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The concept of Rademacher complexity for independent sequences of random variables is extended to
Markov chains. The proposed notion of “regenerative block Rademacher complexity” (of a class of func-
tions) follows from renewal theory and allows to control the expected values of suprema (over the class
of functions) of empirical processes based on Harris Markov chains as well as the excess probability. For
classes of Vapnik–Chervonenkis type, bounds on the “regenerative block Rademacher complexity” are es-
tablished. These bounds depend essentially on the sample size and the probability tails of the regeneration
times. The proposed approach is employed to obtain convergence rates for the kernel density estimator of
the stationary measure and to derive concentration inequalities for the Metropolis–Hastings algorithm.
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1. Introduction

Let (�,F,P) be a probability space and suppose that X = (Xi)i∈N is a sequence of random vari-
ables on (�,F,P) valued in (E,E). Let F denote a countable class of real-valued measurable
functions defined on E. Let n ≥ 1, define

Z = sup
f ∈F

∣∣∣∣∣
n∑

i=1

(
f (Xi) −E

[
f (Xi)

])∣∣∣∣∣.
The random variable Z plays a crucial role in machine learning and statistics: it can be used to
bound the risk of an algorithm [15,63] as well as to study M and Z estimators [60]; it serves to
describe the (uniform) accuracy of function estimates such as the cumulative distribution func-
tion, the quantile function or the cumulative hazard functions [56] or kernel smoothing estimates
of the probability density function [22,25]. Depending on the class F many different bounds are
known when X is formed by independent and identically distributed (i.i.d.) random variables.
Reference textbooks include [14,15,18,27,61].

When X is a Markov chain, many approaches have already been investigated. For a single
function f , exponential-type bounds on the excess probability of Z, i.e., P(Z > t), are obtained
in [11] based on the regenerative approach; in [32] using a curvature assumption; in [48] us-
ing spectral methods. For general classes F , the concentration of Z around its expected value,
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that is, bounding P(|Z − EZ| > t), is studied in [1] where a Berstein-type bound is established;
and in [19] and [48] where the technique of bounded differences [39] is employed to derive
Hoeffding-type inequalities (see also [66] which extends [19] to the case of unbounded chains).
For instance, the inequalities of [48] hold under uniform ergodicity conditions but are explicit in
term or the mixing time of the chain, making them operational in many applications. Similarly,
the exponential bounds obtained in [44], based on chaining arguments, also hold under uniformly
ergodic conditions. Since aperiodic Harris recurrent chains are β-mixing processes (see, for in-
stance,g [16] and the references therein), the McDiarmid types of inequalities obtained by [43]
and the notion of Rademacher complexity introduced and studied in [42] can be applied when
X is Markovian. Notice however that their bounds are not exactly of exponential type because
they are affected by the rate of convergence of the β-mixing coefficients (see Remark 3 for more
details).

The overall goal of the paper is to establish new bounds on the expected value of Z as well
as on the excess probability of Z when X is a Markov chain and the class F has a complexity
of Vapnik–Chervonenkis (VC) type. In contrast with previous works, we study directly the tail
of Z and our bounds involve the variance of the class F and do not require uniform geometric
ergodicity.

The approach taken in this paper is based on renewal theory and is known as the regenera-
tive method, see [3,46,57]. Indeed it is well known that sample paths of a Harris chain may be
divided into i.i.d. regeneration blocks. These blocks are defined as data cycles between random
times called regeneration times at which the chain forgets its past. Hence, most of the results es-
tablished in the i.i.d. setup may be extended to the Markovian framework by applying the latter
to (functionals of) the regeneration blocks. Refer to [41] for the strong law of large numbers and
the central limit theorem, to [36] for functional CLT, as well as [7,9,12,20,37,38] for refinements
of the central limit theorem.

Following the seminal approach by Vapnik and Červonenkis [64], we introduce a new no-
tion of complexity that we call the regenerative block Rademacher complexity which extends
the classical Rademacher complexity for independent sequences of random variables to Markov
chains. Refer to the books [14,27,34] for nice accounts and applications of Rademacher complex-
ity in the i.i.d. cases. As in the independent case, the regenerative block Rademacher complexity
is useful to bound the expected values of empirical processes (over some classes of functions)
and intervenes as well to control the excess probability. Depending on the probability tails of
the regeneration times, which are considered to be either exponential or polynomial, we derive
bounds on the regenerative block Rademacher complexity of classes of VC type. Interestingly,
the obtained bounds bears resemblance to the ones provided in [22,25] (for independent X) as
they depend on the variance of the underlying class of functions F allowing to take advantage of
classes F having small fluctuations.

Kernel density estimator

Kernel density estimators, as well as their variations, Nadaraya–Watson, nearest neighbors or
delta-sequences estimators [65], are local averaging techniques forming the basis of nonpara-
metric estimation. They are at the core of many semi-parametric statistical procedures [2,50] in
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which controlling Z-type quantities permits to take advantage of the tightness of the empirical
process [62]. The asymptotic properties of kernel density estimators, based on independent and
identically distributed data, are well understood since the seventies-eighties [58]. However, finite
sample properties were only studied more recently [22,25]. The function class of interest (taking
the role of F ) in this problem is given by

Kn = {x �→ K
(
(x − y)/hn

) : y ∈ R
d
}
,

where K :Rd →R is called the kernel and (hn)n∈N is a positive sequence converging to 0 called
the bandwidth. Based on the property that Kn is included on some VC class [45], some master
results have been obtained by [22–25] who proved some concentration inequalities, based on
the seminal work of [59], allowing to establish precisely the rate of uniform convergence of
kernel density estimators. Kernel density estimates are particular because the variance of each
element in Kn goes to 0 as n → ∞. This needs to be considered to derive accurate bounds, for
example, the one presented in [25]. The proposed approach takes care of this phenomenon as,
under reasonable conditions, our bound for Markov chains scales at the same rate as the ones
obtained in the independent case. Note that our results extend the ones given in [4] where under
similar assumptions the consistency is established.

The study of kernel estimators for dependent data has only recently received special attention
in the statistical literature. To the best of our knowledge, uniform results are limited to the alpha
and beta mixing cases when dependency occurs [29,49] by using coupling techniques.

Metropolis–Hastings algorithm

Metropolis–Hastings (MH) algorithm is one of the state of the art method in computational statis-
tics and is frequently used to compute Bayesian estimators [53]. Theoretical results for MH are
often deduced from the analysis of geometrically ergodic Markov chains as presented for in-
stance, in [21,31,40,54,55]. Whereas many results on the asymptotic behavior of MH are known,
for example, central limit theorem or convergence in total variation, only few non-asymptotic
results are available for such Markov chains; see, for instance, [35] where the estimation error is
controlled via a Rosenthal-type inequality. We consider the popular random walk MH, which is
at the heart of the adaptive MH version introduced in [28]. Building upon the pioneer works [31,
55] where the geometric ergodicity is established for the random walk MH, we show that when-
ever the class F is VC, the expected value of supf ∈F |∑n

i=1(f (Xi) − ∫ f dπ)| is bounded by

D
√

n(1 ∨ log(log(n))), where π stands for the stationary measure and D > 0 depends notably
on the distribution of the regeneration times. By further applying this to the quantile function, we
obtain a concentration inequality for Bayesian credible intervals.

