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In the general signal+noise (allowing non-normal, non-independent observations) model, we construct
an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly
sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new
slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild ex-
changeable exponential moment condition on the noise, we establish the local (oracle) optimality of the
proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius
contains an additional σn1/4-term. In passing, we also get the local optimal results for estimation, posterior
contraction problems, and the problem of weak recovery of sparsity structure. Adaptive minimax results
(also for the estimation and posterior contraction problems) over various sparsity classes follow from our
local results.
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1. Introduction

The model and the main problem

Suppose we observe X = X(σ,n) = (X1, . . . ,Xn):

Xi = θi + σξi, i ∈ [n] = {1, . . . , n}, (1)

where θ = (θ1, . . . , θn) ∈ R
n is an unknown high-dimensional parameter of interest, the ξi ’s are

random errors with Eθ ξi = 0, Varθ (ξi) ≤ Cξ , σ > 0 is the known noise intensity. The goal is to
make inference about the parameter θ based on the data X: recovery of θ and uncertainty quan-
tification by constructing an optimal confidence set. We pursue robust inference in the sense that
the distribution of the error vector ξ = (ξ1, . . . , ξn) is unknown and may also depend on θ , but
assumed to satisfy only certain mild exchangeable exponential moment condition; see Condition
(A1) in Section 2. We exploit the empirical Bayes approach and derive non-asymptotic results,
which imply asymptotic assertions as well if needed. Possible asymptotic regimes are decreas-
ing noise level σ → 0, high-dimensional setup n → ∞ (the leading case for high dimensional
models), or their combination, for example, σ = n−1/2 and n → ∞.

Useful inference is not possible without some structure on θ . Popular structural assumptions
are smoothness and sparsity, in this paper we are concerned with the latter. The best studied
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problem in the sparsity context is that of estimating θ in the many normal means model, a variety
of estimation methods and results are available in the literature: [1,8,14,16,19,30]. However,
even an optimal estimator does not reveal how far it is from θ . It is of importance to quantify this
uncertainty, which can be seen as the problem of constructing confidence sets for θ .

Bayesian approach and accompanying posterior contraction problem

Many inference methods have Bayesian connections. For example, even some seemingly non
Bayesian estimators can be obtained as certain quantities (like posterior mode for penalized min-
imum contrast estimators) of the (empirical Bayes) posterior distributions resulting from impos-
ing some specific priors on the parameter; cf. [19] and [1]. Although the Bayesian methodology
is used or can be related to in constructing many (frequentist) inference procedures, only recently
the posterior distributions themselves have been studied in the sparsity context: [7,12,14,21,25,
27,30].

In this paper, for inference on θ we use an empirical Bayes approach. Since any Bayesian
approach always delivers a posterior π(ϑ |X) (in the posteriors for θ , we will use the variable
ϑ to distinguish it from the “true” θ ), an accompanying problem of interest is the contraction
of the resulting (empirical Bayes) posterior to the “true” θ from the frequentist perspective of
the “true” measure Pθ , the distribution of X from (1). The quality of posterior is characterized
by the posterior contraction rate. We pursue a novel local approach by allowing the posterior
contraction rate to be a local quantity, that is, depending on the true θ , whereas global minimax
rates are typically studied in the literature on Bayesian nonparametrics.

A common Bayesian way to model sparsity structure is by the so called two-groups priors.
Such a prior puts positive mass on vectors θ with some exact zero coordinates (zero group) and
the remaining coordinates (signal group) are drawn from a chosen distribution. So the marginal
prior for each coordinate is a mixture of a continuous distribution and a point-mass at zero. In
[14] it is shown that for a suitably chosen two-groups prior, the posterior concentrates around
the true θ at the minimax rate (as n → ∞) for two sparsity classes, nearly black vectors �0[pn]
with pn nonzero coordinates and weak �s -balls ms[pn]. As pointed out by [14] (also by [19]),
the prior distributions of non-zero coordinates should not have too light tails, otherwise one gets
sub-optimal rates. The important Gaussian case is for example excluded. This has to do with the
so called over-shrinkage effect of the normal prior with a fixed mean, which pushes the posterior
too much towards the prior mean, missing the true parameter that in general differs from the prior
mean. That is why [19] and [14] discard normal priors on non-zero coordinates and use heavy
tailed priors. In the present paper, we show that normal priors are still usable (cf. [21]) and lead
to strong local results (even for non-normal models) if combined with empirical Bayes approach.

Uncertainty quantification problem

The main aim in this paper is to construct confidence sets with optimal properties. The size of a
confidence set is measured by the smallest radius of a ball containing this set, hence it suffices to
consider confidence balls. For the usual norm ‖ · ‖ in R

n, a random ball in R
n is B(θ̂, r̂) = {θ ∈

R
n : ‖θ̂ − θ‖ ≤ r̂}, where the center θ̂ = θ̂ (X) : Rn �→ R

n and radius r̂ = r̂(X) : Rn �→ R+ =
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[0,+∞] are measurable functions of the data X. Let us introduce the optimality framework for
uncertainty quantification. The goal is to construct such a confidence ball B(θ̂,Cr̂) that for any
α1, α2 ∈ (0,1] and some functional r(θ) = rσ,n(θ), r : Rn →R+, there exist C,c > 0 such that

sup
θ∈	0

Pθ

(
θ /∈ B(θ̂,Cr̂)

) ≤ α1, sup
θ∈	1

Pθ

(
r̂ ≥ cr(θ)

) ≤ α2, (2)

for some 	0,	1 ⊆R
n. The function r(θ), called the radial rate, is a benchmark for the effective

radius of the confidence ball B(θ̂,Cr̂). The first expression in (2) is called coverage relation
and the second size relation. Notice that our approach is local (and hence genuinely adaptive) as
the radial rate r(θ) is a function of the “true” parameter θ . The (quadratic) minimax rate over a
class 	β is defined as r2(	β) � inf

θ̂
supθ∈	β

Eθ‖θ̂ − θ‖2, where the infimum is taken over all
estimators. Recall the common (global) minimax adaptive version of (2): given a scale (a family
of sets) {	β,β ∈ B}, with corresponding minimax rates r(	β) indexed by a structural parameter
β ∈ B (e.g., smoothness or sparsity), the minimax adaptive version of (2) is obtained by taking
	0 = 	1 = 	β with the radial rate r(θ) = r(	β) for all θ ∈ 	β , β ∈ B.

Coming back to our local framework (2), it is desirable to find the smallest r(θ) and the
biggest 	0, 	1, for which (2) holds. These are contrary requirements, so we have to trade them
off against each other. There are different ways of doing this, leading to different optimality
frameworks. For example, if we insist on overall uniformity 	0 = R

n, then the results in [20]
and [11] (more refined versions are in [3] and [22]) say basically that the radial rate r cannot be
of a faster order than σn1/4 for every θ and is at least of order σn1/2 for some θ . This means that
any confidence ball that is optimal with respect to the optimality framework (2) with 	0 = R

n

will necessarily have a big size, even if the true θ happens to lie in a very “good”, smooth or
sparse, class 	1. Many good confidence sets cannot be optimal in this sense (called “honest” in
some papers) and effectively excluded from the consideration. For minimax adaptive versions of
(2) this means that as soon as we require 	0 = 	β , β ∈ B in the coverage relation, the minimax
rate r(	β) in the size relation is unattainable even when β ∈ B = {β1, β2} for certain β1, β2;
cf. [22] for two nearly black classes. Essentially, the overall uniform coverage and optimal size
properties can not hold together, it is necessary to sacrifice at least one of these, preferably as little
as possible. We argue that it is unreasonable to pursue an optimality framework with the entire
space 	0 = R

n in the coverage relation, because this leads to discarding many good procedures
and optimality of uninteresting ones. Instead, it makes sense to sacrifice in the set 	0 = R

n\	′,
by removing a preferably small portion of “deceptive parameters” 	′ from R

n so that that the
optimal radial rates become attainable in the size relation with interesting (preferably “massive”)
sets 	1.

This “deceptiveness” phenomenon is well understood for some smoothness structures (e.g.,
Sobolev scale), especially in global minimax settings; see [4,10,24] and [28]. If we now insist on
the optimal size property in (2) for all 	β , β ∈ B, the coverage relation in (2) will not hold for
all 	0 = 	β , but only for 	0 = 	β\	′, with some set of “deceptive parameters” 	′ removed
from 	β . In [28] such parameters are called “inconvenient truths” and an implicit construction
of a θ ∈ 	′ is given. Examples of non-deceptive parameters are the set of self-similar parameters
	0 = 	ss introduced by [23] and studied by [9,10,28], and the set of polished tail parameters
	0 = 	pt considered by [28]. All the above mentioned papers study global minimax radial rates
(i.e., r(θ) = r(	β) for all θ ∈ 	β ) for specific smoothness scales. A local approach, delivering



194 E. Belitser and N. Nurushev

also the adaptive minimax results for many smoothness scales simultaneously, is considered by
[2] for posterior contraction rates and by [4] for constructing optimal confidence balls. In [4], yet
a more general (than 	ss and 	pt) set of non-deceptive parameters was introduced, 	0 = 	eb,
parameters satisfying the so called excessive bias restriction (EBR).

To the best of our knowledge, there are very few papers about adaptive results on uncertainty
quantification (2). The case of two nearly black classes is treated by [22], the “general polished
tail” condition was introduced in [26] to describe non-deceptive parameters, a more general case
of linear regression model (but with the standard normal noise) is recently studied in [5]. A re-
stricted scale of nearly black classes is treated in [29], where effectively a version of our EBR
condition is used; more on relation to paper [29] can be found in Supplement [6].

The scope of this paper

In this paper, we propose an empirical Bayes procedure, in fact, two procedures. There are four
distinctive features of our approach: robust, local, refined and EBR.

First, robust means that our results cover also misspecified models, as we allow the ξi ’s to be
not necessarily independent normals (a certain type of error misspecification was also mentioned
in a remark of the supplement to [12]). Precisely, we use the normal likelihood, whereas the
true model (1) does not have to be normal and independence of ξi ’s is not required either, but
only satisfying some mild Condition (A1) (see below), called exchangeable exponential moment
condition. It turned out that, although we use the normal likelihood (whereas the true model
may not be normal) in the Bayesian analysis when proving the main results, we can handle the
frequentist behavior of the posterior from the perspective of the true measure only on the basis
of Condition (A1).

Second, we develop the novel local approach, meaning that the radial rate r(θ) in (2) is al-
lowed to be a function of θ , which, in a way, measures the amount of sparsity for each θ ∈ R

n:
the smaller r(θ), the more sparse θ . The local radial rate r(θ) is constructed as the best rate
over a certain family of local rates, therefore called oracle rate. We demonstrate that the local
approach is more powerful than global in that we do not need to impose any specific sparsity
structure, because the proposed local approach automatically exploits the “effective” sparsity of
each underlying θ , and our local results imply a whole panorama of the global minimax results
for many scales at once. More on this is in Section 3.5.

Third, we derive the local posterior contraction result for the resulting empirical Bayes pos-
terior π̂(ϑ |X) in the refined non-asymptotic formulation: supθ∈Rn Eθ π̂(‖ϑ − θ‖2 ≥ M0r

2(θ) +
Mσ 2|X) ≤ H0e

−m0M for some fixed M0,H0,m0 > 0 and arbitrary M ≥ 0, as an exponential
non-asymptotic concentration bound in terms of M , uniformly in θ ∈ R

n. This formulation pro-
vides a rather refined characterization of the quality of the posterior (finer, than, e.g., asymp-
totically in terms of the dimension n), allowing subtle analysis for various asymptotic regimes.
This result is of interest and importance on its own as it actually establishes the contraction of the
empirical Bayes posterior with the local rate r(θ). Besides, we obtain the oracle estimation result
(also in similar refined formulation, finer than traditional oracle inequalities) by constructing an
estimator, the empirical Bayes posterior mean, which converges to θ with the local rate r(θ).
This result, besides being an ingredient for the uncertainty quantification problem (2), is also of
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interest on its own as it delivers the same type of (oracle and minimax) estimation results as in
[1] and [19] and posterior convergence results as in [14], obtained for different priors.

Next, we construct a confidence ball by using the empirical Bayes posterior quantities. Since
we want the size of our confidence sets to be of an oracle rate order, this comes with the price
that the coverage property can hold uniformly only over some set of parameters satisfying the so
called excessive bias restriction (EBR) 	0 = 	eb ⊆R

n. The main result consists in establishing
the optimality (2) of the constructed confidence ball for the optimality framework 	0 = 	eb,
	1 = R

n and the local radial rate r(θ). The important consequence of our local approach is that
a whole panorama of adaptive (global) minimax results (for all considered problems: estimation,
posterior contraction rate and uncertainty quantification) over all sparsity scales covered by r(θ)

follow from our local results; see Section 3.5. We also treat the situation when 	0 =R
n in (2) by

constructing a confidence ball with the radius of the order σn1/4 +r(θ). As we already discussed,
the term σn1/4 in the size relation is necessary for the uniform coverage to hold. Clearly, this
confidence ball will have optimal size only for non-sparse parameters, for which r(θ) ≥ cσn1/4.

