NGi

(x, e) to de-
note the number of injections of Gi into x which use the edge e ∈ E(x), so that deH(x) =
2β1 + n2 ∑s

i=2
βi

n|Vi | NGi
(x, e). Especially this gives |deH(x)| = O(1).

We want to apply Theorem 4.1. The spin system is given by Yn := {0,1}In , and μn

is the push-forward of the measure associated to the exponential random graph model
ERGM(β,G1, . . . ,Gs) on Gn. The condition on the conditional distributions is easy to check,
since for any e ∈ In and any y ∈ Yn

μn(ye | ye) = 1

2

(
1 + tanh

(
deH(y)/2

))
and deH(y) = O(1), where the constant depends on (|β|,G1, . . . ,Gs) only. Hence it remains to
prove the second condition. To this end, let again x = xf +, y = xf − be two graphs which differ
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in one edge f only, and observe that for each other edge e

dTV
(
μn(· | xe),μn(· | ye)

) = 1

2

∣∣tanh
(
deH(xf +)/2

) − tanh
(
deH(xf −)/2

)∣∣
≤ 1

4

∣∣df eH(x)
∣∣ ≤ n2

4

s∑
i=2

|βi |NGi
(x,f, e)

n|Vi |

≤ n2

4

s∑
i=2

|βi |NGi
(Kn,f, e)

n|Vi | ,

that is, Jf e ≤ n2

4

∑s
i=2|βi |NGi

(Kn,f,e)

n|Vi | . Thus after summation in f ∈ In we obtain by [4],
Lemma 9(c),

∑
f �=e

Jf e ≤ n2

4

s∑
i=2

|βi |
∑
f �=e

NGi
(Kn,f, e)

n|Vi | = 1

2

s∑
i=2

|βi ||Ei |
(|Ei | − 1

) = 1

2
�′|β|(1).

Since the right-hand side is independent of e ∈ In, this yields ‖J‖1→1 ≤ 1
2�′|β|(1) < 1. More-

over, J is a symmetric matrix, so that we have ‖J‖2→2 ≤ ‖J‖1→1. �

Proposition 4.3. Let μβ be the vertex-weighted exponential random graph model and assume
that supλ∈(0,1)|ϕ′

β(λ)| < 1. μβ satisfies the conditions of Theorem 4.1.

Proof of Proposition 4.3. Since xi ∈ {0,1} implies xk
i = xi for all k ∈ N, we can rewrite the

Hamiltonian using the order parameter S := ∑n
i=1 xi as

μ(x) = Z−1 exp

(
β1

n
S(S − 1) + β2

n2
S(S − 1)(S − 2) + log

p

1 − p
S

)
.

Hence for X := {0,1} and In := {1, . . . , n} we are in the situation of Theorem 2.2, and it re-
mains to check conditions (2) and (3). Observe that we have (with the same notation as in the
exponential random graph models)

μ(1 | xe) = exp(deHn(xe,1))

1 + exp(deHn(xe,1))
= 1

2

(
1 + tanh

(
deHn(x)/2

))
,

where in this case |deHn(x)| = | 2β1
n

∑
i �=e xi + 3β2

n2

∑
i �=j,i,j �=e xixj + log(p/(1−p))| is bounded

by a constant depending on β , so that a lower bound on the conditional probabilities holds. The
inequality (3) is already implicitly proven in the proof of [13], Lemma 6, which we modify. Fix
a site e ∈ In and two configurations x, y differing solely at f ∈ In, that is, xf = 1, yf = 0, and
let S := ∑n

i=1 yi . We have

dTV
(
μ(· | xe),μ(· | ye)

) = 1

2

∣∣tanh
(
deHn(xe,1)

) − tanh
(
deHn(ye,1)

)∣∣
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and since Hn (and as a consequence deHn) only depends on the sum S of a vector, by defining
hn(λ) := β1λ + β2λ

2 − β2
n

λ + log(p/(1 − p)) we can estimate for some ξ ∈ (0,1)

Jf e ≤
∣∣∣∣ exp(hn((S + 1)/n))

1 + exp(hn((S + 1)/n))
− exp(hn(S/n))

1 + exp(hn(S/n))