Outline

The paper is organized as follows. In Section 2, the notations and main assumptions are first set
out. Conceptual background related to the renewal properties of Harris chains and the regenera-
tive method are also briefly exposed. In Section 3, the notion of block Rademacher complexity for
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Markov chains is introduced and some basic results on block VC classes are presented. Section 4
provides the main result of the paper: a bound on the Rademacher complexity. Our methodology
is illustrated in Section 5 on kernel density estimation and MH.

2. Regenerative Markov chains

2.1. Basic definitions

In this section, for seek of completeness we recall the following important basic definitions and
properties of regenerative Markov chains. An interested reader may look into [47] or [41] for
detailed survey of regeneration theory.

Consider an homogeneous Markov chain X = (Xn)n∈N defined on (�,F,Pν) valued in a
countably generated state space (E,E) with transition probability P(·, ·), and initial probabil-
ity ν. The assumption that E is countably generated allows to avoid measurability problems. For
any x ∈ E and any probability measure μ, the notation Px (resp. Pμ) stands for the probability
measure such that X0 = x (resp. X0 ∼ μ), and Ex(·) (resp. Eμ(·)) stands for the associated ex-
pectation. For any n ≥ 1, let P n denote the nth iterate of the transition probability P . Given a set
B ∈ E, define τB as the first time the chain enters B .

Definition 1 (Irreducibility). The chain is ψ -irreducible if there exists a σ -finite measure ψ

such that, for all set B ∈ E satisfying ψ(B) > 0, for any x ∈ E there exists n ≥ 1 such that
P n(x,B) > 0. With words, regardless of the starting point, the chain visits B with strictly positive
probability.

Definition 2 (Aperiodicity). Assuming ψ -irreducibility, there exists d ′ ∈ N
∗ disjoint sets

D1, . . . ,Dd ′ (set Dd ′+1 = D1) positively weighted by ψ such that ψ(E\⋃1≤i≤d ′ Di) = 0 and
∀x ∈ Di , P(x,Di+1) = 1. The period of the chain is the g.c.d. d of such integers, it is said to be
aperiodic if d = 1.

Definition 3 (Harris recurrence). A ψ -irreducible Markov chain is said to be positive Harris
recurrent if for all B ∈ E with ψ(B) > 0, we have ExτB < ∞ for all x ∈ B .

Recall that a chain is positive Harris recurrent and aperiodic if and only if it is ergodic [47],
Proposition 6.3, that is, there exists a probability measure π , called the stationary distribution,
such that limn→+∞ ‖P n(x, ·) − π‖tv = 0. The Nummelin splitting technique (presented in the
forthcoming section) depends heavily on the notion of small set. Such sets exist for positive
Harris recurrent chain [30].

Definition 4 (Small sets). A set S ∈ E is said to be 	-small if there exists δ > 0, a positive
probability measure 	 supported by S and an integer m ∈N

∗ such that

∀x ∈ S,B ∈ E P m(x,B) ≥ δ	(B). (2.1)
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In the whole paper, we work under the following generic hypothesis in which the chain is
supposed to be Harris recurrent.

(H) The chain (Xn)n∈N is a positive Harris recurrent aperiodic Markov chain defined on
(�,F,Pν) valued in a countably generated state space (E,E) with transition kernel
P(x, dy) and initial measure ν. Let S be 	-small with m = 1 and suppose that the hitting
time τS satisfies

sup
x∈S

Ex[τS] < ∞, and Eν[τS] < ∞.

This is only for clarity reasons that we assume that m = 1. As explained in Remark 9 below,
the study of sums over general Harris chain, that is, when m ≥ 1, can easily be derived from the
case m = 1.

2.2. The Nummelin splitting technique

The Nummelin splitting technique [3,46] allows to retrieve all regeneration properties for general
Harris Markov chains. It consists in extending the probabilistic structure of the chain in order to
construct an artificial atom [47]. Start by recalling the definition of regenerative chains.

Definition 5 (Regenerative chain). We say that a ψ -irreducible, aperiodic chain is regenerative
or atomic if there exists a measurable set A called an atom, such that ψ(A) > 0 and for all
(x, y) ∈ A2 we have P(x, ·) = P(y, ·). Roughly speaking, an atom is a set on which the transition
probabilities are the same.

Assume that the chain X satisfies the generic hypothesis (H). Then the sample space is
expanded in order to define a sequence (Yn)n∈N of independent Bernoulli random variables
with parameter δ. The construction relies on the mixture representation of P on S, namely
P(x,A) = δ	(A) + (1 − δ)(P (x,A) − δ	(A))/(1 − δ), with two components, one of which
not depending on the starting point (implying regeneration when this component is picked up in
the mixture). The regeneration structure can be retrieved by the following randomization of the
transition probability P each time the chain X visits the set S:

• If Xn ∈ S and Yn = 1 (which happens with probability δ ∈ ]0,1[), then Xn+1 is distributed
according to the probability measure 	 ,

• If Xn ∈ S and Yn = 0 (that happens with probability 1− δ), then Xn+1 is distributed accord-
ing to the probability measure (1 − δ)−1(P (Xn, ·) − δ	(·)).

The bivariate Markov chain Z = (Xn,Yn)n∈N is called the split chain. It takes its values in
E × {0,1} and is atomic with atom given by A = S × {1}. Define the sequence of regeneration
times (τA(j))j≥1, i.e.

τA = τA(1) = inf{n ≥ 1 : Zn ∈ A}
and, for j ≥ 2,

τA(j) = inf
{
n > τA(j − 1) : Zn ∈ A

}
.
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It is well known that the bivariate chain Z inherits all the stability and communication properties
of the chain X, as aperiodicity and ψ -irreducibility. For instance, the regeneration time has a
finite expectation (by recurrence property). More precisely, it holds that [4], Lemma ∗A1,

sup
x∈A

Ex[τA] < ∞ and Eν[τA] < ∞.

It is known from regeneration theory [41] that given the sequence (τA(j))j≥1, we can divide the
chain into block segments or cycles defined by

Bj = (X1+τA(j), . . . ,XτA(j+1)), j ≥ 1

according to the consecutive visits of the chain to the regeneration set A. The strong Markov
property implies that (τA(j))j≥1 and (Bj )j≥1 are i.i.d. [7], Lemma 3.1. Denote by PA the prob-
ability measure such that Z0 ∈ A. The stationary distribution is given by the Pitman’s occupation
measure:

π(B) = 1

EA(τA)
EA

(
τA∑
i=1

IB(Xi)

)
, ∀B ∈ E,

where IB is the indicator function of the event B .

Remark 1 (Small set or atom). The Nummelin splitting technique is useless in the case of
countable state space chains for which any state is an atom. For sake of generality, we choose to
focus on the general framework of Harris chains.

3. Regenerative block Rademacher complexity

3.1. The independent case

Let ξ = (ξi)i∈N be an i.i.d. sequence of random variables defined on (�,F,P) valued in (E,E)

with common distribution P on (E,E). Let F be a countable class of real-valued measurable
functions defined on E. The Rademacher complexity associated to F is given by

Rn,ξ (F) = E sup
f ∈F

∣∣∣∣∣
n∑

i=1

εif (ξi)

∣∣∣∣∣,
where the (εi)i∈N are i.i.d. Rademacher random variables, that is, taking values +1 and −1, with
probability 1/2, independent from ξ .