Although the original motivation of the EBR condition was to remove the deceptive param-
eters, it turned out to be a useful notion in the context of uncertainty quantification. In effect,
the EBR condition leads to a new sparsity EBR-scale which gives the slicing of the entire space
that is very suitable for uncertainty quantification. This provides a new perspective at the above
mentioned “deceptiveness” issue: basically, each parameter is deceptive (or non deceptive) to
some extent. It is the structural parameter of the new EBR-scale that measures the deceptiveness
amount, and the (mild and controllable) price for handling deceptive parameters is the effective
amount of inflating of the confidence ball that matches the amount of deceptiveness needed to
provide a high coverage. The EBR condition and EBR-scale are discussed in Supplement [6].

The paper is organized as follows. In Section 2, we introduce the notation and the prior, de-
scribe the empirical Bayes procedure, and state the exchangeable exponential moment condition
on ξ . In Section 3, we introduce the EBR condition, present the main local results of the paper,
and consider a couple of scales for which global minimax results follow. A small simulation
study is in Section 4. The proofs of the lemmas and theorems are given in Sections 5 and 6,
respectively. In Supplement [6], we discuss the EBR condition, the EBR scale, and some other
relarted points. The proofs of three theorems and some concluding remarks are also provided in
Supplement [6].

2. Preliminaries

First, we introduce some notation and a family of normal priors (similar to priors from [4] but
geared towards modeling sparsity rather than smoothness). Next, by applying the empirical Bayes
approach to the normal likelihood, we derive an empirical Bayes posterior which we will use in
the construction of the estimator and the confidence ball. We complete this section with intro-
ducing the exchangeable exponential moment condition on the error vector ξ .

2.1. Notation

Denote the probability measure of X from the model (1) by Pθ = P(σ,n)
θ , and by Eθ the cor-

responding expectation. For notational simplicity, we often skip the dependence on σ and n.
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Denote by 1E = 1{E} the indicator function of the event E, by |S| the cardinality of the set
S, the difference of sets S\S0 = {s ∈ S : s /∈ S0}. Let [k] = {1, . . . , k} and [k]0 = {0} ∪ [k] for
k ∈ N = {1,2, . . .}. For I ⊆ [n], define I c = [n]\I . Let I = In = {I : I ⊆ [n]} be the fam-
ily of all subsets of [n] including the empty set. If the summation range in

∑
I is not speci-

fied (for brevity), this means
∑

I∈I . Throughout we assume the conventions that
∑

i∈∅ ai = 0,∑b
a ai = ∑

a≤i≤b ai for any ai, a, b ∈ R and 0 log(c/0) = 0 (hence, (c/0)0 = 1) for any c > 0.
Let θ2

(1) ≤ θ2
(2) ≤ · · · ≤ θ2

(n) and θ2[1] ≥ θ2[2] ≥ · · · ≥ θ2[n] (so that θ(i) = θ[n+1−i]) be the or-

dered values of θ2
1 , . . . , θ2

n . To have some quantity well defined in the sequel, introduce also
0 = θ2

(0) = θ2[n+1] and θ2[0] = θ2
(n+1) = ∞.

If random quantities appear in a relation, this relation should be understood in Pθ -almost sure
sense. Throughout φ(x,μ,σ 2) will be the density of μ + σZ ∼ N(μ,σ 2) at point x, where
Z ∼ N(0,1). By convention, N(μ,0) = δμ denotes a Dirac measure at point μ. We use the usual
o, O notation to describe the asymptotic behavior of certain quantities as n → ∞. The symbol �
will refer to equality by definition. Finally, let 〈x, y〉 = ∑

i xiyi denote the usual scalar product
between x, y ∈R

n.

2.2. Multivariate normal prior

When deriving all the posterior quantities in the Bayesian analysis below, we will use the normal
likelihood �(θ,X) = (2πσ 2)−n/2 exp{−‖X − θ‖2/2σ 2}, which is equivalent to imposing the
classical high-dimensional normal model X = (Xi, i ∈ Nn) ∼ ⊗n

i=1 N(θi, σ
2). Recall however

that the “true” model X ∼ Pθ is not assumed to be normal, but only satisfying Condition (A1).
To model possible sparsity in the parameter θ , the coordinates of θ can be split into two distinct

groups of coordinates of θ : for some I ∈ I , the group of coordinates θIc = (θi, i /∈ I ) consists of
(almost) zeros and θI = (θi, i ∈ I ) is the group of non-zeros coordinates. For any θ ∈ R

n (even
“not sparse” one) there is the best (oracle) splitting into two groups, we will come back to this in
Section 3. To model sparsity, we propose a prior on θ given I as follows:

πI =
n⊗

i=1

N
(
μi(I ), τ 2

i (I )
)
, μi(I ) = μi1{i ∈ I }, τ 2

i (I ) = σ 2Kn(I)1{i ∈ I }, (3)

and Kn(I) = ( en
|I | − 1)1{I �= ∅}. The indicators in prior (3) ensure the sparsity of the group

I c . The rather specific choice of Kn(I) is made for the sake of concise expressions in later
calculations, many other choices are actually possible. By using normal likelihood �(θ,X) =
(2πσ 2)−n/2 exp{−‖X − θ‖2/2σ 2}, the corresponding posterior distribution for θ is readily ob-
tained:

πI (ϑ |X) =
n⊗

i=1

N

(
τ 2
i (I )Xi + σ 2μi(I )

τ 2
i (I ) + σ 2

,
τ 2
i (I )σ 2

τ 2
i (I ) + σ 2

)
. (4)
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Next, introduce the prior λ on I , discussed in Supplement [6]. For κ > 1, draw a random set
from I with probabilities

λI = cκ,n exp
{
−κ|I | log

( en

|I |
)}

= cκ,n

( en

|I |
)−κ|I |

, I ∈ I, (5)

where cκ,n is the normalizing constant. Since
(

n
k

)k ≤ (
n
k

) ≤ (
en
k

)k and
(
n
0

) = 1,

1 =
∑
I∈I

λI = cκ,n

n∑
k=0

(
n

k

)(en

k

)−κk ≤ cκ,n

n∑
k=0

(en

k

)−(κ−1)k ≤ cκ,n

n∑
k=0

e−(κ−1)k, (6)

so that cκ,n ≥ 1 − e1−κ > 0, n ∈ N. Combining (3) and (5) gives the mixture prior on
θ : π = ∑

I∈I λIπI . This leads to the marginal distribution of X: PX = ∑
I∈I λI PX,I , with

PX,I = ⊗n
i=1 N(μi(I ), σ 2 + τ 2

i (I )), and the posterior of θ is

π(ϑ |X) = πκ(ϑ |X) =
∑
I∈I

πI (ϑ |X)π(I |X), (7)

where πI (ϑ |X) is defined by (4) and the posterior π(I |X) for I is

π(I |X) = λI PX,I

PX

= λI

∏n
i=1 φ(Xi,μi(I ), σ 2 + τ 2

i (I ))∑
J∈I λJ

∏n
i=1 φ(Xi,μi(J ), σ 2 + τ 2

i (J ))
. (8)

2.3. Empirical Bayes posterior

The parameters μi are yet to be chosen in the prior. We choose μi by using empirical Bayes
approach. The marginal likelihood PX is readily maximized with respect to μi : μ̃i = Xi , which
we then substitute instead of μi in the expression (7) for π(ϑ |X), obtaining the empirical Bayes
model averaging (EBMA) posterior

π̃ (ϑ |X) = π̃κ(ϑ |X) =
∑
I∈I

π̃I (ϑ |X)π̃(I |X), (9)

where the empirical Bayes conditional posterior (recall that N(0,0) = δ0)

π̃I (ϑ |X) =
n⊗

i=1

N

(
Xi1{i ∈ I }, Kn(I)σ 21{i∈I }

Kn(I)+1

)
(10)

is obtained from (4) with μi(I ) = Xi1{i ∈ I }, and

π̃(I |X) = λI PX,I∑
J∈I λJ PX,J

= λI

∏n
i=1 φ(Xi,Xi1{i ∈ I }, σ 2 + τ 2

i (I ))∑
J∈I λJ

∏n
i=1 φ(Xi,Xi1{i ∈ J }, σ 2 + τ 2

i (J ))
(11)
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is the empirical Bayes posterior for I ∈ I , obtained from (8) with μi(I ) = Xi1{i ∈ I }. Let Ẽ
and ẼI be the expectations with respect to the measures π̃ (ϑ |X) and π̃I (ϑ |X), respectively.
Introduce the EBMA estimator: with X(I) � (Xi1{i ∈ I }, i ∈ [n]),

θ̃ = Ẽ(ϑ |X) =
∑
I∈I

ẼI (ϑ |X)π̃(I |X) =
∑
I∈I

X(I)π̃(I |X). (12)

Consider an alternative empirical Bayes posterior. First, derive an empirical Bayes variable
selector Î by maximizing π̃(I |X) over I ∈ I (any maximizer will do) as follows:

Î = arg max
I∈I

π̃(I |X) = arg max
I∈I

λI PX,I

= arg max
I∈I

{
−

∑
i∈I c

X2
i

2σ 2
− |I |

2
log

(
Kn(I) + 1

) + logλI

}

= arg min
I∈I

{∑
i∈I c

X2
i + (2κ + 1)σ 2|I | log

( en

|I |
)}

= {
i ∈ [n] : X2

i ≥ X2
[k̂]

}
, (13)

where k̂ ∈ [n]0 is the minimizer of
∑n

i=k+1 X2[i] + (2κ + 1)σ 2k log(en/k). This is reminiscent

of the penalization procedure from [8] (cf. also [1]). Now plugging in Î into π̃I (ϑ |X) defined
by (10) yields empirical Bayes model selection (EBMS) posterior and the corresponding EBMS
estimator:

π̌(ϑ |X) = π̃
Î
(ϑ |X), θ̌ = Ě(ϑ |X) = X(Î ) = (

Xi1{i ∈ Î }, i ∈ [n]), (14)

where Ě denotes the expectation with respect to the measure π̌(ϑ |X).

2.4. Exchangeable exponential moment condition on the errors

The following condition (called exchangeable exponential moment condition) on the error vector
ξ = (ξ1, . . . , ξn) will be assumed throughout.

Condition (A1). The random variables ξi ’s from (1) satisfy: Eθ ξi = 0, Varθ (ξi) ≤ Cξ , i ∈ [n];
and for some β,B > 0 (without loss of generality assume Cξ = 1 and β ∈ (0,1]),

Eθ exp
{
β

∑
i∈I

ξ2
i

}
≤ eB|I | for all I ∈ I, θ ∈ R

n. (A1)

The unknown distribution of ξ may depend on θ , in that case (A1) is fulfilled for all θ ∈ R
n.

The constants β ∈ (0,1] and B > 0 will be fixed in the sequel and we omit the dependence on
these constants in all further notation. There is no need to assume Varθ (ξi) ≤ Cξ as this follows
from (A1), but we provide this just for reader’s convenience.
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In the proof of Theorem 1 below, we will also need a bound for Eθ

(∑
i∈I ξ2

i

)2, I ∈ I . Con-
dition (A1) ensures such a bound. Indeed, since x2 ≤ e2x for all x ≥ 0, by using the Hölder
inequality and (A1), we derive that for any ρ ∈ (0,B/2] and I ∈ I ,

Eθ

(∑
i∈I

ξ2
i

)2

≤ B2

(βρ)2
Eθ e

(2βρ/B)
∑

i∈I ξ2
i

≤ B2

(βρ)2

(
Eθ e

β
∑

i∈I ξ2
i

)2ρ/B ≤ B2

(βρ)2
e2ρ|I |. (15)

It is interesting to relate Condition (A1) to the so called sub-Gaussianity condition on the error
vector ξ . The random vector ξ is called sub-Gaussian with parameter ρ > 0 if

P
(∣∣〈v, ξ 〉∣∣ > t

) ≤ e−ρt2
for all t ≥ 0 and all v ∈ R

n such that ‖v‖ = 1. (16)

The sub-Gaussianity condition (16) and Condition (A1) are close, but in general incompara-
ble. For example, let ξi = ξ0, i ∈ [n], for some bounded random variable ξ0 (say, uniform on
[−1,1]), then Condition (A1) trivially holds, whereas the sub-Gaussianity condition is not ful-
filled. It is easy to see that the sub-Gaussianity condition is equivalent to Condition (A1) for
independent ξi ’s.