∣∣∣∣ = 1

n

∣∣∣∣
(

exp◦hn

1 + exp◦hn

)′
(ξ)

∣∣∣∣. (22)

Lastly, if we define h(λ) = β1λ + β2λ
2 + log(p/(1 − p)), using the Lipschitz property of the

function exp(x)/(1 + exp(x)) it can be shown that∣∣∣∣ exp◦hn

1 + exp◦hn

− exp◦h

1 + exp◦h

∣∣∣∣ = O
(
n−1)

and hn can be replaced by h in (22) with an error of O(n−2). By summing up over f �= e, we
obtain for n large enough and all parameters such that

sup
λ∈(0,1)

∣∣∣∣ exp◦h

1 + exp◦h

′∣∣∣∣ < 1 (23)

that (3) holds. �

Remark. Note that the condition (23) can be written in terms of the functions defined for expo-
nential random graphs. More specifically, we have for any x ∈ R

exp(h(x))

1 + exp(h(x))
= ϕβ̃1,β̃2,β̃3

(x)

for the ERGM μβ given by the three parameters β̃1 = log(p/(1−p))
2 , β̃2 = β1

4 , β̃3 = β2
6 and the

three graphs G1 an edge, G2 a 2-star and G3 a triangle.

Proposition 4.4. Let Gn = (Vn,En) be a sequence of graphs with uniformly bounded maximum
degree � and k ≥ 2� + 1. Then the conditions of Theorem 4.1 hold for the random coloring
model μGn with α1, α2 independent of n.

Proof of Proposition 4.4. This is again an application of Theorem 4.1. Let us first show that
Jv,w := 1

�+11v∼w can be used as an interdependence matrix. To see this, let c1, c2 ∈ �0 be two
colorings that differ only in one vertex v1, and v2 be another vertex. In the case v1 ∼ v2 (in Gn)
the measures μv2(· | ci

v2) are uniform on C \ {ci
vk

: vk ∼ v1} for i = 1,2, and hence

dTV
(
μv2

(· | c1
v2

)
,μv2

(· | c2
v2

))
= 1

2

(
1

k − |{c1
v2 : v2 ∼ v1}|

+ 1

k − |{c2
v2 : v2 ∼ v1}|

)
≤ 1

k − �
≤ 1

� + 1
.
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On the other hand, if v2 � v1, then μv2(· | ci
v2) are equal and thus Jv1,v2 = 0. Since J is a

symmetric matrix, we obtain

‖J‖2→2 ≤ ‖J‖1→1 ≤ max
vj ∈Vn

∑
vi∈Vn

Jvi ,vj
≤ �

� + 1
< 1.

Moreover, we have to show that β̃(μn) ≥ α1 uniformly in n ∈ N. Let S � Vn,S �=∅ be arbitrary,
v1 /∈ S and cS ∈ CS be a proper coloring of G |S= (S,En ∩ S × S) and cv1 ∈ C \ {cv2 : v2 ∈
S, v2 ∼ v1}. Using the definition �0(G) for the set of all proper colorings of an arbitrary graph
G (with a fixed number of colors, here k), we have

μS

(
cv1 | cS

) = μ(cv1, cS)

μ(cS)
= |�0(G |S)|

|�0(G |S∪v1)|
. (24)

It is clear that |�0(G |S)| = 1
|C| |�0(G̃S)|, where G̃S is obtained by adding an isolated vertex v1

to S. Hence we fix the vertex set S ∪ v1 and rewrite equation (24) as follows. Let N(v1, S) =
{v2 ∈ S : v2 ∼ v1} = {e1, . . . , el} be the neighbors of v1 in S and for any e1, . . . , ek ∈ N(v1, S) let
Ge1,...,ek

be the graph with edge set (En ∩ S × S) ∪ {e1, . . . , ek}, so that

μS

(
cv1 | cS

) = 1

|C|
l∏

k=1

|�0(Ge1,...,ek−1)|
|�0(Ge1,...,ek)|

.

By [21], equation (2), it follows that each of the ratios is bounded from below by a constant
depending on �, thus resulting in μS(cv1 | cS) ≥ |C|−1c(�), with a possible choice c(�) =
(�+1
�+2 )�. The case S = ∅ is easier, as μi(c

i) = 1
|C| by the invariance of the random coloring

model induced by a relabeling of the colors C. �

Proposition 4.5. Let G = (V ,E) be any graph with maximum degree �. The conditions of
Theorem 4.1 hold for the hard core model μλ with fugacity λ, and α1, α2 depend on � only.