The notion of VC class is powerful because it covers many interesting classes of functions and
ensures suitable properties on the Rademacher complexity. The function F is an envelope for the
class F if |f (x)| ≤ F(x) for all x ∈ E and all f ∈ F . For a metric space (F, d), the covering
number N (ε,F, d) is the minimal number of balls of size ε needed to cover F . The metric of
interest is the L2(Q)-norm denoted by ‖ · ‖L2(Q) and given by ‖f ‖L2(Q) = {∫ f 2 dQ}1/2.
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Definition 6 (VC class). A class F of measurable functions E → R is said to be of VC-type
(or Vapnik–Chervonenkis type) for an envelope F and admissible characteristic (C, v) (positive
constants such that C ≥ (3

√
e)v and v ≥ 1), if for all probability measure Q on (E,E) with

0 < ‖F‖L2(Q) < ∞ and every 0 < ε < 1,

N
(
ε‖F‖L2(Q),F,‖ · ‖L2(Q)

)≤ Cε−v.

We also assume that the class is countable to avoid measurability issues (but the non-countable
case may be handled similarly by using outer probability and additional measurability assump-
tions, see [62]).

The next theorem is taken from [24], Proposition 2.1, and has been successfully applied to
kernel density estimators in [25]. A similar approach is provided in [23], Proposition 1.

Theorem 1 ([24], Proposition 2.1). Let F be a measurable uniformly bounded VC class of
functions defined on E with envelop F and characteristic (C, v). Let U > 0 such that |f (x)| ≤ U

for all x ∈ E and f ∈ F . Let σ 2 be such that E[f (ξ)2] ≤ σ 2 for all f ∈ F . Then, whenever
0 < σ ≤ U , it holds

Rn,ξ (F) ≤ M

[
vU log

CU

σ
+
√

vnσ 2 log
CU

σ

]
,

where M is a universal constant.

3.2. The Harris case

To extend the previous approach to any Harris chain X, we decompose the chain X according to
the independent blocks (Bj )j≥1 introduced in Section 2.2. Let n ≥ 1 and define

ln =
n∑

i=1

IA(Xi),

the total number of renewals before n. Assuming that ln > 1, we thus observe ln − 1 (complete)
i.i.d. blocks, namely B1, . . . ,Bln−1 . The first block B0 = (X1, . . . ,XτA(1)) and the last block
Bln = (XτA(ln), . . . ,Xn), often called incomplete blocks, are not part of the i.i.d. sequence sim-
ply because they have a different distribution than B1. Those incomplete blocks will be treated
separately. We have∣∣∣∣∣

n∑
i=1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣≤
∣∣∣∣∣

τA(ln)∑
i=τA(1)+1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣+
∣∣∣∣∣

τA∑
i=1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣
+
∣∣∣∣∣

n∑
i=τA(ln)+1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣, (3.1)
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with the convention that empty sums are 0. Because τA(ln)− τA(1) =∑ln−1
k=1 (Bk), where (Bk)

denote the size of block k, it holds that∣∣∣∣∣
τA(ln)∑

i=τA(1)+1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣=
∣∣∣∣∣
ln−1∑
k=1

(
f ′(Bk) − (Bk)Eπ [f ])

∣∣∣∣∣,

f ′(Bk) =
τA(k+1)∑

i=τA(k)+1

f (Xi).

Hence this term is a (random) summation over complete blocks. Recall that, under (H), ln/n →
1/EAτA, Pν -almost surely. Thus, aiming to reproduce the Rademacher approach in the i.i.d.
setting, we introduce the following block Rademacher complexity of the class F .

Definition 7 (Regenerative block Rademacher complexity). The regenerative block
Rademacher complexity of a class F associated to a Harris chain X with atom A is given
by

Rn,B(F) = EA sup
f ∈F

∣∣∣∣∣
n∑

k=1

εkf
′(Bk)

∣∣∣∣∣,
where (εk)k∈N are Rademacher random variables independent from the blocks (Bk)k∈N.

Remark 2 (Random number of blocks). The number of blocks ln − 1 is random and cor-
related to the blocks itself. This causes a major difficulty when deriving second order asymp-
totic results as well as non-asymptotic results for regenerative Markov chains. In the subse-
quent development, Lemma 1.2.6 in [18] (see also Theorem 3.1.21 in [27] for a refinement)
plays a major role as it will relate the expected behavior of the empirical sums over ln − 1
blocks to simple Rademacher sums over n blocks, that is, Rn,B(F) (see Theorem 5 for more
details).

Remark 3 (Comparison to other Rademacher complexities). In [42] the authors consider
the notion of Rademacher for β-mixing stationary processes. To control this Rademacher com-
plexity, the authors make use of Berbee’s coupling techniques [8] which consist in replac-
ing fixed length dependent blocks by independent ones up to an error depending on the mix-
ing coefficient β(·). If we denote by bn the block length, then we pay the price of depen-
dence by an additional term of order nβ(bn)/bn which deteriorates the convergence rate. In
our case, because the regenerative blocking techniques is based on small blocks (of random
length) with average size EAτA, their is no loss in term of rate of convergence. For sake of com-
pleteness, we also mention that [52] introduced a notion of sequential Rademacher complexity
adapted to special martingale structures on trees. However, they cannot be used in our frame-
work.

Remark 4. The notion of Rademacher complexity is at the heart of many generalisation bounds
in machine learning [5] and in model selection [33]. We refer to the books [27,34] for a nice
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account of this field. In the i.i.d. case, this quantity may itself be estimated by the empirical
Rademacher complexity and controlled by some exponential inequality (using for instance Mc-
Diarmid inequality), even for very large classes of functions with infinite Vapnik dimension [5,
6]. However extending such results in the Markovian case are far from begin direct at least for
two reasons: first, the functionals on blocks are not bounded, second, the blocks themselves in
the general Harris recurrent case may be unknown (depending on the true transition kernel of the
chain) and should be estimated as done in [10] with pseudo-regeneration techniques. This will
be the subject of future researches.

3.3. Block VC classes

Even if the blocks (Bk)k≥1 form an independent sequence, we cannot apply directly concen-
tration results for empirical processes over bounded classes, for example, Theorem 1, simply
because the class of functions formed by the f ′ is not bounded. To solve this problem we will
show that it is possible by an adequate probability transformation to bound the covering number
of the f ′ functions by the one of the original class F . In particular, we show that the class formed
by the f ′ functions has a similar size, in terms of covering number, as the class F . This in turn
will help to extend existing concentration inequalities on F for i.i.d. sequences to concentration
inequalities on F ′ for i.i.d. sequence of blocks.

Recall that E denotes for the state space of X. Define E′ =⋃∞
k=1 Ek and let the occupation

measure M be given by

M(B,dy) =
∑
x∈B

δx(y), for every B ∈ E′.

The function that gives the size of the blocks  is  : E′ → N
∗, defined by,

(B) =
∫

M(B,dy), for every B ∈ E′.