Condition (A1) is clearly satisfied for independent normals ξi
ind∼ N(0,1) (with β = 0.4 and

B = 1) and for bounded, arbitrarily dependent, ξi ’s. In a way, Condition (A1) prevents too much
dependence, but it still allows some interesting cases of dependent ξi ’s. Suppose that the ξi ’s
follow an autoregressive model AR(1) with normal white noise:

ξk = αξk−1 + εk, εk
ind∼ N(0,1), k ∈ [n]; ξ0 = 0, |α| < 1. (17)

Let us show that Condition (A1) is fulfilled for the vector ξ = (ξi, i ∈ [n]) defined by (17). We
have that for any k > l, ξk = αk−lξl + αk−l−1εl+1 + · · · + εk = αk−lξl + Zk−l , where Zk′ ∼
N(0, σ 2

k′) with σ 2
k′ = 1 + α2 + · · · + α2(k′−1) ≤ 1

1−α2 � σ 2
0 . Clearly, for any I ∈ I , there are

1 ≤ k1 < k2 < · · · < k|I | ≤ n such that
∑

i∈I ξ2
i = ∑|I |

i=1 ξ2
ki

. Denote Fm = σ(ξki
,1 ≤ i ≤ m),

m ∈ [|I |], the σ -algebra generated by {ξki
,1 ≤ i ≤ m}. Choose β and α in such a way that

0 < 2α2

1−4βσ 2
0

≤ 1. By using the elementary identity (S4) from Supplement [6], we first evaluate

the conditional expectation

E
(
e
β(ξ2

km−1
+ξ2

km
)|Fm−1

) = e
βξ2

km−1 E
(
e
βξ2

km |Fm−1
) ≤ e

βξ2
km−1 E

(
e

2βξ2
km |Fm−1

)
= exp

{(
β + 2βα2(km−km−1)

1 − 4βσ 2
km−km−1

)
ξ2
km−1

− 1

2
log

(
1 − 4βσ 2

km−km−1

)}

≤ e
2βξ2

km−1

(1 − 4βσ 2
0 )1/2

.
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Iterating the above argument, we establish Condition (A1) for the sequence (17):

E exp
{
β

∑
i∈I

ξ2
i

}
= EE

[
exp

{
β

∑
i∈I

ξ2
i

}∣∣F|I |−1

]
=

E
[
exp

{
β

∑|I |−2
i=1 ξ2

ki

}
e

2βξ2
k|I |−1

]
(1 − 4βσ 2

0 )1/2

≤ · · · ≤ (
1 − 4βσ 2

0

)−|I |/2 = eB|I |, with B = log
(
1 − 4βσ 2

0

)−1/2
.

3. Main results

In this section, we give the main results of the paper. From now on, by π̂(ϑ |X) (with correspond-
ing expectation Ê(·|X)) we denote either EBMA posterior π̃(ϑ |X) defined by (9) or EBMS pos-
terior π̌(ϑ |X) defined by (14), and θ̂ will stand either for θ̃ defined by (12) or for θ̌ defined by
(14). Also, π̂(I ∈ G|X) should be read as π̃ (I ∈ G|X) in case π̂ = π̃ , and as 1{Î ∈ G} in case
π̂ = π̌ , for all G ⊆ I that appear in what follows. Hence, π̂(I |X) = π̃ (I |X) and Eθ π̂(I ∈ G|X) =
Eθ π̃(I ∈ G|X) in the former case, and π̂(I |X) = 1{Î = I } and Eθ π̂(I ∈ G|X) = Pθ (Î ∈ G) in
the latter case.

3.1. Oracle rate

The empirical Bayes posterior π̂(ϑ |X) is a random mixture over π̃I (ϑ |X), I ∈ I . From the Pθ -
perspective, each posterior π̃I (ϑ |X) (and the corresponding estimator ẼI (ϑ |X) = X(I)) con-
tracts to the true parameter θ with the local rate R2(I, θ) = ∑

i∈I c θ2
i + σ 2|I |. Indeed, since

ẼI (ϑ |X) = X(I) = (Xi1{i ∈ I }, i ∈ [n]), (10) and the Markov inequality yields

Eθ π̃I

(‖ϑ − θ‖2 ≥ M2R2(I, θ)|X) ≤ Eθ‖X(I) − θ‖2 + Kn(I)σ 2|I |
Kn(I)+1

M2R2(I, θ)
≤ 2

M2
.

For each θ ∈ R
n, among I ∈ I there exists the best choice Io = Io(θ) = Io(θ, σ ) (called

the R-oracle) corresponding to the fastest local rate R2(θ) = R2(θ,I) = minI∈I R2(I, θ) =∑
i∈I c

o
θ2
i + σ 2|Io|. Ideally, we would like to mimic the R-oracle, that is, to construct an empir-

ical Bayesian procedure (e.g., π̂(ϑ |X)) which performs as good as the oracle empirical Bayes
posterior π̃Io (ϑ |X) without knowing Io, uniformly in θ ∈ R

n. However, the lower bounds for
the estimation problem (hence, also for the posterior contraction problem), obtained by [15] and
later by [8], show that it is impossible to mimic the R-oracle and a logarithmic factor is the
unavoidable price for the uniformity over Rn (otherwise this would contradict to the minimax
lower bound over the scale of sparsity classes, cf. [8]). Therefore, only a modification of the risk
R-oracle where the variance term σ 2|Io| is inflated with the factor log(en/|Io|) (thought of as
payment for not knowing Io) is “mimicable”.

The above discussion motivates the following definition. Introduce the family of local rates

r2(I, θ) = r2(I, θ, σ 2) =
∑
i∈I c

θ2
i + σ 2|I | log

( en

|I |
)

= B(I, θ) + V (I), I ∈ I, (18)
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where B(I, θ) = ∑
i∈I c θ2

i is the bias part of the rate and V (I) = V (I,σ,n) = σ 2|I | log
(

en
|I |

)
is

the adjusted variance part, the variance term σ 2|I | of the rate R(I, θ) multiplied by the loga-
rithmic factor log

(
en
|I |

)
. There exists the best choice Io = Io(θ) = Io(θ, σ 2) = Io(θ, σ 2, n) ∈ I

(called oracle) at which the rate (18) is minimal:

r2(θ) = r2
I(θ) = min

I∈I
r2(I, θ) = r2(Io, θ) = B(Io, θ) + V (Io), (19)

r2(θ) is called the oracle rate. Note that the oracle Io may not be unique (but |Io| is unique) as
some coordinates of θ can coincide, in that case take the one with the earliest coordinates.

Clearly, Io = {
i ∈ [n] : θ2

i ≥ θ2[ko]
}
, where ko = |Io| = arg mink∈[n]0

{∑n−k
i=1 θ2

(i)+σ 2k log
(

en
k

)}
.

Thus, the oracle Io classifies the coordinates (θi, i ∈ Io) as significant and the coordinates
(θi, i ∈ I c

o ) as insignificant. The bias part B(Io, θ) = ∑
i∈I c

o
θ2
i = ∑n

i=ko+1 θ2[i] = ∑n−ko

i=1 θ2
(i) of

the oracle rate is called the excessive bias. This is the error the oracle makes when setting in-
significant coordinates of θ to zero. The “variance” term V (Io) = σ 2|Io| log( en

|Io| ) is the error the
oracle makes when recovering |Io| significant coordinates, with the log factor as payment for not
knowing the locations.

Finally, for τ ≥ 0, introduce the so called τ -oracle I τ
o = I τ

o (θ) = Io(θ, τσ 2) and let iτ =
|I τ

o (θ)| be the corresponding cardinality. A τ -oracle I τ
o (θ) is just the usual oracle defined by

(19) with σ 2 substituted by τσ 2, the oracle itself is the τ -oracle with τ = 1: Io(θ) = I 1
o (θ) and

i1 = ko. Notice that I
τ1
o ⊆ I

τ2
o if τ1 ≥ τ2. For τ ↓ 0, the “limiting” τ -oracle recovers the “true”

active index set I ∗ = I ∗(θ) = supp(θ) � {i ∈ [n] : θi �= 0} in the sense that I τ
o ↑ I ∗ as τ ↓ 0.

More insight on the τ -oracles I τ
o , τ ≥ 0, is provided in Supplement [6].

3.2. Contraction results with oracle rate

First, introduce a technical condition on the parameter κ appearing in (5).

Condition (A2). The parameter κ of the prior λ defined by (5) satisfies

κ > κ̄ � (12 − β + 4B)/(4β), (A2)

where β , B are from Condition (A1).

The following theorem establishes that the empirical Bayes posterior π̂(ϑ |X) contracts to θ

with the oracle rate r(θ) from the frequentist Pθ -perspective, and the empirical Bayes posterior
mean θ̂ converges to θ with the oracle rate r(θ), uniformly over the entire parameter space.

Theorem 1. Let Conditions (A1) and (A2) be fulfilled. Then there exist positive constants M0,
M1, H0, H1, m0, m1 such that for any θ ∈R

n and any M ≥ 0,

Eθ π̂
(‖ϑ − θ‖2 ≥ M0r

2(θ) + Mσ 2|X) ≤ H0e
−m0M, (i)

Pθ

(‖θ̂ − θ‖2 ≥ M1r
2(θ) + Mσ 2) ≤ H1e

−m1M. (ii)
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Remark 1. Notice that already claim (i) of the above theorem contains an oracle bound for the
estimator θ̂ . Indeed, by Jensen’s inequality, we derive the oracle inequality

Eθ‖θ̂ − θ‖2 ≤ Eθ Ê
(‖ϑ − θ‖2|X)

≤ M0r
2(θ) + H0

∫ +∞

0
e−m0u/σ 2

du = M0r
2(θ) + H0σ

2

m0
. (20)

Similarly we can show that also (ii) implies (20). This means that claim (ii) is actually stronger
(and more refined) than (20) and therefore requires a separate proof.

The constants M0,M1,H0,H1,m0,m1 > 0 in the theorem depend only on β , B and some
also on κ, the exact expressions can be found in the proof. The above local result implies the
minimax optimality over various sparsity scales, see Section 3.5 for more detail on this. In case of
independent normal errors, some constants and bounds in the proofs can be sharpened; possible
refinements are discussed in Supplement [6].

Remark 2. The non-asymptotic exponential bounds in terms of the constant M from the expres-
sion M ′r2(θ) + Mσ 2 (with some fixed M ′) in claims (i) and (ii) of the theorem provide a rather
refined characterization of the quality of the posterior π̂(ϑ |X) and estimator θ̂ , finer than, for
example, the traditional oracle inequalities like (20). This refined formulation allows for subtle
analysis in various asymptotic regimes (n → ∞, σ → 0, or their combination) as we can let M

depend in any way on n, σ , or both.

One more technical definition will be used. For constants β , B from Condition (A1), define

τ̄ = τ̄ (κ, β,B) � 3(κβ + β/2 + B)

β
. (21)

The next theorem describes the frequentist behavior of the selector Î and the empirical Bayes
posterior for I , saying basically that Î and π̃ (I |X) “live” on a certain set that is, in a sense,
almost as good as the oracle Io = Io(θ) defined by (19). For any θ ∈R

n, introduce

Īo = Īo(θ) � I τ0
o (θ) = Io

(
θ, τ0σ

2), (22)

where we fix some � ∈ (0,1) and τ0 ≥ 1+�
1−�

τ̄ , with τ̄ defined by (21). For example, we can take

� = 0.1 and τ0 = 11
9 τ̄ + 0.1.

Theorem 2. Let Condition (A1) be fulfilled. The following relations hold for any θ ∈ R
n,

M ≥ 0.

(i) Let κ >
4+β+2B

2β
(Condition (A2) implies this). There exist M ′

0,H
′
0 > 0 such that

Eθ π̂

(
I ∈ I : |I | log

( en

|I |
)

≥ M ′
0|I ∩ Io| log

( en

|I ∩ Io|
)

+ M
∣∣X)

≤ H ′
0e

−M.
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(ii) Let κ > β−1 − 1
2 (Condition (A2) implies this), τ̄ be defined by (21). Fix any I ′ ∈ I . Then

there exist H ′
1,m

′
0 > 0 (independent of θ and I ′) such that

Eθ π̂

(
I ∈ I :

∑
i∈I ′\I

θ2
i

σ 2
≥ τ̄

∣∣I ∪ I ′∣∣ log
( en

|I ∪ I ′|
)

+ M
∣∣X)

≤ H ′
1e

−m′
0M.

In particular, let Īo be defined by (22), then there exists m′
1 > 0 such that

Eθ π̂
(
I ∈ I : |I | log

( en

|I |
)

≤ �|Īo| log
(
en/|Īo|

) − M
∣∣X)

≤ H ′
1e

−m′
1M. (23)

(iii) Let Condition (A2) be fulfilled, c1, c2, c3 be the constants defined in Lemma 2. Then

Eθ π̂
(
I ∈ I : r2(I, θ) ≥ c3r

2(θ) + Mσ 2|X) ≤ C0e
−c2M, where C0 = (

1 − e1−c1
)−1

.

We can interpret the above theorem as recovery of the sparsity structure, but in a weak sense.
Claim (iii) says that π̂(I |X) (i.e., the selector Î and the posterior π̃(I |X)) “lives” on those sets
I whose rate r2(I, θ) is not far from the oracle rate r2(θ). Claims (i) and (ii) roughly mean that
π̂(I |X) “lives” in a shell between Īo and Io (recall that Īo = I

τ0
o ⊆ I 1

o = Io as τ0 > 1, hence
always |Īo| ≤ |Io|). If Īo and Io are “close” to each other (in the sense that c|Io| ≤ |Īo| ≤ |Io| for
some c ∈ (0,1]), then π̂ (I |X) recovers well the oracle structure Io. In general, the living shell
for π̂ (I |X) can be too wide (when |Īo| is much smaller than |Io|), the corresponding θ is then
“deceptive”. We discuss this below, when introducing the EBR condition.

