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Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure
between two sets of random variables. In this paper, motivated by the recent success of applying CCA to
learn low dimensional representations of high dimensional objects, we propose two losses based on the
principal angles between the model spaces spanned by the sample canonical variates and their population
correspondents, respectively. We further characterize the non-asymptotic error bounds for the estimation
risks under the proposed error metrics, which reveal how the performance of sample CCA depends adap-
tively on key quantities including the dimensions, the sample size, the condition number of the covariance
matrices and particularly the population canonical correlation coefficients. The optimality of our uniform
upper bounds is also justified by lower-bound analysis based on stringent and localized parameter spaces.
To the best of our knowledge, for the first time our paper separates p1 and p2 for the first order term in the
upper bounds without assuming the residual correlations are zeros. More significantly, our paper derives
(1 − λ2

k
)(1 − λ2

k+1)/(λk − λk+1)2 for the first time in the non-asymptotic CCA estimation convergence
rates, which is essential to understand the behavior of CCA when the leading canonical correlation coeffi-
cients are close to 1.
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1. Introduction

Canonical correlation analysis (CCA), first introduced in [17], is a fundamental statistical tool
to characterize the relationship between two groups of random variables and finds a wide range
of applications across many different fields. For example, in genome-wide association study
(GWAS), CCA is used to discover the genetic associations between the genotype data of single
nucleotide polymorphisms (SNPs) and the phenotype data of gene expression levels [7,30]. In
information retrieval, CCA is used to embed both the search space (e.g., images) and the query
space (e.g., text) into a shared low dimensional latent space such that the similarity between the
queries and the candidates can be quantified [15,22]. In natural language processing, CCA is
applied to the word co-occurrence matrix and learns vector representations of the words which
capture the semantics [8,9]. Other applications, to name a few, include fMRI data analysis [11],
computer vision [19] and speech recognition [2,27].
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The enormous empirical success motivates us to revisit the estimation problem of canonical
correlation analysis. Two theoretical questions are naturally posed: What are proper error metrics
to quantify the discrepancy between population CCA and its sample estimates? And under such
metrics, what are the quantities that characterize the fundamental statistical limits?

The justification of loss functions, in the context of CCA, has seldom appeared in the literature.
From first principles that the proper metric to quantify the estimation loss should depend on the
specific purpose of using CCA, we find that the applications discussed above mainly fall into two
categories: identifying variables of interest and dimension reduction.

The first category, mostly in genomic research [7,30], treats one group of variables as re-
sponses and the other group of variables as covariates. The goal is to discover the specific subset
of the covariates that are most correlated with the responses. Such applications are featured by
low signal-to-noise ratio and the interpretability of the results is the major concern.

In contrast, the second category is investigated extensively in statistical machine learning and
engineering community where CCA is used to learn low dimensional latent representations of
complex objects such as images [22], text [8] and speeches [2]. These scenarios are usually
accompanied with relatively high signal-to-noise ratio and the prediction accuracy, using the
learned low dimensional embeddings as the new set of predictors, is of primary interest. In recent
years, there has been a series of publications establishing fundamental theoretical guarantees for
CCA to achieve sufficient dimension reduction ([6,10,12,18,24] and many others).

In this paper, we aim to address the problems raised above by treating CCA as a tool for
dimension reduction.

1.1. Population and sample CCA

Let

x = [X1, . . . ,Xp1 ]� ∈ R
p1, y = [Y1, . . . , Yp2 ]� ∈ R

p2 (1.1)

be two sets of variates with the joint covariance matrix

Cov

([
x

y

])
= � :=

[
�x �xy

��
xy �y

]
. (1.2)

For simplicity, we assume

E(Xi) = 0, i = 1, . . . , p1, E(Yj ) = 0, j = 1, . . . , p2.

On the population level, CCA is designed to extract the most correlated linear combinations
between two sets of random variables sequentially: The ith pair of canonical variables

Ui = φ�
i x, Vi = ψ�

i y

maximizes

λi = Corr(Ui,Vi)
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such that Ui and Vi have unit variances and they are uncorrelated to all previous pairs of canonical
variables. Here (φi ,ψ i ) is called the ith pair of canonical loadings and λi is the ith canonical
correlation.

It is well known in multivariate statistical analysis that the canonical loadings can be found
recursively by the following criterion:

(φi ,ψ i ) = arg max φ��xyψ

subject to φ��xφ = 1, ψ��yψ = 1;
φ��xφj = 0, ψ��yψj = 0, ∀1 ≤ j ≤ i − 1.

(1.3)

Although this criterion is a nonconvex optimization, it can be obtained easily by spectral meth-
ods: Define

� := [φ1, . . . ,φp1∧p2
], � := [ψ1, . . . ,ψp1∧p2

], � := diag(λ1, . . . , λp1∧p2). (1.4)

Then λ1, . . . , λp1∧p2 are singular values of �
−1/2
x �xy�

−1/2
y , and �

1/2
x �, �1/2

y � are actually left

and right singular vectors of �
−1/2
x �xy�

−1/2
y , respectively.

Let (x�
i ,y�

i ) = (Xi1, . . . ,Xip1, Yi1, . . . , Yip2), i = 1, . . . , n be a random sample of (x�,y�) =
(X1, . . . ,Xp1, Y1, . . . , Yp2). Moreover, denote the two data matrices

X =
⎡⎢⎣x�

1
...

x�
n

⎤⎥⎦ Y =
⎡⎢⎣y�

1
...

y�
n

⎤⎥⎦
Generally speaking, CCA estimation problems refer to how to estimate the canonical loadings

{(φ̂i , ψ̂ i )}p1∧p2
i=1 and the corresponding estimates for the canonical variables

Ûi = φ̂
�
i x, V̂i = ψ̂

�
i y, i = 1 . . . , p1 ∧ p2, (1.5)

from the data matrices X and Y . Analogous to (1.4), we define the matrices of estimated canon-
ical loadings

�̂ := [̂φ1, . . . , φ̂p1∧p2
], �̂ := [ψ̂1, . . . , ψ̂p1∧p2

]. (1.6)

For example, when n > p1 + p2, the sample canonical loadings are defined recursively by

(φ̂i , ψ̂ i ) = arg max φ��̂xyψ

subject to φ��̂xφ = 1, ψ��̂yψ = 1;
φ��̂xφj = 0, ψ��̂yψj = 0, ∀1 ≤ j ≤ i − 1.

(1.7)

where �̂x = 1
n
X�X ∈ R

p1×p1 , �̂y = 1
n
Y�Y ∈ R

p2×p2 , �̂xy = 1
n
X�Y ∈ R

p1×p2 are the sample
covariance matrices. As with the population canonical loadings, the matrices of sample canoni-

cal loadings �̂
1/2
x �̂ and �̂

1/2
y �̂ are actually left and right singular vectors of �̂

−1/2
x �̂xy�̂

−1/2
y ,
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respectively. Subsequently, the sample canonical variables are the linear combinations by the
sample canonical loadings as defined in (1.5).

1.2. Canonical variables versus canonical loadings

For any predetermined k, any estimated canonical loading {(φ̂i , ψ̂ i )}ki=1 and the corresponding
estimated canonical variables {(Ûi , V̂i)}ki=1 defined in (1.5), to quantify the estimation accu-
racy, generally speaking, we can either focus on measuring the differences between the canon-
ical loadings {(φi ,ψ i )}ki=1 and {(φ̂i , ψ̂ i )}ki=1 or measuring the differences between the canon-
ical variables {(Ui,Vi)}ki=1 and {(Ûi , V̂i)}ki=1. Here x, y in the definition of {(Ui,Vi)}ki=1 and
{(Ûi , V̂i)}ki=1 are independent of the samples based on which {(φ̂i , ψ̂ i )}ki=1 are constructed.
Therefore, for the discrepancy between the canonical variables, there is an extra layer of ran-
domness.

As discussed above, in modern machine learning applications, the leading sample canonical
loadings are used for dimension reduction, i.e., for a new observation (x0,y0), ideally we hope
to use the corresponding values of the canonical variables (ui = φ�

i x0)
k
i=1 and (vi = ψ�

i y0)
k
i=1

to represent the observation in a low dimension space. Empirically, the actual low dimensional

representations are (ûi = φ̂
�
i x0)

k
i=1 and (v̂i = ψ̂

�
i y0)

k
i=1. Therefore, the discrepancy between

the ideal dimension reduction and actual dimension reduction should be explained by how well
{(Ûi , V̂i)}ki=1 approximate {(Ui,Vi)}ki=1. Consequently, we choose to quantify the difference be-
tween the sample and population canonical variables instead of the canonical loadings.

1.3. Linear span

However, there are still many options to quantify how well the sample canonical variables ap-
proximate their population correspondents. To choose suitable losses, it is convenient to come
back to specific applications to get some inspiration. Consider the model of multi-view sufficient
dimension reduction [10], which studies how to predict Z using two sets of predictors denoted
by x = [X1, . . . ,Xp1 ]� and y = [Y1, . . . , Yp2 ]�, where the joint covariance of (Z,x,y) is

Cov

⎛⎝⎡⎣x

y

Z

⎤⎦⎞⎠=
⎡⎣�x �xy σ xz

��
xy �y σ yz

σ�
xz σ�

yz σ 2
z

⎤⎦ .

It was proven in [10] that under certain assumptions, the leading k canonical variables U1, . . . ,Uk

are sufficient dimension reduction for the linear prediction of Z; That is, the best linear predictor
of Z based on X1, . . . ,Xp1 is the same as the best linear predictor based on U1, . . . ,Uk . (Simi-
larly, the best linear predictor of Z based on Y1, . . . , Yp2 is the same as the best linear predictor
based on V1, . . . , Vk .)

Notice that the best linear predictor is actually determined by the set of all linear combinations
of U1, . . . ,Uk (referred to as the “model space” in the literature of linear prediction), which we
denote as span(U1, . . . ,Uk). Inspired by [10], we propose to quantify the discrepancy between
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{Ui}ki=1 and {Ûi}ki=1 by the discrepancy between the corresponding subspaces span(Û1, . . . , Ûk)

and span(U1, . . . ,Uk) (and similarly measure the difference between {Vi}ki=1 and {V̂i}ki=1 by the
distance between span(V̂1, . . . , V̂k) and span(V1, . . . , Vk)).

1.4. Hilbert spaces and principal angles

In this section, we define the discrepancy between span(Û1, . . . , Ûk) and span(U1, . . . ,Uk) by
introducing a Hilbert space. Conditional on the data matrices X and Y , both span(Û1, . . . , Ûk)

and span(U1, . . . ,Uk) are composed by linear combinations of X1, . . . ,Xp1 . Denote the set of
all possible linear combinations as

H = span(X1, . . . ,Xp1). (1.8)

Moreover, for any X1,X2 ∈ H, we define a bilinear function 〈X1,X2〉 := Cov(X1,X2) =
E(X1X2). It is easy to show that 〈·, ·〉 is an inner product and (H, 〈·, ·〉) is a p1-dimensional
Hilbert space, which is isomorphic to R

p1 . With this covariance-based inner product, we know
both span(Û1, . . . , Ûk) and span(U1, . . . ,Uk) are subspaces of H, so it is natural to define their
discrepancy based on their principal angles π

2 ≥ θ1 ≥ · · · ≥ θk ≥ 0. In the literature of statistics
and linear algebra, the following two loss functions for subspaces are usually used

Lmax
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)= sin2(θ1)

and

Lave
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)= 1

k

(
sin2(θ1) + · · · + sin2(θk)

)
In spite of a somewhat abstract definition, we have the following clean formula for these two
losses.