Proof of Proposition 4.5. Since we are going to require hard-core models corresponding to
various graphs, we will write μG to emphasize the graph under consideration. The fugacity λ will
not change. Let us show that Jv1,v2 = λ

1+λ
1v1∼v2 can be used as an interdependence matrix. Let

v1 ∈ V be a site, σ 1, σ 2 ∈ Y be two admissible configurations differing only at site v1 (without
loss of generality σ 1

v1
= 1, σ 2

v1
= 0), and v2 ∈ V be another site. If v2 ∼ v1, then μG(1 | σ 1

v1
) =

0, whereas μG(1 | σ 1
v1

) = λ
1+λ

. If v2 � v1, we have μG(· | σ 1
v1

) = μG(· | σ 2
v1

). Hence by the
symmetry of J

‖J‖2→2 ≤ ‖J‖1→1 ≤ �
λ

1 + λ
< 1

which is a consequence of λ < 1
�−1 .

To see that there is a lower bound on the conditional probabilities, let us first consider the case
S = ∅. Let v ∈ V be arbitrary, write N(v) for the neighborhood of v and A for the complement
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of v ∪ N(v), and observe that

μG(σv = 1) = μ(σv = 1, σN(v) = 0) = Z−1
∑
σ̃A

μ(σv = 1, σN(v) = 0, σA = σ̃A)

= λZ−1
∑
σ̃A

λ|̃σA| =: λZ−1ZA,

where the summation is over all admissible configurations. Note that due to σN(v) = 0 these
are actually all admissible configurations of the graph G |A= (A,E ∩ A × A). The normalizing
constant can be bounded from above and below by

Z =
∑

σ̃A adm.

λ|̃σA| ∑
σ̃Ac

λ|̃σAc |1(̃σA,̃σAc ) adm. ≤ 2�+1ZA

and Z ≥ (λ+ 1)ZA, which follows by only considering the configurations σv = 1, σN(v) = 0 and
σv∪N(v) = 0. As a consequence, we have

λ

2�+1
≤ μ(σi = 1) ≤ λ

λ + 1
. (25)

The case S �=∅ follows by a reduction argument. Let σ̃S be an admissible configuration of G |S
and let T := {w ∈ S : σw = 0} ⊂ S be the free sites in S. By explicitly calculating the conditional
probability, one can see that for any configuration σSc and any v /∈ S we have μG(σv = 1 | σS =
σ̃S) = μG|V \T (σv = 1 | σS\T = (1, . . . ,1)). The graph G |V \T can be decomposed into three
parts: (T ,N(T ),R), where N(T ) = ⋃

v∈T N(v) and

μG(σv = 1 | σS = σ̃S) = μG|R (σv = 1),

which has an upper and lower bound by inequality (25) and so we ultimately get β̃(μG) ≥
c(�,λ). �

5. Proofs of the mixing time results

With the results of the last section, the proof of the mixing time results is straightforward.

Proof of Theorem 2.1. Propositions 4.2, 4.3, 4.4 and 4.5 show that all the models satisfy the
conditions of Theorem 4.1. Thus, a mLSI(ρ0) with ρ0 ≤ C|In| holds, where the constant de-
pends on the underlying parameters, but not on n. Hence the assertion follows immediately from
Theorem 2.2. �

Proof of Theorem 2.2. The mLSI(ρ0) property follows immediately from Theorem 4.1. Equa-
tion (4) is a consequence of [6], Theorem 2.4, noting that our mLSI constant ρ0 corresponds to
1/ρ0 in [6].
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Now let (μn)n be a sequence of spin systems with sites (In)n, spins X , and define Yn =
supp(μn) ⊂X In . To prove rapid mixing, note that

2

ρ0
= inf

{ E(ef , f )

Entμn(e
f )

: f �= const

}
≥ α1α

2
2

2|In| .