Let E ′ denote the smallest σ -algebra formed by the elements of the σ -algebras Ek , k ≥ 1,
where Ek stands for the classical product σ -algebra. Let Q′ denote a probability measure on
(E′,E ′). If B(ω) is a random variable with distribution Q′, then M(B(ω),dy) is a random
measure, i.e., M(B(ω),dy) is a (counting) measure on (E,E), almost surely, and for every
A ∈ E , M(B(ω),A) = ∫

A
M(B(ω),dy) is a measurable random variable (valued in N). Hence-

forth (B(ω)) × ∫ f (y)M(B(ω),dy) is a random variable and, provided that Q′(2) < ∞, the
map Q, defined by

Q(A) = EQ′
(

(B) ×
∫

A

M(B,dy)

)/
EQ′

(
2), for every A ∈ E, (3.2)

is a probability measure on (E,E). The notation EQ stands for the expectation with respect to
the underlying measure Q. Introduce the following notations: for any function f : E → R, let



Rademacher complexity for Markov chains 3921

f ′ : E′ → R be given by

f ′(B) =
∫

f (y)M(B,dy) =
∑
x∈B

f (x),

and for any class F of real-valued functions defined on E, denote by F ′ = {f ′ : f ∈F}.

Lemma 2. Let Q′ be a probability measure on (E′,E ′) such that 0 < ‖‖L2(Q
′) < ∞ and F be a

class of measurable real-valued functions defined on (E,E). Then we have, for every 0 < ε < ∞,

N
(
ε‖‖L2(Q

′),F ′,L2
(
Q′))≤ N

(
ε,F,L2(Q)

)
,

where Q is given in (3.2). Moreover if F is VC with constant envelope U and characteristic
(C, v), then F ′ is VC with envelope U and characteristic (C, v).

Proof. The proof is inspired from the proof of Lemma 4.2 presented in [36]. Let f ′ ∈ F ′, i.e.,
there exists f ∈F such that f ′(B) = ∫ f (y)M(B,dy). Then, using Jensen’s inequality,

EQ′
(
f ′2)= EQ′

((∫
f (y)M(B,dy)

)2)

≤ EQ′
(

(B)

(∫
f (y)2M(B,dy)

))

= EQ

(
f 2)EQ′

(
2).

Applying this to the function

f ′(B) − f ′
k(B) =

∫ (
f (y) − fk(y)

)
M(B,dy),

when each fk is the center of an ε-cover of the space F and ‖f − fk‖L2(Q) ≤ ε gives the first
assertion of the lemma. To obtain the second assertion, note that F ′ = U is an envelope for F ′.
In addition, we have that ∥∥F ′∥∥

L2(Q
′) = U‖‖L2(Q

′).

From this we derive that, for every 0 < ε < 1,

N
(
ε
∥∥F ′∥∥

L2(Q
′),F

′,L2
(
Q′))=N

(
εU‖‖L2(Q

′),F ′,L2
(
Q′)).

Then using the first assertion of the lemma, we obtain for every 0 < ε < 1,

N
(
ε
∥∥F ′∥∥

L2(Q
′),F

′,L2
(
Q′))≤ N

(
εU,F,L2(Q)

)
,

which implies the second assertion whenever the class F is VC for the envelope F . �
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Now that we know that any bounded VC class F can be extended to a VC class F ′ unbounded
defined over the blocks, we consider the bounded case F ′1{≤L} = {f ′1{≤L} : f ∈ F} which,
unsurprisingly, is shown to remain VC.

Lemma 3. Let Q′ be a probability measure on (E′,E ′) and F be a class of measurable real-
valued functions defined on (E,E). Then we have, for every 0 < ε < ∞,

N
(
εL,F ′1{≤L},L2

(
Q′))≤N

(
ε,F,L2(Q̃)

)
,

where Q̃ = EQ′((B)1{(B)≤L} ×
∫
A

M(B,dy))/EQ′((B)21{(B)≤L}). Moreover if F is VC with
constant envelope U and characteristic (C, v), then F ′1{≤L} is VC with envelope LU and char-
acteristic (C, v).

Proof. The proof follows the same lines as the proof of Lemma 2, replacing  by 1{≤L}. �

4. Main results

The main results of the paper are now stated. They extend concentration inequalities for empir-
ical processes over independent random variables [23–25], for example, Theorem 1, to Markov
chains. We shall distinguish between two assumptions on the regeneration time τA. We say that
τA has polynomial moments, whenever

(PM) there exists p > 1 such that EA[τp
A ] < ∞,

and that τA has some exponential moments, as soon as

(EM) there exists λ > 0 such that EA[exp(τAλ)] < ∞.

Theorem 4 (Regenerative block Rademacher complexity). Assume that the chain X satisfies
the generic hypothesis (H). Let F be VC with constant envelope U and characteristic (C, v). Let
σ ′2 be such that

EA

[(
τA∑
i=1

f (Xi)

)2]
≤ σ ′2, for all f ∈ F .

For some universal constant M > 0, and any L such that 0 < σ ′ ≤ LU ,

(i) if (PM) holds, then

Rn,B(F) ≤ M

[
vLU log

CLU

σ ′ +
√

vnσ ′2 log
CLU

σ ′

]
+ nUEA[τp

A ]
Lp−1

,

(ii) if (EM) holds, then

Rn,B(F) ≤ M

[
vLU log

CLU

σ ′ +
√

vnσ ′2 log
CLU

σ ′

]
+ nU exp(−Lλ/2)Cλ,

where Cλ = 2EA[exp(τAλ)]/λ.
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Proof. First we show that, regardless of (i) and (ii),

Rn,B(F) ≤ M

[
vLU log

CLU

σ ′ +
√

vnσ ′2 log
CLU

σ ′

]
+ nUEA[τA1{τA>L}], (4.1)

for some universal constant M > 0. Then we consider the two cases (i) and (ii) to bound
EA[τA1{τA>L}] accordingly.

Use the decomposition

n∑
k=1

εkf
′(Bk) =

n∑
k=1

εkf
′
L
(Bk) +

n∑
k=1

εkf
′
L(Bk), (4.2)

where, for any B ∈ E′,

f ′
L
(B) = f ′(B)1{(B)≤L} and f

′
L(B) = f ′(B)1{(B)>L}.

The first term in (4.2) represents a classical Rademacher complexity over a bounded class:
F ′1{(B)≤L}. It follows from Lemma 3 that the product class F ′1{(B)≤L} is VC with constant
envelop LU . As by assumption, 0 < σ ′ ≤ LU , we deduce from applying Theorem 1 (with LU

in place of U ), that

EA sup
f ∈F

∣∣∣∣∣
n∑

k=1

εkf
′
L
(Bk)

∣∣∣∣∣≤ M

[
vLU log

CLU

σ ′ +
√

vnσ ′2 log
CLU

σ ′

]
.

