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Harmonic measure for biased random walk in
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We consider random walks λ-biased towards the root on a Galton–Watson tree, whose offspring distribution
(pk)k≥1 is non-degenerate and has finite mean m > 1. In the transient regime 0 < λ < m, the loop-erased
trajectory of the biased random walk defines the λ-harmonic ray, whose law is the λ-harmonic measure on
the boundary of the Galton–Watson tree. We answer a question of Lyons, Pemantle and Peres (In Classical
and Modern Branching Processes (Minneapolis, MN, 1994) (1997) 223–237 Springer) by showing that
the λ-harmonic measure has a.s. strictly larger Hausdorff dimension than the visibility measure, which is
the harmonic measure corresponding to the simple forward random walk. We also prove that the average
number of children of the vertices along the λ-harmonic ray is a.s. bounded below by m and bounded above
by m−1 ∑

k2pk . Moreover, at least for 0 < λ ≤ 1, the average number of children of the vertices along the
λ-harmonic ray is a.s. strictly larger than that of the λ-biased random walk trajectory. We observe that the
latter is not monotone in the bias parameter λ.

Keywords: Galton–Watson tree; harmonic measure; random walk; stationary measure

1. Introduction

Consider a Galton–Watson tree T rooted at e with a non-degenerate offspring distribution
(pk)k≥0. We suppose that p0 = 0, pk < 1 for all k ≥ 1, and the mean offspring number
m = ∑

k≥1 kpk ∈ (1,∞). So the Galton–Watson tree T is supercritical and leafless. Let T be
the space of all infinite rooted trees with no leaves. The law of T is called the Galton–Watson
measure GW on T . For every vertex x in T, let ν(x) stand for its number of children. We denote
by x∗ the parent of x and by xi,1 ≤ i ≤ ν(x), the children of x.

For λ ≥ 0, conditionally on T, the λ-biased random walk (Xn)n≥0 on T is a Markov chain
starting from the root e, such that, from the vertex e all transitions to its children are equally
likely, whereas for every vertex x ∈ T different from e,

PT(Xn+1 = x∗ | Xn = x) = λ

ν(x) + λ
,

PT(Xn+1 = xi | Xn = x) = 1

ν(x) + λ
, for every 1 ≤ i ≤ ν(x).

Note that λ = 1 corresponds to the simple random walk on T, and λ = 0 corresponds to the
simple forward random walk with no backtracking. Lyons [5] established that (Xn)n≥0 is almost
surely transient if and only if λ < m. Throughout this work, we assume λ < m and hence the
λ-biased random walk is always transient.
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For a vertex x ∈ T, let |x| stand for the graph distance from the root e to x. Let ∂T denote the
boundary of T, which is defined as the set of infinite rays in T emanating from the root. Since
(Xn)n≥0 is transient, its loop-erased trajectory defines a unique infinite ray �λ ∈ ∂T, whose
distribution is called the λ-harmonic measure. We call �λ the λ-harmonic ray in T.

For different rays ξ, η ∈ ∂T, let ξ ∧η denote the vertex common to both ξ and η that is farthest
from the root. We define the metric

d(ξ, η) := exp
(−|ξ ∧ η|) for ξ, η ∈ ∂T, ξ �= η.

Under this metric, the boundary ∂T has a.s. Hausdorff dimension logm. Lyons, Pemantle and
Peres [6,7] showed the dimension drop of harmonic measure: for all 0 ≤ λ < m, the Hausdorff
dimension of the λ-harmonic measure is a.s. a constant dλ < logm. The 0-harmonic measure
associated with the simple forward random walk was called visibility measure in Lyons, Pemantle
and Peres [6]. Its Hausdorff dimension is a.s. equal to the constant

∑
k≥1(logk)pk = GW[logν],

where we write ν = ν(e) for the offspring number of the root under GW.
Recently, Berestycki, Lubetzky, Peres and Sly [4] applied the dimension drop result d1 < logm

to show cutoff for the mixing time of simple random walk on a random graph starting from
a typical vertex. The Hausdorff dimension of the 0-harmonic measure was similarly used in
Berestycki, Lubetzky, Peres and Sly [4] and independently used in Ben-Hamou and Salez [3] to
determine the mixing time of the non-backtracking random walk on a random graph.

The primary result of this work answers a question of Ledrappier posed in Lyons, Pemantle
and Peres [8]. This question is also stated as Question 17.28 in the book Lyons and Peres [9].

Theorem 1. For all λ ∈ (0,m), we have dλ > GW[logν], meaning that the Hausdorff dimension
of the λ-harmonic measure is a.s. strictly larger than the Hausdorff dimension of the 0-harmonic
measure. Moreover,

lim
λ→0+ dλ = GW[logν] and lim

λ→m− dλ = logm.

When λ increases to the critical value m, it is non-trivial that the support of the λ-harmonic
measure has its Hausdorff dimension tending to that of the whole boundary. Besides, Jensen’s in-
equality implies GW[logν] > − log GW[ν−1]. The preceding theorem thus improves the lower
bound dλ > − log GW[ν−1] shown in Corollary 7.2 of Virág [11].

The proof of Theorem 1 originates from the construction of a probability measure μHARMλ

on T that is stationary and ergodic for the harmonic flow rule. In Section 4, below, its Radon–
Nikodým derivative with respect to GW is given by (7). Note that an equivalent formula is
also obtained independently by Rousselin [10]. We derive afterwards an explicit expression for
the dimension dλ, and prove Theorem 1 in Section 5. Our way to find the harmonic-stationary
measure μHARMλ is inspired by a recent work of Aïdékon [1], in which he found the explicit
stationary measure of the environment seen from a λ-biased random walk. It renders possible
an application of the ergodic theory on Galton–Watson trees developed in Lyons, Pemantle and
Peres [6] to the biased random walk. After introducing the escape probability of λ-biased random
walk on a tree in Section 2, we will give a precise description of Aïdékon’s stationary measure
in Section 3.
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Apart from the Hausdorff dimension of harmonic measure, another quantity of interest is the
average number of children of vertices visited by the harmonic ray �λ or the λ-biased random

walk (Xn)n≥0 on T. For an infinite path
→
x = (xk)k≥0 in T, if the limit

lim
n→∞

1

n

n∑
k=0

ν(xk)

exists, we call it the average number of children of the vertices along the path
→
x . Section 6 will

be devoted to comparing the average number of children of vertices along different random paths
in T. The main results in this direction are summarized in the following way.