3.3. Confidence ball under excessive bias restriction (EBR)

Theorem 1 establishes the strong local optimal properties of the empirical Bayes posterior
π̂(ϑ |X) and the empirical Bayes posterior mean θ̂ , but does not solve the uncertainty quan-
tification problem yet. As is mentioned in the introduction, the uniform coverage and optimal
size properties can not hold together in general. This is not an artifact of the method, it is a
fundamental, unavoidable problem. It occurs for the so called deceptive parameters θ that have
many smallish coordinates, just slightly under the noise level. Clearly, in this case no method can
reliably assign those coordinates to the significant set which is needed to control the bias part of
the oracle rate. This is possible for the non-deceptive parameters described by the so called EBR
condition introduced below.

First, we propose a confidence ball by using the empirical Bayes posterior π̌(ϑ |X) defined by
(14) (one can construct a confidence ball by using the posterior π̃(ϑ |X) with similar properties,
but with more involved mathematical derivations). Since π̌(ϑ |X) = ⊗n

i=1 N(θ̌i , σ̌
2
i ) with θ̌i =

Xi1{i ∈ Î } and σ̌ 2
i = (1 − |Î |/en)σ 21{i ∈ Î }, denoting by χ2

k,α the (1 − α)-quantile of χ2
k -

distribution, we have

π̌
(
‖ϑ − θ̌‖2 ≤ σ 2χ2

|Î |,α
∣∣X)

≥ π̌
(
‖ϑ − θ̌‖2 ≤ (

1 − |Î |/en)
σ 2χ2

|Î |,α
∣∣X)

= 1 − α.
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As χ2
|Î |,α ≤ Mα|Î | for sufficiently large Mα , a reasonable candidate confidence ball is B(θ̌,

Mσ |Î |1/2). The empirical Bayes posterior π̌ (ϑ |X) is well concentrated (in fact, in a ball of
the size Mσ 2|Io|), but not around the truth, rather around its mean θ̌ . Then B

(
θ̌ ,Mσ |Î |1/2

)
cannot have a guaranteed coverage, since otherwise the center θ̌ would mimics the R-oracle uni-
formly in θ ∈ R

n, which is impossible as we discussed earlier. To obtain coverage, the radius of
any confidence ball must contain a logarithmic factor. This leads us to the inflated credible ball
B(θ̌,Mr̂), where

r̂2 = r̂2(X) = σ 2 + σ 2|Î | log
(
en/|Î |). (24)

According to Theorem 2, �σ 2|Īo| log(en/|Īo|) − Mσ 2 ≤ r̂2 ≤ M ′
0σ

2|Io| log(en/|Io|) + Mσ 2

with large probability, describing a “living shell” for r̂ . So, r̂2 is at most of the order of the oracle
rate r2(θ), implying the size property with the oracle radial rate uniformly over θ ∈ R

n. But if
|Īo| is much smaller than |Io|, the living shell for r̂ becomes too wide and the coverage property
of B(θ̌,Mr̂) cannot be guaranteed because r̂ can be over optimistically too small. This problem
will not occur for those (non-deceptive) θ ’s for which the bias part B(Īo, θ) of the rate r2(Īo, θ)

(see definition (18)) is within a multiple of its variance part V (Īo) = σ 2|Īo| log(en/|Īo|). Then
σ 2|Īo| log(en/|Īo|) is at least of the oracle rate order, which, together with (ii) of Theorem 2,
imply that r̂ is also at least of the oracle rate order, resulting in a good coverage of the confi-
dence ball B

(
θ̌ ,M2r̂ + Mσ 2

)
for some M2 and sufficiently large M . This discussion motivates

introducing the following condition.

Condition EBR. We say that θ ∈ R
n satisfies the excessive bias restriction (EBR) condition

with structural parameter t ≥ 0 if θ ∈ 	eb(t), where the corresponding set (called the EBR class)
is

	eb(t) = 	eb(t, τ0) =
{
θ ∈R

n :
∑
i∈Ī c

o

θ2
i ≤ tσ 2[1 + |Īo| log(en/|Īo|)

]}
, (25)

where the set Īo = I
τ0
o is defined by (22).

Remark 3. A few remarks about the EBR condition are in order.

(i) The EBR requires basically that the bias part of the rate r2(Īo, θ) is dominated by a
multiple of its variance part (additional σ 2 is needed to handle the case Īo = ∅). This is
obviously satisfied also for the rate r2(I ′, θ) with any I ′ such that Īo ⊆ I ′ (hence, also
for Io as Īo ⊆ Io).

(ii) Notice that, for any τ > 0, 	eb(t1, τ ) ⊆ 	eb(t2, τ ) for t1 ≤ t2, and 	eb(τn, τ ) = R
n by

the oracle definition. Hence, Rn = ⋃
0≤t≤τn 	eb(t, τ ), which means that the EBR con-

dition leads to the so called EBR-scale {	eb(t, τ ), t ≥ 0}, discussed in detail in Supple-
ment [6].

(iii) Ideally, the excessive τ0-bias B(Īo, θ) = ∑
i∈Ī c

o
θ2
i is zero, which corresponds to “the

least deceptive” parameters θ whose insignificant coordinates are true zeros and the sig-
nificant coordinates are sufficiently distinct from zero. Such examples are given in Sup-
plement [6].
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(v) The EBR introduced in [29] and [13] is a version of our EBR (25) adopted to the spar-
sity scale within the grand space �0[pn] with pn = o(n), under the asymptotic regime
n → ∞. We elaborate on the EBR (and its relation to the EBR from [29] and [13]) in
Supplement [6].

(vi) Interestingly, as is shown in [13], the EBR turns out to be minimal in a certain sense.

The following theorem, which is the main result in the paper, describes the coverage and size
properties of the confidence ball based on θ̂ (i.e., either θ̌ or θ̃ ) and r̂ .

Theorem 3. Let Conditions (A1) and (A2) be fulfilled. Then there exist constants M2,H2,m2 >

0 such that for any t,M ≥ 0, and with R̂2
M = R̂2

M(M2) = (t + 1)M2r̂
2 + (t + 2)Mσ 2,

sup
θ∈	eb(t)

Pθ

(
θ /∈ B(θ̂, R̂M)

) ≤ H2e
−m2M,

sup
θ∈Rn

Pθ

(
r̂2 ≥ M ′

0σ
2|Io| log

( en

|Io|
)

+ (M + 1)σ 2
)

≤ H ′
0e

−M,

where 	eb(t) is defined by (25), and the constants M ′
0, H ′

0 are defined in Theorem 2.

Remark 4. Recall that Īo = I
τ0
o from (25) is actually the τ0-oracle. It may be desirable to impose

the EBR condition in terms of the “standard” oracle Io, rather than the τ0-oracle. By rewriting
(1) as Xτ

−1/2
0 = θτ

−1/2
0 + στ

−1/2
0 ξ , it is not difficult to see that we can construct a confidence

ball with the radius
√

τ0R̂M satisfying the coverage property as above, but now uniformly over
	eb(t,1).

Remark 5. To measures the deceptiveness amount in θ , introduce the quantity b(θ):

b(θ) = b(θ, τ0) =
∑

i∈Ī c
o
θ2
i

σ 2 + σ 2|Īo| log
(
en/|Īo|

)
=

∑n
i=i1+1 θ2[i]

σ 2 + σ 2iτ0 log(en/iτ0)
= B(Īo, θ)

σ 2 + V (Īo, θ)
. (26)

The EBR condition can be seen as restricting the deceptiveness b(θ): 	eb(t) = {θ : b(θ) ≤ t}.
Note that, when proving Theorem 3, we actually established the following local assertions:

there exist constants M2, α1,m
′′
1,H2,m2 > 0 such that for any θ ∈R

n and any α,M ≥ 0

Pθ

(
θ /∈ B

(
θ̂ ,

[(
b(θ) + 1

)
M2r̂

2 + (
b(θ) + 2

)
Mσ 2]1/2

))

≤ H1

( en

|Io|
)−α1|Io|

e−m1M + H ′
1

( en

|Īo|
)−α′

1|Īo|
e−m′′

1M ≤ H2e
−m2M,

Pθ

(
r̂2 ≥ σ 2(M ′

0 + α
)|Io| log

( en

|Io|
)

+ (M + 1)σ 2
)

≤ H ′
0

( ne

|Io|
)−α|Io|

e−M,
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where all the other constants (H1, m1, H ′
1, α′

1, M ′
0, H ′

0) are defined in Theorems 1 and 2. Notice
that the size relation in Theorem 3 holds uniformly in θ ∈ R

n. Although the coverage relation is
also uniform in θ ∈R

n, the main (and unavoidable) problem is dependence on b(θ). The mission
of the EBR condition is to provide control over the quantity b(θ).

3.4. Confidence ball of n1/4-radius without EBR

Suppose we want to construct a confidence ball of a full coverage uniformly over the whole
space R

n. Recall however that, in view of the above mentioned negative results of [3,11,20] and
[22], no data dependent ball can in general provide full coverage and optimal size simultaneously.
It turns out that, even when insisting on the full coverage, the size can be still optimal, but only
for the parameters with the oracle rate in the range r2(θ) ≥ C

√
n, i.e., for non-sparse parameters.

An idea is to mimic the quantity ‖θ − θ̂‖2 by R̂2 = ‖X − θ̂‖2. Clearly, there is a lot of bias in
R̂2, the biggest part of which is due to the term σ 2‖ξ‖2 contained in R̂. To de-bias for that part,
we need to subtract its expectation σ 2E‖ξ‖2 = nσ 2, where we assumed Var(ξi) = 1. However,
even de-biased quantity R̂2 can only be controlled up to the order σ 2√n. Thus, a term of the
order σn1/4 is necessary in the radius to provide coverage uniformly over the whole space R

n.
To handle some technical issues in this case, we impose the following additional condition.

Condition (A3). Besides X given by (1), we also observe X′ ∈ R
n independent of X, where

X′ = θ +σξ ′, the random vector ξ ′ satisfies the following relations: Eξ ′
i = 0, Var(ξ ′

i ) = 1, i ∈ [n];

P
(∣∣〈v, ξ ′〉∣∣ ≥ √

M
)

≤ ψ1(M) ∀v ∈ R
n : ‖v‖ = 1;

P
(∣∣∥∥ξ ′∥∥2 − E

∥∥ξ ′∥∥2∣∣ ≥ M
√

n
)

≤ ψ2(M).

(A3)

Here ψ1(M), ψ2(M) are some positive monotonically decreasing functions such that ψ1(M) ↓ 0
and ψ2(M) ↓ 0 as M ↑ ∞.

Condition (A3) is satisfied for independent normals ξi
ind∼ N(0,1) even if we do not have the

second sample X′ at our disposal. Indeed, in this case we can “duplicate” the observations by
randomization at the cost of doubling the variance as follows: create samples X′ = X + σZ and

X′′ = X − σZ, for a Z = (Z1, . . . ,Zn) (independent of X) such that Zi
ind∼ N(0,1). Relations

(A3) are then fulfilled with exponential functions ψl(M) = Ce−cM , l = 1,2, for some C,c > 0.
If the sub-Gaussianity condition (16) is fulfilled for ξ ′ (which is the same as Condition (A1)
in case of independent ξ ′

i ’s), then ψ1(M) = e−ρM . By Chebyshev’s inequality, we see that the
second relation in (A3) is fulfilled with function ψ2(M) = cM−2 for any zero mean independent
ξ ′
i ’s with Eξ ′4

i ≤ C.
Coming back to the problem of constructing a confidence ball of full coverage uniformly

over R
n, let θ̂ and Î be defined as before and based on the sample X. We propose to mimic

‖θ − θ̂‖2 by the de-biased quantity ‖X′ − θ̂‖2 −nσ 2 plus additional σ 2√n-order term to control
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its oscillations, leading us to the following data dependent radius

R̃2
M =

(∥∥X′ − θ̂
∥∥2 − nσ 2 + 2σ 2GM

√
n
)

+, where GM = √
M(M + M1), (27)

x+ = x ∨ 0 and the constant M1 is from Theorem 1. The next theorem establishes the coverage
and size properties of the confidence ball B(θ̂, R̃M). The proof is given in Supplement [6].

Theorem 4. Let Conditions (A1)–(A3) be fulfilled, R̃2
M be defined by (27). Then for any M ≥ 0

sup
θ∈Rn

Pθ

(
θ /∈ B(θ̂, R̃M)

) ≤ ψ1(M/4) + ψ2(M) + H1e
−m1M,

sup
θ∈Rn

Pθ

(
R̃2

M ≥ gM(θ,n)
) ≤ ψ1(M/4) + ψ2(M) + 2H1e

−m1M,

gM(θ,n) = M1r
2(θ) + Mσ 2 + 4σ 2GM

√
n and the constants H1, m1, M1 are defined in Theo-

rem 1.

By taking large enough M we can ensure the coverage and size relations uniformly over the
entire space R

n. Notice the price for this overall uniformity: the radius of the constructed con-
fidence ball is essentially of the order σn1/4 + r(θ), i.e., at least σn1/4 even for very sparse
parameters θ . Hence, the radius is of the oracle rate order only when r(θ) ≥ Cσn1/4, that is, for
non-sparse θ ’s.

