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We complete the investigation of the Gibbs properties of the fuzzy Potts model on the d-dimensional torus
with Kac interaction which was started by Jahnel and one of the authors in (Sharp thresholds for Gibbs-
non-Gibbs transitions in the fuzzy Potts model with a Kac-type interaction (2017)). As our main result
of the present paper, we extend the previous sharpness result of mean-field bounds to cover all possible
cases of fuzzy transformations, allowing also for the occurrence of Ising classes (containing precisely two
spin values). The closing of this previously left open Ising-gap involves an analytical argument showing
uniqueness of minimizing profiles for certain non-homogeneous conditional variational problems.

Keywords: diluted large deviation principle; fuzzy Kac–Potts model; Gibbs versus non-Gibbs; Kac model;
large deviation principles; Potts model

1. Introduction

The Gibbs property is an important regularity property of a large, or infinite system which comes
in various versions, according to the setting considered. It can be formulated for lattice models
in the infinite volume [6,17], for systems of point particles in euclidean space [16] for mean-field
systems [14], or for Kac-systems [5].

Often local transformations applied to realizations of a given large system which behaves ac-
cording to a nice Gibbs distribution are of interest. Such transformations include discretization
transformations, and various sampling procedures, which reduce information of the initial data,
cf. [8,10,17]. Stochastic time-evolutions, motivated from physics, provide another very interest-
ing type of such transformations, cf. [2–5,9,11,14].

A relevant and natural question in this context is whether it is possible to describe the image
system again as a system of a nice Gibbsian form, with effective, new interactions. This may
be true (or not true) for reasons having to do with the absence (or the existence, and visibility)
of internal phase transitions. These internal phase transitions may act as a switch and cause an
infinite-range dependence on small variations of a conditioning. If we want to perform a concrete
analysis to decide if such a mechanism shows up for a given system, given parameter values, and
given transformation, both mean-field systems and Kac-systems are promising as they have a
large parameter, which allows for an asymptotic description in terms of a variational principle.
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Indeed, after some work, one sees that also Gibbs–non-Gibbs (GnG) transitions in the Kac-
limit, are tied to conditional variational problems for profiles, via large deviations. There is also
a natural link from Kac-models to mean-field models on the level of these variational principles,
which one obtains by considering only profiles which do not have any spatial dependence.

In the present paper, we round up the previous investigation of the GnG transitions in the
fuzzy Kac–Potts model of [10], and fully decide on an open case which was left out, as we will
explain now. The fuzzy Kac–Potts model is defined as the image of the Kac-version of Potts
model, under the deterministic local transformation which distinguishes the possible spin values
of the Potts local spin space {1,2, . . . , q} only according to a fixed local partitioning into r

subclasses. Historically, the fuzzy Potts model was first introduced on the lattice in [15]. Bounds
in parameter space ensuring Gibbsian, and bounds ensuring non-Gibbsian behavior on the lattice
were derived in [7], however, leaving gaps between both regions. The Kac–Potts model we treat
here is formulated on a d-dimensional torus, a setup similar to that of [5] in their study of the
dynamical Kac–Ising model. For the fuzzy Kac–Potts model, we are now able to completely
answer the question:

Are the non-Gibbs parameter regions equal in Kac-setup and mean-field setup?
Or, putting this question in a slightly more refined way: Does the possibility for spatial inhomo-

geneity in the Kac-model create new and ‘worse’ bad configurations which are seen in parameter
regions beyond the bad mean-field regions? It turns out that worse bad configurations are in-
deed not possible, but for a non-trivial reason involving proper treatment of a non-homogeneous
conditional variational problem, arising for the Ising classes (i.e. the classes which consist of
precisely two values).

For class sizes strictly bigger than two, the corresponding conditional variational problem
is related to a Potts model with a first-order transition whose jumps are producing the non-
Gibbsianness. Spatial inhomogeneity in the conditioning can be treated for those classes with
monotonicity arguments which show that ‘flat conditioning profiles are the worst’, but these
arguments use the first-order nature of the phase transition and do not work for the Ising classes
of size two.

