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Estimation of fully nonparametric
transformation models
BENJAMIN COLLING* and INGRID VAN KEILEGOM**

Research Centre for Operations Research and Business Statistics (ORSTAT), KU Leuven, Naamsestraat 69,
Leuven, 3000, Belgium. E-mail: *benjamin.colling@uclouvain.be; **ingrid.vankeilegom@kuleuven.be

Consider the following nonparametric transformation model �(Y) = m(X)+ε, where X is a d-dimensional
covariate, Y is a continuous univariate dependent variable and ε is an error term with zero mean and which
is independent of X. We assume that the unknown transformation � is strictly increasing and that m is an
unknown regression function. Our goal is to develop two new nonparametric estimators of the transforma-
tion �, the first one based on the least squares loss and the second one based on the least absolute deviation
loss, and to compare their performance with that of the estimators developed by Chiappori, Komunjer and
Kristensen (J. Econometrics 188 (2015) 22–39). Our proposed estimators are based on an estimator of the
conditional distribution of U given X, where U is an appropriate transformation of Y that is uniformly
distributed. The main motivation for working with U instead of Y is that, in transformation models, the
response Y is often skewed with very long tails, and so kernel smoothing based on Y does not work well.
Hence, we expect to obtain better estimators if we pre-transform Y before applying kernel smoothing. We
establish the asymptotic normality of the two proposed estimators. We also carry out a simulation study to
illustrate the performance of our estimators, to compare these new estimators with the ones of Chiappori,
Komunjer and Kristensen (J. Econometrics 188 (2015) 22–39) and to see under which model conditions
which estimators behave the best.

Keywords: asymptotic properties; identification; kernel smoothing; nonparametric regression;
nonparametric transformation

1. Introduction

Transforming the response variable Y of a simple linear regression model is a very common prac-
tice when we want to induce additivity of the effects, homoscedasticity and normality of the new
error term, or reduce skewness, in order to satisfy the assumptions that are made on this model.
The most commonly used family of transformations is the parametric family of power trans-
formations, which was introduced by Box and Cox [2] and which includes as special cases the
logarithm and the identity. This class of transformations has been generalized, see for example
the Yeo and Johnson [24] transform.

The literature related to transformation models is very large. It contains papers in which the
transformation of the response and the regression function are either parametric or nonparamet-
ric, depending on the particular objectives of the considered paper.

The two above mentioned papers, as well as the papers of Zellner and Revankar [25], John
and Draper [17], Bickel and Doksum [1], Carroll and Ruppert [4], MacKinnon and Magee [19]
and Sakia [21] among others, consider a model where both the transformation and the regression
function are parametric.
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We can also find papers in which the transformation is parametric and the regression func-
tion is nonparametric. In particular, Linton, Sperlich and Van Keilegom [18] proposed different
estimators of the transformation parameter and established their asymptotic properties. We also
refer to Colling et al. [8] and Heuchenne, Samb and Van Keilegom [13] who introduced and
studied respectively nonparametric estimators for the error density function and the error distri-
bution function. Moreover, Colling and Van Keilegom [9] and Colling and Van Keilegom [10]
developed tests for the parametric form of the regression function respectively, based on the er-
ror distribution function and on the integrated regression function. Finally, we also mention the
work of Vanhems and Van Keilegom [22] who studied the estimation of this model supposing
that some of the regressors are endogenous and the work of Neumeyer, Noh and Van Keilegom
[20] who introduced estimators for the different components of a heteroscedastic transformation
model and proved the asymptotic normality of these estimators.

Moreover, we refer to the important work of Horowitz [14] who proposed estimators of the
different components of a regression model, in which the transformation is nonparametric and the
regression function is parametric. For the same model, Chen [5] proposed a rank-based estimator
for the transformation that has the advantage of not involving nonparametric smoothing.

In this paper, we will consider a model in which both the transformation and the regression
function are nonparametric, that is, we will consider a nonparametric transformation model of
the form

�(Y) = m(X) + ε, (1.1)

where �(·) and m(·) are respectively, an unknown transformation and an unknown regression
function. We also assume that �(·) is a strictly increasing function and X has compact support
χ ⊂ R

d . Moreover, we assume that Y is a continuous univariate response variable, X is a d-
dimensional covariate and the error term ε has zero mean and is independent of X. We denote by
FX , fX , Fε and fε the distribution and the probability density functions of X and ε respectively.

First, we would like to mention the works of Breiman and Friedman [3], Horowitz [15] and
Jacho-Chávez, Lewbel and Linton [16] among others. They developed fully nonparametric es-
timators but in contexts that are slightly different from model (1.1). Breiman and Friedman [3]
constructed an algorithm for estimating the different components of model (1.1) when the regres-
sion function m is supposed to be additive. Moreover, Horowitz [15] proposed a nonparametric
estimation of a generalized additive model with an unknown link function and Jacho-Chávez,
Lewbel and Linton [16] discussed the identification and the estimation of the unknown functions
H , M , G and F , where r(x, z) = H {M(x, z)} and M(x, z) = G(x) + F(z).

Next, we refer to the paper of Chiappori, Komunjer and Kristensen [7] who developed suffi-
cient conditions so that a nonparametric transformation model, allowing endogenous and exoge-
nous regressors, is identifiable. They also constructed nonparametric estimators of the transfor-
mation, the regression function and the conditional distribution function of ε given X∗, where
X∗ is the vector containing the potentially endogenous component, and analyzed their asymp-
totic properties. Finally, they developed a test to conclude about the exogeneity of a regressor or
not.

In this paper, we will focus on the problem of nonparametric estimation of the transforma-
tion �. We will define two new nonparametric estimators of the transformation � in the case
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where all the components of the vector X are exogenous, and we will show that it often outper-
forms the ones constructed by Chiappori, Komunjer and Kristensen [7].

The main idea of the nonparametric estimators of � developed in Chiappori, Komunjer and
Kristensen [7] is to consider the conditional distribution function of Y given X, denoted by
ϕC(y, x), and to divide its derivative with respect to y, denoted by ϕC,y(y, x), by its deriva-
tive with respect to x1, denoted by ϕC,1(y, x), where x1 is the first component of the vector x.
This particular way of constructing a nonparametric estimator of the transformation was already
considered in Horowitz [14] but in the case of a parametric regression function. More precisely,
under the normalization conditions (I1) introduced in Section 2 and under appropriate conditions,
Chiappori, Komunjer and Kristensen [7] proved in their Theorem 1 that � is globally identified

as �(y) = SC,1(y,x)

SC,1(1,x)
for any x ∈ χ where SC,1(y, x) = ∫ y

0
ϕC,y(w,x)

ϕC,1(w,x)
dw. This result is at the basis

of the definition of the two following estimators that they proposed for �(y):

�̂C,LS(y) =
∫

χ

v(x)
ŜC,1(y, x)

ŜC,1(1, x)
dx, (1.2)

and

�̂C,LAD(y) = arg min
m∈R

∫
χ

v(x)

∣∣∣∣ ŜC,1(y, x)

ŜC,1(1, x)
− m

∣∣∣∣dx, (1.3)

where v is a weighting function, ŜC,1(y, x) = ∫ y

0
ϕ̂C,y (w,x)

ϕ̂C,1(w,x)
dw and ϕ̂C,y(y, x) and ϕ̂C,1(y, x) are

kernel estimators of ϕC,y(y, x) and ϕC,1(y, x).
Hence, to estimate the transformation in a nonparametric way, Chiappori, Komunjer and Kris-

tensen [7] introduced kernel estimators and in particular smoothing on Y . However, the distri-
bution of Y can be very asymmetric, depending on which transformation � is used. If ε is for
instance, normal and � is the logarithmic transform, then Y is log-normal and hence smoothing
for large values of Y will not work well at all. In that case, the kernel estimators based on Y

can work very badly in practice. This naturally impacts the quality of the estimator of the con-
ditional distribution function of Y given X and consequently also those of its derivatives and of
the nonparametric estimators of the transformation as we can see in the simulations in Section 6.

In this paper, we will propose a way to overcome this problem. The main idea will be to
rewrite the transformation �(Y) as �(T (Y )) where � is an increasing function and T is a certain
function such that we can control the distribution of T (Y ). This will be presented more precisely
in Section 2 as well as the identification of model (1.1). In Section 3, we explain how we can
identify the function �(·). Sections 4 and 5 contain respectively, the definitions of the new non-
parametric estimators of the transformation � and the theorems that establish their asymptotic
normality, as well as the technical assumptions we need to obtain these results. In Section 6,
we realize a simulation study in order to compare the performance of our estimators to the ones
developed in Chiappori, Komunjer and Kristensen [7]. The Appendix contains the proofs of the
main results. Finally, the proofs of the technical propositions, which are useful to establish the
main results, and some additional simulation results, are given in Colling and Van Keilegom [11].
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2. Main idea of the estimation procedure

One way to identify model (1.1) is to impose one of the following normalization conditions:

(I1) either �(α1) = a1 and �(α2) = a2 for some α1 < α2 and a1 < a2,
(I2) or �(α1) = a1 and �′(α3) = a3 for some a1, a3, α1, α3.

The main idea of these two sets of conditions is to fix the location and the scale of the model.
Condition �(α1) = a1 fixes the location of model (1.1) in both cases and (I1) and (I2) differ in
their second condition, that is, in the way they fix the scale of model (1.1). We refer to Chiappori,
Komunjer and Kristensen [7], Vanhems and Van Keilegom [22] and Colling and Van Keilegom
[9] among others for more details about these sets of conditions. In this paper, we will work under
(I1) for theoretical reasons and we will consider α1 = 0, a1 = 0, α2 = 1 and a2 = 1 without loss
of generality. Note that the values 0 and 1 can be replaced by any other values as long as they are
in the interior of the support Y of Y , where Y is a connected subset of R.

As explained in the introduction, kernel smoothing based on Y can work very badly in practice.
We will now explain how this can be avoided. The main idea is to rewrite the transformation
�(Y) as �(T (Y )), i.e., � = � ◦ T where � is an increasing function and

T (Y ) = FY (Y ) − FY (0)

FY (1) − FY (0)
,

where FY (·) is the distribution function of Y . Note that we can always write �(Y) in this way,
since T (Y ) is invertible. Moreover, we have to work with T (Y ) instead of the more simple
transformation FY (Y ), since we want to guarantee that T (0) = 0 and T (1) = 1, and hence
�(0) = �(T −1(0)) = 0 and �(1) = �(T −1(1)) = 1. Consequently, the set of normalization
conditions (I1) does not change and we will now consider the following nonparametric trans-
formation model:

�(U) = m(X) + ε, (2.1)

where U = T (Y ) and �(U) = �(Y). We will denote by U ⊂ R the compact support of U . As
FY (Y ) is uniformly distributed on the interval [0,1], it is clear that U is uniformly distributed
on the interval [ −FY (0)

FY (1)−FY (0)
,

1−FY (0)
FY (1)−FY (0)

]. The advantage of working with U instead of Y is that
U has a uniform distribution, and hence kernel smoothing based on U should work much better
than when it is based on Y , which can have very long tails.