If we denote μ∗
n = miny∈Yn

μn(y), [6], Corollary 2.8, yields

dTV
(
P t (y, ·),μn

)2 ≤ 2 log

(
1

μ∗
n

)
exp

(−2ρ−1
0 t

) ≤ 2 log

(
1

μ∗
n

)
exp

(
−α1α

2
2

2|In| t
)

.

Hence for t = 2|In|
α1α

2
2

· (log 2 + 2 + log log(1/μ∗
n)), we have maxy∈Yn

dTV(P t (y, ·),μn)
2 ≤ e−2,

that is, tmix(n) ≤ 2|In|
α1α

2
2

· (log 2 + 2 + log log(1/μ∗
n)).

The last step is to show log log 1/μ∗
n = O(log|In|). This follows using the definition of α1,

since by conditioning and iterating we obtain for any y ∈ Yn

1

μn(y)
= 1

μn(yi | yi)
μn(yi)

−1 ≤ α−1
1 μn(yi)

−1 ≤ · · · ≤ α
−|In|
1 .

Hence, tmix = O(|In| log|In|). �

Proof of Corollary 2.3. If there are no hard constraints, that is, μ has full support, then β̃(μ)

can be simplified to

β̃(μ) = I (μ) := min
i∈I

min
y∈Y

μn(yi | yi).

This can be shown by conditioning for any S ⊂ I and any xS ∈X S

μ(yi | xS) = μ(xS)−1
∑

z∈XI\(S∪i)

μ(yi | xS, z)μ(xS, z) ≥ I (μ),

and the reverse inequality follows by taking S = I \ {j}. �

6. Proofs of the concentration of measure results

Proof of Theorem 3.1. The proof is an application of Theorem 4.1, see the proof of Theo-
rem 2.1. �

We will use Theorem 3.7 to prove several results for finite spin systems. The most important
cases of Theorem 3.7 will be d = 1,2,3. It is easy to check that

f1,A :=
∑
i∈I

Aif̃i, f2,A :=
∑
i,j∈I

Aij (f̃i f̃j − μ̃ij ),
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f3,A :=
∑

i,j,k∈I
Aijk(f̃i f̃j f̃k − μ̃ijk − f̃i μ̃jk − f̃j μ̃ik − f̃kμ̃ij ).

6.1. Exponential random graph model

We apply the general result on the concentration of the polynomials fd,A from (13) with the spin
function f (x) = x. Before we prove Theorem 3.2 this way (corresponding to d = 3), let us give
a simple example which already demonstrates some of the arguments we will use.

Example. Let μβ be an ERGM satisfying a d-LSI(σ 2), and let T1(x) := ∑
e∈In

xe be the num-
ber of edges. Moreover, for any two disjoint subsets S1, S2 ⊂ {1, . . . , n}, write C(S1, S2) := {e =
(i, j) ∈ In : {i, j} ∩ S1 �= ∅, {i, j} ∩ S2 �=∅} and let TS1,S2 := ∑

e∈In
1C(S1,S2)(e)xe be the num-

ber of edges between S1 and S2. Then

μβ

(|T1 −Eμβ (T1)| ≥ t
) ≤ 2 exp

(
− log(2)t2

e2σ 2n(n − 1)

)
, (26)

μβ

(∣∣TS1,S2 −Eμβ
(TS1,S2)

∣∣ ≥ t
) ≤ 2 exp

(
− log(2)t2

2e2σ 2|S1||S2|
)

. (27)

In particular, setting η := Eμβ
(xe) for e ∈ In arbitrary, we obtain a strong law of large numbers,

that is, T1/|In| → η a.s.

Proof. Noting that T1 − Eμβ
(T1) = f1,A for A = (1, . . . ,1), (26) readily follows from Theo-

rem 3.7. Equation (27) follows by similar arguments. To prove the strong law of large numbers,
first note that by the intrinsic symmetry (i.e., a relabeling of the vertices {1, . . . , n} and a respec-
tive relabeling of the edges will result in the same probability law), it is easy to see that μβ(xe)

does not depend on e ∈ In. Thus, η is well-defined and Eμβ
(T1) = |In|η. Now, (26) yields that

T1/|In| converges to η in probability, and the rate of convergence is of order exp(−�(n2)),
which in turn implies convergence almost surely. �

In a similar vein, we may now prove Theorem 3.2. To this end, we shall express the number
of triangles as a linear combination of polynomials of the type fd,A.