3.5. Implications: The minimax results over sparsity classes

In this section, we elucidate the potential strength of the local approach. In particular, we demon-
strate how the global adaptive minimax results over certain scales can be derived from the lo-
cal results. Note that the oracle rate r(θ) is a local quantity in that it quantifies the level of
accuracy of inference about specific θ and originally it is not linked to any particular scale
of classes. However, it is always possible to relate the oracle rate to various scales. Precisely,
if we want to establish global adaptive minimax results over certain scale, say, {	β,β ∈ B},
with corresponding minimax rates {r(	β),β ∈ B} (recall that the minimax rate over 	β is
r2(	β) � inf

θ̂
supθ∈	β

Eθ‖θ̂ − θ‖2, where the infimum is taken over all estimators), the only
thing we need to show is

sup
θ∈	β

r2(θ) ≤ cr2(	β), for all β ∈ B. (28)

If the above property holds, we say the oracle rate r(θ) covers the scale {	β,β ∈ B}. In this
case, the local results on the estimation, the posterior contraction and the size relation of the
confidence ball will immediately imply the corresponding global adaptive minimax results over
the covered scale (actually, simultaneously for all scales that are covered by the oracle rate r(θ)).
We summarize all these results at once by the following corollary.



208 E. Belitser and N. Nurushev

Corollary 1. Let Conditions (A1)–(A2) and (28) hold. Then for any M ≥ 0

sup
θ∈	β

Eθ π̂
(‖ϑ − θ‖2 ≥ M0r

2(	β) + Mσ 2|X) ≤ H0e
−m0M,

sup
θ∈	β

Pθ

(‖θ̂ − θ‖2 ≥ M1r
2(	β) + Mσ 2) ≤ H1e

−m1M,

sup
θ∈	β

Pθ

(
r̂2 ≥ M ′

0r
2(	β) + (M + 1)σ 2) ≤ H ′

0e
−M.

There is no point in specializing Theorem 2 and the coverage property of Theorem 3 to a
particular scale {	β,β ∈ B}. Indeed, Theorem 2 holds uniformly over the entire space Rn, hence
also over any 	β , and the coverage property holds uniformly only over the EBR class 	eb(t)

(hence also over 	eb(t) ∩ 	β ), whichever scale we consider.
Next, we consider three scales {	β,β ∈ B} for which the adaptive minimax results on the

estimation problem, the contraction rate of the empirical Bayes posterior, and the size property
of the confidence ball B

(
θ̂ , (M2r̂

2 +M)1/2
)

follow from our local results Theorems 1 and 3. The
results for other (covered) scales can also be readily derived.

Nearly black vectors

For pn ∈ [n] such that pn = o(n) as n → ∞, introduce the sparsity class �0[pn] = {θ ∈ R
n :

s(θ) = |I ∗(θ)| ≤ pn}, where by I ∗(θ) and s(θ) we denote the active index set and the sparsity of
θ ∈ R

n:

I ∗(θ) = {
i ∈ [n] : θi �= 0

}
, s(θ) = ∣∣I ∗(θ)

∣∣. (29)

Let an � bn mean that an = O(bn) and bn = O(an) as n → ∞. The minimax estimation rate
over the class of nearly black vectors �0[pn] with the sparsity parameter pn is known to be
r2(�0[pn]) � σ 2pn log

(
n
pn

)
; see [17]. By the definition (19) of the oracle rate r2(θ), we have that

r2(θ) ≤ r2(I ∗(θ), θ). Then we trivially obtain (28):

sup
θ∈�0[pn]

r2(θ) ≤ sup
θ∈�0[pn]

r2(I ∗(θ), θ
) ≤ σ 2pn log

( en

pn

)
� r2(�0[pn]).

The last relation, Theorems 1 and 3 immediately imply the adaptive minimax results for the scale
�0[pn]. These results are given by Corollary 1 with 	β = �0[pn] and r2(	β) = r2(�0[pn]) �
σ 2pn log

(
en
pn

)
.

The next theorem describes some “over-dimensionality” (or “undersmoothing”) control of the
empirical Bayes posterior π̂ (I |X) from the Pθ -perspective. The proof is given in Supplement [6].

Theorem 5. Let s(θ) be defined by (29). Under the conditions of Theorem 2, there exist
M4,m4 > 0 such that for any M > M4 and θ ∈ R

n

Eθ π̂
(
I : |I | > Ms(θ)|X) ≤ C0 exp

{
−m4s(θ)

[
(M − M4) log

( en

s(θ)

)
− M logM

]}
.
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In particular, there exist constants M ′
4,m

′
4 > 0 such that

Eθ π̂
(
I : |I | > M ′

4s(θ)|X) ≤ C0 exp
{
−m′

4s(θ) log
( en

s(θ)

)}
.

The above theorem is a local type result, but can readily be specialized to the sparsity class
θ ∈ �0[pn] in the minimax sense. If s(θ) ≥ 1, the probability bound goes to 0 as n → ∞.

Weak �s -balls

For s ∈ (0,2), the weak �s -ball with the sparsity parameter pn is defined by

ms[pn] = {
θ ∈ R

n : θ2[i] ≤ (pn/n)2(n/i)2/s , i = 1, . . . , n
}
, pn = o(σn) as n → ∞,

where θ2[1] ≥ · · · ≥ θ2[n] are the ordered θ2
1 , . . . , θ2

n . This scale can be thought of as Sobolev hyper-
rectangle for ordered (with unknown locations) coordinates: ms[pn] = H(β, δn) = {θ ∈ R

n :
|θ[i]| ≤ δni

−β}, with δn = n1/s pn

n
and β = 1/s > 1/2.

Denote j = Oθ(i) if θ2
i = θ2[j ], with the convention that in the case θ2

i1
= · · · = θ2

ik
for i1 <

· · · < ik we let Oθ(il+1) = Oθ(il) + 1, l = 1, . . . , k − 1. The minimax estimation rate over this
class is r2(ms[pn]) � n

(pn

n

)s[
σ 2 log

(
nσ
pn

)]1−s/2 when n2/s
(pn

n

)2 ≥ σ 2 logn, and r2(ms[pn]) �
n2/s

(pn

n

)2 +σ 2 when n2/s
(pn

n

)2
< σ 2 logn; see [16] and [8]. Then take I ∗(θ) = {i : Oθ(i) ≤ p∗

n},
with p∗

n = en
( pn

nσ

)s[log
(

nσ
pn

)]−s/2 in the case n2/s
(pn

n

)2 ≥ σ 2 logn, to derive (28):

sup
θ∈ms [pn]

r2(θ) ≤ sup
θ∈ms [pn]

r2(I ∗(θ), θ
) ≤ σ 2p∗

n log
( en

p∗
n

)
+ n2/s

(pn

n

)2 ∑
i>p∗

n

i−2/s

≤ K1σ
2p∗

n log
(nσ

pn

)
+ K2n

2/s
(pn

n

)2(
p∗

n

)1−2/s

≤ Kn
(pn

n

)s[
σ 2 log

(nσ

pn

)]1−s/2 � r2(ms[pn]),

for some K = K(s). The case n2/s(
pn

n
)2 < σ 2 logn is treated similarly by taking p∗

n = 0. Theo-
rems 1 and 3 imply the minimax adaptive results for the scale ms[pn]. These results are obtained
by setting 	β = ms[pn] and r2(	β) = r2(ms[pn]) in Corollary 1.

The following theorem concerns the “over-dimensionality” control for the class ms[pn], the
proof of this theorem is provided in Supplement [6].

Theorem 6. Let the conditions of Theorem 2 be fulfilled, p∗
n = en

( pn

nσ

)s[log( nσ
pn

)
]−s/2

and

n2/s
(pn

n

)2 ≥ σ 2 logn. Then there exist constants M5,m5 > 0 such that for any M > M5 there
exists n0 = n0(M, s) such that, for all n ≥ n0,

sup
θ∈ms [pn]

Eθ π̂
(
I : |I | > Mp∗

n|X
) ≤ C0 exp

{
−m5(M − M5)p

∗
n log

(nσ

pn

)}
.
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Notice that the exponential upper bound from the last relation converges to zero as n → ∞
because p∗

n log
(

nσ
pn

) ≥ e(σ 2 logn)s/2
[
log

(
nσ
pn

)]1−s/2
.

Remark 6. The same minimax results hold over the so called strong �s -ball �s[pn] = {
θ ∈ R

n :
1
n

∑n
i=1 |θi |s ≤ (pn

n

)s}
, s ∈ (0,2), since �s[pn] ⊆ ms[pn] ⊆ �s′ [pn] for any s′ > s.

Besov scale

Let J0 ∈N be such that 2J0+1 = n. Suppose we observe

Yjk = θjk + 1√
n
ξjk, ξjk

ind∼ N(0,1), (jk) ∈K = {
(jk) : j ∈ [J0]0, k ∈ [2j ]}. (30)

This model is obtained as a high dimensional “projected” (see (9.57) in [18]) variant of the
orthogonal wavelet transform of an additive regression function observed in Gaussian noise with
σ 2 = n−1, or just as a sequence version (with respect to some wavelet basis) of the continuous
white noise model. For details and many interesting connections and relations to the function
estimation theory we refer to the very comprehensive and insightful account [18] on this topic.
We adopt the notation and conventions from [18].

We can see (30) as J0 + 1 models of type (1), where σ 2 = n−1 and the j -th model has 2j

observations, j ∈ [J0]0. Let θj = (
θjk, k ∈ [2j ]) and r2(θj , Ioj ) denote the oracle rate in j -th

model. Then aggregating the oracle results over these J0 + 1 = log2 n models leads to the results
for the whole model (30) with the aggregated oracle rate r2(θ) = ∑

i∈[J0]0
r2(θj , Ioj ). Because

of the aggregation, in Theorem 1 we get log2 n

n
M instead of σ 2M and (log2 n)Hl instead of Hl ,

l = 0,1.
Assume that the true signal θ belongs to a Besov ball

	β
p,q(Q) =

{
θ :

∑
j∈[J0]0

2ajq
( ∑

k∈[2j ]
θ

p
jk

)q/p ≤ Qq
}
, a = β + 1

2
− 1

p
,

for some p,q,Q > 0, β ≥ 1/p. The minimax rate over 	
β
p,q(Q) is known to be r2

(
	

β
p,q(Q)

)�
n

− 2β
2β+1 . Now, for any θ ∈ 	

β
p,q(Q),

r2(θ) ≤
∑

j∈[J0]0

∑
k∈I c

oj

θ2
jk +

∑
j∈[J0]0

|Ioj |
n

log
( e2j

|Ioj |
)

≤
∑

j∈[J0]0

min
0≤k≤2j

(∑
l>k

θ2
j (l) + k

n
log

(
e2j /k

))

≤ Cn
− 2β

2β+1 � r2(	β
p,q(Q)

)
,

where θ2
j (l) denotes the l-th largest value among {θ2

jk, j ∈ [2k]}. The third inequality of the last
display follows from Theorem 12.1 in [18] under the assumption β ≥ 1/p. We thus established
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the relation (28) for the Besov scale, and the global minimax adaptive results for the Besov scale
follow by Corollary 1 with 	β = 	

β
p,q(Q) and the minimax rate r2(	β) = r2

(
	

β
p,q(Q)

) �
n

− 2β
2β+1 . Recall that we also need to set log2 n

n
M instead of σ 2M and (log2 n)Hl instead of Hl ,

l = 0,1, because of the aggregation. In this case, the asymptotic regime n → ∞ is of interest. Let
us formulate the first claim of Corollary 1 in this case (other claims can be formulated similarly):
for some C > 0 and any M ≥ 0,

sup
θ∈	

β
p,q (Q)

Eθ π̂
(
‖ϑ − θ‖2 ≥ Cn

− 2β
2β+1 + M

log2 n

n

∣∣X)
≤ H0(log2 n)e−m0M.

Take for example M = Mn = n1/(2β+1)/ log2 n to obtain a well interpreted asymptotic relation.
We should mention that there are of course more scales covered by the oracle rate r2(θ),

one can establish the relation (28) for other scales, for example for smoothness scales (with a
log factor in the minimax rate for smoothness scales). Besides, the results can be extended to
non-normal, not independent ξjk’s, but only satisfying Condition (A1).

4. Simulations

Here we present a small simulation study. In the model (1), we used n = 500, ξi
ind∼ N(0,1),

σ = 1, and signals θ ∈ R
n of the form θ = θ(p,A) = (0, . . . ,0,A, . . . ,A) = (0 · 1n−p,A1p),

where 1p = (1, . . . ,1) ∈ R
p . The first n − p zero coordinates are “insignificant” and the last p

coordinates are “significant”. Different sparsity levels p ∈ {25,50,100} and “signal strengths”
A ∈ {3,4,5} are considered. It is easy to compute the oracle Io(θ(p,A)) = {n−p+1, . . . , n} and
oracle rate r2(θ(p,A)) = B(Io, θ) + V (Io) = V (Io) = |Io| log(en/|Io|) = p log(en/p). Then
the excessive bias B(Io, θ(p,A)) = 0, so that the deceptiveness b(θ(p,A),1) = 0 and hence the
EBR condition (in terms of the “standard” oracle Io) is satisfied with t = 0: θ(p,A) ∈ 	eb(0,1)

for all considered θ(p,A).