3. Identification of �(·)
In this section, we will explain how we can identify the transformation �(·) defined in (2.1). The
way we will do it is similar as in Chiappori, Komunjer and Kristensen [7] except that we will
now work with U = T (Y ) instead of Y .

Let x = (x1, . . . , xd)t and define ϕ(u, x) = FU |X(u, x) the conditional distribution function of
U given X. Using the independence between X and ε, we have

ϕ(u, x) = P(U ≤ u|X = x) = P
(
m(X) + ε ≤ �(u)|X = x

) = Fε

(
�(u) − m(x)

)
.
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Next, Conditions (A2) and (A3) in Section 5.1 imply that the derivatives of ϕ(u, x) with respect
to u and xρ for some ρ ∈ {1, . . . , d} exist. The derivative of ϕ(u, x) with respect to u is denoted
by ϕu(u, x) and is given by

ϕu(u, x) = ∂

∂u
ϕ(u, x) = �′(u)fε

(
�(u) − m(x)

)
, (3.1)

where �′(u) = ∂
∂u

�(u) exists by Condition (A2). Similarly, the derivative of ϕ(u, x) with respect
to xρ is denoted by ϕρ(u, x) and is given by

ϕρ(u, x) = ∂

∂xρ

ϕ(u, x) = −
(

∂

∂xρ

m(x)

)
fε

(
�(u) − m(x)

)
. (3.2)

We have used the fact that the function m(x) is differentiable with respect to xρ by condition
(A3), see Section 5.1. Moreover, we choose ρ such that the set Aρ = {x ∈ χ : ϕρ(u, x) �= 0 ∀u ∈
U0} is non empty, where U0 is a compact subset in the interior of U . This last condition is imposed
in (A4), see Section 5.1. Hence, dividing (3.1) by (3.2), we obtain

�′(u) = −
(

∂

∂xρ

m(x)

)
× ϕu(u, x)

ϕρ(u, x)
. (3.3)

This last expression will be very important to prove the following theorem which states how we
can identify the transformation �(u).

Theorem 3.1. Assume (A1)–(A4). Then, for any ρ ∈ {1, . . . , d} such that Aρ is non empty, � is
identified under (I1) as

�(u) = λρ(u, x) = Sρ(u, x)

Sρ(1, x)
,

where u ∈ U0, sρ(u, x) = ϕu(u,x)
ϕρ(u,x)

and Sρ(u, x) = ∫ u

0 sρ(w,x)dw. Moreover, the expression
λρ(u, x) does not depend on ρ nor x.

The proof of this theorem is the same as the proof of Theorem 1 in Chiappori, Komunjer and
Kristensen [7] and is therefore omitted. This theorem implies that we can arbitrarily choose the
component xρ of the vector x = (x1, . . . , xd)t with respect to which we will derive to construct
the nonparametric estimators of the transformation in Section 4 as long as Aρ is not empty. In
practice, we recommend to choose ρ and x such that ∂

∂xρ
ϕ̂(u, x) is as far as possible from 0,

where ϕ̂(u, x) is defined in the next section. In the following, to construct the estimators of �(u),
we will consider the derivative with respect to x1 without loss of generality.

Note that we established Theorem 3.1 under the particular identification conditions �(0) = 0
and �(1) = 1, which requires that 0 and 1 are in the interior of the support Y of Y . However, if
we consider for instance the square root transform �(Y) = √

Y with Y = [0,+∞[, it is clearly
not the case since the point 0 is at the boundary of Y . To overcome this problem, as we mentioned
at the beginning of Section 2, the points 0 and 1 can be replaced by any other values as long as
they are in the interior of the support Y of Y . In general, if �(α1) = a1 and �(α2) = a2 for some
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α1 < α2 and a1 < a2 such that α1 and α2 are in the interior of Y , it suffices to define � such that
� = � ◦ T̃ where

Ũ = T̃ (Y ) = (α2 − α1)
FY (Y ) − FY (α1)

FY (α2) − FY (α1)
+ α1.

This ensures that T (α1) = α1 and T (α2) = α2 and � satisfies consequently exactly the same
identification conditions as �. Indeed, �(α1) = �(T −1(α1)) = a1 and �(α2) = �(T −1(α2)) =
a2. In this situation, following exactly the same reasoning as in the proof of Theorem 3.1, � is
identified under (I1) as

�(u) = a1 + (a2 − a1)
S̃1(u, x)

S̃1(α2, x)
,

where S̃1(u, x) = ∫ u

α1

ϕ̃ũ(w,x)

ϕ̃1(w,x)
dw and ϕ̃ũ and ϕ̃1 are the derivatives of the conditional distribution

function of Ũ given X with respect to ũ and x1, respectively.

4. Definitions of the new estimators

In this section, we will construct our new nonparametric estimators of the transformation �(u)

that will directly lead to estimators of �(y) by replacing FY by its empirical distribution function
F̂Y . The idea is to construct an estimator of the function λ1(u, x) introduced in Theorem 3.1.

First, for i = 1, . . . , n, let Xi = (Xi1, . . . ,Xid) and assume that we have randomly drawn an
iid sample (X1, Y1), . . ., (Xn,Yn) from the nonparametric transformation model (1.1). Moreover,
we define Ui = T (Yi) = FY (Yi )−FY (0)

FY (1)−FY (0)
.

We can rewrite the conditional distribution function of U given X defined in Section 3 in the
following way:

ϕ(u, x) = p(u,x)

fX(x)
, (4.1)

where

p(u,x) =
∫ u

−∞
fU,X(w,x)dw, fX(x) =

∫
U

fU,X(w,x)dw, (4.2)

and fU,X(u, x) is the joint density function of U and X. Let K be a univariate kernel in R

that satisfies Condition (A5) in Section 5.1, K(u) = ∫ u

−∞ K(w)dw and K(x) be a multivariate

product kernel of the form K(x) = ∏d
i=1 K(xi) with x = (x1, . . . , xd)t . We also introduce hu > 0

and hx > 0 two univariate bandwidths that satisfy Condition (A6) in Section 5.1. Consequently,
a natural kernel estimator of ϕ(u, x) is given by

ϕ̂(u, x) = p̂(u, x)

f̂X(x)
,
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where

p̂(u, x) = 1

n

n∑
i=1

Khu(u − Ûi)Khx (Xi − x) and f̂X(x) = 1

n

n∑
i=1

Khx (Xi − x), (4.3)

with Khu =K(u/hu) and Khx (x) = K(x/hx)/hd
x . Moreover, Ûi is defined by

Ûi = T̂ (Yi) = F̂Y (Yi) − F̂Y (0)

F̂Y (1) − F̂Y (0)
,

where F̂Y (y) = 1
n

∑n
i=1 1{Yi≤y} is the empirical distribution of Y1, . . . , Yn. It is important to no-

tice that we have to work with Û1, . . . , Ûn instead of U1, . . . ,Un since the Ui ’s depend on the
distribution function of Y which is an unknown function. This will make an important difference
when we will develop the asymptotic properties of our estimators in comparison with Chiappori,
Komunjer and Kristensen [7] who constructed their estimators on the basis of Y1, . . . , Yn.

As mentioned in Chiappori, Komunjer and Kristensen [7], we have to use Khu(u− Ûi) instead
of 1{Ûi≤u} because we need ϕ̂(u, x) to be differentiable with respect to u. Also, note that we
could work with a separate bandwidth for each component Xi of the vector X but wanted to
keep the presentation simple.

Next, we consider

ϕu(u, x) = ∂

∂u
ϕ(u, x) = pu(u, x)

fX(x)
, (4.4)

and

ϕ1(u, x) = ∂

∂x1
ϕ(u, x) = p1(u, x)

fX(x)
− p(u,x)fX,1(x)

f 2
X(x)

, (4.5)

where pu(u, x) = ∂
∂u

p(u, x), p1(u, x) = ∂
∂x1

p(u,x) and fX,1(x) = ∂
∂x1

fX(x). We estimate these
quantities respectively, by

ϕ̂u(u, x) = p̂u(u, x)

f̂X(x)
and ϕ̂1(u, x) = p̂1(u, x)

f̂X(x)
− p̂(u, x)f̂X,1(x)

f̂ 2
X(x)

,

where p̂u(u, x) = ∂
∂u

p̂(u, x), p̂1(u, x) = ∂
∂x1

p̂(u, x) and f̂X,1(x) = ∂
∂x1

f̂X(x) and p̂(u, x) and

f̂X(x) are defined in (4.3). Finally, we define the following estimator of λ1(u, x):

λ̂1(u, x) = Ŝ1(u, x)

Ŝ1(1, x)
where Ŝ1(u, x) =

∫ u

0

ϕ̂u(w,x)

ϕ̂1(w,x)
dw. (4.6)

It is important to remark that the estimator λ̂1(u, x) depends on x despite the fact that it is not
the case for the true function λ1(u, x) by Theorem 3.1. Consequently, we will have to integrate
the function λ̂1(u, x) over χ . We also consider a weighting function v(x) that satisfies Condition
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(A9) in Section 5.1. Moreover, Theorem 3.1 implies that �(u) = λ1(u, x) and then

�(u) = arg min
qm∈R

∫
χ

v(x)�
(
λ1(u, x) − qm

)
dx,

where �(·) is a given loss function. In this paper, we will consider �(z) = z2 and �(z) = |z| which
gives more precisely the two following nonparametric estimators for the transformation �(u):

�̂LS(u) =
∫

χ

v(x)̂λ1(u, x) dx, (4.7)

and

�̂LAD(u) = arg min
qm∈R

∫
χ

v(x)
∣∣̂λ1(u, x) − qm

∣∣dx. (4.8)

Next, if we want to estimate see, for example, �(2), we just have to calculate �̂LS(T̂ (2)) or

�̂LAD(T̂ (2)) where T̂ (y) = F̂Y (y)−F̂Y (0)

F̂Y (1)−F̂Y (0)
.

To simplify the theoretical analysis, we follow Chiappori, Komunjer and Kristensen [7] and
introduce a smoothed version of the above LAD estimator:

�̂LAD,b(u) = arg min
qm∈RQb

(
qm, λ̂1(u, ·)), (4.9)

where

Qb

(
qm,λ1(u, ·)) =

∫
χ

v(x)
(
λ1(u, x) − qm

)[
2Lb

(
λ1(u, x) − qm

) − 1
]
dx,

Lb(·) = L(·/b), L is a given distribution function and b > 0 is a bandwidth sequence that satisfy
Condition (A10) in Section 5.1. The main reason for working with �̂LAD,b(u) instead of working
with �̂LAD(u) is that the function Qb is twice differentiable with respect to qm, which will be
needed in the proof. Note that the two estimators can be made arbitrarily close to each other by
letting b tend to zero.