Theorem 1.1. Suppose for any p1 × k matrix A, P A represents the orthogonal projector onto
the column span of A. Assume the observed sample is fixed. Then

Lave
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)= 1

2k
‖P

�
1/2
x �̂1:k

− P
�

1/2
x �1:k

‖2
F

= 1

k

∥∥(Ip1 − P
�

1/2
x �1:k

)P
�

1/2
x �̂1:k

∥∥2
F

= 1

k
min

Q∈Rk×k
E
[∥∥u� − û�Q

∥∥2
2|�̂1:k

]
:= Lave(�1:k, �̂1:k) (1.9)

and

Lmax
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)= ‖P
�

1/2
x �̂1:k

− P
�

1/2
x �1:k

‖2

= ∥∥(Ip1 − P
�

1/2
x �1:k

)P
�

1/2
x �̂1:k

∥∥2



Subspace perspective on CCA 437

= max
‖g‖=1

min
Q∈Rk×k

E
[((

u� − û�Q
)
g
)2|�̂1:k

]
:= Lmax(�1:k, �̂1:k). (1.10)

Here �1:k = [φ1, . . . ,φk] is a p1 × k matrix consisting of the leading k population canonical
loadings for x, and �̂1:k its estimate. Moreover u� := (U1, . . . ,Uk) and û� := (Û1, . . . , Ûk). By
(1.5), we have u� = x��1:k and û� = x��̂1:k .

1.5. Uniform upper bounds and minimax rates

The most important contribution of this paper is to establish sharp upper bounds for the
estimation/prediction of CCA based on the proposed subspace losses Lmax(�1:k, �̂1:k) and
Lave(�1:k, �̂1:k). It is noteworthy that both upper bounds hold uniformly for all invertible �x ,
�y provided n > C(p1 +p2) for some numerical constant C. Furthermore, in order to justify the
sharpness of these bounds, we also establish minimax lower bounds under a family of stringent
and localized parameter spaces. These results will be detailed in Section 2. Numerical simula-
tions in Section 3 further validate our theoretical findings.

1.6. Notations and the organization

Throughout the paper, we use lower-case and upper-case non-bolded letters to represent fixed
and random variables, respectively. We also use lower-case and upper-case bold letters to repre-
sent vectors (which could be either deterministic or random) and matrices, respectively. For any
matrix U ∈ R

n×p and vector u ∈ R
p , ‖U‖, ‖U‖F denotes operator (spectral) norm and Frobe-

nius norm respectively, ‖u‖ denotes the vector l2 norm, U1:k denotes the submatrix consisting of
the first k columns of U , and P U stands for the projection matrix onto the column space of U .
Moreover, we use σmax(U) and σmin(U) to represent the largest and smallest singular value of
U respectively, and κ(U ) = σmax(U)/σmin(U) to denote the condition number of the matrix. We
use Ip for the identity matrix of dimension p and Ip,k for the submatrix composed of the first
k columns of Ip . Further, O(m,n) (and simply O(n) when m = n) stands for the set of m × n

matrices with orthonormal columns and S
p
+ denotes the set of p × p strictly positive definite

matrices. For a random vector x ∈ R
p , span(x�) = {x�w,w ∈ R

p} denotes the subspace of all
the linear combinations of x. Other notations will be specified within the corresponding context.

In the following, we will introduce our main upper and lower bound results in Section 2.
Various numerical simulations that illustrate our theoretical discoveries are demonstrated in Sec-
tion 3. To highlight our contributions in the new loss functions and theoretical results, we will
compare our results to existing work in the literature in Section 4. A summary of the significance
of our theoretical results as well as future research topics are introduced in Section 5. All proofs
are deferred to Section 6, Section 7 and the supplement article [20].
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2. Theory

In this section, we introduce our main results on non-asymptotic upper and lower bounds for
estimating CCA under the proposed loss functions. Recall that the sample canonical loadings are
defined in (1.6) and the corresponding canonical variables are defined in (1.5). The following
theorem provides upper bounds for the expected losses defined in (1.9) and (1.10).

Theorem 2.1 (Upper bound). Suppose
[ x

y

]∼ N (0,�) where � is defined as in (1.2). Assume
�x and �y are invertible. Recall that the population canonical correlations λ1, . . . , λp1∧p2 are

singular values of �
−1/2
x �xy�

−1/2
y , and we assume λk > λk+1 for some predetermined k. Then

there exist universal positive constants γ , C, C0 such that if n ≥ C(p1 + p2), the top-k sample
canonical loadings �̂1:k defined in (1.7) satisfy

E
[
Lave(�1:k, �̂1:k)

]≤ C0

[
(1 − λ2

k)(1 − λ2
k+1)

(λk − λk+1)2

p1 − k

n
+ (p1 + p2)

2

n2(λk − λk+1)4
+ e−γ (p1∧p2)

]

E
[
Lmax(�1:k, �̂1:k)

]≤ C0

[
(1 − λ2

k)(1 − λ2
k+1)

(λk − λk+1)2

p1

n
+ (p1 + p2)

2

n2(λk − λk+1)4
+ e−γ (p1∧p2)

]
.

In the special case λk = 1, there holds

Lmax(�1:k, �̂1:k) = Lave(�1:k, �̂1:k) = 0, a.s.

The upper bounds for �̂1:k can be obtained by switching p1 and p2.

Some features of the above upper bounds are worth highlighting

• For both the loss functions Lave and Lmax, we establish the upper bounds with the factor
(1 − λ2

k)(1 − λ2
k+1)/(λk − λk+1)

2 in the leading order term. This implies some interesting
phenomena of the estimation of canonical variables, particularly when λk is close to 1:
When λk is close to 1, the factor (1 − λ2

k)(1 − λ2
k+1)/(λk − λk+1)

2 is close to zero even if
λk+1 is very close to λk . To the best of our knowledge, we first show these unique features of
CCA estimates under the non-asymptotic setups. These properties will be further illustrated
in Section 3 and explained in Section 4.2.

• We first decouple the estimation error bound of �̂1:k from p2 without assuming the residual
canonical correlations are zeros. More details will be given in Section 4.2.

Since we pursue a non-asymptotic theoretical framework for CCA estimates, and the loss
functions we propose are nonstandard in the literature, the standard minimax lower bound results
in parametric maximum likelihood estimates do not apply straightforwardly. Instead, we turn to
the nonparametric minimax lower bound frameworks, particularly those in PCA and CCA; See,
for example, [4,13,26]. Compared to these existing works, the technical novelties of our results
and proofs are summarized in Sections 4.3 and the supplement article [20].

We define the parameter space F(p1,p2, k, λk, λk+1, κ1, κ2) as the collection of joint covari-
ance matrices � satisfying
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1. The condition numbers κ(�x) = κ1 and κ(�y) = κ2;

2. The kth and (k + 1)th singular values of �
−1/2
x �xy�

−1/2
y are λk and λk+1, respectively,

and λk > λk+1.

For the rest of the paper, we will use the shorthand F to represent this parameter space for
simplicity.

Theorem 2.2 (Lower bound). There exists a universal constant c independent of n, p1, p2 and
� such that

inf
�̂1:k

sup
�∈F

E
[
Lmax(�1:k, �̂1:k)

]≥ c2
{(

(1 − λ2
k)(1 − λ2

k+1)

(λk − λk+1)2

p1 − k

n

)
∧ 1 ∧ p1 − k

k

}

inf
�̂1:k

sup
�∈F

E
[
Lave(�1:k, �̂1:k)

]≥ c2
{(

(1 − λ2
k)(1 − λ2

k+1)

(λk − λk+1)2

p1 − k

n

)
∧ 1 ∧ p1 − k

k

}
.

The lower bounds for �̂1:k can be obtained by replacing p1 with p2.

This theorem shows that the lower bound is independent of the condition numbers κ(�x) = κ1
and κ(�y) = κ2. By combining Theorem 2.1 and Theorem 2.2 together, as long as the sample
size large is large enough, we can achieve the following results of minimax rates.

Corollary 2.3. When p1,p2 ≥ (2k) ∨ C(logn) and

n ≥ C
(p1 + p2)(1 + p2/p1)

(λk − λk+1)2(1 − λ2
k)(1 − λ2

k+1)
(2.1)

for some universal positive constant c, the minimax rates can be characterized by

inf
�̂1:k

sup
�∈F

E
[
Lmax(�1:k, �̂1:k)

]
 (1 − λ2
k)(1 − λ2

k+1)

(λk − λk+1)2

p1

n
,

inf
�̂1:k

sup
�∈F

E
[
Lave(�1:k, �̂1:k)

]
 (1 − λ2
k)(1 − λ2

k+1)

(λk − λk+1)2

p1

n
.

3. Numerical simulations

The purpose of this section is to illustrate Theorem 2.1 in understanding the empirical per-
formances of E[Lmax(�1:k, �̂1:k)], E[Lave(�1:k, �̂1:k)], E[Lmax(�1:k, �̂1:k)] and E[Lave(�1:k,
�̂1:k)], particularly their dependency on the canonical correlation coefficients, dimensions p1
and p2, the sample size n, and the choice of k.

In the first numerical experiment, we choose p1 = 100 and p2 = 150. The canonical cor-
relation coefficients are chosen as λ1 = 1, λ2 = 0.99, λ3 = 0.98, . . . , λ100 = 0.01. As to
the population covariance �, we choose �x = Ip1 , �y = Ip2 , and �xy = [�,0] ∈ R

100×150.
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Figure 1. The problem parameters are set as p1 = 100, p2 = 150 and λ1 = 1, λ2 = 0.99, λ3 = 0.98,
. . . , λ100 = 0.01. Expected losses are approximated by taking average over 100 independent Monte
Carlo experiments. The sample sizes are chosen as n = 200,400,600,800,1000. (a) Approximated
E[Lave(�1:k, �̂1:k)] for k = 1,2, . . . ,100; (b) Approximated E[Lave(�1:k, �̂1:k)] for k = 1,2, . . . ,100;
(c) Approximated E[Lmax(�1:k, �̂1:k)] for k = 1,2, . . . ,100; (d) Approximated E[Lmax(�1:k, �̂1:k)] for
k = 1,2, . . . ,100.

Here � = diag(1,0.99,0.98, . . . ,0.01). We assume the i.i.d. sample of (x�,y�) is generated
from the distribution N (0,�). We study the empirical performances of E[Lmax(�1:k, �̂1:k)],
E[Lmax(�1:k, �̂1:k)], E[Lave(�1:k, �̂1:k)] and E[Lave(�1:k, �̂1:k)] in different choices of n =
200,400,600,800,1000 and k = 1,2, . . . ,100. The results are plotted in parts (a), (b), (c) and
(d) in Figure 1. In order to approximate the expected losses, we implement 100 independent
Monte Carlo experiments and take the average for each of the four losses. From these four fig-
ures, we can make the following observations that are consistent with our theoretical findings in
Theorem 2.1:

• From figures (a), (b), (c) and (d), we see that as long as k gets close to 1, that is, λk and
λk+1 get close to 1, all four losses decrease to 0 for n = 400,600,800,1000. In particular,
in the case k = 1, the losses become exactly zero. This is consistent with Theorem 2.1 in
which the leading term of upper bound is proportional to(

1 − λ2
k

)(
1 − λ2

k+1

)
/(λk − λk+1)

2 ∝ (
1 − λ2

k

)(
1 − λ2

k+1

)
(3.1)

given λk − λk+1 = 0.01 is independent of k. This phenomenon does not hold for the case
n = 200 since p1 + p2 > n. It is perhaps surprising that even under the moderate sample
size n = 400 compared to p1 + p2 = 250, all expected losses approach zero as long as k

goes to 1.
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Figure 2. The problem parameters are set as p1 = 100, p2 = 150, λ2 = λ1 − 0.05 and λ3 = · · ·λ50 = 0.
We always set k = 1 and choose the sample sizes n = 200,400,600,800,1000. Expected losses
are approximated by taking average over 100 independent Monte Carlo experiments. (a) Approx-
imated E[Lave(�1, �̂1)] (or E[Lmax(�1, �̂1)]) for λ1 = 1,0.95,0.9, . . . ,0.05; (b) Approximated
E[Lave(�1, �̂1)] (or E[Lmax(�1, �̂1)]) for λ1 = 1,0.95,0.9, . . . ,0.05.