For the second term in (4.2), we find

EA sup
f ∈F

∣∣∣∣∣
n∑

k=1

εkf
′
n(Bk)

∣∣∣∣∣≤ nUEA

[
(B1)1{(B1)>L}

]= nUEA[τA1{τA>L}]

Hence (4.1) is established. To obtain point (i), simply use Markov’s inequality. To obtain point
(ii), note that

EA[τA1{τA>L}] ≤ exp(−Lλ/2)EA

[
τA exp(τAλ/2)

]≤ 2

λ
exp(−Lλ/2)EA

[
exp(τAλ)

]
,

where the last inequality follows from t ≤ exp(t) with t = τAλ/2. �

Remark 5 (Geometric ergodicity and (EM)). Condition (EM) is equivalent to each of the
following assertions: (i) the geometric ergodicity of the chain X, (ii) the (uniform) Doeblin con-
dition, (iii) the Foster–Lyapunov drift condition (see Theorem 16.0.2 in [41] for the details).
Under this assumption, most classical convergence results (for instance, the law of the iterated
logarithm or the central limit theorem) are valid [41], Chapter 17.

Remark 6 (Mixing and (PM)). We point out that the relationship between (PM) and the rate of
decay of mixing coefficients has been investigated in Bolthausen [13]: (PM) is typically fulfilled
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as soon as the strong mixing coefficients sequence decreases as an arithmetic rate n−s , for some
s > p − 1.

The two following results show that the regenerative block Rademacher complexity, previously
introduced, is useful to control the expected values as well as the excess probability of suprema
over classes of functions.

Theorem 5 (Expectation bound). Assume that the chain X satisfies the generic hypothesis (H).
Let F be a countable class of measurable functions bounded by U . It holds that

Eν

[
sup
f ∈F

∣∣∣∣∣
n∑

i=1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣
]

≤ 4Rn,B(Fc) + 2U
(
Eν[τA] +EA[τA])

≤ 16Rn,B(F) + 2U
(
Eν[τA] +EA[τA]),

where Fc denote the class formed by {f −Eπ [f ], f ∈F} and ν stands for the initial measure.

Proof. Start by establishing the first inequality. We rely on the block decomposition given in
(3.1). First, we apply Lemma 1.2.6 in [18] (or Theorem 3.1.21 in [27]) to treat the term formed
by complete blocks. We obtain

Eν

[
sup
f ∈F

∣∣∣∣∣
τA(ln)∑

i=τA(1)+1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣
]

≤ EA

[
max

1≤l≤n
sup
f ∈F

∣∣∣∣∣
ln−1∑
k=1

{
f ′(Bk) − (Bk)Eπ [f ]}

∣∣∣∣∣
]

≤ 4EA

[
sup
f ∈F

∣∣∣∣∣
n∑

k=1

εk

{
f ′(Bk) − (Bk)Eπ [f ]}

∣∣∣∣∣
]

= 4Rn,B(Fc).

The terms corresponding to incomplete blocks are treated as follows. We have

Eν sup
f ∈F

∣∣∣∣∣
τA(1)∑
i=1

(
f (Xi) −Eπ [f ])

∣∣∣∣∣≤ 2UEν[τA],

Eν sup
f ∈F

∣∣∣∣∣
n∑

i=τA(ln)

(
f (Xi) −Eπ [f ])

∣∣∣∣∣≤ 2UEA[τA].

To obtain the second inequality, apply Theorem 3.1.21 in [27]. �

Using Theorem 5, we now apply [1], Theorem 7, to obtain a concentration bound for the
empirical process involving the Rademacher complexity Rn,B(F) and a variance term.

Theorem 6 (Concentration bound, [1]). Assume that the chain X satisfies the generic hypoth-
esis (H), (EM) and there exists λ > 0 such that Eν[exp(λτA)] < ∞. Let F be a countable class
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of measurable functions bounded by U . Let

Rn ≥ 16Rn,B(F) + 2U
(
Eν[τA] +EA[τA]),

σ ′2 ≥ sup
f ∈F

EA

[(
τA∑
i=1

f (Xi)

)2]
.

Then, for some universal constant K > 0, and for τ > 0 depending on the tails of the regeneration
time, we have, for all t ≥ 1,

Pν

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

(
f (Xi) −Eπ (f )

)∣∣∣∣∣≥ t + KRn

)
≤ K exp

[
−EA[τA]

K
min

(
t2

nσ ′2 ,
t

τ 3U logn

)]
,

yielding alternatively, that for any n/ log(n) ≥ τ 3U/σ ′2 with probability 1 − δ we have,

sup
f ∈F

∣∣∣∣∣
n∑

i=1

(
f (Xi) −Eπ (f )

)∣∣∣∣∣≤ KRn + max

(√
nσ ′
√

K log

(
K

δ

)
, log

(
K

δ

)
τ 3U log(n)

EA[τA]
)

.

Remark 7 (On Theorem 6). An explicit value for the constant K is difficult to obtain from
the results of [1] but would be of great interest in practical applications. Notice that for n large
the second member of the inequality reduces to the bound KRn + √

nσ ′√K log(K/δ), which is
similar to the rate in the i.i.d. case.

Remark 8. Paulin has obtained in [48] powerful concentration inequalities for uniformly ergodic
Markov chains using Marton coupling techniques. An interesting feature of these inequalities is
that the constants can be made explicit as a function of the mixing time (see his Definition 1.3).
His main result is a McDiarmid type inequality (Theorem 2.1 and Corollary 2.10) which may be
applied to empirical processes. It is easy to see how to combine our results with [48] to get bounds
on empirical processes depending on the mixing time. In this paper, we are rather interested in
exponential control depending on a variance term (which may be small) as in our application to
kernel density estimation below. Moreover, notice that the results in [1] (which also make use of
regeneration techniques) holds for more general chain, that may not be uniformly geometrically
ergodic.

Remark 9 (m different from 1). We have reduced our analysis to the case m = 1, however it
is very easy to see now how the case m > 1 can be handled up to a modified constant in the
bound. Recall that when m > 1 then the blocks (Bk)k≥1 are 1-dependent (see for instance [17]
Corollary 2.3). We can split the sum as follows

ln−1∑
k=1

f (Bk) =
ln−1∑

k=1,k even

f (Bk) +
ln−1∑

k=1,k odd

f (Bk).
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Then notice that, because of the 1-dependence property, in each sums the blocks are independent
and we now have two sums of at most n/2 independent blocks that can be treated separately
based on the presented results.

5. Applications

In this section, we consider two applications of our results. The first one is dealing with a partic-
ular class of kernel functions (useful in nonparametric estimation) and the second one is focusing
on some Markov chains called Metropolis–Hastings chains (useful in simulation methods). All
the proofs of the section are postponed to the Appendix.

5.1. Kernel density estimator

Given n ≥ 1 observations of a Markov chain X ⊂ R
d satisfying the generic assumption (H), the

kernel density estimator of the stationary measure π is given by

π̂n(x) = (nhd
n

)−1
n∑

i=1

K
(
(x − Xi)/hn

)
,

where K :Rd → R, called kernel, is such that
∫

K(x)dx = 1 and (hn)n≥1 is a positive sequence
of bandwidths.

The analysis of the asymptotic behaviour of π̂n − π is traditionally executed by studying
two terms: the bias term, Eνπ̂n − π , which can be handled using functional analysis [26], Sec-
tion 4.1.1, and the variance term, π̂n − Eνπ̂n, which follows from empirical process theory (for
independent random variables). In the next, we provide some results on the asymptotic behaviour
of the variance term.