In summary, the construction of our estimators is similar as in Chiappori, Komunjer and Kris-
tensen [7] except that we proposed a way to overcome the facts that the distribution of Y can
be very asymmetric and can have very long tails, which can lead to bad estimations of �(y)

due to the poor quality of the kernel smoothing. In Section 6, we will compare the performance
of our new estimators to those of Chiappori, Komunjer and Kristensen [7] and we will see that
the transformation of U = T (Y ) is recommended, especially for large values of Y . However, the
disadvantage of transforming Y and considering kernel smoothing on Û is the asymptotic theory
that will be considerably more difficult in comparison with Chiappori, Komunjer and Kristensen
[7]. Indeed, we have a lot of technical results to prove before establishing the limiting distri-
butions of the estimators �̂LS(u) and �̂LAD,b(u), see Section A in Colling and Van Keilegom
[11].
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5. Asymptotic results

5.1. Notations and assumptions

First, we need to introduce the following notations:

Dp,0(u, x) = ϕu(u, x)fX,1(x)

ϕ2
1(u, x)f 2

X(x)
, Dp,u(u, x) = 1

fX(x)ϕ1(u, x)
,

Dp,1(u, x) = −ϕu(u, x)

fX(x)ϕ2
1(u, x)

, Df,0(u, x) = −ϕu(u, x)ϕ(u, x)fX,1(x)

ϕ2
1(u, x)f 2

X(x)
,

and

Df,1(u, x) = ϕu(u, x)ϕ(u, x)

ϕ2
1(u, x)fX(x)

.

For any functions p̃(u, x) and f̃ (x), let p̃u(u, x) and p̃1(u, x) be respectively, the derivatives
of p̃(u, x) with respect to u and x1, where x1 is the first component of the vector x ∈ R

d , and
let f̃1(x) be the derivative of the function f̃ (x) with respect to x1. We also define the following
functionals

∇pS1(u, x)[p̃]

=
∫ u

0

{
Dp,0(w,x)p̃(w,x) + Dp,u(w,x)p̃u(w,x) + Dp,1(w,x)p̃1(w,x)

}
dw, (5.1)

and

∇f S1(u, x)[f̃ ] =
∫ u

0

{
Df,0(w,x)f̃ (x) + Df,1(w,x)f̃1(x)

}
dw. (5.2)

The main results of the asymptotic theory require the following regularity conditions on the
distributions of ε given X, the transformation �(u), the regression function m(x), the kernels K

and L, the bandwidths b, hx and hu, the joint density function of U and X and the weighting
function v:

(A1) The distribution function Fε of ε is absolutely continuous and has a density fε that is
continuous on its support. Moreover, X and ε are independent and the support Y of Y is
a connected subset of R.

(A2) The transformation � is strictly increasing and twice continuously differentiable on U0,
where U0 is a compact subset in the interior of U .

(A3) The regression function m is continuously differentiable.
(A4) The set Aρ = {x ∈ χ : ϕρ(u, x) �= 0 ∀u ∈ U0} is nonempty for some ρ ∈ {1, . . . , d}. In

the following, we will take ρ = 1 without loss of generality.
(A5) The kernel K is symmetric, has support [−1,1], K(−1) = K(1) = 0,

∫
K(z)dz = 1,∫

z�K(z) dz = 0 for � = 1, . . . ,m − 1 and
∫

zmK(z)dz < ∞. Moreover, K is m-times
continuously differentiable and K and K ′ are of bounded variation.
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(A6) The bandwidths hx and hu satisfy
√

nhm
x → 0,

√
nhm

u → 0,
√

nhd+2
x

logn
→ ∞ and

√
nh2

uhd
x

logn
→ ∞.

(A7) The joint density function fY,X of (Y,X) is uniformly bounded and m+ 2-times contin-
uously differentiable on Y0 × χ0, where χ0 ⊆ A1 is the compact support of the weight
function v(x) defined in (A9). We also assume that infy:T (y)∈U0 fY (y) > 0, where fY is
the density function of Y .

(A8) infx∈χ0 fX(x) > 0, inf(u,x)∈U0×χ0 | ∂
∂x1

ϕ(u, x)| > 0 and infx∈χ0 |S1(1, x)| > 0.
(A9) The weight function v has compact support χ0 ⊆ A1 with nonempty interior and sat-

isfies
∫
χ0

v(x) dx = 1. Moreover, v is continuous on χ and is m-times continuously
differentiable on χ0.

(A10) L is a twice continuously differentiable distribution function with uniformly bounded
derivatives and with median at 0 and b > 0 is a bandwidth sequence that satisfies nb4 →
∞ and b

√
nhd

x (min(hx,hu))2

logn
→ ∞.

Note that several of these assumptions are the same as in Chiappori, Komunjer and Kristensen
[7]. It is important to remark that m > d + 2 is a consequence of Assumption (A6), which means
that a higher-order kernel is required to ensure that the four conditions of Assumption (A6) are
satisfied when the dimension d of X becomes large.

Next, Condition (A7) implies that the joint density fU,X(u, x) is uniformly bounded, m + 2-
times continuously differentiable and all these derivatives are uniformly bounded, i.e.,

sup
(u,x)∈U0×χ0

∣∣∣∣ ∂ |α|

∂uα0 ∂x
α1
1 · · · ∂x

αd

d

fU,X(u, x)

∣∣∣∣ < ∞,

since fU,X(u, x) can be rewritten as

fU,X(u, x) = fY,X(T −1(u), x)

fY (T −1(u))

(
FY (1) − FY (0)

)
.

Moreover, Condition (A7) implies that the functions p(u,x), pu(u, x), p1(u, x), fX(x) and
fX,1(x) are uniformly bounded, at least m-times continuously differentiable and all these deriva-
tives are uniformly bounded. Indeed, these five functions can be rewritten as functions depend-
ing only of fU,X(u, x), see (4.2). As a consequence, using (4.1), (4.4), (4.5) and the fact that
infx∈χ0 fX(x) > 0 by condition (A8), the functions ϕ(u, x), ϕu(u, x) and ϕ1(u, x) are also uni-
formly bounded, at least m-times continuously differentiable and all these derivatives are uni-
formly bounded. Finally, these conclusions are again the same for the functions Dp,0(u, x),
Dp,u(u, x), Dp,1(u, x), Df,0(u, x), Df,1(u, x) and S1(u, x) using the definitions at the begin-
ning of Section 5, the definition of S1(u, x) in Theorem 3.1 and the facts that infx∈χ0 fX(x) > 0
and inf(u,x)∈U0×χ0 |ϕ1(u, x)| > 0 by condition (A8). All these consequences of Condition (A7)
will be constantly used in the different proofs in Colling and Van Keilegom [11] and in the
Appendix.

Finally, since v(x) = 0 for x /∈ χ0, Condition (A9) implies that
∫
χ

v(x) dx = ∫
χ0

v(x) dx = 1
and also v(x) = 0 for values of x at the boundary of χ0 since v is assumed to be continu-
ous on χ . The last two properties of v will be necessary to prove Theorem 5.1. Indeed, to
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prove Theorem 5.1, we will need to apply Propositions 6 and 7 given in Colling and Van Kei-
legom [11] with vp(u0, x) = vf (u0, x) = v(x)/S1(u0, x) and with vp(u0, x) = vf (u0, x) =
v(x)S1(u0, x)/S2

1(1, x) and these two propositions will require that the functions vp and vf

are continuous on χ and equal 0 for values of x on the boundary of χ0.

5.2. Main theorems

In this section, we introduce two theorems and one corollary. The two first theorems establish
respectively, the limiting distributions of �̂LS(u) and �̂LAD,b(u). However, recall that �̂LS(u) and
�̂LAD,b(u) are nonparametric estimators of �(u) and that our original objective was to construct
nonparametric estimators of �(y). Hence, in addition to these two theorems, we introduce a
corollary that establishes the limiting distributions of �̂LS(T̂ (y)) and �̂LAD,b(T̂ (y)), that are
nonparametric estimators of �(y).

Before stating these results, note that the derivative of ϕ(u, x) with respect to a component of
x is zero for all x ∈ χ if u is at the lower boundary of the support U of U . Hence, Assumptions
(A4) and (A8), given in Section 5.1, cannot be fulfilled for all u ∈ U . Consequently, we have to
restrict Assumptions (A4) and (A8) and also the following two theorems to any u ∈ U0, where
U0 is a compact subset in the interior of U .

Similarly, the convergence established in the next corollary is restricted to any y ∈ Y0, where
Y0 is some compact subset strictly included in the support Y of Y .

In particular, if 0 is the lower boundary of Y , it can be replaced by any other value in the
interior of Y , see the remark at the end of Section 3. Note that this will also avoid boundary
problems when we will do kernel smoothing on U .

Theorem 5.1. Assume (A1)–(A9). Then, under (I1), the process
√

n(�̂LS(u) − �(u)) converges
weakly to N (u), where u ∈ U0 and N is a centered Gaussian process with covariance func-
tion given by �(u1, u2) = E[δv

Xi,Yi
(u1)δ

v
Xi,Yi

(u2)], where δv
Xi,Yi

(u) = δ
v1
Xi,Yi

(1, u) − δ
v2
Xi,Yi

(u,1),

v1(u0, x) = v(x)
S1(u0,x)

, v2(u0, x) = v(x)S1(u0,x)

S2
1 (1,x)

,

δṽ
Xi ,Yi

(u0, u)

=
∫ u

max(0,Ui )

{
ṽ(u0,Xi)Dp,0(w,Xi) − ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]∣∣∣∣
x=Xi

}
dw

+
∫ u

0

{
ṽ(u0,Xi)Df,0(w,Xi) − ∂

∂x1

[̃
v(u0, x)Df,1(w,x)

]∣∣∣∣
x=Xi

}
dw

+ (1{Ui≤u} − 1{Ui≤0})̃v(u0,Xi)Dp,u(Ui,Xi)

+
∫ u

0

[
1{Ui≤w} − 1{Ui≤0}
FY (1) − FY (0)

− w

]∫
χ

({
ṽ(u0, x)Dp,0(w,x)

+ ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]}
fU,X(w,x) + ṽ(u0, x)Dp,u(w,x)

∂

∂w
fU,X(w,x)

)
dx dw
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−
(

1{Yi≤1} − 1{Yi≤0}
FY (1) − FY (0)

− 1

)∫ u

0
w

∫
χ

{
ṽ(u0, x)Dp,0(w,x)

− ṽ(u0, x)
∂

∂w
Dp,u(w,x) + ∂

∂x1

[̃
v(u0, x)Dp,1(u, x)

]}
fU,X(w,x)dx dw

−
(

1{Yi≤1} − 1{Yi≤0}
FY (1) − FY (0)

− 1

)
u

∫
X

ṽ(u0, x)Dp,u(u, x)fU,X(u, x) dx, (5.3)

for u0 ∈ U and ṽ equals either v1 or v2.