Theorem 2.

(i) For all λ ∈ (0,m), the average number of children of the vertices along the λ-harmonic
ray �λ is a.s. strictly larger than m, and strictly smaller than m−1 ∑

k2pk ;
(ii) The average number of children of the vertices along the λ-biased random walk (Xn)n≥0

is a.s. strictly smaller than m when λ ∈ (0,1), equal to m when λ = 0 or 1, and strictly
larger than m when λ ∈ (1,m);

(iii) For λ ∈ (0,1], the average number of children of the vertices along the λ-harmonic ray
�λ is a.s. strictly larger than the average number of children of the vertices along the
λ-biased random walk (Xn)n≥0.

Assertion (iii) above is a direct consequence of assertions (i) and (ii). We conjecture that the
same result holds for all λ ∈ (0,m), not merely for λ ∈ (0,1].

Assertion (i) in Theorem 2 was first suggested by some numerical calculations in the case
λ = 1 mentioned at the end of Section 17.10 in Lyons and Peres [9]. By the strong law of large
numbers, the average number of children seen by the simple forward random walk is a.s. equal
to m. On the other hand, the uniform measure on the boundary of T can be defined by putting
mass 1 uniformly on the vertices of level n in T and taking the weak limit as n → ∞. We say
that a random ray in T is uniform if it is distributed according to the uniform measure on ∂T.
When

∑
(k logk)pk < ∞, the uniform measure on ∂T has a.s. Hausdorff dimension logm, and

the uniform ray in T can be identified with the distinguished infinite path in a size-biased Galton–
Watson tree. In particular, the average number of children seen by the uniform ray in T is equal
to m−1 ∑

k2pk . For more details, we refer the reader to Section 6 of Lyons, Pemantle and Peres
[6] or Chapter 17 of Lyons and Peres [9].

The FKG inequality for product measures (also known as the Harris inequality) turns out
to be extremely useful in proving Theorem 2. In Section 6, assertion (i) will be derived from
Propositions 6 and 7, while assertion (ii) will be shown as Proposition 8.

It is worth pointing out that the average number of children seen by the λ-biased random walk
is not monotone with respect to λ, because its right continuity at 0 (established in Proposition 9),
together with assertion (ii) in Theorem 2, implies that the average number of children seen by the
λ-biased random walk cannot be monotonic nondecreasing for all λ ∈ (0,1). This lack of mono-
tonicity might be explained by two opposing effects of having a small bias λ: on the one hand,
it helps the random walk to escape faster to infinity, and a high-degree path is in favour of the
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escape of the λ-biased random walk, but on the other hand, small bias implies less backtracking,
so the λ-biased random walk spends less time on high-degree vertices.

We close this introduction by mentioning that the following question from Lyons, Pemantle
and Peres [8] remains open.

Question 1. Is the dimension dλ of the λ-harmonic measure nondecreasing for λ ∈ (0,m)?

Taking into account the previous discussion, we find it intriguing to ask a similar question:

Question 2. Is the average number of children of the vertices along the λ-harmonic ray in T

nondecreasing for λ ∈ (0,m)? Does the same monotonicity holds for the average number of
children of the vertices along the λ-biased random walk, when λ ∈ [1,m)?

2. Escape probability and the effective conductance

For a tree T ∈ T rooted at e, we define T∗ as the tree obtained by adding to e an extra adjacent
vertex e∗, called the parent of e. The new tree T∗ is naturally rooted at e∗. For a vertex u ∈ T , the
descendant tree Tu of u is the subtree of T formed by those edges and vertices which become
disconnected from the root of T when u is removed. By definition, Tu is rooted at u.

Unless otherwise stated, we assume λ ∈ (0,m) in the rest of the paper. Under the probability
measure PT , let (Xn)n≥0 denote a λ-biased random walk on T∗. For any vertex u ∈ T , define
τu := min{n ≥ 0 : Xn = u} the hitting time of u, with the usual convention that min∅= ∞. Let

βλ(T ) := PT (τe∗ = ∞ | X0 = e) = PT (∀n ≥ 1,Xn �= e∗ | X0 = e)

be the probability of never visiting the parent e∗ of e when starting from e. For notational ease,
we will make implicit the dependency in λ of the escape probability by writing β(T ) = βλ(T ).
For GW-a.e. T , 0 < β(T ) < 1. By coupling with a biased random walk on N, we see that β(T ) >

1 − λ. Moreover, Lemma 4.2 of Aïdékon [1] shows that

0 < GW
[

1

λ − 1 + β(T )

]
< ∞. (1)

For a vertex u ∈ T , |u| = 1, the probability that a λ-harmonic ray in T passes through u is

β(Tu)∑
|w|=1 β(Tw)

.

If the tree T is viewed as an electric network, and if the conductance of an edge linking vertices
of level n and n + 1 is λ−n, then Cλ(T ) denotes the effective conductance of T from its root to
infinity. As for the escape probability, we will write C(T ) for Cλ(T ) to simplify the notation.
Using the link between reversible Markov chains and electric networks, we know that

β(T ) = C(T∗) = C(T )

λ + C(T )
and C(T ) = λβ(T )

1 − β(T )
. (2)
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This relationship between β(T ) and C(T ) will be used repeatedly. Since C(T ) > β(T ), the lower
bound C(T ) > 1 − λ also holds. Moreover, for all x ∈R,

λ−1xC(T )

(λ − 1 + C(T ))(1 + λ−1x) + λ−1x
= β(T )x

λ − 1 + β(T ) + x
.