We shall consider kernel functions K : Rd →R taking one of the two following forms,

(i) K(x) = K(0)
(|x|), or (ii) K(x) =

d∏
k=1

K(0)(xk), (5.1)

where K(0) is a bounded function of bounded variation with support [−1,1]. Note that more
general (but less simple) conditions on K [25], Assumption (K1), could have been used in place
of (5.1). From [45], the class of functions

K = {y �→ K
(
(x − y)/h

) : h > 0, x ∈ R
d
}

is a uniformly bounded VC class.

Theorem 7. Assume that the chain X ⊂ R
d satisfies the generic hypothesis (H), the stationary

density π is supposed to be bounded, the kernel K is given by (5.1) and K(x) ≤ U , for all x ∈ R
d .

Suppose that hn → 0 and there exists β > 0 such that hn ≥ n−β .
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(i) If (PM) holds for p > 2 and 0 < β(p/(p − 1)) < 1/d , we have

Eν

[
sup
x∈Rd

∣∣π̂n(x) −Eπ

[
π̂n(x)

]∣∣]= O

(√
log(n)

nh
dp/(p−1)
n

)
.

(ii) If (EM) holds and 0 < β < 1/d , we have

Eν

[
sup
x∈Rd

∣∣π̂n(x) −Eπ

[
π̂n(x)

]∣∣]= O

(√
log(n)2

nhd
n

)
.

Comparing the rate given in Theorem 7 with the usual rate
√

log(n)/(nhd
n) corresponding to

the independent case [22,25], we see that the rate obtained for the Markovian setting is slightly
poorer. Even when the regeneration time has exponential moments, a loss of a factor log(n)1/2

is observed with respect to the independent case. This loss is due to the variance term that scales
differently due to the block size. To fill this gap, we provide in the following theorem an addi-
tional assumption on the chain X that ensures the same rate as in the independent case.

Theorem 8. Assume that the chain X ⊂ R
d satisfies the generic hypothesis (H) and (EM), the

stationary density π is supposed to be bounded, the kernel K is given by (5.1) and K(x) ≤ U ,
for all x ∈ R

d . Suppose that hn → 0 and that nhd
n/| log(hn)| → +∞, if there exist p > 2 and

C > 0 such that for all x ∈ E, π(x)Ex[τp
A ] ≤ C, then we have

Eν

[
sup
x∈Rd

∣∣π̂n(x) −Eπ

[
π̂n(x)

]∣∣]= O

(√ | log(hn)|
nhd

n

)
.

Remark 10 (On the bandwidth). In the independent case, given x ∈ R, the variance of π̂n(x)

is ensured to vanish whenever nhd
n → +∞, and asking for nhd

n/| log(hn)| → +∞ is a slight
additional requirement to guarantee the convergence to hold uniformly over R. In Theorem 8,
the assumptions on the bandwidth are the same as in the independent case whereas in Theorem 7,
the fact that hn ≥ n−β is slightly stronger.

Remark 11 (On the additional assumption on X). The additional assumption, namely, for all
x ∈ E, π(x)Ex[τp

A ] ≤ C, can be understood as a tail condition. In fact when x �→ π(x)Ex[τp
A ]

is continuous, this condition reduces to lim‖x‖→∞ π(x)Ex[τp
A ] exists. In other words, the return

time when departing from x should not increase faster than the decrease of π(x) when x → ∞.

5.2. Metropolis–Hastings algorithm

Bayesian estimation requires to compute moments of the so called posterior distribution whose
probability density function π is given by

π(θ) = L(θ)∫
L(θ) dθ

θ ∈ R
d,



3928 P. Bertail and F. Portier

where L is a positive function which stands for the likelihood of the observed data. The (un-
known) quantities of interest writes as

∫
g dπ , for some given measurable functions g :Rd →R.

A particular feature in this framework is that the integral at the denominator of π is unknown
and difficult to compute making impossible to generate observations directly from π . Markov
chains Monte Carlo (MCMC) methods aim to produce samples X1, . . . ,Xn in R

d that are ap-
proximately distributed according to π . Then

∫
g dπ is classically approximated by the empirical

average over the chain:

n−1
n∑

i=1

g(Xi).

For inference, Bayesian credible intervals are usually computed using the quantiles the coordi-
nate chains (see below). We refer to [53] for a complete description of MCMC methods. In what
follows, we focus on the special MCMC method called Metropolis–Hastings (MH). Aim is to
derive new concentration inequalities for suprema of

∑n
i=1 g(Xi) over g in some VC classes,

and to apply these results to measure the accuracy of Bayesian credible intervals.
Let us introduce the MH algorithm with target density π : Rd → R≥0 and proposal Q(x,dy) =

q(x, y) dy, where q is a positive function defined on R
d ×R

d satisfying
∫

q(x, y) dy = 1. Define
for any (x, y) ∈R

d ×R
d ,

ρ(x, y) =
⎧⎨
⎩min

(
1,

π(y)q(y, x)

π(x)q(x, y)

)
if π(x)q(x, y) > 0,

1 if π(x)q(x, y) = 0.

The MH chain starts at X0 ∼ ν and moves from Xn to Xn+1 according to the following rule:

(i) Generate

Y ∼ Q(Xn,dy) and W ∼ B
(
ρ(Xn,Y )

)
.

(ii) Set

Xn+1 =
{

Y if W = 1,

Xn if W = 0.

In the particular case that q(x, y) = q0(x−y), the previous algorithm is refereed to as the random
walk MH.

The asymptotic behavior of the random walk MH chain has been studied in [31,55] where
central limit theorems are established based on the geometric ergodicity of the chain. From Re-
mark 5, the results in [31,55] imply that (EM) is satisfied. This allows to apply Theorem 4 almost
directly for the random walk MH. For the sake of completeness, we provide the following alter-
native development, in which we verify (EM) via the (uniform) Doeblin condition. Contrasting
with [31,55], we focus on π with bounded support.

Denote by B(x, ε) (resp. B(ε)) the open ball with centre x (resp. 0) and radius ε with respect to
the Euclidean norm ‖ · ‖. We consider the following ball condition on the proposal q0 associated
to the random walk MH.
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(BC) Let π be a bounded probability density supported by E ⊂ R
d , a bounded and convex

set with non-empty interior. Suppose that there exists b > 0 and ε > 0 such that ∀x ∈
R

d ×R
d , q0(x) ≥ b1B(ε)(x).

Proposition 9. Under (BC), the random walk MH chain satisfies (H) and (EM).

Based on Proposition 9, we are in position to apply point (ii) of Proposition 4 to the random
walk MH.

Proposition 10. Let G be a countable VC class of measurable functions on S bounded by U with
characteristics (C, v). Under (BC), for all n ≥ 1, it holds that

Eν

[
sup
g∈G

∣∣∣∣∣
n∑

i=1

(
g(Xi) − π(g)

)∣∣∣∣∣
]

≤ D

√
n
(
1 ∨ log

(
log(n)

))
,

where D depends only on (v,C,U) and on the tails of the regeneration time. Moreover, for any
n/ log(n) ≥ τ 3/(UEA[τ 2

A]), we have with probability 1 − δ,

sup
g∈G

∣∣∣∣∣
n∑

i=1

(
g(Xi) − π(g)

)∣∣∣∣∣
≤ KD

√
n
(
1 ∨ log

(
log(n)

))+ max

(√
nU2EA

[
τ 2
A

]
K log

(
K

δ

)
, log

(
K

δ

)
τ 3U log(n)

EA[τA]
)

,

where K > 0 is a universal constant.