Remark 5.1. Note that the estimator �̂LS(u) is not necessarily monotone is u. We can make
the estimator monotone in a second step by following for example, the rearrangement principle
introduced by Dette, Neumeyer and Pilz [12]. In Chernozhukov, Fernández-Val and Galichon
[6], it was shown that the rearrangement operator is Hadamard diffferentiable and hence the weak
convergence of the estimator obtained by rearranging the estimator �̂LS(u) follows immediately.

Theorem 5.2. Assume (A1)–(A10). Then, under (I1), the process
√

n(�̂LAD,b(u) − �(u)) con-
verges weakly to N (u), where u ∈ U0 and N (u) is the same centered Gaussian process as in
Theorem 5.1.

Corollary 5.1. Assume (A1)–(A10). Then, the processes
√

n(�̂LS(T̂ (y)) − �(y)) and√
n(�̂LAD,b(T̂ (y)) − �(y)) converge weakly to Ñ (y) for y ∈ Y0, where Y0 is a compact

subset strictly included in T −1(U0) such that supy∈Y0
|�(r)(T (y))| < ∞ for r = 1,2 and

Ñ is a centered Gaussian process with covariance function given by Cov(Ñ(y1), Ñ(y2)) =
E[ϕv

Xi,Yi
(y1)ϕ

v
Xi,Yi

(y2)], where

ϕv
Xi,Yi

(y) = δv
Xi,Yi

(
T (y)

) + �′(T (y))

FY (1) − FY (0)

(
1{Y≤y} − 1{Y≤0} − FY (y) + FY (0)

− T (y)
[
1{0≤Y≤1} − FY (1) + FY (0)

])
, (5.4)

and δv
Xi,Yi

(·) is defined in Theorem 5.1.

The proofs of the two theorems and the corollary are given in the Appendix. It is important
to notice that the function δv

Xi,Yi
(u) is not the same as the one obtained in Chiappori, Komunjer

and Kristensen [7]. The first three terms of the expression δv
Xi,Yi

(u) are the same as in Chiappori,
Komunjer and Kristensen [7] and the last three terms in δv

Xi,Yi
(u) are new contributions to the

final asymptotic representation that are due to the estimation of U by Û . We refer to Proposition 3
in Colling and Van Keilegom [11] that shows in detail where these last three terms come from.
Chiappori, Komunjer and Kristensen [7] did not need this proposition since they worked directly
with Y .

Remark 5.2. Note that the estimators �̂LS(u) and �̂LAD,b(u) have exactly the same asymptotic
distribution, which might seem surprising at first sight. As noted by a referee, this is caused by
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the fact that the bandwidth b used to smooth the LAD estimator is sufficiently large, so that the
convergence rate of λ̂1(u, x) − �(u) is smaller than b. The current proof will not work if the
convergence speeds are reversed (i.e., if b is smaller than the convergence rate of λ̂1(u, x) −
�(u)), and in that case it is expected that the asymptotic distributions differ. To illustrate this
point we consider a simplified version of the aggregated estimators where the mean/median are
only taken over a fixed and finite number of points x1, . . . , x�:

�̂alt
LS(u) = 1

�

�∑
j=1

λ̂1(u, xj )

�̂alt
LAD(u) = argmin

qm∈R
1

�

�∑
j=1

∣∣̂λ1(u, xj ) − qm

∣∣
= median

(̂
λ1(u, x1), . . . , λ̂1(u, x�)

)
.

From equation (A.1) and Proposition 5 in Colling and Van Keilegom [11] it follows that
(nhd

x)1/2(̂λ1(u, x1)−�(u), . . . , λ̂1(u, x�)−�(u)) converges in distribution to a �-variate normal
random vector Wu(x1, . . . , x�) = (Wu(x1), . . . ,Wu(x�)) of mean zero and diagonal variance-
covariance matrix diag(σ 2

1u, . . . , σ
2
�u), since the components of this vector are independent for n

large. Hence,

(
nhd

x

)1/2(
�̂alt

LS(u) − �(u)
) = 1

�

�∑
j=1

(
nhd

x

)1/2(̂
λ1(u, xj ) − �(u)

) d→ 1

�

�∑
j=1

Wu(xj ),

and the latter variable has a normal distribution with mean zero and variance given by
�−2 ∑�

j=1 σ 2
ju. On the other hand,

(
nhd

x

)1/2(
�̂alt

LAD(u) − �(u)
)

= median
((

nhd
x

)1/2(̂
λ1(u, x1) − �(u)

)
, . . . ,

(
nhd

x

)1/2(̂
λ1(u, x�) − �(u)

))
,

and this converges to the median of Wu(x1), . . ., Wu(x�), which will be different from the limit
of the LS estimator.

6. Simulations

In this section, we perform simulations in order to compare the performance of the new non-
parametric estimators �̂LS(T̂ (y)) and �̂LAD(T̂ (y)) of the transformation with the estimators
�̂C,LS(y) and �̂C,LAD(y) defined in (1.2) and (1.3) and given in Chiappori, Komunjer and Kris-
tensen [7].

We consider d = 1 and the simulated model is �(Yi) = 6Xi − 3 + εi , where X1, . . . ,Xn

are independent uniform random variables on [0,1] and ε1, . . . , εn are independent standard
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normal random variables truncated on [−3,3]. Here, we will consider the four following different
transformations:

�1(Y ) =

⎧⎪⎪⎨⎪⎪⎩
log(Y + 1)

log 2
if Y ≥ 0

1 − (1 − Y)2

2 log 2
if Y < 0,

�2(Y ) =

⎧⎪⎪⎨⎪⎪⎩
√

Y + 1 − 1√
2 − 1

if Y ≥ 0

1 − (1 − Y)3/2

3(
√

2 − 1)
if Y < 0,

�3(Y ) = Y and �4(Y ) =

⎧⎪⎪⎨⎪⎪⎩
(Y + 1)3/2 − 1

2
√

2 − 1
if Y ≥ 0

3(1 − √
1 − Y )

2
√

2 − 1
if Y < 0.

Hence, we can easily verify that Y takes values on the intervals [−2.05,63], [−3.15,11.15],
[−6,6] and [−20.69,4.23] when we use the above simulated model with the transformations
�j(Y ), for j = 1, . . . ,4, respectively.

Note that these four transformations are particular cases of the Yeo and Johnson [24] transfor-
mation up to a multiplicative constant. Indeed, the Yeo and Johnson [24] is given by

�θ(Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Y + 1)θ − 1

θ
if Y ≥ 0, θ �= 0

log(Y + 1) if Y ≥ 0, θ = 0
−[(−Y + 1)2−θ − 1]

2 − θ
if Y < 0, θ �= 2

− log(−Y + 1) if Y < 0, θ = 2,

and �1(Y ) = �θ=0(Y )
log 2 , �2(Y ) = �θ=0.5(Y )

2(
√

2−1)
, �3(Y ) = �θ=1(Y ) and �4(Y ) = 3�θ=1.5(Y )

2(2
√

2−1)
. These

different multiplicative constants were introduced in order to ensure that �j(1) = 1 for j =
1, . . . ,4. Moreover, the Yeo and Johnson transformation is such that �θ(0) = 0 for all θ . Hence,
�j(0) = 0 for j = 1, . . . ,4 and the normalization conditions (I1) are satisfied.

We will now explain how we approximate the expressions �̂LS(u) and �̂LAD(u) in practice.
The reasoning will be the same for �̂C,LS(y) and �̂C,LAD(y). Note that K(x) = 3

4 (1−x2)1{|x|≤1}
is the Epanechnikov kernel and we select the bandwidths hx and hu by a classical bandwidth se-
lection rule for kernel density estimation. For simplicity, we choose here the normal reference
rule, i.e., ĥx = (40

√
π)1/5n−1/5σ̂x and ĥu = (40

√
π)1/5n−1/5σ̂u where σ̂x and σ̂u are the clas-

sical estimators of the standard deviations of X and U respectively. First, we generate a grid
x∗

1 , . . ., x∗
Nx

of Nx equidistant points between min1≤j≤n Xj and max1≤j≤n Xj . Hence, we can
compute

Ŝ1
(
u,x∗

�

) =
∫ u

0

ϕ̂u(w,x∗
� )

ϕ̂1(w,x∗
� )

dw and λ̂1
(
u,x∗

�

) = Ŝ1(u, x∗
� )

Ŝ1(1, x∗
� )

,

for each � = 1, . . . ,Nx . However, in practice, the expression ϕ̂1(w,x∗
� ) could be very close to 0

for some � = 1, . . . ,Nx , and consequently, the integral
∫ u

0
ϕ̂u(w,x∗

� )

ϕ̂1(w,x∗
� )

dw could diverge. To over-
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come this problem, we will remove from the original sample x∗
1 , . . ., x∗

Nx
the values x∗

� such

that Ŝ1(u, x∗
� ) diverges. We will also remove the x∗-values that are within 0.01 of the values x∗

�

such that Ŝ1(u, x∗
� ) diverges, even if the corresponding integrals do not diverge. The purpose is

to avoid too small values of ϕ̂1(w,x∗
� ) and thus too large values of λ̂1(·) that would deteriorate

the final estimation of the transformation. This is allowed since λ̂1(u, x) estimates �(u) for all
x ∈ χ . We assume finally that nx values remain, denoted by x̃1, . . ., x̃nx , from our original sample
x∗

1 , . . ., x∗
Nx

. In the following, we will use Nx = 100. Finally, we consider the weighting function

v(x) = 1, for all x such that the above integral does not diverge, and �̂LS(u) and �̂LAD(u) are
consequently approximated by

�̃LS(u) = 1

nx

nx∑
i=1

λ̂1(u, x̃i) and �̃LAD(u) = median
(̂
λ1(u, x̃1), . . . , λ̂1(u, x̃nx )

)
.

Then, the transformations �1(y), �2(y), �3(y) and �4(y) will be estimated by �̃LS(T̂ (y))

and �̃LAD(T̂ (y)). Using a similar procedure, we can construct �̃C,LS(y) and �̃C,LAD(y) the
approximations of �̂C,LS(y) and �̂C,LAD(y).