In case ξi
ind∼ N(0,1), Condition (A1) is fulfilled with β = 0.4, B = 1, leading to κ > 3.24

in Condition (A2). The bound for κ coming from Condition (A2) is typically too conservative

as it is for the general situation of unknown distribution of ξ . For example, if ξi
ind∼ N(0,1),

Condition (A2) can be relaxed to κ ≥ 2.04; see Supplement [6]. It is desirable to choose κ

in a data dependent way. In our simulation study, we choose κ via a cross-validation proce-
dure. For that, we create two independent normal samples X′

i = Xi + ηi and X′′
i = Xi − ηi ,

where we generate ηi
ind∼ N(0,1), independently of ξ . Then X′

i and X′′
i are independent ran-

dom variables with means θi and variances 2, thus the observation sample can be duplicated
at the cost of doubling the variance. Now we estimate κ > 0 as follows: let θ̌ ′ = θ̌ ′(Î ′) =
(X′

i1{i ∈ Î ′}, i ∈ [n]), where Î ′ = Î ′(κ) = arg minI∈I
{−∑

i∈I (X
′
i )

2 + 2(2κ + 1)|I | log
(

en
|I |

)}
,

then κ̂ = arg minκ∈(0,logn] ‖θ̌ ′(Î ′(κ))−X′′‖2. In the simulations below, κ̂ turned out to be rather
stable, varying primarily in the range [0.4,0.9], the choice κ = 0.65 gave reasonable results (but
still worse then data dependent κ̂). Recall that, according to (13), Î (κ) = {

i ∈ [n] : X2
i ≥ X2

[k̂]
}
,
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Table 1. The ratio R̂/r(θ) and the frequency ᾱ of the event that the confidence ball B(θ̌, R̂) contains the

signal θ(p,A) computed for 100 vectors X simulated from (1) with ξi
ind∼ N(0,1), n = 500 and σ = 1

p 25 50 100

A 3 4 5 3 4 5 3 4 5

R̂/r(θ) 1.81 1.71 1.51 1.78 1.50 1.40 1.51 1.34 1.34
ᾱ 0.98 0.97 0.95 0.99 0.97 1 0.97 1 1

where k̂ = k̂(κ) = arg mink∈[n]0

{∑n
i=k+1 X2[i] + (2κ + 1)σ 2k log(en/k)

}
. Let Î = Î (κ̂) and

θ̌ = X(Î ) be defined by (14).
Now consider the confidence ball B(θ̌, R̂), where R̂ = M̄

[
(b̂+1)+r̂2

]1/2
, r̂2 = |Î | log(en/|Î |)

given by (24), and b̂ =
∑

i∈Î c (X2
i −1)

|Î | log(en/|Î |) is an estimate of the deceptiveness b(θ,1) defined by (26).

The construction of the radius R̂ is inspired by the local result formulation in Remark 5. The
quantity

[
(b̂ + 1)+r̂2

]1/2 is an empirical counterpart for the oracle rate r(θ), but even the oracle
rate radius needs to be inflated to ensure coverage. The multiplicative factor M̄ is intended to
trade-off the size of the ball against its coverage probability. Theoretical inflating factor from
Theorem 3 is too conservative, as it is for the general situation of Condition (A1). In this simula-
tion study it is enough to take M̄ = √

2, thus R̂ = [
2(b̂ + 1)+r̂2

]1/2, which yielded good results
for all the cases.

Table 1 shows the performance of the confidence ball B(θ̌, R̂). For each θ = θ(p,A), with
p ∈ {25,50,100} and A ∈ {3,4,5}, we simulated 100 data vectors X from the model (1) and

computed two quantities: (1) the ratio R̂/r(θ) of the average of the radius R̂ to the oracle rate
r(θ) defined by (19); (2) the frequency ᾱ of the event that confidence ball B(θ̌, R̂) contains the
signal θ . The former characterizes the size of the confidence ball B(θ̌, R̂) relative to the oracle
rate, and the latter its coverage. What one can conclude from the table: the higher the signal

strength, the smaller the ratio R̂/r(θ); uncertainty quantification does not seem to benefit from
the sparsity in terms of relative size (with respect to the oracle rate) and coverage. Of course,
the absolute size is certainly better for more sparse signals as the oracle rate is then smaller. In
particular, r(θ(25,A)) = 9.99, r(θ(50,A)) = 12.85 and r(θ(100,A)) = 16.15, A = 3,4,5.

At the first site surprisingly, the constructed confidence ball B(θ̌, R̂) appeared to perform
well also for deceptive parameters, like θ̄ = θ̄ (δ,p,A) = (δ1n−p,A1p), with p, A as before
and δ > 0. We get very similar (good) results as in Table 1 for all δ > 0. Notice that the de-
ceptivenesses may not be zero, for example, b(θ̄(0.5,25,A)) = 1.18, b(θ̄(0.5,50,A)) = 0.68,
b(θ̄(0.5,100,A)) = 0.38, b(θ̄(0.8,25,A)) = 3, etc. The reason for good results even for decep-
tive signals is that their oracle rates are large relative to n1/4. Indeed, even the smallest oracle
rate r(θ(0,25,3)) = 9.99 > (500)1/4 = 4.73, which means that we are essentially in the n1/4-
situation of Theorem 4 (when both the optimal size and coverage are possible to attain) rather
than Theorem 3. Basically, the signals θ̄ (δ,p,A) are not sparse enough and/or the problem is not
high-dimensional enough.



Robust confidence for possibly sparse sequences 213

To distill the deceptiveness effect, we created a signal θ ′ = (0, . . . ,0,A1, . . . ,Ap) of di-

mension n = 500, with sparsity p = 10, Ai
ind∼ U[0,4], i = 1, . . . , p. The oracle rate was

r(θ ′) = 4.69 < (500)1/4 = 4.73, the deceptiveness was b(θ ′) = 0.64. Thus, this was a decep-

tive signal, but not in the n1/4-situation anymore. The size was relatively good R̂/r(θ) = 1.21,
but the coverage was low ᾱ = 0.55. The deceptiveness manifested itself more prominently in

the case n = 1000, p = 10, Ai
ind∼ U[0,4], i = 1, . . . , p. The oracle rate was r(θ ′) = 5.52 <

(1000)1/4 = 5.62, mild deceptiveness b(θ ′) = 0.47. The size was still good R̂/r(θ) = 1.37 as
before, but the coverage was low ᾱ = 0.59.

5. Technical lemmas

First, we provide a couple of technical lemmas used in the proofs of the main results.

Remark 7. Notice that in the below lemma we established the same bound for the both quantities
Eθ π̂(I |X) = Eθ π̃(I |X) and Eθ1{Î = I } = Pθ (Î = I ). The proofs of the properties of π̌ (ϑ |X)

and θ̌ are exactly the same as for π̃ (ϑ |X) and θ̃ , with the only difference that everywhere (in the
claims and in the proofs) π̂ (I ∈ G|X) should be read as π̃(I ∈ G|X) in case π̂ = π̃ ; and as 1{Î ∈
G} in case π̂ = π̌ , for all G ⊆ I that appear in the proof. Hence, Eθ π̂(I ∈ G|X) = Eθ π̃(I ∈ G|X)

in the former case, and Eθ π̂(I ∈ G|X) = Pθ (Î ∈ G) in the latter case.

Lemma 1. Let Condition (A1) be fulfilled. Then for any θ ∈ R
n and any I, I0 ∈ I ,

Eθ π̂(I |X) ≤
( λI

λI0

)h

exp
{
Bh

∑
i∈I\I0

θ2
i

σ 2
− Ah

∑
i∈I0\I

θ2
i

σ 2
+ Ch|I0| log

( en

|I0|
)

− Dh|I | log
( en

|I |
)}

,

where h = 2β
3 , Ah = β

6 , Bh = 2β
3 , Ch = β+B

3 and Dh = β−2B
3 . If I\I0 =∅, the bound holds also

for h = β with Ah = β
3 , Bh = 0, Ch = β

2 + B , Dh = β
2 . If I0\I = ∅, the bound holds also for

h = β with Ah = 0, Bh = β , Ch = β
2 , Dh = β

2 − B .

Proof of Lemma 1. Recall that PX,I = φ
(
Xi1{i /∈ I },0, σ 2 + Kn(I)σ 21{i ∈ I }). In case

π̂(I |X) = π̃(I |X), we get by (11) that, for any I, I0 ∈ I and any h ∈ [0,1],

Eθ π̂(I |X) = Eθ π̃(I |X) = Eθ

λI PX,I∑
J∈I λJ PX,J

≤ Eθ

( λI PX,I

λI0PX,I0

)h

(31)

= Eθ

[
λI

∏n
i=1 φ

(
Xi1{i /∈ I },0, σ 2 + Kn(I)σ 21{i ∈ I })

λI0

∏n
i=1 φ

(
Xi1{i /∈ I0},0, σ 2 + Kn(I0)σ 21{i ∈ I0}

)]h

=
( λI

λI0

)h

Eθ exp

{
h

2

[ ∑
i∈I\I0

X2
i

σ 2
−

∑
i∈I0\I

X2
i

σ 2
+ |I0| log

( en

|I0|
)

− |I | log
( en

|I |
)]}

. (32)
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In case π̂(I |X) = 1{Î = I }, by the definition (13) of Î and the Markov inequality, we derive that,
for any I, I0 ∈ I and any h ≥ 0

Eθ π̂(I |X) = Pθ (Î = I ) ≤ Pθ

(
π̃(I |X)

π̃(I0|X)
≥ 1

)

≤ Eθ

(
π̃ (I |X)

π̃(I0|X)

)h

= Eθ

(
λI PX,I

λI0PX,I0

)h

,

which yields exactly the bound (31), and hence the bound (32) again.
Using Hölder’s inequality, Condition (A1) and the two elementary facts X2

i ≤ 2θ2
i + 2σ 2ξ2

i

and −X2
i ≤ − θ2

i

2 + σ 2ξ2
i , we obtain

Eθ exp

{
β

3

[ ∑
i∈I\I0

X2
i

σ 2
−

∑
i∈I0\I

X2
i

σ 2

]}

≤
(

Eθ e
β
2

∑
i∈I\I0

X2
i /σ 2)2/3(

Eθ e
−β

∑
i∈I0\I X2

i /σ 2)1/3

≤ exp

{
2β

3

∑
i∈I\I0

θ2
i

σ 2
+ 2B

3
|I\I0| − β

6

∑
i∈I0\I

θ2
i

σ 2
+ B

3
|I0\I |

}
.

Since |I\I0| ≤ |I | ≤ |I | log
(

en
|I |

)
and |I0\I | ≤ |I0| ≤ |I0| log

(
en
|I0|

)
, the lemma follows for h = 2β

3
from the last display and (32).

If I\I0 = ∅, we take h = β in (32) and combine this with Eθ exp
{−β

2

∑
i∈I0\I

X2
i

σ 2

} ≤
exp

{−β
3

∑
i∈I0\I

θ2
i

σ 2 +B|I0\I |}, which holds in view of Condition (A1) and −X2
i

σ 2 ≤ − 2θ2
i

3σ 2 +2ξ2
i ,

as (a + b)2 ≥ 2a2/3 − 2b2. If I0\I = ∅, we take h = β in (32) and combine this with

Eθ exp
{β

2

∑
i∈I\I0

X2
i

σ 2

} ≤ exp
{
β

∑
i∈I\I0

θ2
i

σ 2 + B|I\I0|
}

which holds in view of Condition (A1)

and
X2

i

σ 2 ≤ 2θ2
i

σ 2 + 2ξ2
i . �

Note that above lemma holds for any set I0 ∈ I . By taking I0 = Io defined by (19), we obtain
the following lemma.

Lemma 2. Let Conditions (A1) and (A2) be fulfilled. Then there exist positive constants c1 =
c1(κ) > 2, c2 and c3 = c3(κ) such that for any θ ∈ R

n

Eθ π̂(I |X) ≤
( ne

|I |
)−c1|I |

exp
{−c2σ

−2[r2(I, θ) − c3r
2(θ)

]}
.

Proof of Lemma 2. With constants h, Ah, Bh, Ch, Dh given in Lemma 1, define the constant
c1 = c1(κ) = κh + Dh − Ah = 2βκ

3 + β−2B
3 − β

6 > 2 as κ > κ̄ by Condition (A2). Since κh +
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Dh = c1 + Ah, the definition (5) of λI entails that

( λI

λI0

)h

exp
{
Ch|I0| log

( en

|I0|
)

− Dh|I | log
( en

|I |
)}

=
( ne

|I |
)−c1|I |

exp
{
(κh + Ch)|I0| log

( en

|I0|
)

− Ah|I | log
( en

|I |
)}

.