Proof of Theorem 3.2. For the proof, fix n ∈ N and let X ∼ μβ . Moreover, we will write μ� :=
EXe1e2e3 , μ̃� := X̃e1e2e3 for some triangle {e1, e2, e3}, μ2 := EXe1e2 , μ̃2 := E X̃e1e2 for two
neighboring edges e1 �= e2, μ1 := EXe and lastly (e1, e2, e3) ∈ Tn to indicate that {e1, e2, e3} ∈
Tn and e1 < e2 < e3 (with some fixed partial ordering of the edges).

Now it is not hard to verify that we can decompose T3(X) −ET3(X) as

T3(X) −ET3(X) = f3(X) + μ1f2(X) + (n − 2)μ2f1(X), (28)
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using the auxiliary functions

f1(X) :=
∑
e∈In

X̃e, f2(X) :=
∑

e1<e2
e1∩e2 �=∅

(X̃e1e2 − μ̃e1e2),

f3(X) :=
∑

(e1,e2,e3)∈Tn

(X̃e1e2e3 − μ̃� − X̃e1μ̃2 − X̃e2μ̃2 − X̃e3μ̃2).

Hence, after symmetrization of the sum, the triangle count is the sum of three terms fd,A

for different tensors A3, A2, A1 given by (A3)efg = 1/6 · 1{e,f,g}∈Tn
, (A2)ef = μ1

2 1e∩f �=∅ and
(A1)e = (n − 2)μ2. An easy counting argument shows ‖A3‖2 ∼ n3/2/6, ‖A2‖2 ∼ μ1n

3/2/2 and
‖A1‖2 ∼ μ2n

2/
√

2.
An application of Theorem 3.7 yields

∥∥T3(X) −ET3(X)
∥∥

p
≤ (

σ 2‖A3‖2/3
2 p

)3/2 + (
σ 2‖A2‖2p

) + (
σ 2‖A1‖2

2p
)1/2

,∥∥T3(X) −ET3(X) − (n − 2)μ2f1(X)
∥∥

p
≤ (

σ 2‖A3‖2/3
2 p

)3/2 + (
σ 2‖A2‖2p

)
.

The assertion now follows as in the proof of Theorem 3.6. �

Remark. In the case of the Erdős–Rényi model, the decomposition (28) is simply the Hoeffding
decomposition, with (n − 2)μ2f1(X) as the first order and μ1f2(X) as the second order Hoeffd-
ing term, which also coincides with the decomposition of the function T3(X) in L2 in terms of the
orthonormal basis (fS(X))S⊂In

, fS(X) = (p(1 − p))−|S|/2 ∏
s∈S(Xs − p); see also Section 6.2.

Proof of Corollary 3.3. Using (10), it can be shown that for any t > 0,

μβ

(∣∣∣∣T3 −Eμ T3 − (n − 2)μ2f1

(n − 2)μ2

√(
n
2

)
∣∣∣∣ ≥ t

)
→ 0 for n → ∞, (29)

and thus

T3 − μβ(T3)

(n − 2)μ2

√(
n
2

) = T3 − μβ(T3) − (n − 2)μ2f1

(n − 2)μ2

√(
n
2

) + 1√(
n
2

)f1 ⇒N
(
0, σ 2)

by [5], Theorem 3.1, and the assumption. �

Remark. Actually equation (29) can be quantified; by (10), the convergence to 0 is of the order
exp(−�(n1/3)), which also implies

(
(n − 2)μ2

(
n

2

)1/2)−1(
T3 −Eμ T3 − (n − 2)μ2f1

) → 0 almost surely.
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Proof of Proposition 3.4. By the triangle inequality for dW it suffices to prove that dW (T̃3, L̃) ≤
Cn−1/2. For any 1-Lipschitz function, we have due to |f (x)−f (y)| ≤ |x −y|, Theorem 3.2 and
a change of variables s = n1/2tμ2

∣∣Eμβ
f (T̃3) −Eμβ

f (L̃)
∣∣ ≤

∫ ∞

0
μβ

(∣∣∣∣T3(x) − (n − 2)μ2

∑
e∈In

x̃e

∣∣∣∣ ≥ (n − 2)μ2

(
n

2

)1/2

t

)
dt

≤ 2
∫ ∞

0
exp

(
− 1

C
min

((
μ2n

1/2t
)2/3

,μ2n
1/2t

))
dt

≤ 2n−1/2μ−1
2

∫ ∞

0
exp

(
− 1

C
min

(
s2/3, s

))
ds.