• Figure (a) shows that when k approaches 100, E[Lave(�1:k, �̂1:k)] approaches 0 for all
n = 200,400,600,800,1000. This fact can be partially explained by Theorem 2.1 in that
the leading term of upper bound for E[Lave(�1:k, �̂1:k)] is proportional to p1 −k = 100−k.

• In each of figures (a), (b), (c) and (d), it is observed that the expected loss decreases if we
fix k while increase the sample size n.

• By a careful comparison between Figures (a) and (b), we can conclude that E[Lmax(�1:k,
�̂1:k)] is in general no greater than E[Lmax(�1:k, �̂1:k)]. This is also suggested by Theo-
rem 2.1 in that the leading term of upper bound for E[Lmax(�1:k, �̂1:k)] is proportional to
p1 − k = 100 − k while that for E[Lmax(�1:k, �̂1:k)] is proportional to p2 − k = 150 − k.

In our second numerical experiment, we still set p1 = 100 and p2 = 150, but choose the
canonical correlation coefficients as

λ1 = 1,0.95,0.9, . . . ,0.05, λ2 = λ1 − 0.05, λ3 = · · ·λ50 = 0.

As for the population covariance �, by setting � = diag(λ1, λ2,0, . . . ,0), we still let

�x = Ip1 , �y = Ip2, �xy = [�,0] ∈ R
50×200.

In this case we set k = 1 and choose n = 200,400,600,800,1000. Notice that because λ1 −λ2 =
0.05, (3.1) still holds. We plot the approximated losses for different values of λ1 in Figure 2.

As expected from Theorem 2.1, for n = 400,600,800,1000, all four expected losses approach
0 as λ1 approaches 1. When n = 200 < p1 + p2, our numerical result shows that sample CCA
is never consistent no matter how λ1 gets close to 1. Note that Lmax(u,v) = Lave(u,v) when
u and v are vectors, so we have E[Lmax(�1, �̂1)] = E[Lave(�1, �̂1)] and E[Lmax(�1, �̂1)] =
E[Lave(�1, �̂1)].

Our third numerical experiment is similar to the second, but we fix λ1 instead of the eigen-
gap. To be specific, we set p1 = 100, p2 = 150, λ1 = 0.99, λ2 = 0.98,0.96,0.94, . . . ,0, λ3 =
· · ·λ50 = 0. The joint covariance � is defined the same as before. We still set k = 1 and n =
400,600,800,1000. We plot the approximated losses for different values of λ1 in Figure 3.
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Figure 3. The problem parameters are set as p1 = 100, p2 = 150, λ1 = 0.99 and λ3 = · · ·λ50 = 0.
We always set k = 1 and choose the sample sizes n = 400,600,800,1000. Expected losses are
approximated by taking average over 100 independent Monte Carlo experiments. (a) Approxi-
mated E[Lave(�1, �̂1)] (or E[Lmax(�1, �̂1)]) for λ2 = 0.98,0.96,0.94, . . . ,0; (b) Approximated
E[Lave(�1, �̂1)] (or E[Lmax(�1, �̂1)]) for λ2 = 0.98,0.96,0.94, . . . ,0.

In the above setup, the factor(
1 − λ2

1

)(
1 − λ2

2

)
/(λ1 − λ2)

2 ≈ 0.01
(
1 − λ2

2

)
/(0.99 − λ2)

2

is very small even if λ2 is close to λ1 = 0.99. Our numerical simulations are consistent with our
theoretical results.

4. Related work and our contributions

Recently, the non-asymptotic rate of convergence of CCA has been studied by [13,14] under a
sparse setup and by [5] under the non-sparse setup. The first version of [5] appeared on arXiv
almost at the same time as the first version of our paper was posted. In this section, we state our
contributions by detailed comparison with these works.

4.1. Novel loss functions

We proposed new loss functions based on the principal angles between the subspace spanned
by the population canonical variates and that spanned by the estimated canonical variates. In
contrast, [14] proposed and studied the loss Lave; [5] proposed Lmax and studied both Lave and
Lmax, where

Lave(�1:k, �̂1:k) = min
Q∈O(k,k)

E
[∥∥x��1:k − x��̂1:kQ

∥∥2
2 | �̂1:k

]
,

Lmax(�1:k, �̂1:k) = max
g∈Rk,|g|=1

min
Q∈O(k,k)

E
[((

x��1:k − x��̂1:kQ
)
g
)2 | �̂1:k

]
.
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Lave and Lmax resemble our loss functions Lave and Lmax respectively. By Theorem 1.1, we also
have

Lave(�1:k, �̂1:k) = 2 min
Q∈Rk×k

E
[∥∥x��1:k − x��̂1:kQ

∥∥2
2 | �̂1:k

]
Lmax(�1:k, �̂1:k) = max

g∈Rk,|g|=1
min

Q∈Rk×k
E
[((

x��1:k − x��̂1:kQ
)
g
)2 | �̂1:k

]
Straightforward comparison between these two expressions yields

Lave(�1:k, �̂1:k) ≤ 2Lave(�1:k, �̂1:k)

Lmax(�1:k, �̂1:k) ≤ Lmax(�1:k, �̂1:k)
(4.1)

However, Lave(�1:k, �̂1:k) and Lave(�1:k, �̂1:k) are not equivalent up to a constant, particularly
when λk is close to 1, and neither are Lmax(�1:k, �̂1:k) and Lmax(�1:k, �̂1:k). In fact, we can
prove that as long as n > max(p1,p2), if λk = 1 > λk+1, then

Lave(�1:k, �̂1:k) = Lmax(�1:k, �̂1:k) = 0,

while almost surely Lave(�1:k, �̂1:k) �= 0 and Lmax(�1:k, �̂1:k) �= 0.
To illustrate this comparison, we can consider the following very simple simulation: Suppose

p1 = p2 = 2, n = 3 and �x = [ 1 0
0 1

]
and �y = [ 1 0

0 1

]
and �xy = [ 1 0

0 0.5

]
. In this setup, we know

the population canonical correlation coefficients are λ1 = 1 and λ2 = 0.5, and the leading canon-
ical loadings are φ1 = [ 1

0

]
and ψ1 = [ 1

0

]
. In our simulation, we generated the following data

matrices

X =
⎡⎣0.0736 1.5496

1.5390 −0.0415
0.9331 −0.4776

⎤⎦ , Y =
⎡⎣0.0736 2.8982

1.5390 −1.2214
0.9331 2.5931

⎤⎦ .

Furthermore, we can obtain the sample canonical correlations λ̂1 = 1 and λ̂2 = 0.5210, as well as
the leading sample canonical loadings φ̂1 = [−0.9616

0

]
and ψ̂1 = [−0.9616

0

]
. Then Lave(φ1, φ̂1) =

Lmax(φ1, φ̂1) = 0 while Lave(φ1, φ̂1) �= 0, Lmax(φ1, φ̂1) �= 0.
This numerical example clearly shows that the sample CCA can exactly identify that among

all linear combinations of X1 and X2 and all linear combinations of Y1 and Y2, aX1 and bY1
are mostly correlated. Our loss functions Lave and Lmax do characterize this exact identification,
whereas Lave and Lmax do not.

Moreover, the following joint loss was studied in [13]:

Ljoint
(
(�1:k,�1:k), (�̂1:k, �̂1:k)

)= ∥∥�̂1:k�̂
�
1:k − �1:k��

1:k
∥∥2

F.

Similarly, Ljoint((�1:k,�1:k), (�̂1:k, �̂1:k)) �= 0 almost surely under the special case λk = 1 >

λk+1.
Finally, if we denote by L and L̂ the first k singular vectors of �

−1/2
x �xy�

−1/2
y and

�̂
−1/2
x �̂xy�̂

−1/2
y , respectively, then �1:k = �

−1/2
x L and �̂1:k = �̂

−1/2
x L̂. In Table 3 of [5], a



444 Z. Ma and X. Li

Table 1. Comparison between our results and that in [5]

Cai and Zhang 2016 Our work

Loss function Lave(≥ Lave) Lave

Sample size n > C(
p1+√

p1p2

λ2
k

+ p2

λ
4/3
k

) n > C(p1 + p2)

λk+1 = · · · = λp1 = 0 Yes No

Upper Bound Rates p1

nλ2
k

+ p1p2

n2λ4
k

(1−λ2
k)(1−λ2

k+1)

(λk−λk+1)
2

p1−k
n + (p1+p2)

2

n2(λk−λk+1)
4 + e−γ (p1∧p2)

loss ‖ sin	(L, L̂)‖F was proposed and it is equivalent to 1
2‖P L − P L̂‖2

F. However, (1.9) in
Theorem 1.1 gives

Lave(�1:k, �̂1:k) = 1

2k
‖P

�
1/2
x �̂1:k

− P
�

1/2
x �1:k

‖2
F = 1

2k
‖P L − P

�
1/2
x �̂

−1/2
x L̂

‖2
F.

which is different from ‖ sin	(L, L̂)‖F . This is not surprising since the loss functions discussed
in Table 3 of [5] are regarding estimation of canonical loadings, while ours are regarding estima-
tion of canonical variables.

4.2. Sharper upper bounds

Regardless of loss functions, we explain in the following why Theorem 2.1 implies sharper upper
bounds than the existing rates in [13,14] and [5] under the nonsparse case. Our discussion is
focused on Lave in the following discussion while the discussion for Lmax is similar.

Notice that if we only apply Wedin’s sin-theta law, that is, replacing the fine bound Lemma 7.4
with the rough bound Lemma 7.2 (also see [13] for similar ideas), we can obtain the following
rough bound:

E
[
Lave(�1:k, �̂1:k)

]≤ C0

[
p1 + p2

n(λk − λk+1)2

]
. (4.2)

In order to decouple the estimation error bound of �̂1:k from p2, both [14] and [5] assume the
residual canonical correlations are zero, that is,

λk+1 = · · · = λp1∧p2 = 0.

This assumption is essential for proofs in both [14] and [5] under certain sample size conditions.
We got rid of this assumption by developing new proof techniques and these techniques actually
work for Lave, Lmax as well. A detailed comparison between our result and that in [5] is summa-
rized in Table 1 (The results of [14] in the non-sparse regime can be implied by [5] under milder
sample size conditions).

Perhaps the most striking contribution of our upper bound is that we first derive the factors
(1 − λ2

k) and (1 − λ2
k+1) in the literature of non-asymptotic CCA estimate. We now explain why

these factors are essential when leading canonical correlation coefficients are close to 1.
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Example 1: λk = 1 and λk+1 = 0

Consider the example that k = 1, p1 = p2 := p � logn, λ1 = 1 and λ2 = 0. Then Theorem 2.1
implies that ELave(φ1, φ̂1) = 0, while the rates in [5]1 imply that

ELave(φ1, φ̂1) ≤ 2ELave(φ1, φ̂1) ≤ C
p

n
.

Example 2: Both λk and λk+1 are close to 1

Consider the example that k = 1, p1 = p2 := p � logn, λ1 = 1 − 4
√

p
n

and λ2 = 1 − 2 4
√

p
n

. Then

our bound rates
(1−λ2

k)(1−λ2
k+1)

(λk−λk+1)
2

p1−k
n

+ (p1+p2)
2

n2(λk−λk+1)
4 + e−γ (p1∧p2) actually imply that

ELave(φ1, φ̂1) ≤ C
p

n
,

while the rough rates (4.2) by Wedin’s sin-theta law implies

ELave(φ1, φ̂1) ≤ C

√
p

n
.