Using the last relation and Lemma 1 with I0 = Io, we bound

Eθ π̂(I |X)

≤
( λI

λIo

)h

exp
{
Bh

∑
i∈I\Io

θ2
i

σ 2
− Ah

∑
i∈Io\I

θ2
i

σ 2
+ Ch|Io| log

( en

|Io|
)

− Dh|I | log
( en

|I |
)}

=
( ne

|I |
)−c1|I |

exp
{
−Ah

∑
i∈Io\I

θ2
i

σ 2
− Ah|I | log

( en

|I |
)

+ Bh

∑
i∈I\Io

θ2
i

σ 2
+ (κh + Ch)|Io| log

( en

|Io|
)}

.

The claim of the lemma follows with the constants c1 = (4βκ+β −4B)/6 > 2, c2 = Ah = β/6,
h = 2β

3 and c3 = c3(κ) = max{Bh,κh + Ch}/Ah = (κh + Ch)/Ah = 4κ + 2(β + B)/β . �

Lemma 3. Let Y1, . . . , Yn be random variables such that Eet
∑

i∈I Yi ≤ A|I |(t) for all I ∈ I , with
some t > 0 and Ak(t). Let Y[1] ≥ Y[2] ≥ · · · ≥ Y[n]. Then, for any k ∈ {1, . . . , n} and C,c ≥ 0,

P

( k∑
i=1

Y[i] ≥ Ck log
(en

k

)
+ c

)
≤ Ak(t) exp

{
−(Ct − 1)k log

(en

k

)
− ct

}
,

E
k∑

i=1

Y[i] ≤ t−1
[
k log

(en

k

)
+ log

(
Ak(t)

)]
.

In particular, if ξ1, . . . , ξn
ind∼ N(0,1), then for any k = 1, . . . , n and C,c ≥ 0

P

( k∑
i=1

ξ2[i] ≥ Ck log
(en

k

)
+ c

)
≤

(en

k

)−(0.4C−2)k

e−0.4c, E
k∑

i=1

ξ2[i] ≤ 6k log
(en

k

)
.

Proof. By Jensen’s inequality, we derive

exp
{
tE

k∑
i=1

Y[i]
}

≤ E exp
{
t

k∑
i=1

Y[i]
}

≤
∑

I :|I |=k

E exp
{
t
∑
i∈I

Yi

}
≤

(
n

k

)
Ak(t).
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Then E exp
{
t
∑k

i=1 Y[i]
} ≤ (

n
k

)
Ak(t) ≤ exp

{
k log( en

k
)+ log(Ak(t))

}
, where we used

(
n
k

) ≤ (
en
k

)k .
This and the (exponential) Markov inequality yield the first relation:

P

( k∑
i=1

Y[i] ≥ Ck log
(en

k

)
+ c

)
≤ Ak(t) exp

{
−(Ct − 1)k log

(en

k

)
− ct

}
.

The first display implies also the second relation: E
∑k

i=1 Y[i] ≤ t−1
[
log

(
n
k

) + log(Ak(t))
]
.

As to the normal case, for any I ∈ I and any t < 1
2 we have that E exp

{
t
∑

i∈I ξ2
i

} =
(1 − 2t)−|I |/2 = A|I |(t). Since Ak(t) ≤ ek ≤ ek log(en/k) for any t ≤ (1 − e−2)/2 < 0.44, the first
assertion for the normal case follows by taking t = 0.4. By taking t = 1

4 , the second assertion

follows since E
∑k

i=1 ξ2[i] ≤ 4k log
(

en
k

) + 2k log 2 ≤ 6k log
(

en
k

)
. �

This lemma is useful if Ak(t) ≤ C1
(

en
k

)C2k for some t,C1,C2 > 0; in particular, for Yi = ξ2
i ,

where the ξi ’s satisfy Condition (A1). Then Lemma 3 applies with t = β and Ak(β) = eBk :

P

( k∑
i=1

ξ2[i] ≥ (1 + B)

β
k log

(en

k

)
+ M

)
≤ exp{−βM}, k = 1, . . . , n, M ≥ 0. (33)

6. Proofs of the theorems

By C0, C1, C2 etc., denote constants which are different in different proofs.

Proof of Theorem 1. Recall the constants c1, c2, c3 defined in the proof of Lemma 2. Let
M0 = 2c3

(
6 + 1+B

β

)
. Introduce the subfamily of index sets SM = SM(θ) = {

I ∈ I : r2(I, θ) ≤
c3r

2(θ) + β
40(1+B)

Mσ 2
}
, m = mM(θ) = max{|I | : I ∈ SM}, and the event AM = A(θ) ={∑m

i=1 ξ2[i] ≤ (1+B)
β

m log
(

en
m

) + M
8

}
. We have

π̂
(‖ϑ − θ‖2 ≥ M0r

2(θ) + Mσ 2|X)
≤ 1Ac

M
+ π̂

(
I ∈ Sc

M |X) +
∑

I∈SM

1AM
π̂I

(‖ϑ − θ‖2 ≥ M0r
2(θ) + Mσ 2|X)

π̂ (I |X)

= T1 + T2 + T3.

Now we bound the quantities EθT1, EθT2 and EθT3.
First, we bound EθT1 by using Lemma 3 (see also (33)):

EθT1 = Pθ

(
Ac

M

) = P

( m∑
i=1

ξ2[i] >
(1 + B)

β
m log

(en

m

)
+ M

8

)
≤ exp{−βM/8}. (34)
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Let us bound EθT2. Since
(
n
k

) ≤ ( en
k

)k and c1 > 2, the following relation holds:

∑
I∈I

( ne

|I |
)−c1|I | =

n∑
k=0

(
n

k

)(en

k

)−c1k ≤
n∑

k=0

(en

k

)−k(c1−1) ≤ (
1 − e1−c1

)−1 � C0. (35)

If I ∈ Sc
M , then r2(I, θ) > c3r

2(θ) + β
40(1+B)

Mσ 2. Using this, Lemma 2 and (35), we bound
EθT2:

EθT2 =
∑

I∈Sc
M

Eθ π̂(I |X) ≤
∑

I∈Sc
M

( ne

|I |
)−c1|I |

exp
{−c2σ

−2[r2(I, θ) − c3r
2(θ)

]}

≤
∑
I∈I

( ne

|I |
)−c1|I |

exp
{−c2βM/

(
40(1 + B)

)}

≤ C0 exp
{−c2βM/

(
40(1 + B)

)}
. (36)

It remains to bound EθT3. For each I ∈ SM , σ 2|I | log(en/|I |) ≤ r2(I, θ) ≤ c3r
2(θ) +

β
40(1+B)

Mσ 2. Since m = max{|I | : I ∈ SM}, then σ 2m log
(

en
m

) ≤ c3r
2(θ) + β

40(1+B)
Mσ 2.

Thus, for any I ∈ SM , the event AM implies that
∑

i∈I ξ2
i ≤ ∑m

i=1 ξ2[i] ≤ (1+B)
β

m log
(

en
m

) +
M
8 ≤ (1+B)

β
c3σ

−2r2(θ) + 3M
20 . Denote for brevity �M(θ) = M0r

2(θ) + Mσ 2 and recall that∑
i∈I c θ2

i ≤ r2(I, θ) ≤ c3r
2(θ) + β

40(1+B)
Mσ 2 ≤ c3r

2(θ) + M
40σ 2 for any I ∈ SM . Then for any

I ∈ SM

AM ⊆
{

�M(θ)

2
− σ 2

∑
i∈I

ξ2
i −

∑
i∈I c

θ2
i ≥

[M0

2
− 1 + B + β

β
c3

]
r2(θ) + 13Mσ 2

40

}
. (37)

According to (10), π̃I (ϑ |X) = ⊗n
i=1 N

(
Xi(I ), σ 2

i (I )
)
, with Xi(I ) = Xi1{i ∈ I } and σ 2

i (I ) =
Kn(I)σ 21{i∈I }

Kn(I)+1 . Let PZ be the measure of Z = (Z1, . . . ,Zn), with Zi
ind∼ N(0,1). By using (37),

the fact that r2(θ)

σ 2 ≥ c−1
3

(
m log

(
en
m

) − β
40(1+B)

M
)

and Lemma 3 (now applied to the Gaussian
case), we obtain that, for any I ∈ SM ,

π̃I

(‖ϑ − θ‖2 ≥ M0r
2(θ) + Mσ 2|X)

1AM

= PZ

(
n∑

i=1

(
σi(I )Zi + Xi(I ) − θi

)2 ≥ �M(θ)

)
1AM

≤ PZ

(
n∑

i=1

σ 2
i (I )Z2

i ≥ �M(θ)

2
−

n∑
i=1

(
Xi(I ) − θi

)2
)

1AM

≤ PZ

(∑
i∈I

σ 2Z2
i ≥ �M(θ)

2
−

∑
i∈I

σ 2ξ2
i −

∑
i∈I c

θ2
i

)
1AM
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≤ PZ

(∑
i∈I

Z2
i ≥

[M0

2
−

(1 + B

β
+ 1

)
c3

] r2(θ)

σ 2
+ 13M

40

)

≤ PZ

(
m∑

i=1

Z2[i] ≥
(M0

2c3
− 1 + B

β
− 1

)[
m log

(en

m

)
− β

40(1 + B)
M

]
+ 13M

40

)

≤ PZ

(
m∑

i=1

Z2[i] ≥ 5m log
(en

m

)
+ M

5

)
≤ exp{−2M/25},

where we also used in the last step that M0
2c3

− 1+B
β

− 1 = 5. Hence,

EθT3 = Eθ

∑
I∈SM

1AM
π̃I

(‖ϑ − θ‖2 ≥ M0r
2(θ) + Mσ 2|X)

π̂(I |X)

≤ exp{−2M/25}Eθ

∑
I∈I

π̂ (I |X) ≤ exp{−2M/25}.

This completes the proof of assertion (i) since, in view of (34), (36) and the last display, we
established that Eθ π̂

(‖ϑ − θ‖2 ≥ M0r
2(θ) + Mσ 2|X) ≤ Eθ (T1 + T2 + T3) ≤ (2 + C0)e

−m0M ,

with constants M0 = 2c3
(
6 + 1+B

β

)
, H0 = 2 + C0, m0 = min

{β
8 ,

c2β
40(1+B)

, 2
25

}
and C0 defined in

(35).
The proof of assertion (ii) proceeds along similar lines. Recall the constants c1 > 2, c2, c3

from Lemma 2 and define M1 = 4c3(1 + B + β)/β . Introduce the subfamily of sets

S̄M = S̄M(θ) =
{
I ∈ I : r2(I, θ) ≤ 2c3r

2(θ) + β

6(1 + B)
Mσ 2

}
,

and the event ĀM = ĀM(θ) = {∑m̄
i=1 ξ2[i] ≤ (1+B)

β
m̄ log

(
en
m̄

) + M
6

}
, where m̄ = m̄M(θ) =

max{|I | : I ∈ S̄M}. Introduce the notation �̄M(θ) = M1r
2(θ) + Mσ 2 for brevity. By the def-

inition of θ̂ and the Cauchy–Schwarz inequality, we have that ‖θ̂ − θ‖2 ≤ ∑
I∈I ‖X(I) −

θ‖2π̂(I |X), where ‖X(I) − θ‖2 = σ 2 ∑
i∈I ξ2

i + ∑
i∈I c θ2

i . Using this, we derive

Pθ

(‖θ̂ − θ‖2 ≥ �̄M(θ)
)

≤ Pθ

(∑
I∈I

∥∥X(I) − θ
∥∥2

π̂ (I |X) ≥ �̄M(θ)

)

≤ Pθ

(
Āc

M

) + Pθ

({ ∑
I∈S̄M

[
σ 2

∑
i∈I

ξ2
i +

∑
i∈I c

θ2
i

]
π̂(I |X) ≥ �̄M(θ)/2

}
∩ ĀM

)

+ Pθ

( ∑
I∈S̄c

M

[
σ 2

∑
i∈I

ξ2
i +

∑
i∈I c

θ2
i

]
π̂ (I |X) ≥ �̄M(θ)/2

)
= T̄1 + T̄2 + T̄3.
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Similar to (34), we bound the term T̄1 by Lemma 3 (see also (33)):

T̄1 = Pθ

(
Āc

M

) = P

(
m̄∑

i=1

ξ2[i] >
(1 + B)

β
m̄ log

(en

m̄

)
+ M

6

)
≤ exp

{−Mβ/6
}
.

Now we evaluate the term T̄2. Since m̄ = max{|I | : I ∈ S̄M}, σ 2m̄ log
(

en
m̄

) ≤ 2c3r
2(θ) +

β
6(1+B)

Mσ 2. Then for any I ∈ S̄M , the event ĀM implies that
∑

i∈I ξ2
i ≤ ∑m̄

i=1 ξ2[i] ≤
(1+B)

β
m̄ log

(
en
m̄

) + M
6 ≤ 2c3(1+B)

β
r2(θ)

σ 2 + M
3 . Also

∑
i∈I c θ2

i ≤ r2(I, θ) ≤ 2c3r
2(θ) + β

6(1+B)
Mσ 2

for any I ∈ S̄M . Hence, for any I ∈ S̄M , we obtain the implication

ĀM ⊆
{
σ 2

∑
i∈I

ξ2
i +

∑
i∈I c

θ2
i ≤ 2c3(1 + B + β)

β
r2(θ) +

(1

3
+ β

6(1 + B)

)
Mσ 2

}
.