Taking x = C(T ′) for another tree T ′ yields the following identity

β(T ′)C(T )

λ − 1 + β(T ′) + C(T )
= β(T )C(T ′)

λ − 1 + β(T ) + C(T ′)
. (3)

Using (2) we can also verify that(
λ − 1 + β(T ) + C

(
T ′))(1 + λ−1C(T )

) = λ
(
1 + λ−1C(T )

)(
1 + λ−1C

(
T ′)) − 1

= (
λ − 1 + β

(
T ′) + C(T )

)(
1 + λ−1C

(
T ′)). (4)

The following integrability result will be used to prove the inequality dλ > GW[logν].

Lemma 3. For 0 < λ < m, we have GW[log 1
β(T )

] < ∞.

Proof. Let T1, . . . , Tν be the descendant trees of the children of the root in T . By the parallel
law of conductances, β(T ) = ∑ν

i=1 β(Ti). Recall that

1

β(T )
= C(T ) + λ

C(T )
= 1 + λ∑ν

i=1 β(Ti)
.

Taking x = λ(
∑ν

i=1 β(Ti))
−1 and x0 = λν−1 ≤ x in the inequality log(1 + x) ≤ logx + log(1 +

x−1
0 ), we deduce that

log
1

β(T )
≤ log

(
1 + λ−1ν

) + logλ + log
1∑ν

i=1 β(Ti)
.

Let ε < 1 be some positive number. Then

log
1∑ν

i=1 β(Ti)
≤

(
log

1

β(T1)

)
1{

β(Ti )≤ε,∀i≥2
} + log ε−1.

By convention, the indicator function above is equal to 1 over the event {ν = 1}. Taking expecta-
tion gives

GW
[
n ∧ log

1

β(T )

]
≤ GW

[
log(λ + ν)

] + log ε−1 + GW
[
n ∧ log

1

β(T )

]
GW

[
qν−1
ε

]
,

where qε := GW(β(T ) ≤ ε). Since qε → 0 when ε → 0, we can take ε small enough such that

Aε := GW
[
qν−1
ε

]
< 1.
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Hence, we obtain

GW
[
n ∧ log

1

β(T )

]
≤ GW[log(λ + ν)] + log ε−1

1 − Aε

.

Taking the limit n → ∞ finishes the proof. �

3. Stationary measure of the tree seen from random walk

We set up some notation before presenting Aïdékon’s stationary measure. For a rooted tree T ∈
T , its boundary ∂T is the set of all rays starting from the root. Clearly, one can identify ∂T∗ with
∂T . Let

T ∗ := {
(T , ξ) | T ∈ T , ξ = (ξn)n≥0 ∈ ∂T

}
denote the space of trees with a marked ray. By definition, ξ0 coincides with the root vertex of T .
If T1 and T2 are two trees rooted respectively, at e1 and e2, we define T1−•T2 as the tree rooted at
the root e2 of T2 formed by joining the roots of T1 and T2 by an edge. The root e2 is the parent
of e1 in T1−•T2, thus we will not distinguish e2 from (e1)∗. Given a ray ξ ∈ ∂T , there is a unique
tree T + such that T = Tξ1−•T +. Therefore, T ∗ is in bijection with the space{(

T−•T +, ξ
) | T ,T + ∈ T , ξ = (ξn)n≥0 ∈ ∂T

}
.

Introducing a marked ray helps us to keep track of the past trajectory of the biased random
walk. In particular, the initial starting point of the random walk, towards which the bias is exerted,
would be represented by the marked ray at infinity. To be more precise, if we assign a vertex
u ∈ T to be the new root of the tree T , the re-rooted tree will be written as ReRoot(T ,u). Given
ξ = (ξn)n≥0 ∈ ∂T , we say that x is the ξ -parent of y in T if x becomes the parent of y in the
tree ReRoot(T , ξn) for all sufficiently large n. A random walk on T is λ-biased towards ξ if the
random walk always moves to its ξ -parent with probability λ times that of moving to one of the
other neighbors.

We consider the Markov chain on T ∗ that, starting from some fixed tree T with a marked ray
ξ = (ξn)n≥0, is isomorphic to a random walk on T λ-biased towards ξ . Recall that ν(ξ0) is the
number of edges incident to the root. The transition probabilities pRWλ of this Markov chain are
defined as follows:

• If T ′ = ReRoot(T , x) and ξ ′ = (x, ξ0, ξ1, ξ2, . . .) with a vertex x adjacent to ξ0 being differ-
ent from ξ1,

pRWλ

(
(T , ξ),

(
T ′, ξ ′)) = 1

ν(ξ0) − 1 + λ
;

• If T ′ = ReRoot(T , ξ1) and ξ ′ = (ξ1, ξ2, . . .),

pRWλ

(
(T , ξ),

(
T ′, ξ ′)) = λ

ν(ξ0) − 1 + λ
;

• Otherwise, pRWλ((T , ξ), (T ′, ξ ′)) = 0.
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We proceed to define the environment measure that is invariant under re-rooting along a λ-
biased random walk. Let T and T

+ be two independent Galton–Watson trees of offspring distri-
bution (pk)k≥0. We write e for the root vertex of T, and e+ for the root vertex of T+. Let ν+
denote the number of children of e+ in T

+. Similarly, let ν denote the number of children of e

in T. Note that the number of children of e+ in T−•T+ is ν+ + 1. Conditionally on (T,T+), let
R be a random ray in T distributed according to the λ-harmonic measure on ∂T. We assume that
(T−•T+,R) is defined under the probability measure P .

Definition 1. The λ-augmented Galton–Watson measure AGWλis defined as the probability
measure on T ∗ that is absolutely continuous with respect to the law of (T−•T+,R) with density

c−1
λ

(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)
, (5)

where

cλ = E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

]

is the normalizing constant.

