We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on *strong consensus* (i.e., global agreement of all individuals) versus *weak consensus* (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $\mathbb{Z}$ with weak consensus but no strong consensus.

## References

*J. Funct. Anal.*

**276**2582–2588. 1408.81033 10.1016/j.jfa.2019.01.007[1] Bauerschmidt, R. and Bodineau, T. (2019). A very simple proof of the LSI for high temperature spin systems.

*J. Funct. Anal.*

**276**2582–2588. 1408.81033 10.1016/j.jfa.2019.01.007

*Probability and Measure*, 3rd ed.

*Wiley Series in Probability and Mathematical Statistics*. New York: Wiley. 0822.60002[2] Billingsley, P. (1995).

*Probability and Measure*, 3rd ed.

*Wiley Series in Probability and Mathematical Statistics*. New York: Wiley. 0822.60002

*Probability*:

*Theory and Examples*, 4th ed.

*Cambridge Series in Statistical and Probabilistic Mathematics*

**31**. Cambridge: Cambridge Univ. Press.[5] Durrett, R. (2010).

*Probability*:

*Theory and Examples*, 4th ed.

*Cambridge Series in Statistical and Probabilistic Mathematics*

**31**. Cambridge: Cambridge Univ. Press.

*Statistical Mechanics of Lattice Systems*:

*A Concrete Mathematical Introduction*. Cambridge: Cambridge Univ. Press. 1407.82001[6] Friedli, S. and Velenik, Y. (2018).

*Statistical Mechanics of Lattice Systems*:

*A Concrete Mathematical Introduction*. Cambridge: Cambridge Univ. Press. 1407.82001

*ALEA Lat. Am. J. Probab. Math. Stat.*

**11**409–444. 1302.60136[9] Hirscher, T. (2014). The Deffuant model on $\mathbb{Z}$ with higher-dimensional opinion spaces.

*ALEA Lat. Am. J. Probab. Math. Stat.*

**11**409–444. 1302.60136

*Adv. in Appl. Probab.*

**49**722–744. 1425.60081 10.1017/apr.2017.19[10] Hirscher, T. (2017). Overly determined agents prevent consensus in a generalized Deffuant model on $\mathbb{Z}$ with dispersed opinions.

*Adv. in Appl. Probab.*

**49**722–744. 1425.60081 10.1017/apr.2017.19

*ALEA Lat. Am. J. Probab. Math. Stat.*

**9**383–402. 1277.60178[11] Lanchier, N. (2012). The critical value of the Deffuant model equals one half.

*ALEA Lat. Am. J. Probab. Math. Stat.*

**9**383–402. 1277.60178

*Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften*[

*Fundamental Principles of Mathematical Sciences*]

**276**. New York: Springer. 0559.60078[12] Liggett, T.M. (1985).

*Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften*[

*Fundamental Principles of Mathematical Sciences*]

**276**. New York: Springer. 0559.60078

*J. Stat. Phys.*

**81**1007–1019. 1081.60562 10.1007/BF02179301[14] Stroock, D. and Zegarliński, B. (1995). On the ergodic properties of Glauber dynamics.

*J. Stat. Phys.*

**81**1007–1019. 1081.60562 10.1007/BF02179301