As M1 = 4c3(1 + B + β)/β , β ∈ (0,1] and B > 0, the last relation entails

T̄2 = Pθ

({ ∑
I∈S̄M

(
σ 2

∑
i∈I

ξ2
i +

∑
i∈I c

θ2
i

)
π̂(I |X) ≥ �̄M

2

}
∩ ĀM

)

≤ Pθ

(
2c3(1 + B + β)

β
r2(θ) +

(1

3
+ β

6(1 + B)

)
Mσ 2 ≥ M1

2
r2(θ) + M

2
σ 2

)
= 0.

It remains to handle the term T̄3. Applying first the Markov inequality and then the Cauchy–
Schwarz inequality, we obtain

T̄3 ≤
Eθ

(∑
I∈S̄c

M

[
σ 2 ∑

i∈I ξ2
i + ∑

i∈I c θ2
i

]
π̂(I |X)

)
�̄M(θ)/2

≤
∑

I∈S̄c
M

(
σ 2

[
Eθ

(∑
i∈I ξ2

i

)2]1/2[Eθ

(
π̂(I |X)

)2]1/2 + r2(I, θ)Eθ π̂(I |X)
)

�̄M(θ)/2
= T31 + T32.

For any I ∈ S̄c
M , we have c3r

2(θ) ≤ r2(I,θ)
2 − β

12(1+B)
Mσ 2, yielding the bound

c2

2

(
r2(I, θ) − c3r

2(θ)
) ≥ C1r

2(I, θ) + C2Mσ 2 for any I ∈ S̄c
M, (38)

where C1 = c2/4 and C2 = c2β/[24(1 + B)]. By (38) and Lemma 2,

[
Eθ π̂(I |X)

]1/2 ≤
( ne

|I |
)−c1|I |/2

exp
{−C1σ

−2r2(I, θ) − C2M
}

for any I ∈ S̄c
M. (39)

Since c1 > 2, (35) gives
∑

I∈I
(

ne
|I |

)−c1|I |/2 ≤ (1 − e−c1/2)−1 � C3. According to (15) with

ρ = min{C1,B/2}, [
E
(∑

i∈I ξ2
i

)2]1/2 ≤ B
βρ

exp{ρ|I |}. If M ∈ [0,1], the claim (ii) holds for any
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H1 ≥ em1 . Let M ≥ 1, then σ 2/�̄M(θ) ≤ M−1 ≤ 1. Besides, σ−2r2(I, θ) ≥ |I | log(en/|I |) ≥
|I |. Piecing all these relations together with (39), we derive

T31 ≤ 2B

βρ

∑
I∈S̄c

M

exp
{
ρ|I |}( ne

|I |
)−c1|I |/2

exp
{−C1σ

−2r2(I, θ) − C2M
}

≤ C4 exp{−C2M},

where C4 = 2BC3/(βρ) = 2BC3/
(
β min{C1,B}). Finally, by (35), (39) and the facts that

maxx≥0{xe−cx} ≤ (ce)−1 (for any c > 0) and σ 2/�̄M(θ) ≤ 1, we bound the term T32:

T32 = 2

�̄M(θ)

∑
I∈S̄c

M

r2(I, θ)Eθ π̂(I |X)

≤ 2

�̄M(θ)

∑
I∈S̄c

M

r2(I, θ)
( ne

|I |
)−c1|I |

exp
{−2C1σ

−2r2(I, θ) − 2C2M
}

≤ C5 exp{−2C2M},

where C5 = C0/(C1e). The assertion (ii) is proved since we showed that Pθ (‖θ̂ − θ‖2 ≥
M1r

2(θ) + Mσ 2) ≤ H1e
−m1M with M1 = 4c3(1 + B + β)/β , H1 = max

{
1 + C4 + C5, e

m1
}
,

m1 = min
{β

6 ,C2
}
. �

Proof of Theorem 2. First, we prove (i). If the inequality |I\Io| log
(

en
|I |

)
<

∑
i∈I\Io

θ2
i

σ 2 would
hold for some I ∈ I , then

r2(I ∪ Io, θ) =
∑

i /∈I∪Io

θ2
i + σ 2|I ∪ Io| log

( en

|I ∪ Io|
)

≤
∑

i /∈I∪Io

θ2
i + σ 2|I\Io| log

( en

|I |
)

+ σ 2|Io| log
( en

|Io|
)

<
∑

i /∈I∪Io

θ2
i +

∑
i∈I\Io

θ2
i

σ 2
+ σ 2|Io| log

( en

|Io|
)

=
∑
i /∈Io

θ2
i + σ 2|Io| log

( en

|Io|
)

= r2(θ),

which contradicts the definition of the oracle. Hence,
∑

i∈I\Io

θ2
i

σ 2 ≤ |I\Io| log
(

en
|I |

)
for any I ∈ I .

Define c4 = κβ − β
2 − B − 1 and note that c4 > 1 by the condition of the theorem. Using the

relation
∑

i∈I\Io

θ2
i

σ 2 ≤ |I\Io| log
(

en
|I |

) ≤ |I | log
(

en
|I |

)
and Lemma 1 with h = β and I0 = Io ∩ I

(so that I\I0 = I\Io), we obtain for each I ∈ G1 = {
I ∈ I : |I | log( en

|I | ) ≥ M ′
0|I0| log

(
en
|I0|

) + M
}
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with M ′
0 = κβ + β

2 ,

Eθ π̂(I |X)

≤
( λI

λI0

)β

exp

{
β

∑
i∈I\I0

θ2
i

σ 2
+ β

2
|I0| log

( en

|I0|
)

−
(β

2
− B

)
|I | log

( en

|I |
)}

≤
( ne

|I |
)−c4|I |

exp

{
−

(
κβ − β

2
− B − c4

)
|I | log

( en

|I |
)

+
(
βκ + β

2

)
|I0| log

( en

|I0|
)}

=
( ne

|I |
)−c4|I |

exp

{
−|I | log

( en

|I |
)

+
(
βκ + β

2

)
|I0| log

( en

|I0|
)}

≤
( ne

|I |
)−c4|I |

exp

{
−

(
M ′

0 −κβ − β

2

)
|I0| log

( en

|I0|
)

− M

}
=

( ne

|I |
)−c4|I |

e−M.

Since c4 > 1, by the same reasoning as in (6) we bound
∑

I∈I
(

ne
|I |

)−c4|I | ≤ (1 − e1−c4)−1 � H ′
0.

Using this and the last display, we finish the proof of (i):

Eθ π̂(I ∈ G1|X) =
∑
I∈G1

Eθ π̂(I |X) ≤ e−M
∑
I∈I

( ne

|I |
)−c4|I | ≤ H ′

0e
−M.

Next, we prove (ii). Define G2 = G2(I
′) = {

I ∈ I : ∑
i∈I ′\I

θ2
i

σ 2 ≥ τ̄ |I ∪ I ′| log
(

en
|I∪I ′|

) + M
}
.

Using (5) and Lemma 1 with h = β and I0 = I0(I, θ) = I ∪ I ′, we evaluate for each I ∈ G2

Eθ π̂(I |X)

≤
( λI

λI0

)β

exp

{
−β

3

∑
i∈I0\I

θ2
i

σ 2
+

(β

2
+ B

)
|I0| log

( en

|I0|
)

− β

2
|I | log

( en

|I |
)}

=
( λI

cκ,n

)β

exp

{
−β

3

∑
i∈I ′\I

θ2
i

σ 2
+

(
κβ + β

2
+ B

)∣∣I ∪ I ′∣∣ log
( en

|I ∪ I ′|
)

− β

2
|I | log

( en

|I |
)}

≤
( λI

cκ,n

)β+ β
2κ

exp

{(
−β

3
τ̄ +κβ + β

2
+ B

)∣∣I ∪ I ′∣∣ log
( en

|I ∪ I ′|
)

− β

3
M

}

≤
( λI

cκ,n

)β+ β
2κ

e−βM/3.

Since κ > 1
β

− 1
2 , by the same reasoning as in (6) we bound

∑
I

(
λI

cκ,n

)β(1+1/2κ) ≤ (
1 −

e1−κβ−β/2
)−1 � H ′

1. This relation and the last display imply claim (ii): with m′
0 = β

3 ,

Eθ π̂(I ∈ G2|X) =
∑
I∈G2

Eθ π̂(I |X) ≤ H ′
1 exp

{−m′
0M

}
. (40)
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Let us derive the second claim of (ii). If |I | log
(

en
|I |

) ≤ �|Īo| log
(

en

|Īo|
) − M , then |I ∪ Īo| ×

log
(

en

|I∪Īo|
) ≤ |I | log

(
en
|I |

) + |Īo| log
(

en

|Īo|
) ≤ (1 + �)|Īo| log

(
en

|Īo|
) − M . Hence, |Īo| log

(
en

|Īo|
) ≥

1
1+�

|I ∪ Īo| log
(

en

|I∪Īo|
) + M

1+�
, which, together with the definition of the τ -oracle, imply

∑
i∈Īo\I

θ2
i

σ 2
≥

(∑
i∈I c

θ2
i

σ 2
−

∑
i∈Ī c

o

θ2
i

σ 2

)

≥ τ0

(
|Īo| log

( en

|Īo|
)

− |I | log
( en

|I |
))

≥ τ0(1 − �)|Īo| log
( en

|Īo|
)

+ τ0M

≥ τ̄ |I ∪ Īo| log
( en

|I ∪ Īo|
)

+ 2τ0

1 + �
M, (41)

as 1−�
1+�

τ0 ≥ τ̄ by the condition of the theorem. Thus, we obtain

Eθ π̂

(
I : |I | log

( en

|I |
)

≤ �|Īo| log
( en

|Īo|
)

− M
∣∣X)

≤ Eθ π̂

( ∑
i∈Īo\I

θ2
i

σ 2
≥ τ̄ |I ∪ Īo| log

( en

|I ∪ Īo|
)

+ 2τ0

1 + �
M

∣∣X)
.

By this and (40) with I ′ = Īo, the second claim of (ii) follows with m′
1 = 2τ0m

′
0

1+�
.

Finally, let us prove (iii). Denote G3 = G3(θ,M) = {
I : r2(I, θ) ≥ c3r

2(θ)+Mσ 2
}
, where the

constants c1 > 2, c2, c3 are defined in Lemma 2. Applying Lemma 2 and using the fact (35), we
complete the proof of (iii):

Eθ π̂(I ∈ G3|X) =
∑
I∈G3

Eθ π̂(I |X) ≤ e−c2M
∑
I∈I

( ne

|I |
)−c1|I | ≤ C0e

−c2M.
�

Proof of Theorem 3. We first establish the coverage property. The constants M1, H1 and m1
are defined in Theorem 1, the constant � is from (22). Take some M2 ≥ M1

�
, for example, M2 =

M1
�

+ 1. From (19) and (26), it follows that r2(θ) ≤ r2(Īo, θ) = (b(θ) + 1)σ 2|Īo| log
(

en

|Īo|
) +

b(θ)σ 2 ≤ (b(θ)+ 1)σ 2
(|Īo| log

(
en

|Īo|
)+ 1

)
. Combining this with claims (ii) from Theorems 1 and

2 and the definition (24) of r̂ yields the coverage property:

Pθ

(
θ /∈ B

(
θ̂ ,

[
(b(θ) + 1)M2r̂

2 + (b(θ) + 2)Mσ 2]1/2
)

≤ Pθ

(
‖θ̂ − θ‖2 > (b(θ) + 1)M2r̂

2 + (b(θ) + 2)Mσ 2, r̂2 ≥ �σ 2|Īo| log
( en

|Īo|
)

+ σ 2 − Mσ 2

M2

)
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+ Pθ

(
r̂2 < �σ 2|Īo| log

( en

|Īo|
)

+ σ 2 − Mσ 2

M2

)

≤ Pθ

(‖θ̂ − θ‖2 > �M2r
2(θ) + Mσ 2) + Pθ

(
|Î | log

( en

|Î |
)

< �|Īo| log
( en

|Īo|
)

− M

M2

)

≤ H1e
−m1M + H ′

1e
−m′′

1M ≤ H2e
−m2M,

where m′′
1 = m′

1/M2, H2 = H1 + H ′
1, m2 = min{m1,m

′′
1}; H ′

1, m′
1 are defined in Theorem 2 and

the constant � is from (22). As b(θ) ≤ t for all θ ∈ 	eb(t), the coverage property follows.
The size property follows from the definition (24) of r̂ and property (i) of Theorem 2. Indeed,

Pθ

(
r̂2 ≥ σ 2M ′

0|Io| log
( en

|Io|
)

+ (M + 1)σ 2
)

= Pθ

(
|Î | log

( en

|Î |
)

≥ M ′
0|Io| log

( en

|Io|
)

+ M
)

≤ Pθ

(
|Î | log

( en

|Î |
)

≥ M ′
0|I ∩ Io| log

( en

|I ∩ Io|
)

+ M
)

≤ H ′
0e

−M. �

Supplementary Material

Supplement to “Needles and straw in a haystack: Robust confidence for possibly sparse
sequences” (DOI: 10.3150/19-BEJ1122SUPP; .pdf). The elaboration on some points and some
background information related to the paper is provided in Supplement [6].
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