It follows from the inequality λ − 1 + C(T+) > 0 that

cλ = E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

]
< E

[
λ + ν+] = λ + m.

Let T+
1 , . . . ,T+

ν+ denote the descendant trees of the children of e+ in T
+. With a slight abuse

of notation, let T1, . . . ,Tν denote the descendant trees of the children of e inside T. See Figure 1

Figure 1. The random tree T−•T+ rooted at e+ with a marked ray R.



Harmonic measure for biased random walk in a Galton–Watson tree 3659

for a schematic illustration. By the parallel law of conductances,

C
(
T

+) =
ν+∑
i=1

β
(
T

+
i

)
and C(T) =

ν∑
i=1

β(Ti ). (6)

We will frequently use the branching property that conditionally on ν+, the collection of trees
{T,T+

1 , . . . ,T+
ν+} are independent and identically distributed according to GW.

According to Theorem 4.1 in Aïdékon [1], the λ-augmented Galton–Watson measure AGWλis
the asymptotic distribution of the environment seen from the λ-biased random walk on T.

Proposition 4. The Markov chain with transition probabilities pRWλ and initial distribution
AGWλis stationary.

Proof. Let F : T → R
+ and G : T ∗ → R

+ be nonnegative measurable functions. Let (T̃−•T̃+,

R̃) denote the tree with a marked ray obtained from (T−•T+,R) by performing a one-step
transition according to pRWλ . It suffices to show that

E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)
F

(
T̃

+)
G(T̃, R̃)

]
= E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]
.

To compute the left-hand side, we need to distinguish two different situations.
Case I: There exists 1 ≤ i ≤ ν+ such that the root of T+

i becomes the new root of T̃−•T̃+. For
each i ∈ [1, ν+], it happens with probability 1/(ν+ + λ). In this case,

T̃
+ = T

+
i and T̃ = T−•T+

�=i ,

where T
+
�=i stands for the tree rooted at e+ containing only the descendant trees {T+

j ,1 ≤ j ≤
ν+, j �= i} together with the edges connecting their roots to e+. It is easy to see that T+

i and
T−•T+

�=i are two i.i.d. Galton–Watson trees. Meanwhile, R̃ ∈ ∂T̃ is the ray R+ obtained by
adding the vertex e+ to the beginning of the sequence R. We set accordingly

I := E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

ν+∑
i=1

1

ν+ + λ
F

(
T

+
i

)
G

(
T−•T+

�=i ,R
+)]

= E

[
β(T)

λ − 1 + β(T) + C(T+)

ν+∑
i=1

F
(
T

+
i

)
G

(
T−•T+

�=i ,R
+)]

.

Given T and T
+, we let R�=i be a random ray in the tree T−•T+

�=i distributed according to the
λ-harmonic measure on the tree boundary. Then R+ can be identified with R�=i conditionally on
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{R �=i ∈ ∂T}. We see that I is equal to

E

[
β(T)

λ − 1 + β(T) + C(T+)

ν+∑
i=1

F
(
T

+
i

)
G

(
T−•T+

�=i ,R�=i

)
1{R �=i∈∂T}

C(T−•T+
�=i )

β(T)

]

= E

[
1

λ − 1 + β(T) + C(T+)

ν+∑
i=1

F
(
T

+
i

)
G

(
T−•T+

�=i ,R�=i

)
1{R �=i∈∂T}C

(
T−•T+

�=i

)]
.

By symmetry, we deduce further that

I = E

[
C(T−•T+

�=1)

λ − 1 + β(T) + C(T+)
F

(
T

+
1

)
G

(
T−•T+

�=1,R�=1
)(

1{R �=1∈∂T} +
ν+∑
i=2

1{
R �=1∈∂T+

i

})]

= E

[ C(T−•T+
�=1)

λ − 1 + β(T) + C(T+)
F

(
T

+
1

)
G

(
T−•T+

�=1,R�=1
)]

.

As β(T) + C(T+) = β(T) + ∑ν+
i=1 β(T+

i ) = β(T+
1 ) + C(T−•T+

�=1), we obtain from the previous
display that

I = E

[ C(T)

λ − 1 + β(T+) + C(T)
F

(
T

+)
G(T,R)

]
.

Using (3) and (2), we get therefore

I = E

[
β(T)

λ − 1 + β(T) + C(T+)

C(T+)

β(T+)
F

(
T

+)
G(T,R)

]

= E

[
β(T)(λ + C(T+))

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]
.

Case II: The vertex e becomes the new root of T̃−•T̃+, which happens with probability
λ/(ν+ + λ). In this case, if R passes through the root of Tk for some integer k ∈ [1, ν], then

T̃ = Tk and T̃
+ = T

+−•T �=k,

where T �=k stands for the tree rooted at e formed by all descendant trees {T�,1 ≤ � ≤ ν, � �= k}
together with the edges connecting their roots to e. As in the previous case, Tk and T

+−•T �=k are
two independent Galton–Watson trees. But R̃ is now the ray R− obtained by deleting e from the
beginning of the sequence R. We set thus

II := E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

λ

ν+ + λ

ν∑
k=1

F
(
T

+−•T �=k

)
G

(
Tk,R−)

1{
R−∈∂Tk

}]

= E

[
λβ(T)

λ − 1 + β(T) + C(T+)

ν∑
k=1

F
(
T

+−•T �=k

)
G

(
Tk,R−)

1{
R−∈∂Tk

}]
.



Harmonic measure for biased random walk in a Galton–Watson tree 3661

Given T and T
+, we let Rk be a random ray in the tree Tk distributed according to the λ-

harmonic measure. It follows that

II = E

[
ν∑

k=1

λβ(T)

λ − 1 + β(T) + C(T+)
F

(
T

+−•T �=k

)
G(Tk,Rk)

β(Tk)

C(T)

]

= E

[
ν∑

k=1

β(Tk)

(λ − 1 + β(T) + C(T+))(1 + λ−1C(T))
F

(
T

+−•T �=k

)
G(Tk,Rk)

]
.