Let k ∈ {1, . . . , d} and denote by X
(k)
i the kth coordinate of Xi . Define the associated empirical

cumulative distribution function for any t ∈ R,

�̂k(t) = n−1
n∑

i=1

1(−∞,t]
(
X

(k)
i

)

and the quantile function, for any u ∈ (0,1),

Q̂k(u) = inf
{
x ∈ R : �̂k(x) ≥ u

}
.

As a corollary of the previous result, we obtain an upper bound for the estimation error of
Bayesian credible intervals defined as [Q̂k(u), Q̂k(1 − u)], for k = 1, . . . , d . The targeted in-
terval is [Qk(u),Qk(1 − u)], where Qk is the true quantile function of the posterior marginal
distribution �k whose associated density is denoted by πk .

Proposition 11. Under (BC), for all 0 < γ < 1/4 and k ∈ {1, . . . , p},

sup
u∈[γ,1−γ ]

∣∣Q̂k(u) − Qk(u)
∣∣= OPν

(√
log logn

n

)
.
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Remark 12. In contrast with the study of kernel density estimator given in Section 5.1, the
approach taken in this section cannot take advantage of classes with small variance (e.g., going to
0 with n). In particular, in Theorem 10, the variance over the class G has been crudely bounded by
UEA[τ 2

A]. This is in line with the functions of interest, 1(−∞,t], in Proposition 11. The stationary
variance is given by �(t)(1 − �(t)) whose maximum is 1/4.

Appendix A: Proofs of the results of Section 5.1

A.1. Proof of Proposition 7

In virtue of Theorem 5, it suffices to provide for both cases a sufficiently tight bound on Rn,B(Kn)

with Kn = {y �→ K((x − y)/hn) : x ∈ R
d}, which in virtue of [45] is included in K a VC class

of functions. First we consider (i). By Jensen inequality we have(
1

(B1)

∑
Xi∈B1

K
(
(x − Xi)/hn

))2

≤ 1

(B1)

∑
Xi∈B1

K
(
(x − Xi)/hn

)2

and for any L̃, it holds that

σ ′2 = EA

[( ∑
Xi∈B1

K
(
(x − Xi)/hn

))2]

≤ EA

[
(B1)

∑
Xi∈B1

K
(
(x − Xi)/hn

)2]

≤ L̃EA

[
(B1)

]
Eπ

[
K
(
(x − X)/hn

)2]+ U2
EA

[
(B1)

21{(B1)>L̃}
]
.

Use Markov inequality and the expression of Pitman’s occupation measure to get

σ ′2 ≤ L̃EA[τA]hd
n‖π‖∞vK + U2

EA[τp
A ]

L̃p−2
,

where vK = ∫ K(u)2 du and ‖π‖∞ = supx∈Rd |π(x)|. Equilibrating between the first and sec-

ond term gives L̃ = h
−d/(p−1)
n , which implies that σ ′2 ≤ A1h

r
n, A1 > 0, r = d(p − 2)/(p − 1).

Applying Theorem 4, we get

Rn,B(Kn)

≤ A2

(
L log(CLUA1h

−r
n )

nhd
n

+
√

hr
n log(CLUA1h

−r
n )

nh2d
n

+ 1

Lp−1hd
n

)
,

= A2

(
L log(CLUA1h

−r
n )

nhd
n

+
√

log(CLUA1h
−r
n )

nh
dp/(p−1)
n

+ 1

Lp−1hd
n

)
,
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with A2 > 0. Choose L by (almost) equilibrating the first and last term of the preceding decom-
position

Ln =
(

n

log(αn)

)1/p

,

with αn = n1/ph−r
n . Take n large enough to get that

Rn,B(Kn) ≤ A2

√
log(CUA1αn/(logαn)1/p)

nh
dp/(p−1)
n

+ 2A2

(
log(αn)

nh
dp/(p−1)
n

)(p−1)/p

= (1 + o(1)
)√ log(αn)

nh
dp/(p−1)
n

,

where the last equality is because p > 2. Because αn is smaller than some power of n and using
Theorem 5 leads to the result.

In the second case, namely (ii), a similar bound is valid for σ ′2, we have

σ ′2 ≤ L̃EA[τA]hd
n‖π‖∞vK + U2

EA

[
τ 2
A exp(λτA/2)

]
exp(−λL̃/2)

≤ L̃EA[τA]hd
n‖π‖∞vK + 8

(
U

λ

)2

EA

[
exp(τAλ)

]
exp(−λL̃/2),

where for the second inequality, we use that t2 ≤ 2 exp(t) with t = λτA/2. Taking L̃ =
2 log(h−d

n )/λ gives σ ′2 ≤ A3h
d
n log(h−d

n ), A3 > 0. Then using (ii) in Theorem 4, we find, for
n large enough,

Rn,B(Kn) ≤ A2

(
L log(CLUA−1

3 h−d
n / log(h−d

n ))

nhd
n

+
√

log(h−d
n ) log(CLUA−1

3 h−d
n / log(h−d

n ))

nhd
n

+ exp(−Lλ/2)

hd
n

)
.

Choosing Ln = 2 log(n)/λ, noticing that the term in the middle is the leading term and applying
Theorem 5, we obtain the stated result.

A.2. Proof of Proposition 8

The main step is to show that there exists c > 0 such that

EA

[(
τA∑
i=1

K
(
(x − Xi)/hn

))2]
≤ chd

n, for all x ∈ E, (A.1)
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then the conclusion will follow straightforwardly. The fact that (A.1) holds true follows from
Lemma ∗A.3 in the supplementary file of [4], which gives that, for any measurable function f ,

EA

[(
τA∑
i=1

f (Xi)

)2]
≤ A4

(
π
(
f 2)+Eπ

[
f (X0)

2τ
p
A

])
,

with A4 > 0. Whenever f (X) = K((x −X)/hn), we get that π(f 2) ≤ vK‖π‖∞hd
n , and defining

g(x) = π(x)Ex[τp
A ] we get

Eπ

[
f (X0)

2τ
p
A

]= ∫ K
(
(x − y)/hn

)
g(y)dy ≤ CvKhd

n.

Hence we have obtained (A.1). It follows from Theorem 4 that

Rn,B(Kn) ≤ A2

(
L log(CLUc−1h−d

n )

nhd
n

+
√

log(CLUc−1h−d
n )

nhd
n

+ exp(−Lλ/2)

hd
n

)
. (A.2)

Setting Ln = 2 log(n)/λ we obtain the desired result by applying Theorem 5.

Appendix B: Proofs of the results of Section 5.2

B.1. Proof of Proposition 9

The proof follows from the following Lemma in which some conditions are given to ensure the
uniform Doeblin condition.