This shows that our upper bound rates could be much sharper than the rough rates (4.2) when
both λk and λk+1 are close to 1.

New proof techniques and connection to asymptotic theory

To the best of our knowledge, none of the analysis in [5,13,14] can be used to obtain the multi-
plicative factor (1 − λ2

k)(1 − λ2
k+1)/(λk − λk+1)

2 in the first order term of the upper bound, even
under the strong condition that λk+1 = · · · = λp1∧p2 = 0.

Following a different path, we do careful non-asymptotic entry-wise perturbation analysis
of the estimating equations of CCA to avoid the loss of precision caused by applying matrix
inequalities in the early stage of the proof. The main challenge is to analyze the properties of
matrix Hadamard products, especially to derive tight operator norm bounds for certain Hadamard
products. We are lucky to find a divide-and-conquer approach (λk ≥ 1

2 and λk < 1
2 in the proof of

Lemma 7.4) to decompose the target matrices into simple-structure matrices where we can apply
the tools developed in Lemma 7.6.

The asymptotic distribution of the canonical loadings {(φ̂i , ψ̂ i )}p1∧p2
i=1 has been studied in [1]

under the assumption that all the canonical correlations are distinct and λ1 �= 1. Since we focus
on subspaces, we only require λk > λk+1 for the given k. Both [1] and our work are based
on analyzing the estimating equations (7.5) of CCA. Our analysis is more involved because
completely novel techniques are required to obtain the factor (1 − λ2

k)(1 − λ2
k+1) in the non-

asymptotic framework.

1The result was also effectively proven in [14], since their assumption that λ1 is bounded away from 1 is not necessary
for the derivation of their upper bounds.
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4.3. Sharper lower bounds under parameter spaces with fixed λk and λk+1

The minimax lower bounds for the estimation rates of CCA were first established in [13,14] under
the losses Ljoint and Lave. However, the parameter space discussed in [14] requires λk+1 = 0.
Moreover, the parameter space in [13] is parameterized by λ satisfying λk ≥ λ, but λk+1 is not
specified. In fact, they also constructed the hypothesis class with λk+1 = 0 and the resulting
minimax lower bound is proportional to 1

λ2 .
However, this minimax lower bound is not sharp when λk and λk+1 are close. Suppose p1 =

p2 := p, k = 1, λ1 = 1
2 and λ2 = 1

2 −
√

p
n

. Our minimax lower bound in Theorem 2.2 leads to

inf
�̂1:k

sup
�∈F

E
[
Lave(�1:k, �̂1:k)

]≥ O(1).

In contrast, to capture the fundamental limit of CCA estimates in this scenario under the frame-
work of [13], one needs to choose λ to capture both λk and λk+1, i.e., λk+1 ≤ λ ≤ λk and hence
λ ≈ 1/2. Then the resulting minimax lower bound rate will be p

nλ2 = O(
p
n
), which is much looser

than O(1).
Technically speaking, we follow the analytical framework of [13] and [14], but the hypothesis

classes construction requires any given λk+1 > 0 instead of λk+1 = 0, and this brings in new
technical challenges. More detailed technical discussions are deferred to the supplement article
[20].

5. Discussion

In this paper, we study the theoretical properties of canonical correlation analysis by investigating
the estimation of the canonical variables. Two losses are proposed based on the principal angles
between the linear spans determined by the sample canonical variates and those by the popula-
tion correspondents. The estimation risks are upper bounded non-asymptotically, and these upper
bounds illustrate how the population canonical correlation coefficients affect the estimation ac-
curacy in a nontrivial manner. In particular, we derive (1 − λ2

k)(1 − λ2
k+1)/(λk − λk+1)

2 in the
leading term for non-asymptotic CCA estimation, and this implies that when the leading canon-
ical correlation is close to 1, the estimation of canonical variates can be significantly accurate
even with small eigen-gaps. Various numerical simulations are conducted to illustrate our the-
oretical findings, and the optimality of upper bounds are also justified by our derivation of the
same factor in the minimax lower bounds.

We leave several theoretical questions for future research: First, in Theorem 2.1, we discuss the
case λk = 1 separately since this exact recovery result cannot be directly implied by the general
result, and we are particularly interested how to improve the general upper bound in order to
include this special case. Second, we are particularly interested in figuring out whether the factor
(1−λ2

k)(1−λ2
k+1)/(λk −λk+1)

2 should also appear in the second order term in the upper bounds
as shown in Theorem 2.1. Actually we are also interested in whether the second order term can
be removed but if this is true it must rely on techniques totally different ours. Third, we are
interested in removing the implicit absolute constants in Theorem 2.1, that is, those for the upper
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bounds and that for the sample size. In particular, we hope to establish similar upper bound
results with the only assumption that n > p1 + p2. Fourth, it would be interesting to extend the
current results to other CCA problems, such as kernel CCA and sparse CCA. Finally, we hope
that our techniques such as operator norm bounds for Hadamard products could be useful for
other multivariate statistical problems.

6. Proof of Theorem 1.1

Suppose the observed sample of (x,y) is fixed and consider the correlation between the two
subspaces of H (defined in (1.8)): span(U1, . . . ,Uk) and span(Û1, . . . , Ûk). Let (W1, Ŵ1),
(W2, Ŵ2), . . . , (Wk, Ŵk) be the first, second, . . . , and kth pair of canonical variates between
U1, . . . ,Uk and Û1, . . . , Ûk . Then span(W1, . . . ,Wk) = span(U1, . . . ,Uk), span(Ŵ1, . . . , Ŵk) =
span(Û1, . . . , Ûk) and 〈Wi,Wj 〉 = 〈Wi, Ŵj 〉 = 〈Ŵi, Ŵj 〉 = 0, for any i �= j and Var(Wi) =
Var(Ŵi) = 1, for i = 1, . . . , k.

By the definition of principal angles, we know ∠(Wi, Ŵi) is actually the ith principal angle
between span(U1, . . . ,Uk) and span(Û1, . . . , Ûk), that is, θi := ∠(Wi, Ŵi). This implies that

kLave(�1:k, �̂1:k) :=
k∑

i=1

sin2 θi =
k∑

i=1

(
1 − ∣∣〈Wi, Ŵi〉

∣∣2).
Since U1, . . . ,Uk, Û1, . . . , Ûk are linear combinations of X1, . . . ,Xp1 , we can denote

w� := (W1, . . . ,Wk) = x��
−1/2
x B, and ŵ� := (Ŵ1, . . . , Ŵk) = x��

−1/2
x B̂,

where B := [b1, . . . ,bk], B̂ := [̂b1, . . . , b̂k] ∈R
p×k .

By the definition of w, we have

I k = Cov(w) = B��
−1/2
x Cov(x)�

−1/2
x B = B�B

and similarly I k = B̂
�
B̂ . Then B , B̂ are p × k basis matrices. Moreover, we have b�

i b̂j =
〈Wi, Ŵj 〉 = 0, for all i �= j . Moreover, we have

Diag
(
cos(θ1), . . . , cos(θk)

)= Cov(w, ŵ) = B��
−1/2
x Cov(x)�

−1/2
x B̂ = B�B̂.

Notice that span(U1, . . . ,Uk) = span(W1, . . . ,Wk), (U1, . . . ,Uk) = x��1:k , and (W1, . . . ,

Wk) = x��
−1/2
x B . Then

�1:k = �
−1/2
x BC ⇒ �

1/2
x �1:k = BC

for some nonsingular k × k matrix C. This implies that B and �
1/2
x �1:k have the same column

space. Since B ∈R
p×k is a basis matrix, we have

BB� = P
�

1/2
x �1:k

.
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Similarly, we have

B̂B̂
� = P

�
1/2
x �̂1:k

.

Straightforward calculation gives∥∥BB� − B̂B̂
�∥∥2

F
= trace

(
BB�BB� − BB�B̂B̂

� − B̂B̂
�
BB� + B̂B̂

�
B̂B̂

�)
= 2k − 2 trace

(
B�B̂B̂

�
B
)

= 2k − 2 trace
(
Diag

(
cos2(θ1), . . . , cos2(θk)

))
= 2

(
sin2(θ1) + · · · + sin2(θk)

)= 2kLave(�1:k, �̂1:k)

and ∥∥(Ip1 − BB�)B̂B̂
�∥∥2

F
= trace

((
Ip1 − BB�)B̂B̂

�
B̂B̂

�(
Ip1 − BB�))

= k − trace
(
B�B̂B̂

�
B
)

= kLave(�1:k, �̂1:k).

The above equalities yield the first two equalities in (1.9).
Notice that both U1, . . . ,Uk and W1, . . .Wk are both orthonormal bases of span(U1, . . . ,Uk).

(Similarly, Û1, . . . , Ûk and Ŵ1, . . . Ŵk are both orthonormal bases of span(Û1, . . . , Ûk)).) Then
we have u� = w�R where R is a k × k orthogonal matrix. Then

min
Q∈Rk×k

E
∥∥u� − û�Q

∥∥2
2 = min

Q∈Rk×k
E
∥∥u� − ŵ�Q

∥∥2
2 = min

Q∈Rk×k
E
∥∥w�R − ŵ�Q

∥∥2
2

= min
Q∈Rk×k

E
∥∥w� − ŵ�QR�∥∥2

2 = min
Q∈Rk×k

E
∥∥w� − ŵ�Q

∥∥2
2

= min
qi∈Rk,i=1,...,k

E

k∑
i=1

(
Wi − ŵ�qi

)2
= min

qi∈Rk,i=1,...,k

k∑
i=1

E
(
Wi − ŵ�qi

)2
=

k∑
i=1

min
qi∈Rk

E
(
Wi − ŵ�qi

)2
Notice that minqi∈Rk E(Wi − ŵ�qi )

2 is obtained by the best linear predictor, so

min
qi∈Rk

E
(
Wi − ŵ�qi

)2 = Var(Wi) − Cov(ŵ,Wi)
� Cov−1(ŵ)Cov(ŵ,Wi)

= 1 − cos2 θi = sin2 θi .



Subspace perspective on CCA 449

Therefore,

min
Q∈Rk×k

E
∥∥u� − û�Q

∥∥2
2 =

k∑
i=1

sin2 θi = kLave(�1:k, �̂1:k),

which implies the third equality in (1.9). Similarly,

max
g∈Rk,‖g‖=1

min
Q∈Rk×k

E
((

u� − û�Q
)
g
)2

= max
g∈Rk,‖g‖=1

min
Q∈Rk×k

E
((

u� − ŵ�Q
)
g
)2

= max
g∈Rk,‖g‖=1

min
Q∈Rk×k

E
((

w�R − ŵ�Q
)
R�g

)2
= max

g∈Rk,‖g‖=1
min

Q∈Rk×k
E
((

w� − ŵ�Q
)
g
)2

= max
g∈Rk,‖g‖=1

min
qi∈Rk,i=1,...,k

E

k∑
i=1

g2
i

(
Wi − ŵ�qi

)2
= max

g∈Rk,‖g‖=1

k∑
i=1

g2
i sin2 θi

= sin2 θ1

Finally, we prove (1.10). By [29], we have

∥∥BB� − B̂B̂
�∥∥2 = ∥∥(Ip1 − BB�)B̂B̂

�∥∥2 = ∥∥(Ip1 − BB�)B̂∥∥2

= λmax
(
B̂

�(
Ip1 − BB�)�(Ip1 − BB�)B̂)

= λmax
(
I k − Diag

(
cos2(θ1), . . . , cos2(θk)

))
= 1 − cos2(θ1) = sin2(θ1) = Lmax(�1:k, �̂1:k),

which implies the the equalities in (1.10).