Using the identity (4), we see that(
λ − 1 + β(T) + C

(
T

+))(
1 + λ−1C(T)

)
= (

λ − 1 + β
(
T

+) + C(T)
)(

1 + λ−1C
(
T

+))
= (

λ − 1 + β(Tk) + C
(
T

+−•T �=k

))(
1 + λ−1C

(
T

+))
.

Together with (2), it implies

II = E

[
ν∑

k=1

β(Tk)(1 + λ−1C(T+))−1

λ − 1 + β(Tk) + C(T+−•T �=k)
F

(
T

+−•T �=k

)
G(Tk,Rk)

]

= E

[
ν∑

k=1

β(Tk)(1 − β(T+))

λ − 1 + β(Tk) + C(T+−•T �=k)
F

(
T

+−•T �=k

)
G(Tk,Rk)

]
.

Observe that the root of T+−•T �=k has ν children. For any integer m ≥ k, the conditional law of
(Tk,T

+−•T �=k) given {ν = m} is the same as that of (T,T+) conditionally on {ν+ = m}. Hence,
we obtain

II = E

[
ν+∑
k=1

β(T)(1 − β(T+
k ))

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]

= E

[
β(T)(ν+ − C(T+))

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]
.

Finally, adding up Cases I and II, we have

E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)
F

(
T̃

+)
G(T̃, R̃)

]

= E

[
β(T)(λ + C(T+))

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]

+ E

[
β(T)(ν+ − C(T+))

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]
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= E

[
(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)
F

(
T

+)
G(T,R)

]
,

which completes the proof of the stationarity. �

We write
→
x for an infinite path (xn)n≥0 in T . Let RWλ × AGWλ be the probability measure

on the space {(→
x , (T , ξ)

) | (T , ξ) ∈ T ∗,→
x ⊂ T

}
that is associated to the Markov chain considered in Proposition 4. It is given by choosing a tree
T with a marked ray ξ according to AGWλ, and then independently running on T a random
walk λ-biased towards ξ .

4. Harmonic-stationary measure

Let HARMT
λ be the flow on the vertices of T in correspondence with the λ-harmonic measure

on ∂T , so that HARMT
λ (u) coincides with the mass given by the λ-harmonic measure to the set

of all rays passing through the vertex u. We denote by HARMλ the transition probabilities for a
Markov chain on T , that goes from a tree T to the descendant tree Tu, |u| = 1, with probability

HARMT
λ (u) = β(Tu)∑

|w|=1 β(Tw)
= β(Tu)

C(T )
.

The existence of a HARMλ-stationary probability measure μHARMλ that is absolutely continu-
ous with respect to GW was established in Lemma 5.2 of Lyons, Pemantle and Peres [7]. Taking
into account the stationary measure of the environment AGWλ, we can construct μHARMλ as an
induced measure by considering the λ-biased random walk at the exit epochs. See Section 8 in
Lyons, Pemantle and Peres [6] and Section 5 in Lyons, Pemantle and Peres [7] for more details.

According to Proposition 5.2 of Lyons, Pemantle and Peres [6], μHARMλ is equivalent to GW
and the associated HARMλ-Markov chain is ergodic. Ergodicity implies further that μHARMλ is
the unique HARMλ-stationary probability measure absolutely continuous with respect to GW.
Due to uniqueness, we can identify μHARMλ via the next result.

Lemma 5. For every x > 0, set

κλ(x) := GW
[

β(T )x

λ − 1 + β(T ) + x

]
= E

[
β(T)x

λ − 1 + β(T) + x

]
.

The finite measure κλ(C(T ))GW(dT ) is HARMλ-stationary.

Proof. The function κλ : R+ → R
+ is bounded and strictly increasing. In fact, for GW-a.e. T ,

λ − 1 + β(T ) > 0. The function

β(T )x

λ − 1 + β(T ) + x
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is strictly increasing in x, and it is bounded above by β(T ). Thus,

κλ(x) < GW
[
β(T )

]
< 1.

We write ν for the offspring number of the root of T . Conditionally on the event {ν = k}, let
T1, . . . , Tk denote the descendant trees of the children of the root. In order to prove the HARMλ-
stationarity, we must verify that for any bounded measurable function F on T , the integral∫

F(T )κλ(C(T ))GW(dT ) is equal to

I :=
∞∑

k=1

pk

k∑
i=1

∫
F(Ti)κλ

(
C(T )

) β(Ti)

β(T1) + · · · + β(Tk)
GW(dT | ν = k)

=
∞∑

k=1

kpk

∫
F(T1)κλ

(
C(T )

) β(T1)

β(T1) + · · · + β(Tk)
GW(dT | ν = k).

Using the definition of κλ and the branching property, we see that I is given by

∞∑
k=1

kpk

∫
F(T1)

β(T0)β(T1)

λ − 1 + β(T0) + β(T1) + · · · + β(Tk)
GW(dT | ν = k)GW(dT0)

=
∞∑

k=1

kpk

∫
F(T1)

β(T0)β(T1)

λ − 1 + β(T0) + β(T1) + · · · + β(Tk)
GW(dT0)GW(dT1) · · ·GW(dTk)

=
∞∑

k=1

pk

∫
F(T1)

β(T1)(β(T0) + β(T2) + · · · + β(Tk))

λ − 1 + β(T0) + β(T1) + · · · + β(Tk)
GW(dT0)GW(dT1) · · ·GW(dTk)

=
∫

F(T1)
β(T1)C(T )

λ − 1 + β(T1) + C(T )
GW(dT )GW(dT1).