Each graph of Figure 1 shows the true transformation �1(y) in black and each line in grey
represents one estimation of �1(y) obtained with one sample of size n = 200. The top graphs on

the left and on the right of Figure 1 were respectively, obtained with the estimators �̃LS(T̂ (y))

and �̃LAD(T̂ (y)) developed in this paper and the bottom graphs on the left and on the right of
Figure 1 were respectively, obtained with the estimators �̃C,LS(y) and �̃C,LAD(y), each of the
four cases on the basis of 200 samples of size n = 200. Figures 2 to 4 are constructed exactly in
the same way but for �2(y), �3(y) and �4(y), respectively.

First, we observe on these four figures that the estimators constructed with the median, that is,
the LAD-estimators, outperform in all tried scenarios the corresponding estimators constructed
with the mean, that is, the LS-estimators. This can be explained by the fact that the mean version
of the estimator is more sensitive to outliers in λ̂1(u, x̃) as we vary x̃. Hence, it is not surprising
if the LAD-estimators behave better than the corresponding LS-estimators from the biases and
the variances points of view. In the following, we will thus concentrate our conclusions on the
LAD versions of the estimators.

We also observed in Figures 1 to 4 that the estimations of the transformation � are not nec-
essarily monotone and especially the ones obtained with the mean versions of the estimator. As
already mentioned in Remark 5.1, the estimators could be monotonized by applying for example,
the rearrangement principle proposed by Dette, Neumeyer and Pilz [12].

Next, we also introduce Tables 1 to 4 that show the estimations of the biases, variances and
mean squared errors of the LAD-estimators of the transformations �j(y), j = 1, . . . ,4 evaluated
at some specific values of y.

By construction, �̃LAD(T̂ (0)) = �̃LAD(0) = 0, �̃C,LAD(0) = 0, �̃LAD(T̂ (1)) = �̃LAD(1) = 1
and �̃C,LAD(1) = 1, which justifies the fact that all the grey lines from Figures 1 to 4 cross the
points (0,0) and (1,1). At these points, the variances of all estimators are equal to 0 and we
can see in Tables 1 to 4 that these variances increase for both LAD-estimators when y gets away
from 0 in negative values and from 1 in positive values.
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Figure 1. Comparison of the different nonparametric estimators of the transformation �1(Y ).

Moreover, when y is close to 0 and 1, the estimations of �j(y), for j = 1, . . . ,4, are slightly
better in terms of variances and biases when we use �̃C,LAD(y), see, for example, �j(0.5).
However, when we estimate �1(y), �2(y) and �4(y) and when y gets away from 0 in negative
values and from 1 in positive values, the absolute value of the biases of the �̃C,LAD(y) estimator
become significantly bigger and bigger, in comparison with the biases of �̃LAD(y) that remain
globally constant. This gives very poor estimations of the transformations �j(y) for large values
of |y| when we use �̃C,LAD(y), see for examples the estimations of �1(10), �2(5) and �4(−4),
even if the estimations of �j(y), for j = 1, . . . ,4, are globally better in terms of variance when
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Figure 2. Comparison of the different nonparametric estimators of the transformation �2(Y ).

we use �̃C,LAD(y). As explained in the introduction, it is due to the fact that �̃C,LAD(y) is
constructed by doing smoothing on Y1, . . . , Yn which are drawn from a distribution with possibly
a long tail. As a consequence, the kernel estimators behaves not always well in that cases and
especially for large values of y.

In conclusion, as we can see in Figures 1 to 4 and in Tables 1 to 4, �̃LAD(T̂ (y)) clearly
outperforms �̃C,LAD(y) when we consider �1(y), �2(y) and �4(y) and large values of |y|
and �̃C,LAD(y) only outperforms �̃LAD(T̂ (y)) when we consider the identity transformation
�3(y). Moreover, we observe that �̃C,LAD(y) gives very poor estimations of �1(y), �2(y)
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Figure 3. Comparison of the different nonparametric estimators of the transformation �3(Y ).

and �4(y) when |y| increases, which suggests that �̃C,LAD(y) is clearly inappropriate when
the transformation of the response is not the identity. Indeed, the only case where �̃C,LAD(y)

performed well corresponds to a nonparametric regression model without transformation of the
response.

Finally, we have also done a simulation in which we work with fixed bandwidths for hy and
hu instead of the above stochastic rule-of-thumb bandwidths. The bandwidth hx is estimated
by ĥx = (40

√
π)1/5n−1/5σ̂x as before. The results for model 1 and 2 are given in Section B in

Colling and Van Keilegom [11] (the results for the other models being similar). The graphs in
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Figure 4. Comparison of the different nonparametric estimators of the transformation �4(Y ).

Colling and Van Keilegom [11] show that in most cases the MSE under the stochastic rule-of-
thumb bandwidth is close to the optimal MSE that is obtained over a range of fixed bandwidths.
This shows that the proposed bandwidth selection rule performs well in practice.

An optimal nonparametric estimator of the transformation could be obtained by combining
the estimator given in Chiappori, Komunjer and Kristensen [7] when y is close to the points that
define the identification conditions and our new estimator when y is far away from these points,
so that we get the best from the two estimators. However, important questions arise such as the
determination of the “critical” point(s), depending on the identification conditions and the true



Estimation of fully nonparametric transformation models 3781

Table 1. Estimations of the biases, variances and mean squared errors of the two LAD-estimators of �1(y)

evaluated at some specific values of y

Some values of y �̃LAD(T̂ (y)) �̃C,LAD(y)

Bias Var MSE Bias Var MSE

−1.5 0.2440 0.4682 0.5277 1.5102 0.0278 2.3087
−1 −0.1338 0.2151 0.2330 0.7600 0.0073 0.5850

0.5 0.0012 0.0076 0.0076 −0.0365 0.0001 0.0014
2 0.0577 0.0364 0.0397 0.0809 0.0033 0.0099
6 0.1121 0.1706 0.1831 0.3777 0.1420 0.2846
8 0.0222 0.2096 0.2101 0.5501 0.3234 0.6260

10 −0.0682 0.2466 0.2513 0.7581 0.5713 1.1460

Table 2. Estimations of the biases, variances and mean squared errors of the two LAD-estimators of �2(y)

evaluated at some specific values of y

Some values of y �̃LAD(T̂ (y)) �̃C,LAD(y)

Bias Var MSE Bias Var MSE

−2 0.0348 0.4137 0.4149 0.6138 0.0418 0.4185
−1.5 −0.1346 0.2417 0.2598 0.4054 0.0144 0.1788

0.5 −0.0470 0.0079 0.0079 −0.0156 0.0001 0.0003
2 0.0775 0.0479 0.0539 0.0642 0.0042 0.0083
4.5 −0.0012 0.2204 0.2204 0.3747 0.1665 0.3069
5 −0.0897 0.2440 0.2520 0.4769 0.2568 0.4842
6 −0.3565 0.2980 0.4251 0.7784 0.6872 1.2931

Table 3. Estimations of the biases, variances and mean squared errors of the two LAD-estimators of �3(y)

evaluated at some specific values of y

Some values of y �̃LAD(T̂ (y)) �̃C,LAD(y)

Bias Var MSE Bias Var MSE

−3 −0.0830 0.3663 0.3732 −0.1350 0.1078 0.1260
−2 −0.1262 0.1836 0.1995 −0.0433 0.0298 0.0317
−1 −0.0530 0.0590 0.0618 −0.0063 0.0038 0.0039

0.5 −0.0062 0.0080 0.0080 −0.0016 0.0001 0.0001
1.5 0.0497 0.0324 0.0348 0.0107 0.0007 0.0008
2 0.1039 0.0783 0.0891 0.0360 0.0049 0.0062
3 0.0686 0.1915 0.1962 0.1361 0.0400 0.0585
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Table 4. Estimations of the biases, variances and mean squared errors of the two LAD-estimators of �4(y)

evaluated at some specific values of y

Some values of y �̃LAD(T̂ (y)) �̃C,LAD(y)

Bias Var MSE Bias Var MSE

−5 −0.1344 0.2411 0.2591 −0.8359 0.0917 0.7904
−4 −0.1235 0.1884 0.2037 −0.6624 0.0503 0.4892
−3 −0.0989 0.1357 0.1455 −0.5121 0.0225 0.2847
−2 −0.0640 0.0755 0.0796 −0.3534 0.0062 0.1311
−1 −0.0341 0.0349 0.0361 −0.1689 0.0008 0.0293

0.5 −0.0054 0.0082 0.0082 0.0230 0.00002 0.0006
1.5 0.0595 0.0381 0.0416 −0.0575 0.0002 0.0035

transformation, from which we have to switch from one estimator to the other. This could be
subject to future research.

Finally, another way to improve the performance of these estimators could be to fix the points
that define the identification conditions according to the interval in which we are interested to
estimate the transformation.

Appendix: Proofs of the main results

In this section, we give the proofs of the two main theorems and the corollary introduced in Sec-
tion 5.2, regarding the limiting distributions of our new nonparametric estimators of the transfor-
mations �(u) and �(y), respectively.

Proof of Theorem 5.1. First, using successively Theorem 3.1, equation (4.6) and Proposition 1
in Colling and Van Keilegom [11], we have

λ̂1(u, x) − �(u) = λ̂1(u, x) − λ1(u, x)

= Ŝ1(u, x)

Ŝ1(1, x)
− S1(u, x)

S1(1, x)

= 1

S1(1, x)

{
Ŝ1(u, x) − S1(u, x)

} − S1(u, x)

S2
1(1, x)

{
Ŝ1(1, x) − S1(1, x)

}
− 1

Ŝ1(1, x)S1(1, x)

{
Ŝ1(1, x) − S1(1, x)

}{
Ŝ1(u, x) − S1(u, x)

}
+ S1(u, x)

Ŝ1(1, x)S2
1(1, x)

{
Ŝ1(1, x) − S1(1, x)

}2
. (A.1)
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Next, using the facts that

∣∣Ŝ1(1, x) − S1(1, x)
∣∣ ≤ sup

(u,x)∈U0×χ0

∣∣Ŝ1(u, x) − S1(u, x)
∣∣ = ‖Ŝ1 − S1‖∞,

∣∣Ŝ1(u, x) − S1(u, x)
∣∣ ≤ sup

(u,x)∈U0×χ0

∣∣Ŝ1(u, x) − S1(u, x)
∣∣ = ‖Ŝ1 − S1‖∞,

and sup(u,x)∈U0×χ0
|S1(u, x)| < ∞ and infx∈χ0 |S1(1, x)| > 0 by Conditions (A7), (A8) and the

fact that ‖Ŝ1 − S1‖∞ = oP (1), we can conclude that the third and the fourth terms on the right
hand side of (A.1) are O(‖Ŝ1 −S1‖2∞). These two terms are also oP (n−1/2) uniformly in (u, x) ∈
U0 × χ0 using successively Propositions 5 and 4(ii) in Colling and Van Keilegom [11].