7. Upper bound: Proof of Theorem 2.1

Throughout this proof, we denote � := λk − λk+1. Also recall that the two samples of x and y

are X = [Xij ] ∈R
n×p1 and Y = [Yij ] ∈R

n×p2 , respectively.
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7.1. Linear invariance

Without loss of generality, we assume p2 ≥ p1 := p. By the definition of canonical vari-
ables, we know that U1, . . . ,Up and V1, . . . , Vp are only determined by span(X1, . . . ,Xp1) and
span(Y1, . . . , Yp2). In other words, for any invertible C1 ∈ R

p1×p1 and C2 ∈ R
p2×p2 , the canon-

ical pairs of (X1, . . . ,Xp1)C1 and (Y1, . . . , Yp2)C2 are still (U1,V1), . . . , (Up1 ,Vp1). Therefore,
we can consider the following orthonormal bases

U1, . . . ,Up1 ∈ span(X1, . . . ,Xp1)

and

V1, . . . , Vp1 ,Vp1+1, . . . , Vp2 ∈ span(Y1, . . . , Yp2).

Here (V1, . . . , Vp1,Vp1+1, . . . , Vp2) is an orthonormal extension of V1, . . . , Vp1 . Therefore, we
know that (U1,V1), . . . , (Up1 ,Vp1) are also the the canonical pairs between U1, . . . ,Up1 and
V1, . . . , Vp2 .

Similarly, for a fixed sample of the variables of x and y, the sample canonical pairs
(Û1, V̂1), . . . , (Ûp1 , V̂p1) are also sample canonical pairs of the corresponding sample of
(X1, . . . ,Xp1)C1 and (Y1, . . . , Yp2)C2. This can be easily seen from the concept of sam-
ple canonical variables. For example, Û1 and V̂1 are respectively, the linear combinations
of X1, . . . ,Xp1 and Y1, . . . , Yp1 , such that their corresponding sample variance are both 1
and sample correlation is maximized. If we replace (X1, . . . ,Xp1) and (Y1, . . . , Yp1) with
(X1, . . . ,Xp1)C1 and (Y1, . . . , Yp2)C2, respectively and seek for the first sample canonical pair,
the constraints (linear combinations of the two sets of variables and unit sample variances) and
the objective (sample correlation is maximized) are the same as before, so (Û1, V̂1) is still the
answer. Similarly, (Û1, V̂1), . . . , (Ûp1 , V̂p1) are the sample canonical pairs of (X1, . . . ,Xp1)C1
and (Y1, . . . , Yp2)C2. In particular, they are the sample canonical pairs of U1, . . . ,Up1 and
V1, . . . , Vp2 .

The above argument gives the following convenient fact: In order to bound

Lave/max
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)
we can replace X1, . . . ,Xp1, Y1, . . . , Yp2 with U1, . . . ,Up1 ,V1, . . . , Vp2 . In other words, we can
assume x and y satisfy the standard form

�x = Ip1, �y = Ip2 , �xy = [�,0p1×(p2−p1)] := �̃

where � = Diag(λ1, λ2, . . . , λp1) ∈R
p1×p1 . Moreover,

�1:p1 = Ip1 , �1:p1 =
[

Ip1

0(p2−p1)×p1

]
,

which implies that

�1:k =
[

I k

0(p1−k)×k

]
, �1:k =

[
I k

0(p2−k)×k

]
.
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7.2. Upper bound under the standard form

Under the standard form, by (1.9) and (1.10), we have

Lave
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)= 1

k

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2

F (7.1)

and

Lmax
(
span(Û1, . . . , Ûk), span(U1, . . . ,Uk)

)= ∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2

. (7.2)

Denote �̂1:k = [ �̂
u
1:k

�̂
l
1:k

]
where �̂

u
1:k and �̂

l
1:k are the upper k × k and lower (p1 − k) × k sub-

matrices of �̂1:k , respectively. Then∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2

F = trace
(
(Ip1 − P �1:k )�̂1:k

(
�̂

�
1:k�̂1:k

)−1
�̂

�
1:k(Ip1 − P �1:k )

)
,∥∥(Ip1 − P �1:k )P �̂1:k

∥∥2 = λmax
(
(Ip1 − P �1:k )�̂1:k

(
�̂

�
1:k�̂1:k

)−1
�̂

�
1:k(Ip1 − P �1:k )

)
Since

(Ip1 − P �1:k )�̂1:k
(
�̂

�
1:k�̂1:k

)−1
�̂

�
1:k(Ip1 − P �1:k )

� 1

σ 2
k (�̂1:k)

(Ip1 − P �1:k )�̂1:k�̂
�
1:k(Ip1 − P �1:k ) = 1

σ 2
k (�̂1:k)

[
0k×k

�̂
l
1:k

][
0k×k

(
�̂

l
1:k
)�]

,

we have

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2

F
≤ trace

(
1

σ 2
k (�̂1:k)

[
0k×k

�̂
l
1:k

][
0k×k �̂

�
1:k
])

= ‖�̂l
1:k‖2

F

σ 2
k (�̂1:k)

, (7.3)

and

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2 ≤ λmax

(
1

σ 2
k (�̂1:k)

[
0k×k

�̂
l
1:k

][
0k×k �̂

�
1:k
])

= ‖�̂l
1:k‖2

σ 2
k (�̂1:k)

. (7.4)

Therefore, it suffices to give upper bounds of ‖�̂l
1:k‖2

F and ‖�̂l
1:k‖2, as well as a lower bound of

σ 2
k (�̂1:k).

7.3. Basic bounds

Recall that

�x = Ip1 , �y = Ip2, �xy = [�,0p1×(p2−p1)] := �̃.
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Then

Cov

([
x

y

])
:= � =

[
Ip1 �̃

�̃
�

Ip2

]
and

Ĉov

([
x

y

])
:= �̂ =

[
�̂x �̂xy

�̂yx �̂y

]
.

Moreover, we can define �̂2p1 as the left upper (2p1) × (2p1) principal submatrix of �̂. We can
similarly define �2p1 .

Lemma 7.1. There exist universal constants γ , C and C0 such that when n ≥ C0p1, then with
probability at least 1 − e−γp1 , the following inequalities hold

‖�2p1 − �̂2p1‖,‖Ip1 − �̂x‖,
∥∥�̂1/2

x − Ip1

∥∥≤ C

√
p1

n
.

Proof. It is obvious that ‖�2p1‖ ≤ 2. By Lemma 7.9, there exist constants γ , C0 and C1, such
that when n ≥ C0p1, with probability at least 1 − e−γp1 there holds

‖�̂2p1 − �2p1‖ ≤ C1

√
p1

n
.

As submatrices, we have ‖Ip1 − �̂x‖ ≤ C1

√
p1
n

. Moreover,

‖Ip1 − �̂x‖ = ∥∥(Ip1 − �̂
1/2
x

)(
Ip1 + �̂

1/2
x

)∥∥≥ σmin
(
Ip1 + �̂

1/2
x

)∥∥Ip1 − �̂
1/2
x

∥∥≥ ∥∥Ip1 − �̂
1/2
x

∥∥,
which implies ‖Ip1 − �̂

1/2
x ‖ ≤ C1

√
p1+p2

n
. �

Lemma 7.2. There exist universal constants c, C and C0 such that when n ≥ C0(p1 + p2), then
with probability at least 1 − e−c(p1+p2), the following inequalities hold

‖� − �̂‖,‖Ip2 − �̂y‖,‖�xy − �̂xy‖,
∥∥�̂1/2

y − Ip2

∥∥≤ C

√
p1 + p2

n
,

‖�̂ − �‖ ≤ ∥∥�̂−1/2
x �̂xy�̂

−1/2
y − �xy

∥∥≤ C

√
p1 + p2

n
,

σ 2
k (�̂1:k) ≥ 1

2
, ‖�̂1:k‖2 ≤ 3

2
, σ 2

k (�̂1:k) ≥ 1

2
, ‖�̂1:k‖2 ≤ 3

2
,

∥∥�̂l
1:k
∥∥,∥∥�̂ l

1:k
∥∥≤ C

�

√
p1 + p2

n
,

where � = λk − λk+1 is the eigen-gap.
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The proof is deferred to Section 7.7.

7.4. Estimating equations and upper bound of ‖̂�
l

1:k‖2

In this section, we aim to give a sharp upper bound for ‖�̂l
1:k‖2. Notice that we have already

established an upper bound in Lemma 7.2, where Wedin’s sin θ law plays the essential role.
However, this bound is actually too loose for our purpose. Therefore, we need to develop new
techniques to sharpen the results.

Recall that �̂ ∈ R
p1×p1 , �̂ ∈ R

p2×p1 consist of the sample canonical coefficients. By defini-
tion, the sample canonical coefficients satisfy the following two estimating equations (because

�̂
1/2
x �̂ and �̂

1/2
y �̂ are left and right singular vectors of �̂

−1/2
x �̂xy�̂

−1/2
y , respectively),

�̂xy�̂ = �̂x�̂�̂

�̂yx�̂ = �̂y�̂�̂.
(7.5)

If we define

� =
[
�1

�2

]
∈ R

p1×p1, �̂ =
[
�̂1

�̂2

]
∈R

p1×p1, (7.6)

where �1, �̂1 are k × k diagonal matrices while �2, �̂2 are (p1 − k) × (p1 − k) diagonal
matrices. Then (7.5) imply

�̂xy�̂1:k = �̂x�̂1:k�̂1

�̂yx�̂1:k = �̂y�̂1:k�̂1.
(7.7)

Divide the matrices into blocks,

�̂x =
[
�̂

11
x �̂

12
x

�̂
21
x �̂

22
x

]
, �̂y =

[
�̂

11
y �̂

12
y

�̂
21
y �̂

22
y

]
,

�̂xy =
[
�̂

11
xy �̂

12
xy

�̂
21
xy �̂

22
xy

]
, �̂yx =

[
�̂

11
yx �̂

12
yx

�̂
21
yx �̂

22
yx

]

where �̂
11
x , �̂

11
y , �̂

11
xy , �̂

11
yx are k × k matrices. Finally, we define �̂

u
1:k ∈ R

k×k , �̂
l
1:k ∈R

(p2−k)×k

in the same way as �̂
u
1:k , �̂

l
1:k . With these blocks, (7.7) can be rewritten as

�̂
21
xy�̂

u
1:k + �̂

22
xy�̂

l
1:k = �̂

21
x �̂

u
1:k�̂1 + �̂

22
x �̂

l
1:k�̂1, (7.8)

�̂
21
yx�̂

u
1:k + �̂

22
yx�̂

l
1:k = �̂

21
y �̂

u
1:k�̂1 + �̂

22
y �̂

l
1:k�̂1, (7.9)

�̂
11
xy�̂

u
1:k + �̂

12
xy�̂

l
1:k = �̂

11
x �̂

u
1:k�̂1 + �̂

12
x �̂

l
1:k�̂1, (7.10)
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�̂
11
yx�̂

u
1:k + �̂

12
yx�̂

l
1:k = �̂

11
y �̂

u
1:k�̂1 + �̂

12
y �̂

l
1:k�̂1. (7.11)

Define the zero-padding of �2:

�̃2 := [�2,0] = �22
xy ∈ R

(p1−k)×(p2−k).

The above equations imply the following lemma.