Hence, it follows from (3) that

I =
∫

F(T1)
β(T )C(T1)

λ − 1 + β(T ) + C(T1)
GW(dT )GW(dT1) =

∫
F(T1)κλ

(
C(T1)

)
GW(dT1),

which finishes the proof. �

We deduce from the preceding lemma that the Radon–Nikodým derivative of μHARMλ with
respect to GW is a.s.

dμHARMλ

dGW
(T ) = 1

hλ

κλ

(
C(T )

) = 1

hλ

∫
β(T ′)C(T )

λ − 1 + β(T ′) + C(T )
GW

(
dT ′), (7)

where the normalizing constant

hλ =
∫

β(T ′)C(T )

λ − 1 + β(T ′) + C(T )
GW(dT )GW

(
dT ′) = E

[
β(T)C(T+)

λ − 1 + β(T) + C(T+)

]
.
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Writing R(T ) = C(T )−1 for the effective resistance, one can reformulate (7) as

dμHARMλ

dGW
(T ) = 1

hλ

∫
λ−1

(λ − 1)R(T )R(T ′) +R(T ) +R(T ′) + λ−1
GW

(
dT ′).

When λ = 1, it coincides with the expression of the same density in Section 8 of Lyons, Pemantle
and Peres [6].

As we can see in the proof of Lemma 5, the measure μHARMλ defined by (7) is still HARMλ-
stationary when p0 > 0 is allowed. We also point out that the proof of Proposition 17.31 in Lyons
and Peres [9] (corresponding to the case λ = 1) can be adapted to derive (7) from the construction
of μHARMλ by inducing.

In a recent work, Rousselin [10] develops a general result to construct explicit stationary mea-
sures for a certain class of Markov chains on trees. Applying this result to the HARMλ-Markov
chain considered above gives the same formula (7), see Theorem 4.1 in Rousselin [10].

5. Dimension of the harmonic measure

Let T be a random tree distributed as μHARMλ , and let 
 be the λ-harmonic ray in T. If we denote
the vertices along 
 by 
0,
1, . . ., then according to the flow property of harmonic measure, the
sequence of descendant trees (T
n)n≥0 is a stationary HARMλ-Markov chain. In what follows,
we write HARMλ × μHARMλ for the law of (
,T) on the space {(ξ, T ) | T ∈ T , ξ ∈ ∂T }. Recall
that the ergodicity of HARMλ × μHARMλ results from Proposition 5.2 in Lyons, Pemantle and
Peres [6].

As shown in Section 5 of Lyons, Pemantle and Peres [6], the Hausdorff dimension dλ of the
λ-harmonic measure coincides with the entropy

EntropyHARMλ
(μHARMλ) :=

∫
log

1

HARMT
λ (ξ1)

HARMλ × μHARMλ(dξ,dT ).

Thus, by (2) we have

dλ =
∫

log
C(T )

β(Tξ1)
HARMλ × μHARMλ(dξ,dT )

=
∫

log
λβ(T )

β(Tξ1)(1 − β(T ))
HARMλ × μHARMλ(dξ,dT ).

By stationarity,

dλ =
∫

log
λ

1 − β(T )
μHARMλ(dT ) =

∫
log

(
C(T ) + λ

)
μHARMλ(dT ), (8)

provided the integral
∫

logβ(T )−1μHARMλ(dT ) is finite. Using the explicit form (7) of μHARMλ ,
we see that this integral is equal to

h−1
λ E

[
β(T)C(T+)

λ − 1 + β(T) + C(T+)
log

1

β(T+)

]
,
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in which the expectation is less than

E

[
β(T)

λ − 1 + β(T)

(
C
(
T

+)
log

1

β(T+)

)]

= E

[
β(T)

λ − 1 + β(T)

]
· E

[
λβ(T+)

1 − β(T+)
log

1

β(T+)

]
. (9)

Notice that for x ∈ (0,1),

0 <
x

1 − x
log

1

x
< 1.

Hence, the product in (9) is bounded by

GW
[

λβ(T )

λ − 1 + β(T )

]
,

which is finite according to (1). Therefore, the formula (8) is justified. By (7) again, we obtain

dλ = h−1
λ

∫
log

(
C(T ) + λ

) β(T ′)C(T )

λ − 1 + β(T ′) + C(T )
GW(dT )GW

(
dT ′)

= h−1
λ E

[
log

(
C
(
T

+) + λ
) β(T)C(T+)

λ − 1 + β(T) + C(T+)

]
.

Now let us prove Theorem 1 by first showing dλ > GW[logν]. Recall that the function κλ is
strictly increasing. The FKG inequality implies that

E

[
log

(
C
(
T

+) + λ
) β(T)C(T+)

λ − 1 + β(T) + C(T+)

]

> E
[
log

(
C
(
T

+) + λ
)] × E

[
β(T)C(T+)

λ − 1 + β(T) + C(T+)

]
.

In view of the previous formula for dλ, it suffices to prove

GW
[
log

(
C(T ) + λ

)] ≥ GW[logν].
In fact, the strict inequality holds. Recall the notation that T1, . . . , Tν stand for the descendant
trees of the children of the root in T , and notice that

C(T ) + λ = C(T )

β(T )
=

∑ν
i=1 β(Ti)

β(T )
.

By strict concavity of the log function,

log
ν∑

i=1

β(Ti) ≥ 1

ν

ν∑
i=1

log
(
νβ(Ti)

) = logν + 1

ν

ν∑
i=1

logβ(Ti)
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with equality if and only if all β(Ti),1 ≤ i ≤ ν, are equal. But this condition for equality cannot
hold for GW-almost every T . Meanwhile, it follows from Lemma 3 that

GW

[
1

ν

ν∑
i=1

logβ(Ti)

]
= GW

[
logβ(T )

]
.

Therefore,

GW
[
log

(
C(T ) + λ

)]
> GW[logν].

To complete the proof of Theorem 1, it remains to examine the asymptotic behaviors of dλ.