Taking the supremum over all f ∈ Lip1 finishes the proof. �

6.2. Central limit theorems for subgraph counts in Erdös–Rényi graphs

For the Erdős–Rényi model and for p ∈ (0,1) we define σ 2(p) := log(1−p)−log(p)
1−2p

. Since μn,p

is a product measure on {0,1}n(n−1)/2, by the tensorization property and [14], Theorem A.2, we
have

Entμn,p

(
f 2) ≤ σ 2(p)

∫ ∑
i �=j

Varμij
(f ) dμn = σ 2(p)

∫
|df |2 dμn,p, (30)

that is, μn,p satisfies an LSI(σ 2(p)). Note that as p → 0 we have σ 2(p) ∼ log(1/p), that is, the
logarithmic Sobolev constant tends to infinity, however at a logarithmic scale.

Proof of Theorem 3.5. Let a := (|Aut(G)|)−1. We make use of the L2(μn,p) (or Hoeffding)
decomposition of TG with respect to the orthonormal basis (fS)S⊂In

given by fS = (p(1 −
p))−|S|/2 ∏

s∈S(Xs − p), that is,

TG =
∑
S⊂In

〈TG,fS〉fS =
|E|∑
k=0

∑
S⊂In|S|=k

〈TG,fS〉fS =:
|E|∑
k=0

Tk = μn,p(TG) +
|E|∑
k=1

Tk.

For arbitrary k ∈ {1, . . . , |E|}, we obtain from the representation (11),

Tk = a
(
p(1 − p)

)−k
∑

{f1,...,fk}

∑
f :V →[n] inj

〈∏
e∈E

Xf (e), X̃f1···fk

〉
X̃f1···fk

.
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For fixed f1, . . . , fk , the scalar product is zero unless the injection uses all edges f1, . . . , fk ,
giving

Tk = a
(
p(1 − p)

)−k
∑

{f1,...,fk}
X̃f1···fk

∑
f :V →[n] inj. uses edges f1,...,fk

p|E|−k
(
p(1 − p)

)k

= ap|E|−k
∑

{f1...fk}
X̃f1···fk

NG(f1, . . . , fk),

where NG(f1, . . . , fk) := |{f : V → [n] inj. : f uses edges f1, . . . , fk}|. Especially we have

T1 =
∑

e

〈TG,f{e}〉f{e} = 2a|E|p|E|−1(n − 2)|V |−2

∑
e

X̃e.

We now claim that ∑|E|
k=2 Tk

2a|E|(n − 2)|V |−2p|E|−1
√(

n
2

)
p(1 − p)

→ 0 in probability,

from which the result immediately follows, since the normalized first order Hoeffding term con-
verges weakly to a standard normal distribution by the central limit theorem for i.i.d. random
variables.

Let us further split the kth Hoeffding term. Denote by α(f1, . . . , fk) the number of vertices
that are used in the graph induced by the edge set {f1, . . . , fk} and let αk denote the minimal
number of vertices in a subgraph of G with k edges. Clearly, α(f1, . . . , fk) ∈ {αk, . . . ,2k ∧ |V |},
where a ∧ b := min(a, b). This results in the decomposition

Tk =
|V |∧2k∑
α=αk

Tk,α and T̃G := TG − μn,p(TG) − f1 =
|E|∑
k=2

|V |∧2k∑
α=αk

Tk,α.

Using the Lq(μn,p) estimates from Proposition 3.7 yields for all q ≥ 2,

‖T̃G‖q ≤
|E|∑
k=2

|V |∧2k∑
α=αk

‖Tk,α‖q ≤
|E|∑
k=2

|V |∧2k∑
α=αk

(
σ 2(p)p|E|−k

∥∥A(k,α)
∥∥k/2

2 q
)2/k

.