Lemma 7.3. The equality (7.7) gives the following result

�̂
l
1:k�2

1 − �2
2�̂

l
1:k = B�̂

u
1:k + R (7.12)

= (
�̂

21
xy − �̂

21
x �1

)
�̂

u
1:k�1 + �̃2

(
�̂

21
yx − �̂

21
y �1

)
�̂

u
1:k + R̃ (7.13)

where

B := �̂
21
xy�1 + �̃2�̂

21
yx − �̂

21
x �2

1 − �̃2�̂
21
y �1,

R̃ := (
�̂

21
x R1 − R3

)
�1 − �̃2

(
�̂

21
y R2 + R4

)
,

R := R̃ − (
�̂

21
xy − �̂

21
x �1

)
R2.

and

R1 := �̂
u
1:k(�̂1 − �1) + (

�̂
11
x − I k

)
�̂

u
1:k�̂1 + �̂

12
x �̂

l
1:k�̂1 − (

�̂
11
xy − �1

)
�̂

u
1:k − �̂

12
xy�̂

l
1:k,

R2 := �̂
u
1:k(�̂1 − �1) + (

�̂
11
y − I k

)
�̂

u
1:k�̂1 + �̂

12
y �̂

l
1:k�̂1 − (

�̂
11
yx − �1

)
�̂

u
1:k − �̂

12
yx�̂

l
1:k,

R3 := �̂
21
x �̂

u
1:k(�̂1 − �1) + (

�̂
22
x �̂

l
1:k�̂1 − �̂

l
1:k�1

)− (
�̂

22
xy − �̃2

)
�̂

l
1:k,

R4 := �̂
21
y �̂

u
1:k(�̂1 − �1) + (

�̂
22
y �̂

l
1:k�̂1 − �̂

l
1:k�1

)− (
�̂

22
yx − �̃

�
2

)
�̂

l
1:k.

The proof is deferred to Section 7.7.
By Lemma 7.2, one can easily obtain that

‖R1‖,‖R2‖ ≤ C

√
p1 + p2

n
.

Recall that

R3 := �̂
21
x �̂

u
1:k(�̂1 − �1) + (

�̂
22
x �̂

l
1:k�̂1 − �̂

l
1:k�1

)− (
�̂

22
xy − �̃2

)
�̂

l
1:k

By Lemma 7.2, we have∥∥�̂21
x �̂

u
1:k(�̂1 − �1)

∥∥≤ C
p1 + p2

n
,

∥∥(�̂22
xy − �̃2

)
�̂

l
1:k
∥∥≤ C

p1 + p2

�n
,
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and∥∥�̂22
x �̂

l
1:k�̂1 − �̂

l
1:k�1

∥∥≤ ∥∥(�̂22
x − Ip1−k

)
�̂

l
1:k�̂1 + �̂

l
1:k(�̂1 − �1)

∥∥
≤ ∥∥(�̂22

x − Ip1−k

)
�̂

l
1:k�̂1

∥∥+ ∥∥�̂l
1:k(�̂1 − �1)

∥∥≤ C
p1 + p2

�n
.

Therefore, we get ‖R3‖ ≤ C
p1+p2

�n
. Similarly, ‖R4‖ ≤ C

p1+p2
�n

.
Combined with Lemma 7.2, we have

‖R̃‖ = ∥∥(�̂21
x R1 − R3

)
�1 − �̃2

(
�̂

21
y R2 + R4

)∥∥≤ C
p1 + p2

�n

and

‖R‖ ≤ ‖R̃‖ + ∥∥�̂21
xy − �̂

21
x �1

∥∥‖R2‖ ≤ C
p1 + p2

�n
.

The proof of the following lemma is deferred to Section 7.7:

Lemma 7.4. If n ≥ C0(p1 + p2), then with probability 1 − c0 exp(−γp1),

∥∥�̂l
1:k
∥∥≤ C

[√
p1(1 − λ2

k)(1 − λ2
k+1)

n�2
+ (p1 + p2)

n�2

]
.

7.5. Upper bounds of risks

Notice that the inequality (7.4) yields

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2 ≤ ‖�̂l

1:k‖2

σ 2
k (�̂1:k)

.

By Lemma 7.4 and Lemma 7.2, we know on an event G with probability at least 1 − Ce−γp1 ,

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2 ≤ C

[
p1(1 − λ2

k)(1 − λ2
k+1)

n�2
+ (p1 + p2)

2

n2�4

]
.

Moreover, since ‖(Ip1 − P �1:k )P �̂1:k‖2 ≤ 1, by (7.2), we have

ELmax(�1:k, �̂1:k) = E
∥∥(Ip1 − P �1:k )P �̂1:k

∥∥2

≤ C

[
p1(1 − λ2

k)(1 − λ2
k+1)

n�2
+ (p1 + p2)

2

n2�4
+ e−γp1

]
.

Since (Ip1 − P �1:k )P �̂1:k is of at most rank-k, we have

1

k

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2

F
≤ ∥∥(Ip1 − P �1:k )P �̂1:k

∥∥2
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Then by (7.1) and the previous inequality, we have

ELave(�1:k, �̂1:k) = E
∥∥(Ip1 − P �1:k )P �̂1:k

∥∥2

= E
1

k

∥∥(Ip1 − P �1:k )P �̂1:k
∥∥2

F

≤ E
∥∥(Ip1 − P �1:k )P �̂1:k

∥∥2

≤ C

[
p1(1 − λ2

k)(1 − λ2
k+1)

n�2
+ (p1 + p2)

2

n2�4
+ e−γp1

]
.

In fact, the factor p1 in the main term can be reduced to p1 − k by similar arguments as done
for the operator norm. The Frobenius norm version of Lemma 7.4 is actually much simpler. We
omit the proof to avoid unnecessary redundancy and repetition.

7.6. Supporting lemmas in linear algebra and probability

Definition 7.5 (Hadamard Operator Norm). For A ∈ R
m×n, define the Hadamard operator

norm as

|||A||| = sup
{‖A ◦ B‖ : ‖B‖ ≤ 1,B ∈R

m×n
}

Lemma 7.6. Let {αi}mi=1 and {βi}ni=1 be two sequences of positive numbers. for any X ∈ R
m×n,

there hold ∥∥∥∥[
√

αiβj

αi + βj

]
◦ X

∥∥∥∥≤ 1

2
‖X‖, (7.14)

and ∥∥∥∥[min(αi, βj )

αi + βj

]
◦ X

∥∥∥∥≤ 1

2
‖X‖,

∥∥∥∥[max(αi, βj )

αi + βj

]
◦ X

∥∥∥∥≤ 3

2
‖X‖. (7.15)

Proof. The proof of (7.14) can be found in “Norm Bounds for Hadamard Products and an
Arithmetic-Geometric Mean Inequality for Unitarily Invariant Norms” by Horn.

Denote

G1 =
[

max(αi, βj )

αi + βj

]
, G2 =

[
min(αi, βj )

αi + βj

]
The proof of (7.15) relies on the following two results.

Lemma 7.7 (Theorem 5.5.18 of [16]). If A,B ∈R
n×n and A is positive semidefinite. Then,

‖A ◦ B‖ ≤
(

max
1≤i≤n

Aii

)
‖B‖,

where ‖ · ‖ is the operator norm.
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Lemma 7.8 (Theorem 3.2 of [21]). The symmetric matrix(
min(ai, aj )

ai + aj

)
1≤i,j≤n

is positive semidefinite if ai > 0, 1 ≤ i ≤ n.

Define γi = βi , 1 ≤ i ≤ n and γi = αi−n, n + 1 ≤ i ≤ m + n. Define M ∈ R
(m+n)×(m+n) by

Mij = min{γi, γj }
γi + γj

.

By Lemma 7.8, M is also positive semidefinite. Again, apply Lemma 7.7 and notice that G2 is
the lower left sub-matrix of M , It is easy to obtain

|||G2||| ≤ |||M||| ≤ 1

2
.

Finally, since G1 ◦ B = B − G2 ◦ B for any B , we have

‖G1 ◦ B‖ ≤ ‖B‖ + ‖G2 ◦ B‖,
which implies,

|||G1||| ≤ 1 + |||G2||| ≤ 3

2
. �

Lemma 7.9 (Covariance Matrix Estimation, Remark 5.40 of [25]). Assume A ∈ R
n×p has

independent sub-gaussian random rows with second moment matrix �. Then there exists univer-
sal constant C such that for every t ≥ 0, the following inequality holds with probability at least
1 − e−ct2

, ∥∥∥∥1

n
A�A − �

∥∥∥∥≤ max
{
δ, δ2}‖�‖ δ = C

√
p

n
+ t√

n
.

Lemma 7.10 (Bernstein inequality, Proposition 5.16 of [25]). Let X1, . . . ,Xn be indepen-
dent centered sub-exponential random variables and K = maxi ‖Xi‖ψ1 . Then for every a =
(a1, . . . ,an) ∈ R

n and every t ≥ 0, we have

P

{∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣≥ t

}
≤ 2 exp

{
−c min

(
t2

K2‖a‖2
2

,
t

K‖a‖∞

)}
.

Lemma 7.11 (Hanson-Wright inequality, Theorem 1.1 of [23]). Let x = (x1, . . . , xp) be a
random vector with independent components xi which satisfy Exi = 0 and ‖xi‖ψ2 ≤ K , Let
A ∈R

p×p . Then there exists universal constant c such that for every t ≥ 0,

P
{∣∣x�Ax −Ex�Ax

∣∣≥ t
}≤ 2 exp

{
−c min

(
t2

K4‖A‖2
F

,
t

K2‖A‖
)}

.
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Lemma 7.12 (Covering Number of the Sphere, Lemma 5.2 of [25]). The unit Euclidean
sphere S

n−1 equipped with the Euclidean metric satisfies for every ε > 0 that

∣∣N (Sn−1, ε
)∣∣≤ (

1 + 2

ε

)n

,

where N (Sn−1, ε) is the ε-net of Sn−1 with minimal cardinality.

The following variant of Wedin’s sin θ law [28] is proved in Proposition 1 of [3].

Lemma 7.13. For A,E ∈ R
m×n and Â = A + E, define the singular value decompositions of

A and Â as

A = UDV �, Â = ÛD̂V̂
�
.

Then the following perturbation bound holds,

∥∥(I − P U1:k )P Û1:k
∥∥= ‖P U1:k − P Û1:k‖ ≤ 2‖E‖

σk(A) − σk+1(A)
,

where σk(A), σk+1(A) are the kth and (k + 1)th singular values of A.

7.7. Proofs of key lemmas

7.7.1. Proof of Lemma 7.2

(1) The proof of

‖� − �̂‖,‖Ip2 − �̂y‖,‖�xy − �̂xy‖,
∥∥�̂1/2

y − Ip2

∥∥≤ C

√
p1 + p2

n

is exactly the same as that of Lemma 7.1.
(2) Observe that

�̂
−1/2
x �̂xy�̂

−1/2
y − �xy = (

Ip1 − �̂
1/2
x

)
�̂

−1/2
x �̂xy�̂

−1/2
y

+ �̂
1/2
x �̂

−1/2
x �̂xy�̂

−1/2
y

(
Ip2 − �̂

1/2
y

)+ (�̂xy − �xy),

and ‖�̂−1/2
x �̂xy�̂

−1/2
y ‖ = λ̂1 ≤ 1. Then

∥∥�̂−1/2
x �̂xy�̂

−1/2
y − �xy

∥∥≤ ∥∥Ip1 − �̂
1/2
x

∥∥+ ‖�̂x‖
∥∥Ip2 − �̂

1/2
y

∥∥+ ‖�̂xy − �xy‖.
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Notice that �̂ and � are singular values of �̂
−1/2
x �̂xy�̂

−1/2
y and �xy respectively. Hence by the

famous Weyl’s inequality for singular values,

‖�̂ − �‖ ≤ ∥∥�̂−1/2
x �̂xy�̂

−1/2
y − �xy

∥∥
≤ ‖Ip1 − �̂x‖ + ‖�̂x‖

∥∥Ip2 − �̂
1/2
y

∥∥+ ‖�̂xy − �xy‖

≤
(

3 + C1

√
p1 + p2

n

)
C1

√
p1 + p2

n
≤ C2

√
p1 + p2

n
.