Moreover, using Proposition 5 in Colling and Van Keilegom [11] and the facts that
supx∈χ0

|v(x)| < ∞ and infx∈χ0 |S1(1, x)| > 0 by Conditions (A8) and (A9), we have

∫
χ

v(x)

S1(1, x)

{
Ŝ1(u, x) − S1(u, x)

}
dx

=
∫

χ

v(x)

S1(1, x)

{∇pS1(u, x)[p̂ − p] + ∇f S1(u, x)[f̂X − fX]}dx + oP

(
n−1/2).

Hence, we can apply Propositions 6 and 7 in Colling and Van Keilegom [11] with u0 = 1 and
where v1(u0, x) = v(x)

S1(u0,x)
is the common function both for vp(·) and vf (·). We obtain:

∫
χ

v(x)

S1(1, x)

{
Ŝ1(u, x) − S1(u, x)

}
dx = 1

n

n∑
i=1

δ
v1
Xi,Yi

(1, u) + oP

(
n−1/2), (A.2)

uniformly in (u, x) ∈ U0 × χ0, where δ
v1
Xi,Yi

(u0, u) is defined in (5.3). Similarly, using succes-
sively Proposition 5 in Colling and Van Keilegom [11], the facts that sup(u,x)∈U0×χ0

|S1(u, x)| <
∞, infx∈χ0 |S1(1, x)| > 0 and supx∈χ0

|v(x)| < ∞ as consequences of Conditions (A7), (A8)
and (A9) and Propositions 6 and 7 in Colling and Van Keilegom [11] with u0 = u and where
v2(u0, x) = v(x)S1(u0,x)

S2
1 (1,x)

is the common function both for vp(·) and vf (·), we obtain

∫
χ

v(x)S1(u, x)

S2
1(1, x)

{
Ŝ1(1, x) − S1(1, x)

}
dx

=
∫

χ

v(x)S1(u, x)

S2
1(1, x)

{∇pS1(1, x)[p̂ − p] + ∇f S1(1, x)[f̂X − fX]}dx + oP

(
n−1/2)

= 1

n

n∑
i=1

δ
v2
Xi,Yi

(u,1) + oP

(
n−1/2), (A.3)
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uniformly in (u, x) ∈ U0 × χ0, where δ
v2
Xi,Yi

(u0, u) is defined in (5.3). Next, using the definition

of �̂LS(u) in (4.7) and the equations (A.1), (A.2) and (A.3), we have

√
n
(
�̂LS(u) − �(u)

) = √
n

∫
χ

v(x)
{̂
λ1(u, x) − �(u)

}
dx

= √
n

{
1

n

n∑
i=1

δ
v1
Xi,Yi

(1, u) − 1

n

n∑
i=1

δ
v2
Xi,Yi

(u,1) + oP

(
n−1/2)}

= n−1/2
n∑

i=1

δv
Xi,Yi

(u) + oP (1),

where δv
Xi,Yi

(u) = δ
v1
Xi,Yi

(1, u) − δ
v2
Xi,Yi

(u,1). The pointwise weak convergence of
√

n(�̂LS(u) −
�(u)) to a Gaussian distribution is obtained using the central limit theorem. Next, to extend this
result to weak functional convergence, we will prove that the class

F =
{
(a, b, c) →

∫ u

max(0,a)

{
ṽ(u0, b)Dp,0(w,b) − ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]∣∣∣∣
x=b

}
dw

+
∫ u

0

{
ṽ(u0, b)Df,0(w,b) − ∂

∂x1

[̃
v(u0, x)Df,1(w,x)

]∣∣∣∣
x=b

}
dw

+ (1{a≤u} − 1{a≤0})̃v(u0, b)Dp,u(a, b)

+
∫ u

0

[
1{a≤w} − 1{a≤0}
FY (1) − FY (0)

− w

]∫
χ

({
ṽ(u0, x)Dp,0(w,x)

+ ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]}
fU,X(w,x) + ṽ(u0, x)Dp,u(w,x)

∂

∂w
fU,X(w,x)

)
dx dw

−
(

1{c≤1} − 1{c≤0}
FY (1) − FY (0)

− 1

)∫ u

0
w

∫
χ

{
ṽ(u0, x)Dp,0(w,x)

− ṽ(u0, x)
∂

∂w
Dp,u(w,x) + ∂

∂x1

[̃
v(u0, x)Dp,1(u, x)

]}
fU,X(w,x)dx dw

−
(

1{c≤1} − 1{c≤0}
FY (1) − FY (0)

− 1

)
u

∫
X

ṽ(u0, x)Dp,u(u, x)fU,X(u, x) dx : u,u0 ∈ U0

}
,

where ṽ will represent either v1 or v2, is Donsker. Indeed, F = {(a, b, c) → δṽ
a,b(u0, u), u ∈

U0, u0 ∈ U0}. To obtain this result, it suffices to prove that the classes

F1 =
{
(a, b) →

∫ u

max(0,a)

{
ṽ(u0, b)Dp,0(w,b) − ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]∣∣∣∣
x=b

}
dw

+
∫ u

0

{
ṽ(u0, b)Df,0(w,b) − ∂

∂x1

[̃
v(u0, x)Df,1(w,x)

]∣∣∣∣
x=b

}
dw : u,u0 ∈ U0

}
,
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F2 = {a → 1{a≤u} − 1{a≤0} : u ∈ U0},
F3 = {

(a, b) → ṽ(u0, b)Dp,u(a, b) : u,u0 ∈ U0
}
,

F4 =
{
a → 1

FY (1) − FY (0)

∫ u

max(0,a)

∫
χ

({
ṽ(u0, x)Dp,0(w,x)

+ ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]}
fU,X(w,x)

+ ṽ(u0, x)Dp,u(w,x)
∂

∂w
fU,X(w,x)

)
dx dw : u,u0 ∈ U0

}
,

F5 =
{
a → 1{a≤0}

FY (1) − FY (0)

}
F6 =

{
−

∫ u

0

∫
χ

({
ṽ(u0, x)Dp,0(w,x) + ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]}
fU,X(w,x)

+ ṽ(u0, x)Dp,u(w,x)
∂

∂w
fU,X(w,x)

)
dx dw : u,u0 ∈ U0

}
,

F7 =
{
−

∫ u

0
w

∫
χ

({
ṽ(u0, x)Dp,0(w,x) + ∂

∂x1

[̃
v(u0, x)Dp,1(w,x)

]}
fU,X(w,x)

+ ṽ(u0, x)Dp,u(w,x)
∂

∂w
fU,X(w,x)

)
dx dw : u,u0 ∈ U0

}
,

F8 =
{
c → − 1{c≤1} − 1{c≤0}

FY (1) − FY (0)
+ 1

}
,

F9 =
{∫ u

0
w

∫
χ

{
ṽ(u0, x)Dp,0(w,x) − ṽ(u0, x)

∂

∂w
Dp,u(w,x)

+ ∂

∂x1

[̃
v(u0, x)Dp,1(u, x)

]}
fU,X(w,x)dx dw : u,u0 ∈ U0

}
,

and

F10 =
{∫

X
ṽ(u0, x)Dp,u(u, x)fU,X(u, x) dx : u,u0 ∈ U0

}
,

are Donsker and to apply Examples 2.10.7 and 2.10.8 in van der Vaart and Wellner [23] since
F =F1 +F2F3 +F4 +F5F6 +F7 +F8F9 +F8F10.

The reasoning that follows holds both for ṽ = v1 and ṽ = v2. First, note that all the functions
that compose F1, F3, F4, F6, F7, F9 and F10 are at least m times continuously differentiable
by Conditions (A7) and (A9) which implies that m is the smoothness of these classes. Hence,
applying Corollary 2.7.2 in van der Vaart and Wellner [23], we get that logN[ ](̃ε,F1,L2(P1)) ≤
C1̃ε

−(d+1)/m, where C1 is some positive constant, N[ ](̃ε,F1,L2(P1)) is the ε̃-bracketing number
of the class F1, P1 is the probability measure corresponding to the distribution of (U,X), and
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L2(P1) is the L2-norm. Consequently,∫ +∞

0

√
logN[ ]

(̃
ε,F1,L2(P1)

)
dε̃ =

∫ 2C

0

√
logN[ ]

(̃
ε,F1,L2(P1)

)
dε̃ ≤

√
C1(2C)

−d−1
2m

+1

−d−1
2m

+ 1
,

where C is a uniform upper bound for f1 when f1 ∈ F1. The last expression is finite provided
m > (d +1)/2, which is the case since m > d +2 by condition (A6). We obtained the first equal-
ity since only one ε̃-bracket suffices to cover F1 if ε̃ > 2C. Using exactly the same reasoning, we
can prove for j = 3,4,6,7,9,10 that

∫ +∞
0

√
logN[ ](̃ε,Fj ,L2(Pj )) dε̃ < ∞ where Pj ≡ P1.

Moreover, F2 is a class of increasing functions with image in [0,1]. Hence, applying Theo-
rem 2.7.5 in van der Vaart and Wellner [23], we get that logN[ ](̃ε,F2,L2(P2)) ≤ C2̃ε

−1 where
C2 is some positive constant and P2 is the probability measure corresponding to the distribution
of U . Hence,∫ +∞

0

√
logN[ ]

(̃
ε,F2,L2(P2)

)
dε̃ =

∫ 1

0

√
logN[ ]

(̃
ε,F2,L2(P2)

)
dε̃ ≤ 2

√
C2 < ∞,

where the first equality was obtained since only one ε̃-bracket suffices to cover F2 if ε̃ > 1.
Finally, only one bracket suffices to cover F5 and F8 since these classes of functions do not
depend on u and u0. Then, logN[ ](̃ε,F5,L2(P5)) = 0 and logN[ ](̃ε,F8,L2(P8)) = 0 where P5
and P8 are the probability measures corresponding to the distribution of Y .

Moreover, for j = 1, . . . ,10, we will now prove that the envelope functions Fj of the classes
Fj possess a weak second moment, that is, P(Fj > w) = o(w−2) as w → ∞. The envelope
function of Fj is some function Fj such that |fj (u, x)| ≤ Fj (u, x) for all (u, x) ∈ U0 × χ0 and
fj ∈Fj .