Let c(n,p) := (|E|(n− 2)|V |−2p
|E|−1

√(
n
2

)
p(1 − p)). The Lq estimates can be used to show the

multilevel concentration inequality (as in the proof of Theorem 3.6)

μn,p

(
c(n,p)−1|T̃G| ≥ t

) ≤ 2 exp

(
− 1

Cσ 2(p)
min

2≤k≤|E| min
αk≤α≤2k∧|V | t

2/kh
2/k
n,k,α

)

with hn,k,α := c(n,p)

p|E|−k‖A(k,α)‖ 2
, and it remains to prove that mink=2,...,|E| hn,k,α → ∞. To this end,

we estimate ‖A(k,α)‖2 from above as follows. If there are α vertices used by the edges f1, . . . , fk ,
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there are at most n|V |−α ways to have an injection of V into [n] using the edges f1, . . . , fk , and
there are at most nα such combinations of f1, . . . , fk , and thus∥∥A(k,α)

∥∥
2 ≤ n|V |−αnα/2 = n|V |−α/2.

For k ≥ 2, this gives for some constant c(G) depending on the graph G

hn,k,α = c(n,p)

p|E|−k‖A(k,α)‖2
≥ c(G)

n|V |−1p|E|−1/2

n|V |−α/2p|E|−k
≥ c(G)

(
nα−2p2k−1)1/2

leading to the condition mink=2,...,|E| minα∈{αk,...,2k∧|V |} np(2k−1)/(α−2) = npd ′(G) → ∞. �

6.3. Proofs of the general results

Proof of Theorem 3.6. First, note that since μ satisfies a d-LSI(σ 2), by [19], Proposition 2.4,
we obtain for any p ≥ 2

‖f −Eμ f ‖p ≤ (
σ 2p

)1/2‖hf ‖p. (31)

Next, we iterate (31) using |h|h(d−1)f || ≤ |h(d)f | (cf. [19], Lemma 2.3), leading to

‖f −Eμ f ‖p ≤
d−1∑
k=1

(
σ 2p

)k/2∥∥h(k)f
∥∥

2 + (
σ 2p

)d/2∥∥h(d)f
∥∥

p
. (32)

To prove the multilevel concentration bounds (12), we use methods outlined in [1], Theorem 7
and [3], Theorem 3.3. To sketch the method in a slightly more general situation, assume that
there are constants C1, . . . ,Cd ≥ 0 such that for any p ≥ 2

‖f −Eμ f ‖p ≤
d∑

k=1

(Ckp)k/2.

Let N := |{n : Cn > 0}| and r := min{k ∈ {1, . . . , d} : Ck > 0}. By Chebyshev’s inequality, we
have for any p ≥ 1

μ
(|f −Eμ f | ≥ e‖f −Eμ f ‖p

) ≤ exp(−p). (33)

Now consider the function

ηf (t) := min

{
t2/k

Ck

: k = 1, . . . , d

}
,

with x
0 being understood as ∞. If we assume ηf (t) ≥ 2, we can estimate e‖f − Eμ f ‖ηf (t) ≤

e
∑d

k=1 1Ck �=0t = Net , so that an application of equation (33) to p = ηf (t) yields

μ
(|f −Eμ f | ≥ (Ne)t

) ≤ μ
(|f −Eμ f | ≥ e‖f −Eμ f ‖ηf (t)

) ≤ exp
(−ηf (t)

)
.
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Combining it with the trivial estimate μ(·) ≤ 1 (in the case ηf (t) ≤ 2) gives

μ
(|f −Eμ f | ≥ (Ne)t

) ≤ e2 exp
(−ηf (t)

)
.

To remove the Ne factor, rescaling the function by Ne and using the estimate η(Ne)f (t) ≥ ηf (t)

(Ne)2/r

yields

μ
(|f −Eμ f | ≥ t

) ≤ e2 exp

(
− 1

(Ne)2/r
ηf (t)

)
.