When λ → 0+, a.s. β(T) → 1 and C(T+) = ∑ν+
i=1 β(T+

i ) → ν+. Since

β(T)C(T+)

λ − 1 + β(T) + C(T+)
≤ β(T) ≤ 1, (10)

we can use Lebesgue’s dominated convergence to get limλ→0+ hλ = 1. Similarly, it follows from

log
(
C
(
T

+) + λ
) β(T)C(T+)

λ − 1 + β(T) + C(T+)
≤ log

(
C
(
T

+) + λ
) ≤ log

(
ν+ + m

)
that limλ→0+ dλ = E[logν+] = GW[logν].

When λ → m−, a.s. β(T) → 0 and C(T+) → 0. We have seen that the FKG inequality yields
the lower bound

dλ > E
[
log

(
C
(
T

+) + λ
)]

.

Using again dominated convergence, we obtain

lim
λ→m− E

[
log

(
C
(
T

+) + λ
)] = logm.

On the other hand, recall that dλ < logm. Consequently, dλ → logm when λ → m−.

6. Average number of children along a random path

Recall that for every vertex x in a tree T , we write ν(x) for its number of children. Birkhoff’s
ergodic theorem implies that for HARMλ × μHARMλ -a.e. (ξ, T ),

lim
n→∞

1

n

n−1∑
k=0

ν(ξk) =
∫

ν(e)μHARMλ(dT ) = h−1
λ E

[
ν+β(T)C(T+)

λ − 1 + β(T) + C(T+)

]
.

The last expectation is finite, as we derive from (10) that

ν+β(T)C(T+)

λ − 1 + β(T) + C(T+)
≤ ν+.
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Since μHARMλ is equivalent to GW, the convergence above also holds for HARMλ × GW-a.e.
(ξ, T ). Hence, the average number of children of the vertices visited by the λ-harmonic ray in a
Galton–Watson tree is the same as the μHARMλ -mean degree of the root.

For every k ≥ 1, we set

A(k) := E

[
β(T)

∑k
i=1 β(T+

i )

λ − 1 + β(T) + ∑k
i=1 β(T+

i )

]
.

The sequence (A(k))k≥1 is strictly increasing. Moreover,

A(k)

k
= E

[
β(T)β(T+

1 )

λ − 1 + β(T) + ∑k
i=1 β(T+

i )

]

is strictly decreasing with respect to k.

Proposition 6. For 0 < λ < m, ∫
ν(e)μHARMλ(dT ) > m.

Furthermore,
∫

ν(e)μHARMλ(dT ) → m as λ → 0+.

Proof. The first assertion, reformulated as

E

[
ν+β(T)

∑ν+
i=1 β(T+

i )

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
> E

[
ν+] · E

[
β(T)

∑ν+
i=1 β(T+

i )

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
,

is a simple consequence of the FKG inequality, since

GW
[
νA(ν)

]
> GW[ν] · GW

[
A(ν)

]
.

When λ → 0+, a.s. β(T) → 1 and C(T+) → ν+. Using Lebesgue’s dominated convergence,
we have seen at the end of Section 5 that limλ→0+ hλ = 1. The same argument applies to the
convergence of

E

[
ν+β(T)C(T+)

λ − 1 + β(T) + C(T+)

]

towards E[ν+] = m. �

Under GW we define a random variable ν̂ having the size-biased distribution of ν.

Proposition 7. For 0 < λ < m,∫
ν(e)μHARMλ(dT ) < GW[ν̂] = m−1

∑
k2pk.

If we assume further that
∑

k3pk < ∞, then
∫

ν(e)μHARMλ(dT ) → GW[ν̂] as λ → m−.
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Proof. Since
∫

ν(e)μHARMλ(dT ) < ∞, we may assume
∑

k2pk < ∞ throughout the proof. The
inequality in the first assertion can be written as

E
[
ν+] · E

[
ν+β(T)

∑ν+
i=1 β(T+

i )

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
< E

[(
ν+)2] · E

[
β(T)

∑ν+
i=1 β(T+

i )

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
.

By conditioning on ν+, we see that it is equivalent to

GW
[
A(ν̂)

]
< GW[ν̂] · GW

[
A(ν̂)

ν̂

]
,

which results from the FKG inequality.
For the second assertion, remark that

E

[
ν+β(T)

∑ν+
i=1 β(T+

i )

m − 1

]
= GW[ν2] · GW[β(T )]2

m − 1
,

E

[
β(T)

∑ν+
i=1 β(T+

i )

m − 1

]
= GW[ν] · GW[β(T )]2

m − 1
.

When the offspring distribution p admits a second moment, Proposition 3.1 of Ben Arous, Hu,
Olla and Zeitouni [2] shows that

β(T )

GW[β(T )]
is uniformly bounded in L2(GW). Using this fact, we can verify that

lim
λ→m− hλ · E

[
β(T)

∑ν+
i=1 β(T+

i )

m − 1

]−1

= 1.

With the third moment condition
∑

k3pk < ∞, we similarly have

lim
λ→m− E

[
ν+β(T)

∑ν+
i=1 β(T+

i )

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
· E

[
ν+β(T)

∑ν+
i=1 β(T+

i )

m − 1

]−1

= 1.

Therefore, ∫
ν(e)μHARMλ(dT ) → GW[ν2]

GW[ν] = GW[ν̂]

as λ → m−. �

Now we turn to investigate the average number of children seen by the λ-biased random walk.
First of all, as remarked in Section 8 of Lyons, Pemantle and Peres [6], the ergodicity of HARMλ×
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μHARM implies that RWλ × AGWλ is also ergodic. For a tree T rooted at e, let ν+(e) denote the
number of children of the root minus 1. Since

E

[
ν+(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

]
= E

[
(λ + ν+)C(T+)

λ − 1 + β(T) + C(T+)

]
≤ λ + E

[
ν+]

< ∞,

it follows from Birkhoff’s ergodic theorem that for RWλ × AGWλ-a.e. (
→
x , (T , ξ)),

lim
n→∞

1

n

n−1∑
k=0

ν(xk) =
∫

ν+(e)AGWλ(dT ,dξ) = c−1
λ E

[
ν+(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

]
. (11)

Using arguments similar to those in the last remark on page 600 of Lyons, Pemantle and Peres
[6], we deduce that the average number of children seen by the λ-biased random walk on T is
a.s. given by the same integral

∫
ν+(e)AGWλ(dT ,dξ).