Proposition 12. Let P be a transition kernel. Let � be a positive measure on (Rd ,B(Rd)).
Suppose that E = supp(�) is bounded and convex with non-empty interior. Suppose that there
exists ε > 0 such that ∀x ∈ E, P(x, dy) ≥ 1B(x,ε)(y)�(dy). Then there exists C > 0 and n ≥ 1
such that for any x ∈ E and any measurable set A ⊂ E,

P n(x,A) ≥ C�(A). (B.1)

Proof. We decompose the proof according to 4 steps.
First step: Let 0 < γ ≤ η. There exists c > 0 such that for any (x, y) ∈ E × E, it holds that∫

1B(x,η)(x1)1B(x1,γ )(y)�(dx1) ≥ c1B(x,η+γ /4)(y). (B.2)

To obtain the previous statement, we can restrict our attention to the case when y ∈ B(x,η +
γ /4). Else the inequality is trivial. Note that there exists a point m lying strictly in the line
segment between x and y such that

B(m,γ /4) ⊂ {B(x,η) ∩ B(y, γ )
}
.
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By convexity of E, m ∈ E × E. Hence,∫
1B(x,η)(x1)1B(y,γ )(x1)�(dx1) ≥ �

{
B(m,γ /4)

}≥ inf
m∈E

�
{
B(m,γ /4)

}
.

But he function m �→ �(B(m,γ /4) ∩ E) is continuous on E and positive for each m ∈ E, by
definition of the support and the fact that m is an interior point of E by convexity.

Second step: We iterate (B.2) to obtain the following statement. For any n ≥ 1, there exists
Cn > 0 such that for any (x, y) ∈ E, it holds that∫

. . .

∫
1B(x,ε)(x1)1B(x1,ε)(x2) · · ·1B(xn−1,ε)(xn)1B(xn,ε)(y)�(dx1) · · ·�(dxn)

≥ Cn1B(x,ε(1+n/4))(y).

Third step: Take n such that ε(1 + n/4) > sup(x,y)∈E ‖x − y‖. Then for any x ∈ E and y ∈ E,
y ∈ B(x, ε(1 + n/4)). It follows that there exists Cn > 0 such that for all (x, y) ∈ E,∫

. . .

∫
1B(x,ε)(x1)1B(x1,ε)(x2) · · ·1B(xn−1,ε)(xn)1B(xn,ε)(y)�(dx1) · · ·�(dxn) ≥ Cn.

Fourth step: Using the last step and the assumption on P , it holds that for any x ∈ E and any
measurable set A ⊂ E,

P n(x,A)

≥
∫

1B(x,ε)(x1) · · ·1B(xn−1,ε)(xn)1B(xn,ε)(y)1{y∈A}�(dx1) · · ·�(dxn)�(dy)

≥ Cn�(A). �

Now we can conclude the proof of Proposition 9. Because ρ(x, y) ≥ π(y)/‖π‖∞, the Markov
kernel P of the MH chain verifies, for any x ∈ E,

P(x, dy) ≥ ρ(x, y)Q(x, dy) ≥ ‖π‖−1∞ 1B(x,ε)(y)π(y) dy. (B.3)

Applying Proposition 12 with �(dy) = ‖π‖−1∞ π(y)dy, we deduce that whenever π(A) > 0,
there exists n ≥ 1 such that P n(x,A) > 0. This is π -irreducibly. Let z ∈ E. From (B.3), whenever
x ∈ B(z, ε/2) and A ∈ B(Rd),

P(x,A) ≥ ‖π‖−1∞ π
(
A ∩ B(z, ε/2)

)
.

This means that any ball with positive radius is π|B(z,ε/2)-small with m = 1. From [55], proof of
Theorem 2.2, this implies the aperiodicity of the chain. Applying Proposition 12 again with
�(dy) = ‖π‖−1∞ π(y)dy, we obtain (B.1) which implies (EM) in virtue of Theorem 16.0.2
in [41]. More precisely, in their Theorem 16.0.2, (B.1) implies point (iv) which is equivalent
to point (vii). That is, we have shown that whenever ψ(B) > 0, there is λB > 0 such that
supx∈E Ex[exp(λBτB)] < ∞. This is stronger than positive Harris recurrence. Finally, the lat-
ter is true with B equal to the atom A (of the extended chain). This means that the moment
conditions in (EM) are satisfied.
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B.2. Proof of Proposition 10

Set σ ′2 = U2
EA[τ 2

A] and apply Theorem 4 to get that

Rn,B(F) ≤ M

[
vLU log

CL

EA[τ 2
A]1/2

+
√

vnU2EA

[
τ 2
A

]
log

CL

EA[τ 2
A]1/2

]
+ nU exp(−Lλ/2)Cλ.

Take L = 2 log(n)/λ to obtain

Rn,B(F) ≤ M
[
2 log(n)vU log

(
A log(n)

)
/λ +

√
vnU2EA

[
τ 2
A

]
log
(
A log(n)

)]+ UCλ

with A = 2C/(λEA[τ 2
A]1/2). We obtain the first stated result by straightforward manipulations.

The second result is a direct consequence of Theorem 6.

B.3. Proof of Proposition 11

Let k ∈ {1, . . . , d} and 0 < γ < 1/4. Let bγ,k = infu∈[γ,1−γ ] πk(Qk(u)) which by assumption
is positive. We will need the following classical lemma describing the behavior of the quantile
function based on the associated cumulative distribution function.

Lemma 13. Let γ < 1/4. Suppose that F and G are cumulative distribution functions such that
G has a density g verifying bγ = infu∈[γ,1−γ ] g(G−(u)) > 0. If supt∈R |F(t) − G(t)| ≤ γ , then
supu∈[2γ,1−2γ ] |F−(u) − G−(u)| ≤ b−1

γ supt∈R |F(t) − G(t)|.

Proof. From the mean-value theorem we have that for any (u, v) ∈ [γ,1 − γ ]2,∣∣G−(u) − G−(v)
∣∣≤ b−1

γ |u − v|. (B.4)

Recalling the classical result; see, for example, [51], Lemma 12; that whenever F and G are two
cumulative distribution functions and ε = supt∈R |F(t) − G(t)|, then for any u ∈ [ε,1 − ε],∣∣F−(u) − G−(u)

∣∣≤ sup
|δ|≤ε

∣∣G−(u + δ) − G−(u)
∣∣.

Because ε ≤ γ , it holds that γ ≤ u + δ ≤ 1 − γ whenever 2γ ≤ u ≤ 1 − 2γ . Using (B.4), we get
that, for any u ∈ [2γ,1 − 2γ ], ∣∣F−(u) − G−(u)

∣∣≤ b−1
γ ε. �

Lemma 13 is applied with F = �̂k , G = �k and the bound on supt∈R |�̂k(t) − �k(t)| is
obtained (with high probability) from Proposition 10. In virtue of Example 2.5.4 in [61], we
have that

N
(
ε, {1(−∞,t] : t ∈R},‖ · ‖L2(Q)

)≤ 2ε−2,
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which allows us to apply Proposition 10 with U = 1, C = v = 2. The second bound in Proposi-
tion 10 implies that supt∈R |�̂k(t)−�k(t)| ≤ γ holds with probability going to 1 when n → ∞.
Hence with probability going to 1, the stated bound holds true.
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