In a last step, note that e2 exp(−(Ne)−2/rη(t)) ≤ 2 exp(− log(2)(Ne)−2/rη(t)/2) in the nontriv-
ial regime (Ne)−2/rη(t) ≥ 2, so that

μ
(|f −Eμ f | ≥ t

) ≤ 2 exp

(
− log(2)

2(Ne)2/r
ηf (t)

)
. �

To prove Theorem 3.7, let us introduce another notation. For any indices l1, . . . , ls ∈ I and s

distinct indices k1, . . . , ks ∈ {1, . . . , d} let Ak1=l1,...,ks=ls be the (d − s)-tensor with fixed entries
ki = li for all i = 1, . . . , s. For example, if A = (Aijkl) is a 4-tensor, A2=j,3=i is the 2-tensor

given by A
2=j,3=i
kl = Akjil . Clearly, if A is symmetric, then Ak1=l1,...,ks=ls is symmetric; and if

A has a vanishing diagonal, then so has Ak1=l1,...,ks=ls .

Proof of Theorem 3.7. To see that Eμ fd,A = 0 fix i1, . . . , id and an arbitrary decomposition
P ∈ P({i1, . . . , id}). If N(P ) = 1, then gP has mean zero. On the other hand, if N(P ) ≥ 2, then
P = {{i1}, . . . , {iN(P )}, I1, . . . , Il} (l ≥ 0), but the set P̃ = {{i1, . . . , iN(P )}, I1, . . . , Il} is also a
valid partition and gP̃ = Eμ gP . As a consequence, Eμ fd,A = 0.

For any l ∈ I, write Tl for the formal operator that replaces xl by x̂l , and use the shorthand
notation xI := (xi)i∈I for any I ⊂ I . We shall make use of the inequality

hl(fd,A) = sup
xl ,x̂l

∣∣∣∣ ∑
I=(i1,...,id )

AI

∑
P∈P(I )

(−1)M(P )
(
gP (xI ) − gP

(
Tl(xI )

))∣∣∣∣
= sup

xl ,x̂l

∣∣∣∣∣(f (xl) − f (x̂l)
) d∑

k=1

∑
I=(i1,...,id−1)

Ak=l
I

∑
P∈P(I )

(−1)M(P )gP (xI )

∣∣∣∣∣
≤ c

∣∣∣∣∣
d∑

k=1

∑
I=(i1,...,id−1)

Ak=l
I

∑
P∈P(I )

(−1)M(P )gP (xI )

∣∣∣∣∣
= c|

d∑
k=1

fd−1,Ak=l |.

Here, the second equality follows from the fact that Tl(xi1, . . . , xid ) = (xi1, . . . , xid ) unless ij = l

for some j and the definition of gP , and the inequality in the third line is a consequence of the
assumptions.
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We can assume c = 1, since the general case follows by rescaling f by c−1. First, by the
d-LSI(σ 2) property we have

‖fd,A‖2
p ≤ ‖fd,A‖2

2 + σ 2(p − 2)
∥∥h(fd,A)

∥∥2
p
.

Using the Poincaré inequality with respect to h (6) gives

‖fd,A‖2
2 ≤ σ 2

∑
l1

μ
(
(hl1fd,A)2) ≤ σ 2

∑
l1

μ
(
(h̃l1fd,A)2) = σ 2‖̃hfd,A‖2

2 ≤ σ 2‖̃hfd,A‖2
p,

where h̃l replaces supxl ,x̂l
|f (xl) − f (x̂l)| by 1. Clearly, since hlfd,A ≤ h̃lfd,A pointwise, the

Lp-norms can be estimated as well, resulting in ‖fd,A‖2
p ≤ σ 2(p − 1)‖̃hfd,A‖2

p . We have

h̃l1fd,A =
∣∣∣∣∣

d∑
k1=1

∑
I=(i1,...,id−1)

A
k1=l1
I

∑
P∈P(I )

(−1)M(P )gP

∣∣∣∣∣,
which itself is the absolute value of a sum of centered random variables, so that the process can
be iterated; in each step, the Poincaré inequality (6) can be used and

h̃l1 · · · h̃ls fd,A =
∣∣∣∣∣

d∑
k1=1

· · ·
d−s∑
ks=1

∑
I=(i1,...,id−s )

A
k1=l1,...,ks=ls
I

∑
P∈P(I )

(−1)M(P )gP

∣∣∣∣∣.
Thus, using the inequality h̃|̃h(d)f | ≤ |̃h(d+1)f | and taking the square root yields

‖fd,A‖p ≤ (
σ 2p

)d/2‖A‖2.

The multilevel concentration follows as in the proof of Theorem 3.6. �
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