We start with F2 which is the easier case. Indeed, for all functions f2 ∈ F2, we have |f2| ≤
F2 = 1 uniformly in (u, x) ∈ U0 × χ0. Hence, using Markov’s inequality, P(F2 > w) ≤ E(F 3

2 )

w3 =
1

w3 , which is also O(w−3) and o(w−2). Next, if f5 ∈ F5 and f8 ∈ F8, we necessarily have

|f5| ≤ F5 = 1
FY (1)−FY (0)

, and |f8| ≤ F8 = 1
FY (1)−FY (0)

+ 1, which are constants. Then, we have

again P(F5 > w) = o(w−2) and P(F8 > w) = o(w−2).
Finally, the reasoning that follows is the same for the remaining classes and we explain it in

detail only for F1. If f1 ∈F1, we have |f1| ≤ F1 where F1 is such that

F 3
1 ≤ C4

{
sup

(u,u0,x)∈U2
0 ×χ0

∣∣̃v(u0, x)Dp,0(u, x)
∣∣3 + sup

(u,u0,x)∈U2
0 ×χ0

∣∣∣∣ ∂

∂x1

(̃
v(u0, x)Dp,1(u, x)

)∣∣∣∣3

+ sup
(u,u0,x)∈U2

0 ×χ0

∣∣̃v(u0, x)Df,0(u, x)
∣∣3 + sup

(u,u0,x)∈U2
0 ×χ0

∣∣∣∣ ∂

∂x1

(̃
v(u0, x)Df,1(u, x)

)∣∣∣∣3}
,

(A.4)

where C4 is some positive constant. All the functions on the right-hand side of (A.4) are contin-
uous and the set U0 and χ0 are compacts. Hence, E(F 3

1 ) < ∞ which implies that P(F1 > w) is
o(w−2) using Markov’s inequality.
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Consequently, for j = 1, . . . ,10, we have proved that
∫ +∞

0

√
logN[ ](̃ε,F2,L2(Pj )) dε̃ < ∞

and the envelope functions Fj of Fj possess a weak second moment, which implies that the
classes Fj are Donsker by Theorem 2.5.6 in van der Vaart and Wellner [23]. In particular, the
classes {(a, b) → δ

v1
a,b(1, u), u ∈ U0} and {(a, b) → δ

v2
a,b(u,1), u ∈ U0} are Donsker and thus also

the class {(a, b) → δv
a,b(u),u ∈ U0}. As a consequence, the process

√
n(�̂LS(u) − �(u)) con-

verges to a Gaussian process.
Finally, we prove that E{δṽ

Xi,Yi
(u0, u)} = 0, where δṽ

Xi,Yi
(u0, u) is defined in (5.3), which

implies that E{δv
Xi,Yi

(u)} = 0. First, we calculate the expectation of the first part of the first term
on the right-hand side of (5.3):

E

(∫ u

max(0,Ui )

ṽ(u0,Xi)Dp,0(w,Xi) dw

)
=

∫
χ

∫
U

[∫ u

max(0,t)

ṽ(u0, x)Dp,0(w,x)dw

]
fU,X(t, x) dt dx

=
∫

χ

ṽ(u0, x)

∫
U

[∫ u

0
Dp,0(w,x)1{t≤w} dw

]
fU,X(t, x) dt dx.

Rearranging the different integrals, the last expression is equal to∫
χ

ṽ(u0, x)

∫ u

0
Dp,0(w,x)

[∫
U

fU,X(t, x)1{t≤w} dt

]
dw dx

=
∫

χ

ṽ(u0, x)

∫ u

0
Dp,0(w,x)

[∫ w

−∞
fU,X(t, x) dt

]
dw dx

Using the definition of p(u,x) given in (4.2), we obtain

E

(∫ u

max(0,Ui )

ṽ(u0,Xi)Dp,0(w,Xi) dw

)
=

∫
χ

ṽ(u0, x)

∫ u

0
Dp,0(w,x)p(w,x)dw dx. (A.5)

Similarly, the expectation of the second part of the first term on the right-hand side of (5.3) is
equal to

E

(
−

∫ u

max(0,Ui )

∂

∂x1

[̃
v(u0, x̃)Dp,1(w, x̃)

]|̃x=Xi
dw

)
= −

∫
χ

∫ u

0

∂

∂x1

[̃
v(u0, x̃)Dp,1(w, x̃)

]|̃x=xp(w,x)dw dx

= −
∫

χ−1

∫ u

0

[̃
v(u0, x)Dp,1(w,x)p(w,x)

]
χ1

dw dx−1

+
∫

χ

∫ u

0
ṽ(u0, x)Dp,1(w,x)p1(w,x)dw dx, (A.6)
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where χ1 is the compact support of X1, χ−1 is the compact support of (X2, . . . ,Xd)t , x−1 =
(x2, . . . , xd)t , and the last expression was obtained using integration by parts. Using the same
reasoning, the expectations of the first and second parts of the second term on the right-hand side
of (5.3) are respectively, equal to

E

(∫ u

0
ṽ(u0,Xi)Df,0(w,Xi) dw

)
=

∫
χ

ṽ(u0, x)

∫ u

0
Df,0(w,x)fX(x)dw dx, (A.7)

and

E

(
−

∫ u

0

∂

∂x1

[̃
v(u0, x̃)Df,1(w, x̃)

]∣∣∣∣
x̃=Xi

dw

)

= −
∫

χ

∫ u

0

∂

∂x1

[̃
v(u0, x̃)Df,1(w, x̃)

]∣∣∣∣
x̃=x

fX(x)dw dx

= −
∫

χ−1

∫ u

0

[̃
v(u0, x)Df,1(w,x)fX(x)

]
χ1

dwdx−1

+
∫

χ

ṽ(u0, x)

∫ u

0
Df,1(w,x)fX,1(x) dw dx, (A.8)

where the last equality was obtained using integration by parts. Moreover, the expectation of the
third term on the right-hand side of (5.3) is equal to

E
(
(1{Ui≤u} − 1{Ui≤0})̃v(u0,Xi)Dp,u(Ui,Xi)

)
=

∫
χ

∫
U
(1{t≤u} − 1{t≤0})̃v(u0, x)Dp,u(t, x)fU,X(t, x) dt dx

=
∫

χ

ṽ(u0, x)

∫ u

0
Dp,u(w,x)pu(w,x)dw dx, (A.9)

where the last equality was obtained because pu(u, x) = fU,X(u, x). Next, the expectation of the
fourth term on the right-hand side of (5.3) is equal to 0 since

E

[
1{Ui≤w} − 1{Ui≤0}
FY (1) − FY (0)

− w

]
= FU(w) − FU(0)

FY (1) − FY (0)
− w

= w{FY (1) − FY (0)} + FY (0) − FU(0)

FY (1) − FY (0)
− w = 0.

We have used the fact that U ∼ Un[ −FY (0)
FY (1)−FY (0)

,
1−FY (0)

FY (1)−FY (0)
] which implies that FU(w) =

w{FY (1) − FY (0)} + FY (0) and also FU(0) = FY (0). Similarly, the expectation of the fifth and
sixth terms on the right-hand side of (5.3) is also equal to 0. Indeed, it suffices to use the fact that
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E(F̂Y (1) − F̂Y (0)) = FY (1) − FY (0). Finally, combining (A.5) to (A.9), we obtain

E
(
δṽ
Xi ,Yi

(u0, u)
)

=
∫

χ

ṽ(u0, x)

∫ u

0

{
Df,0(w,x)fX(x) + Df,1(w,x)fX,1(x)

+ Dp,0(w,x)p(w,x) + Dp,u(w,x)pu(w,x) + Dp,1(w,x)p1(w,x)
}
dw dx

−
∫∫ u

0

[̃
v(u0, x)

{
Dp,1(w,x)p(w,x) + Df,1(w,x)fX(x)

}]
χ1

dwdx−1

=
∫

χ

ṽ(u0, x)
{∇pS1(u, x)[fX] + ∇pS1(u, x)[p]}dx = 0.

Indeed, ϕ(w,x) = p(w,x)
fX(x)

which implies that

Dp,1(w,x)p(w,x) + Df,1(w,x)fX(x)

= −ϕu(w,x)

fX(x)ϕ2
1(w,x)

· p(w,x) + ϕu(w,x)ϕ(w,x)

ϕ2
1(w,x)fX(x)

· fX(x)

= −ϕu(w,x)ϕ(w,x)

ϕ2
1(w,x)

+ ϕu(w,x)ϕ(w,x)

ϕ2
1(w,x)

= 0,

and we have also shown that ∇pS1(u, x)[p] = 0 and ∇pS1(u, x)[fX] = 0 at the beginning of the
proofs of Propositions 6 and 7 in Colling and Van Keilegom [11], respectively. �

Proof of Theorem 5.2. Recall that

�̂LAD,b(u) = arg min
qm∈RQb

(
qm, λ̂1(u, ·)),

where

Qb

(
qm,λ1(u, ·)) =

∫
χ

v(x)
(
λ1(u, x) − qm

)[
2Lb

(
λ1(u, x) − qm

) − 1
]
dx. (A.10)

We will prove that �̂LAD,b(u) = �̂LS(u) + oP (n−1/2) uniformly in u. First, the derivative of
Qb with respect to qm is equal to

∂Qb(qm, λ̂1(u, ·))
∂qm

= −
∫

χ

v(x)
{
2Lb

(̂
λ1(u, x) − qm

) − 1
}
dx

− 2
∫

χ

v(x)
{̂
λ1(u, x) − qm

}
L′

b

(̂
λ1(u, x) − qm

)
dx,
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where L′
b(·) = L′(·/b)/b. Consequently, ∂Qb(qm,�(u))

∂qm
|qm=�(u) = 0 since L(0) = 1/2. Using this

result and the fact that �̂LAD,b(u) = arg minqm∈R Qb(qm, λ̂1(u, ·)) by definition, we have

0 = ∂Qb(qm, λ̂1(u, ·))
∂qm

∣∣∣∣
qm=�̂LAD,b(u)

− ∂Qb(qm,�(u))

∂qm

∣∣∣∣
qm=�(u)

= ∂Qb(qm, λ̂1(u, ·))
∂qm

∣∣∣∣
qm=�̂LAD,b(u)

− ∂Qb(qm, λ̂1(u, ·))
∂qm

∣∣∣∣
qm=�(u)

+ ∂Qb(qm, λ̂1(u, ·))
∂qm

∣∣∣∣
qm=�(u)

− ∂Qb(qm,�(u))

∂qm

∣∣∣∣
qm=�(u)

.