Proposition 8. We have

∫
ν+(e)AGWλ(dT ,dξ)

⎧⎪⎨
⎪⎩

< m when 0 < λ < 1;
= m when λ ∈ {0,1};
> m when 1 < λ < m.

Proof. For every integer k ≥ 1, we set

Bλ(k) := E

[
(λ + k)β(T)

λ − 1 + β(T) + ∑k
i=1 β(T+

i )

]
.

Clearly, we have ∫
ν+(e)AGWλ(dT ,dξ) = m

GW[Bλ(ν̂)]
GW[Bλ(ν)] .

When λ ∈ {0,1}, Bλ(k) = 1 for all k. We will show that the sequence (Bλ(k))k≥1 is strictly
decreasing when 0 < λ < 1, and strictly increasing when 1 < λ < m. Therefore, by the FKG
inequality, GW[Bλ(ν̂)] > GW[Bλ(ν)] when 1 < λ < m, and GW[Bλ(ν̂)] < GW[Bλ(ν)] when
0 < λ < 1.

To get the claimed monotonicity of the sequence (Bλ(k))k≥1, notice that

Bλ(k + 1) = E

[
(λ + k)β(T) + β(T+

k+1)

λ − 1 + β(T) + ∑k+1
i=1 β(T+

i )

]
.

Simple calculations give

Bλ(k + 1) − Bλ(k) = E

[−(λ + k)β(T)β(T+
k+1) + β(T+

k+1)(λ − 1 + β(T) + ∑k
i=1 β(T+

i ))

(λ − 1 + β(T) + ∑k+1
i=1 β(T+

i ))(λ − 1 + β(T) + ∑k
i=1 β(T+

i ))

]
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= E

[
β(T+

k+1)(λ − 1)(1 − β(T))

(λ − 1 + β(T) + ∑k+1
i=1 β(T+

i ))(λ − 1 + β(T) + ∑k
i=1 β(T+

i ))

]

+ E

[ −kβ(T+
k+1)β(T) + β(T+

k+1)
∑k

i=1 β(T+
i )

(λ − 1 + β(T) + ∑k+1
i=1 β(T+

i ))(λ − 1 + β(T) + ∑k
i=1 β(T+

i ))

]
.

Since the last expectation vanishes, Bλ(k + 1) − Bλ(k) < 0 if and only if λ < 1. �

As a consequence, when 0 < λ ≤ 1, we have∫
ν(e)μHARMλ(dT ) > m ≥

∫
ν+(e)AGWλ(dT ,dξ).

The next result, together with Proposition 8, shows that
∫

ν+(e)AGWλ(dT ,dξ) is not mono-
tone with respect to λ.

Proposition 9. As λ → 0+,
∫

ν+(e)AGWλ(dT ,dξ) converges to m.

Proof. Note that

β(T)

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )
≤ 1.

By Lebesgue’s dominated convergence it follows that limλ→0+ cλ = 1. Similarly, we have

lim
λ→0+ E

[
λν+β(T)

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
= 0.

On the other hand,

E

[
(ν+)2β(T)

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
= E

[
ν+ ∑ν+

i=1 β(T+
i )

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
,

to which we can apply Lebesgue’s dominated convergence again to get

lim
λ→0+ E

[
(ν+)2β(T)

λ − 1 + β(T) + ∑ν+
i=1 β(T+

i )

]
= E

[
ν+] = m.

In view of (11), the proof is thus finished. �

Proposition 10. Assume that
∑

k3pk < ∞. Then,

lim
λ→m−

∫
ν+(e)AGWλ(dT ,dξ) = m2 + ∑

k2pk

2m
.
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Proof. As for the analogous result in Proposition 7, we can use the uniform boundedness in
L2(GW) of β(T )/GW[β(T )] to see that

lim
λ→m− cλ · E

[
(λ + ν+)β(T)

λ − 1

]−1

= 1

and

lim
λ→m− E

[
ν+(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

]
· E

[
ν+(λ + ν+)β(T)

λ − 1

]−1

= 1.

Hence, it follows from

E

[
(λ + ν+)β(T)

λ − 1

]−1

E

[
ν+(λ + ν+)β(T)

λ − 1

]
= E[ν+(λ + ν+)]

E[λ + ν+] = λm + ∑
k2pk

λ + m

that

lim
λ→m− c−1

λ E

[
ν+(λ + ν+)β(T)

λ − 1 + β(T) + C(T+)

]
= lim

λ→m−
λm + ∑

k2pk

λ + m
= m2 + ∑

k2pk

2m
,

which finishes the proof by (11). �

Combining Propositions 6, 7, 9 and 10, we see that

lim
λ→0+

(∫
ν(e)μHARMλ(dT ) −

∫
ν+(e)AGWλ(dT ,dξ)

)
= 0,

and if
∑

k3pk < ∞,

lim
λ→m−

(∫
ν(e)μHARMλ(dT ) −

∫
ν+(e)AGWλ(dT ,dξ)

)
=

∑
k2pk − m2

2m
> 0.

As mentioned in the introduction, we conjecture that for all λ ∈ (0,m),∫
ν(e)μHARMλ(dT ) −

∫
ν+(e)AGWλ(dT ,dξ) > 0.

Remark. If we consider the average reciprocal number of children of vertices along an infinite
path in T, the FKG inequality implies that for all λ ∈ (0,m),∫

1

ν+(e)
AGWλ(dT ,dξ) >

1

m
.

We also have ∫
1

ν(e)
μHARMλ(dT ) >

1

m
for all λ ∈ (0,m),

by applying the FKG inequality similarly as in the proof of Proposition 7.
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