(3) Since �̂
1/2
x �̂ are left singular vectors of �̂

−1/2
x �̂xy�̂

−1/2
y , we have ‖�̂1/2

x �̂‖ = 1,

�̂
�
�̂x�̂ = Ip1 and �̂

�
�̂ − Ip1 = −�̂

�
(�̂x − Ip1)�̂. Then we have,

∥∥�̂�
�̂ − Ip1

∥∥= ∥∥�̂�
(�̂x − Ip1)�̂

∥∥≤ ∥∥�̂�
�̂

1/2
x

∥∥∥∥�̂−1/2
x (�̂x − Ip1)�̂

−1/2
x

∥∥∥∥�̂1/2
x �̂

∥∥
= ∥∥�̂−1/2

x (�̂x − Ip1)�̂
−1/2
x

∥∥.
As a submatrix,∥∥�̂�

1:k�̂1:k − I k

∥∥≤ ∥∥�̂−1/2
x (�̂x − Ip1)�̂

−1/2
x

∥∥≤ ∥∥�̂−1
x

∥∥‖�̂x − Ip1‖

≤ 1

1 − ‖�̂x − Ip1‖
‖�̂x − Ip1‖ ≤ ‖�̂ − �‖

1 − ‖�̂ − �‖ ≤ 1

2

as long as n ≥ C0(p1 + p2) for sufficiently large C0. In this case,

σ 2
k (�̂1:k) ≥ 1/2, ‖�̂1:k‖2 ≤ 3/2.

By the same argument,

σ 2
k (�̂1:k) ≥ 1/2, ‖�̂1:k‖2 ≤ 3/2.

(4) Recall that

�1:k =
[

I k

0(p1−k)×k

]
, �1:k =

[
I k

0(p2−k)×k

]
.

The last inequality in the lemma relies on the fact that �̂
1/2
x �̂1:k and �1:k are leading k singular

vectors of �̂
−1/2
x �̂xy�̂

−1/2
y and �xy respectively. By a variant of Wedin’s sin θ law as stated in

Lemma 7.13,

∥∥P
�̂

1/2
x �̂1:k

(Ip1 − P �1:k )
∥∥≤ 2‖�̂−1/2

x �̂xy�̂
−1/2
y − �xy‖

�
≤ 2C2

�

√
p1 + p2

n
.
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On the other hand,∥∥P
�̂

1/2
x �̂1:k

(Ip1 − P �1:k )
∥∥= ∥∥�̂1/2

x �̂1:k
(
�̂

1/2
x �̂1:k

)�
(Ip1 − P �1:k )

∥∥
= ∥∥(�̂1/2

x �̂1:k
)�

(Ip1 − P �1:k )
∥∥

= ∥∥(�̂1/2
x �̂1:k

)l∥∥.
Here the second equality is due to the fact that �̂

1/2
x �̂1:k has orthonormal columns. Moreover,

(�̂
1/2
x �̂1:k)l denotes the lower (p1 −k)×k sub-matrix of �̂

1/2
x �̂1:k . Again, by triangle inequality,

∥∥�̂l
1:k
∥∥= ∥∥(�̂1/2

x �̂1:k
)l − ((

�̂
1/2
x − Ip1

)
�̂1:k

)l∥∥
≤ ∥∥(�̂1/2

x �̂1:k
)l∥∥+ ∥∥(�̂1/2

x − Ip1

)∥∥‖�̂1:k‖

≤ 2C2

�

√
p1 + p2

n
+
√

3

2
C1

√
p1 + p2

n
≤ C3

�

√
p1 + p2

n
.

The last inequality is due to � ≤ 1. Let C = max(C1,C2,C3), the proof is done.

7.7.2. Proof of Lemma 7.3

The equality (7.10) implies

�1�̂
u
1:k − �̂

u
1:k�1 = �̂

u
1:k(�̂1 − �1) + (

�̂
11
x − I k

)
�̂

u
1:k�̂1 + �̂

12
x �̂

l
1:k�̂1

− (
�̂

11
xy − �1

)
�̂

u
1:k − �̂

12
xy�̂

l
1:k

:= R1. (7.16)

Similarly, (7.11) implies

�1�̂
u
1:k − �̂

u
1:k�1 = �̂

u
1:k(�̂1 − �1) + (

�̂
11
y − I k

)
�̂

u
1:k�̂1 + �̂

12
y �̂

l
1:k�̂1

− (
�̂

11
yx − �1

)
�̂

u
1:k − �̂

12
yx�̂

l
1:k

:= R2. (7.17)

The equality (7.8) is equivalent to

�̂
21
xy�̂

u
1:k + �̃2�̂

l
1:k + (

�̂
22
xy − �̃2

)
�̂

l
1:k = �̂

21
x �̂

u
1:k�1 + �̂

21
x �̂

u
1:k(�̂1 − �1)

+ �̂
l
1:k�1 + (

�̂
22
x �̂

l
1:k�̂1 − �̂

l
1:k�1

)
,
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which can be written as

�̂
21
xy�̂

u
1:k + �̃2�̂

l
1:k − �̂

21
x �̂

u
1:k�1 − �̂

l
1:k�1

= �̂
21
x �̂

u
1:k(�̂1 − �1) + (

�̂
22
x �̂

l
1:k�̂1 − �̂

l
1:k�1

)− (
�̂

22
xy − �̃2

)
�̂

l
1:k

:= R3. (7.18)

Apply the same argument to (7.9), we obtain

�̂
21
yx�̂

u
1:k + �̃

�
2 �̂

l
1:k − �̂

21
y �̂

u
1:k�1 − �̂

l
1:k�1

= �̂
21
y �̂

u
1:k(�̂1 − �1) + (

�̂
22
y �̂

l
1:k�̂1 − �̂

l
1:k�1

)− (
�̂

22
yx − �̃

�
2

)
�̂

l
1:k

:= R4. (7.19)

Consider (7.18) × (−�1) − �̃2 × (7.19), then

�̂
l
1:k�2

1 − �2
2�̂

l
1:k + �̂

21
x �̂

u
1:k�2

1 − �̂
21
xy�̂

u
1:k�1 − �̃2�̂

21
yx�̂

u
1:k + �̃2�̂

21
y �̂

u
1:k�1

= −(R3�1 + �̃2R4),

that is

�̂
l
1:k�2

1 − �2
2�̂

l
1:k = �̂

21
xy�̂

u
1:k�1 + �̃2�̂

21
yx�̂

u
1:k

− �̂
21
x �̂

u
1:k�2

1 − �̃2�̂
21
y �̂

u
1:k�1 − (R3�1 + �̃2R4). (7.20)

Combined with (7.16) and (7.17),

�̂
l
1:k�2

1 − �2
2�̂

l
1:k = �̂

21
xy�̂

u
1:k�1 + �̃2�̂

21
yx�̂

u
1:k − �̂

21
x �1�̂

u
1:k�1 + �̂

21
x R1�1

− �̃2�̂
21
y �1�̂

u
1:k − �̃2�̂

21
y R2 − (R3�1 + �̃2R4)

= (
�̂

21
xy − �̂

21
x �1

)
�̂

u
1:k�1 + �̃2

(
�̂

21
yx − �̂

21
y �1

)
�̂

u
1:k

+ (
�̂

21
x R1 − R3

)
�1 − �̃2

(
�̂

21
y R2 + R4

)
. (7.21)

This finishes the proof of (7.13).
Plug (7.17) into (7.21), we get

�̂
l
1:k�2

1 − �̃
2
2�̂

l
1:k = (

�̂
21
xy − �̂

21
x �1

)(
�1�̂

u
1:k − R2

)+ �̃2
(
�̂

21
yx − �̂

21
y �1

)
�̂

u
1:k + R̃

= B�̂
u
1:k + (

R̃ − (
�̂

21
xy − �̂

21
x �1

)
R2
)
.

This finishes the proof of (7.12).



462 Z. Ma and X. Li

7.7.3. Proof of Lemma 7.4

First, we discuss two quite different cases: λk ≥ 1
2 and λk < 1

2 .

Case 1: λk ≥ 1
2

Let

δ := λ2
k − λ2

k+1 = (λk − λk+1)(λk + λk+1) ≥ 1

2
�.

Define the (p1 − k) × k matrices A by

Aij =
√

λ2
j − λ2

k + δ
2

√
λ2

k+1 − λ2
k+i + δ

2

λ2
j − λ2

k+i

, 1 ≤ i ≤ p1 − k,1 ≤ j ≤ k

By (7.12) in Lemma 7.3, there holds

�̂
l
1:k = A ◦ (D1B�̂

u
1:kD2

)+ A ◦ (D1RD2),

where

D1 = diag

(
1√
δ
2

, . . . ,
1√

λ2
k+1 − λ2

p1
+ δ

2

)
and

D2 = diag

(
1√

λ2
1 − λ2

k + δ
2

, . . . ,
1√
δ
2

)
.

By Lemma 7.6, we have∥∥�̂l
1:k
∥∥≤ 1

2

∥∥D1B�̂
u
1:kD2

∥∥+ 1

2

∥∥(D1RD2)
∥∥

≤ 1

2
‖D1B‖∥∥�̂u

1:k
∥∥‖D2‖ + 1

2
‖D1‖‖R‖‖D2‖.

Recall that ‖�̂u
1:k‖ ≤ ‖�̂1:k‖ ≤

√
3
2 and it is obvious that ‖D1‖,‖D2‖ ≤

√
2
δ

. Moreover, in the

previous section, we also have shown that ‖R‖ ≤ C(p1+p2)
n�

. It suffices to bound ‖D1B‖ and to
this end we apply the standard covering argument.

Step 1. Reduction. Denote by Nε(S
d) the d-dimensional unit ball surface. For ε > 0 and any

pair of vectors u ∈ R
p1−k , v ∈ R

k , we can choose uε ∈ Nε(S
p1−k−1), vε ∈ Nε(S

k−1) such that
‖u − uε‖,‖v − vε‖ ≤ ε. Then

u�D1Bv = u�D1Bv − u�
ε D1Bv + u�

ε D1Bv − u�
ε D1Bvε + u�

ε D1Bvε

≤ ‖u − uε‖‖D1Bv‖ + ∥∥u�
ε D1B

∥∥‖v − vε‖ + u�
ε D1Bvε
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≤ 2ε‖D1B‖ + u�
ε D1Bvε

≤ 2ε‖D1B‖ + max
uε ,vε

u�
ε D1Bvε .

Maximize over u and v, we obtain

‖D1B‖ ≤ 2ε‖D1B‖ + max
uε ,vε

u�
ε D1Bvε .

Therefore, ‖D1B‖ ≤ (1 − 2ε)−1 maxuε ,vε u�
ε D1Bvε . Let ε = 1/4. Then it suffices to give an

upper bound maxuε ,vε u�
ε D1Bvε with high probability.

Step 2. Concentration. Let Zα,l = Yα,l−λlXl√
1−λ2

l

for all 1 ≤ α ≤ n and 1 ≤ l ≤ p1. Then for 1 ≤ i ≤
p1 − k and 1 ≤ j ≤ k

[D1B]i,j

= 1√
λ2

k+1 − λ2
k+i + δ

2

1

n

n∑
α=1

(
λjXα,k+iYα,j

− λ2
jXα,k+iXα,j + λk+iYα,k+iXα,j − λk+iλjYα,k+iYα,j

)
= 1√

λ2
k+1 − λ2

k+i + δ
2

1

n

n∑
α=1

{(
1 − λ2

j

)
λk+iλjXα,k+iXα,j

− λ2
j (Yα,k+i − λk+iXα,k+i )(Yα,j − λjXα,j )

+ (
1 − λ2

j

)
λj (Yα,k+i − λk+iXα,k+i )Xα,j + (

1 − λ2
j

)
λk+i (Yα,j − λjXα,j )Xα,k+i

}
= 1√

λ2
k+1 − λ2

k+i + δ
2

1

n

n∑
α=1

{(
1 − λ2

j

)
λk+iλjXα,k+iXα,j

− λ2
j

√
1 − λ2

k+i

√
1 − λ2

jZα,k+iZα,j + (
1 − λ2

j

)
λj

√
1 − λ2

k+iZα,k+iXα,j

+ (
1 − λ2

j

)
λk+i

√
1 − λ2

k+iXα,k+iZα,j

}
.