Next, using the mean value theorem with some �̃(u) between �(u) and �̂LAD,b(u), the last
expression becomes

∂2Qb(qm, λ̂1(u, ·))
∂q2

m

∣∣∣∣
qm=�̃(u)

(
�̂LAD,b(u) − �(u)

)
+ ∂Qb(qm, λ̂1(u, ·))

∂qm

∣∣∣∣
qm=�(u)

− ∂Qb(qm,�(u))

∂qm

∣∣∣∣
qm=�(u)

= 0,

Consequently,

�̂LAD,b(u) − �(u)

= −
(

∂2Qb(qm, λ̂1(u, ·))
∂q2

m

∣∣∣∣
qm=�̃(u)

)−1

×
(

∂Qb(qm, λ̂1(u, ·))
∂qm

∣∣∣∣
qm=�(u)

− ∂Qb(qm,�(u))

∂qm

∣∣∣∣
qm=�(u)

)
. (A.11)

Next, recall the definition of the function Qb in (A.10). The second derivative of Qb with respect
to qm is equal to

∂2Qb(qm, λ̂1(u, ·))
∂q2

m

= 4
∫

χ

v(x)L′
b

(̂
λ1(u, x) − qm

)
dx

+ 2
∫

χ

v(x)
{̂
λ1(u, x) − qm

}
L′′

b

(̂
λ1(u, x) − qm

)
dx,

where L′′
b(·) = L′′(·/b)/b2. Consequently, using

∫
χ

v(x) dx = 1, we have

∂2Qb(qm, λ̂1(u, ·))
∂q2

m

∣∣∣∣
qm=�̃(u)

= 4L′
b(0) + 4

∫
χ

v(x)
{
L′

b

(̂
λ1(u, x) − �̃(u)

) − L′
b(0)

}
dx

+ 2
∫

χ

v(x)
{̂
λ1(u, x) − �̃(u)

}
L′′

b

(̂
λ1(u, x) − �̃(u)

)
dx.
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Using the mean value theorem with some δ1(u, x) between λ̂1(u, x) − �̃(u) and 0, the last ex-
pression is equal to

4L′
b(0) + 4

∫
χ

v(x)L′′
b

(
δ1(u, x)

)(̂
λ1(u, x) − �̃(u)

)
dx

+ 2
∫

χ

v(x)
{̂
λ1(u, x) − �̃(u)

}
L′′

b

(̂
λ1(u, x) − �̃(u)

)
dx.

Finally, we obtain

∂2Qb(qm, λ̂1(u, ·))
∂q2

m

∣∣∣∣
qm=�̃(u)

= 4L′
b(0) + oP

(
b−1), (A.12)

uniformly in u, since ‖̂λ1 − �̃‖∞ ≤ ‖̂λ1 − �‖∞ = oP (n−1/4) (which can be easily shown by
combining the beginning of the proof of Theorem 5.1 with Propositions 4 and 5 in Colling
and Van Keilegom [11]), and since oP (n−1/4)/b2 is oP (b−1) thanks to nb4 → ∞ by Condition
(A10). Moreover, for some ξ(u, x) in between �(u) and λ̂1(u, x), we have

∂Qb(qm, λ̂1(u, ·))
∂qm

∣∣∣∣
qm=�(u)

− ∂Qb(qm,�(u))

∂qm

∣∣∣∣
qm=�(u)

= −2
∫

χ

v(x)L′
b

(
ξ(u, x) − �(u)

)(̂
λ1(u, x) − �(u)

)
dx

− 2
∫

χ

v(x)L′
b

(̂
λ1(u, x) − �(u)

)(̂
λ1(u, x) − �(u)

)
dx

= −4L′
b(0)

∫
χ

v(x)
(̂
λ1(u, x) − �(u)

)
dx

− 2
∫

χ

v(x)
(
L′

b

{
ξ(u, x) − �(u)

} − L′
b(0)

)(̂
λ1(u, x) − �(u)

)
dx

− 2
∫

χ

v(x)
(
L′

b

{̂
λ1(u, x) − �(u)

} − L′
b(0)

)(̂
λ1(u, x) − �(u)

)
dx.

Similarly as before, using the mean value theorem with some δ2(u, x) between ξ(u, x) − �(u)

and 0 and some δ3(u, x) between λ̂1(u, x) − �(u) and 0, the last expression is equal to

− 4L′
b(0)

(
�̂LS(u) − �(u)

) − 2
∫

χ

v(x)
[
L′′

b

(
δ2(u, x)

){
ξ(u, x) − �(u)

}
+ L′′

b

(
δ3(u, x)

){̂
λ1(u, x) − �(u)

}](̂
λ1(u, x) − �(u)

)
dx. (A.13)

We will show that the latter expression equals

−4L′
b(0)

(
�̂LS(u) − �(u)

) + oP

(
n−1/2b−1), (A.14)
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since combining this with (A.11) and (A.12), leads to

�̂LAD,b(u) − �(u) = �̂LS(u) − �(u) + oP

(
n−1/2),

which is what we need to show. To prove (A.14), note that the second term of (A.13) is of the
order OP (b−2‖̂λ1 − �‖2). It follows from the proof of Proposition 4 in Colling and Van Keile-
gom [11] that ‖̂λ1 − �‖2 is of the order OP (max(hx,hu)

2m) + OP (logn/{nhd
x min(hx,hu)

2}).
Some straightforward algebra shows that this is oP (n−1/2b) provided n1/2 max(hx,hu)

m = o(1),
nb2 → ∞ and logn/{√nhd

x min(hx,hu)
2} = o(b), which is guaranteed by assumptions (A6) and

(A10). This concludes the proof. �

Proof of Corollary 5.1. Let �̂ be either �̂LS or �̂LAD,b . First, it is shown in the proof of The-
orem 5.1 that the class {(a, b) → δv

a,b(u),u ∈ U0} is Donsker. Hence, since T̂ (y) − T (y) is

OP (n−1/2) uniformly in y ∈ Y0 and then also oP (1), see the beginning of the proof of Proposi-
tion 3 in Colling and Van Keilegom [11], we obtain using equation (2.1.8) in van der Vaart and
Wellner [23]:

sup
y∈Y0

∣∣∣∣∣n−1
n∑

i=1

(
δv
Xi,Yi

(
T̂ (y)

) − δv
Xi,Yi

(
T (y)

))∣∣∣∣∣ = oP

(
n−1/2).

Consequently, using the fact that
√

n(�̂(u) − �(u)) = n−1/2 ∑n
i=1 δv

Xi,Yi
(u) + oP (1) uniformly

in u ∈ U0 by Theorems 5.1 and 5.2, we obtain:

sup
y∈Y0

∣∣�̂(
T̂ (y)

) − �
(
T̂ (y)

) − (
�̂

(
T (y)

) − �
(
T (y)

))∣∣ = oP

(
n−1/2),

and also uniformly in y ∈ Y0:

�̂
(
T̂ (y)

) − �
(
T (y)

) = �̂
(
T̂ (y)

) − �
(
T̂ (y)

) + �
(
T̂ (y)

) − �
(
T (y)

)
= �̂

(
T (y)

) − �
(
T (y)

) + �
(
T̂ (y)

) − �
(
T (y)

) + oP

(
n−1/2).

Next, �̂(T (y)) − �(T (y)) = n−1 ∑n
i=1 δv

Xi,Yi
(T (y)) + oP (n−1/2) and using a Taylor expansion

with some ξy between T̂ (y) and T (y), we have:

�
(
T̂ (y)

) − �
(
T (y)

) = �′(T (y)
)(

T̂ (y) − T (y)
) + 1

2
�′′(ξy)

(
T̂ (y) − T (y)

)2
.

Moreover, using the result given in Proposition 1 in Colling and Van Keilegom [11], we have

T̂ (y) − T (y) = 1

FY (1) − FY (0)

[
F̂Y (y) − F̂Y (0) − FY (y) + FY (0)

]
− T (y)

FY (1) − FY (0)

[
F̂Y (1) − F̂Y (0) − FY (1) + FY (0)

]
.
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Hence, since F̂Y (y) = n−1 ∑n
i=1 1{Yi≤y}, supy∈Y0

|�′′(T (y))| < ∞ and (T̂ (y) − T (y))2 is
oP (n−1/2), we obtain uniformly in y ∈ Y0:

�̂
(
T̂ (y)

) − �
(
T (y)

) = n−1
n∑

i=1

ϕv
Xi,Yi

(y) + oP

(
n−1/2),

where ϕv
Xi,Yi

(y) is defined in (5.4). The pointwise weak convergence of
√

n(�̂(T̂ (y)) − �(y)),
where �(y) = �(T (y)), to a Gaussian distribution is obtained using the central limit theorem.
Next, to extend this result to weak functional convergence, we will prove that the class F =
{(a, b) → ϕv

a,b(y), y ∈ Y0} is Donsker. To obtain this result, it suffices to prove that the classes

F1 = {
(a, b) → δv

a,b

(
T (y)

)
, y ∈ Y0

}
, F2 =

{
�′(T (y))

FY (1) − FY (0)
: y ∈ Y0

}
,

F3 = {b → 1{b≤y} − 1{b≤0} : y ∈ Y0}, F4 = {−(
FY (y) − FY (0)

) : y ∈ Y0
}
,

and

F5 = {
b → −T (y)

[
1{0≤b≤1} − FY (1) + FY (0)

] : y ∈ Y0
}
,

are Donsker and to apply Examples 2.10.7 and 2.10.8 in van der Vaart and Wellner [23] since
F = F1 + F2(F3 + F4 + F5). In the proof of Theorem 5.1, we proved that the class F1 is
Donsker. Moreover, for j = 2, . . . ,5, we have to prove that∫ +∞

0

√
logN[ ]

(̃
ε,Fj ,L2(P )

)
dε̃ < ∞,

where P is the probability measure corresponding to the distribution of Y and L2(P ) is the
L2-norm, that the envelope functions Fj of Fj possess a weak second moment and to apply
Theorem 2.5.6 in van der Vaart and Wellner [23].

First, for j = 2, . . . ,5, we have logN[ ](̃ε,Fj ,L2(P )) ≤ Kj ε̃
−1, for some constants Kj > 0,

using Corollary 2.7.2 in van der Vaart and Wellner [23] with α = 1 and d = 1 for j = 2 and
Theorem 2.7.5 in van der Vaart and Wellner [23] for j = 3,4,5 since F3, F4 and F5 are classes
of monotone and bounded functions. Hence, if Cj denotes a uniform upper bound for fj ∈ Fj ,∫ +∞

0

√
logN[ ]

(̃
ε,Fj ,L2(P )

)
dε̃ =

∫ 2Cj

0

√
logN[ ]

(̃
ε,Fj ,L2(P )

)
dε̃ ≤

∫ 2Cj

0

√
Kj ε̃−1 dε̃.

We obtained the first equality since only one ε̃-bracket suffices to cover Fj if ε̃ > 2Cj and the
last expression is equal to 2

√
2CjKj and is finite for j = 2, . . . ,5.

Next, for j = 2, . . . ,5, if fj ∈ Fj , we have |fj | ≤ Fj where F2 = supy∈Y0
|�′(T (y))|

FY (1)−FY (0)
, F3 = 1,

F4 = 1 and F5 = 1
FY (1)−FY (0)

. Since all Fj are finite, we have P(Fj > w) = o(w−2).
Finally, E(ϕv

X,Y (y)) = 0 since E(δv
X,Y (T (y))) = 0 by Theorem 5.1, E(1{Y≤y} − 1{Y≤0}) =

FY (y) − FY (0) and E(1{0≤Y≤1}) = FY (1) − FY (0) which concludes the proof. �
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