In this way, {Xα,k+i ,Zα,k+i ,1 ≤ i ≤ p1,1 ≤ α ≤ n} are mutually independent standard gaus-
sian random variables. For any given pair of vectors u ∈ R

p1−k , v ∈R
k ,

u�D1Bv = 1

n

n∑
α=1

p1−k∑
i=1

k∑
j=1

uivj√
λ2

k+1 − λ2
k+i + δ

2

{(
1 − λ2

j

)
λk+iλjXα,k+iXα,j

− λ2
j

√
1 − λ2

k+i

√
1 − λ2

jZα,k+iZα,j + (
1 − λ2

j

)
λj

√
1 − λ2

k+iZα,k+iXα,j
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+ (
1 − λ2

j

)
λk+i

√
1 − λ2

k+iXα,k+iZα,j

}
.= 1

n

n∑
α=1

w�
α Aαwα,

where

w�
α = [

x�
α ,z�

α

]= [Xα,1, . . . ,Xα,p1,Zα,1, . . . ,Zα,p1 ]
and Aα ∈ R

(2p1)×(2p1) is symmetric and determined by the corresponding quadratic form. This
yields

‖Aα‖2
F = 1

2

p1−k∑
i=1

k∑
j=1

u2
i v

2
j

λ2
k+1 − λ2

k+i + δ
2

{(
1 − λ2

j

)2
λ2

k+iλ
2
j + λ4

j

(
1 − λ2

k+i

)(
1 − λ2

j

)
+ (

1 − λ2
j

)2
λ2

j

(
1 − λ2

k+i

)+ (
1 − λ2

j

)2
λ2

k+i

(
1 − λ2

k+i

)}
= 1

2

p1−k∑
i=1

k∑
j=1

u2
i v

2
j

λ2
k+1 − λ2

k+i + δ
2

(
1 − λ2

j

)(
λ2

k+i + λ2
j − 2λ2

k+iλ
2
j

)

≤ 1

2

(
p1−k∑
i=1

u2
i

)(
k∑

j=1

v2
j

)
max

1≤i≤p1−k
1≤j≤k

(1 − λ2
j )(λ

2
k+i + λ2

j − 2λ2
k+iλ

2
j )

λ2
k+1 − λ2

k+i + δ
2

≤ 1

2
max

1≤i≤p1−k
1≤j≤k

(1 − λ2
k)(2λ2

j − 2λ2
k+iλ

2
j )

λ2
k+1 − λ2

k+i + δ
2

≤ (
1 − λ2

k

)
max

1≤i≤p1−k
1≤j≤k

λ2
j (1 − λ2

k+i )

δ
2 + λ2

k+1 − λ2
i+k

≤ (
1 − λ2

k

)
max

1≤i≤p1−k
1≤j≤k

(1 − λ2
k+1)

δ
2

≤ 2(1 − λ2
k)(1 − λ2

k+1)

δ

.= K2,

where the second last inequality is due to the facts that λj ≤ 1 and

(1 − λ2
k+i )

δ
2 + λ2

k+1 − λ2
i+k

≤ (1 − λ2
k+1)

δ
2

(
∵ δ

2
+ λ2

k+1 < λ2
k ≤ 1

)
.

Moreover, ‖Aα‖2
2 ≤ ‖Aα‖2

F ≤ K2.
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Now define w� := [w�
1 , . . . ,w�

n ] and

A =

⎡⎢⎢⎢⎣
A1

A2
. . .

An

⎤⎥⎥⎥⎦ .

Then we have

‖A‖ ≤ max
1≤α≤n

‖Aα‖ ≤ K, ‖A‖2
F ≤

n∑
α=1

‖Aα‖2
F ≤ nK2

and

u�D1Bv = 1

n
w�Aw, where w ∈ N2p1n(0, I 2p1n).

Therefore, by the classic Hanson–Wright inequality (Lemma 7.11), there holds

P
{
n
∣∣u�D1Bv

∣∣≥ t
}≤ 2 exp

{
−c0 min

(
t2

nK2
,

t

K

)}
for some numerical constant c0 > 0. Without loss of generality, we can also assume c0 ≤ 1. Let
t = 4

c0

√
np1K . By n ≥ p1, straightforward calculation gives

P

{
n
∣∣u�D1Bv

∣∣≥ 4

c0

√
np1K

}
≤ 2e−4p1 .

Step 3. Union Bound. By Lemma 7.12, we choose 1/4-net such that

P

{
max

uε∈Nε (S
p1−k−1)

vε∈Nε (S
k−1)

u�
ε D1Bvε ≥

(
4
√

2

c0

)√
p1

n

√
(1 − λ2

k)(1 − λ2
k+1)

δ

}

≤ 9p1−k9k × 2e−4p1 ≤ 2e− 3
2 p1 .

In other words, with probability at least 1 − 2e− 3
2 p1 , we have

‖D1B‖ ≤ (1 − 2ε)−1 max
uε ,vε

u�
ε D1Bvε ≤

(
8
√

2

c0

)√
p1

n

√
(1 − λ2

k)(1 − λ2
k+1)

δ
.
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In summary, we have as long as n ≥ C0(p1 + p2), with probability 1 − c0 exp(−γp1),

∥∥�̂l
1:k
∥∥≤ C

[√
p1(1 − λ2

k)(1 − λ2
k+1)

nδ2
+ (p1 + p2)

n�δ

]

≤ C

[√
p1(1 − λ2

k)(1 − λ2
k+1)

n�2
+ (p1 + p2)

n�2

]
.

Here the last inequality is due to δ = (λk + λk+1)� ≥ 1
2�. Here C0, C, c0, γ are absolute

constants.

Case 2: λk ≤ 1
2

By (7.13), we have

�̂
l
1:k�2

1 − �2
2�̂

l
1:k = G�1 + �2F ,

where

G := (
�̂

21
xy − �̂

21
x �1

)
�̂

u
1:k + (

�̂
21
x R1 − R3

)
and

F := [Ip1 ,0p1×(p2−p1)]
[(

�̂
21
yx − �̂

21
y �1

)
�̂

u
1:k − (

�̂
21
y R2 + R4

)]
.

Notice that �̂
21
xy and �̂

21
x are submatrices of �̂2p1 . By Lemma 7.1, we have

∥∥�̂21
xy − �̂

21
x �1

∥∥≤ C

√
p1

n
.

Moreover, by ‖R1‖ ≤ C

√
p1+p2

n
, ‖R3‖ ≤ C

p1+p2
n�

and Lemma 7.2, there holds

‖G‖ ≤ C

(√
p1

n
+ p1 + p2

n�

)
.

Similarly, [Ip1,0p1×(p2−p1)]�̂21
yx and [Ip1 ,0p1×(p2−p1)]�̂21

x are submatrices of �̂2p1 . By a sim-
ilar argument,

‖F‖ ≤ C

(√
p1

n
+ p1 + p2

n�

)
.

Then

�̂
l
1:k =

[
λj

λk+i + λj

]
◦
[

1

λj − λk+i

]
◦ G +

[
λk+i

λk+i + λj

]
◦
[

1

λj − λk+i

]
◦ F
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Here 1 ≤ i ≤ p1 − k and 1 ≤ j ≤ k. By Lemma 7.6, there holds for any X,∥∥∥∥[ λj

λk+i + λj

]
X

∥∥∥∥=
∥∥∥∥[max(λk+i , λj )

λk+i + λj

]
X

∥∥∥∥≤ 3

2
‖X‖

and ∥∥∥∥[ λk+i

λk+i + λj

]
X

∥∥∥∥=
∥∥∥∥[min(λk+i , λj )

λk+i + λj

]
X

∥∥∥∥≤ 1

2
‖X‖.

Finally, for any X, [
1

λj − λk+i

]
X = A ◦ (D1XD2)

where

A :=
[√λj − λk + �

2

√
λk+1 − λk+i + �

2

λj − λk+i

]
,

D1 = diag

(
1√
�
2

, . . . ,
1√

λk+1 − λp1 + �
2

)
,

and

D2 = diag

(
1√

λ1 − λk + �
2

, . . . ,
1√
�
2

)
.

Since ‖D1‖,‖D2‖ ≤
√

2
�

, by Lemma 7.6,

∥∥∥∥[ 1

λj − λk+i

]
X

∥∥∥∥≤ 1

2
‖D1XD2‖ ≤ 1

�
‖X‖.

In summary, we have

∥∥�̂l
1:k
∥∥≤ C

(√
p1

n�2
+ p1 + p2

n�2

)
.

Since 1
2 ≥ λk ≥ λk+1, there holds

∥∥�̂l
1:k
∥∥≤ C

[√
p1(1 − λ2

k)(1 − λ2
k+1)

n�2
+ (p1 + p2)

n�2

]
.
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7.8. Special case: λk = 1

Recall that

�x = Ip1, �y = Ip2 , �xy = [�,0p1×(p2−p1)] := �̃,

� :=
[

�x �xy

��
xy �y

]
=
[
Ip1 �̃

�̃
�

Ip2

]
.

If λ1 = · · · = λk = 1 > λk+1, we have rank(�) = p1 + p2 − k. Moreover, since the joint distri-
bution of x� = [X1, . . . ,Xp1] and y� = [Y1, . . . , Yp2] is multivariate normal, there must hold

Xi = Yi, 1 ≤ i ≤ k.

Then the first k columns of X ∈ R
n×p1 and those of Y ∈R

n×p2 are identical, respectively, which
implies

(�̂x)1:k,1:k = (�̂y)1:k,1:k = (�̂xy)1:k,1:k,

where the subscript represents the upper left k×k submatrices. Moreover, as long as n > p1 +p2,
we know with probability one there holds

rank(X) = p1, rank(Y ) = p2, rank
([X,Y ])= p1 + p2 − k,

which also implies that with probability one λ̂k+1 < 1.
Define Û k , V̂ k as

Û k = Ip1,k(�̂x)
− 1

2
1:k,1:k, V̂ k = Ip2,k(�̂y)

− 1
2

1:k,1:k,

where Ip,k denotes the first k columns of the p×p dimensional identity matrix Ip . It is straight-
forward to verify that

Û
�
k �̂xÛ k = I k, V̂

�
k �̂yV̂ k = I k

and

Û
�
k �̂xy V̂ k = I k.

Notice that the sample canonical correlations are at most 1, by the definition in equation (1.7),
we have λ̂1 = · · · = λ̂k = 1 and (Û k , V̂ k) is one of the solutions for the leading k pair of sample
canonical loadings. The fact λ̂k+1 < 1 implies that the subspace spanned by the top k left/right

singular vectors of �̂
−1/2
x �̂xy�̂

−1/2
y is unique, which further implies that the subspace spanned

by the top k left/right sample canonical loadings is unique. Then for any top k sample canonical
loading matrix �̂1:k , the column space of �̂1:k must equal to the column space of Û k , namely,

the column space of Ip1,k . Thus, �̂
l
1:k = 0. Substituting this into equation (7.3) and (7.4) reveals

that both loss functions are zero.
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Supplementary Material

Supplement to “Subspace perspective on canonical correlation analysis: Dimension reduc-
tion and minimax rates” (DOI: 10.3150/19-BEJ1131SUPP; .pdf). We give a complete proof of
Theorem 2.2 in [20].
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