In the present paper we provide different arguments for the classes of size two and arrive at
the full treatment of all possible types of fuzzy maps, and this is what we mean by “closing
the Ising gap”. The progress made in the present paper relies essentially on the new analytical
uniqueness of minimizers-result of Proposition 2.15, which leads to the proof of the main result
Theorem 2.6.

The paper is organized as follows. We keep the presentation self-contained, at the same time
streamlining and shortening some parts of the arguments. In Section 2 we introduce our model
and state the main results. In particular, in Sections 2.1 to 2.3 we introduce the Potts–Kac, the
fuzzy Potts–Kac model, the notion of sequential Gibbsianness and our main result, Theorem 2.6
on Gibbs–non-Gibbs transitions. In Section 2.4, we recall a representation of the conditional
kernels that play an important role in the study of GnG transitions and recall the diluted large
deviation principle from [10]. In Section 2.5, we give the main technical result, Proposition 2.15,
and conclude with a representation of the limiting conditional probability kernels in the Gibbs
case, given in Theorem 2.16.

The result shows that Gibbsianness of a transformed system may very well hold in the pres-
ence of internal phase transitions, reflected here as the functional dependence of limiting kernels
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on non-trivial minimizing profiles which nevertheless themselves behave continuously as a func-
tion of conditioning profiles. While there is an internal phase transition in the Ising classes at
sufficiently low temperatures, both phases always appear as symmetric mixtures, and there is no
way to break their symmetry and select one of them in terms of the choice of a boundary condi-
tion. For a related phenomenon, compare the discussion of possible ‘invisibility of hidden phase
transitions’ for the joint measures of a random bond Ising ferrogmagnet [13], page 379.

The proofs follow in Section 3 and we conclude with two appendices on continuity of limiting
functionals and convergence of random variables in the setting where an LDP holds with a finite
number of minimizers.

2. Model and main results

2.1. The Kac–Potts model

Let Td := R
d/Zd be the d-dimensional unit torus. For n ∈ N, let Td

n be the (1/n)-discretization
of T

d defined by T
d
n := �d

n/n, with �d
n := Z

d/nZd the discrete torus of size n. For n ∈ N,

let �q,n := {1, . . . , q}�d
n be the set of Potts-spin configurations on �d

n . We will call elements
of {1, . . . , q} colours. The energy of the configuration σ := (σ (x))x∈�d

n
∈ �q,n is given by the

Kac-type Hamiltonian

Hn(σ) := − 1

nd

∑
x,y∈�d

n

J

(
x − y

n

)
1σ(x)=σ(y), σ ∈ �q,n, (2.1)

where 0 < J ∈ C(Td) is a continuous interaction function on T
d which is symmetric and∫

dvJ (v) = 1. The Gibbs measure associated with Hn is given by

μn(σ ) := 1

Zn

exp
(−βHn(σ )

)
, σ ∈ �q,n (2.2)

with β ∈ [0,∞) the inverse temperature and Zn the normalizing partition sum.
To study the limiting behaviour of the measures μn for large n, we first embed our spin con-

figurations into a common space of measures. For any Polish space E, let Cb(E) be the space
of bounded continuous functions on E and let M+(E) and P(E) be the space of non-negative,
respectively probability, Borel measures on E. We equip both spaces with the weak topology,
that is, the metric topology induced by testing against functions in Cb(E). Recall that if E is
compact, then also P(E) is weakly compact.

For � ⊆ �d
n let π� : �q,n �→ P(Td

n × {1, . . . , q}) ⊆ P(Td × {1, . . . , q}) be the empirical
colour measure vector or colour profiles of σ inside the volume � defined by

π�(σ) := 1

|�|
(∑

x∈�

1σ(x)=1δx/n, . . . ,
∑
x∈�

1σ(x)=qδx/n

)
, (2.3)

where δu is the Dirac measure at u ∈ T
d .
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For any ν ∈ P(Td × {1, . . . , q}) we will write ν[a] to indicate the evaluation of ν at a colour
a ∈ {1, . . . , q}. In particular, for � ⊆ �d

n and σ ∈ �q,n:

π�[a](σ ) := 1

|�|
∑
x∈�

1σ(x)=aδx/n ∈ M+
(
T

d
)
.

For simplicity, we will write πn and πn[a] to denote π�d
n

and π�d
n
[a]. Using colour profiles, we

can rewrite the Hamiltonian as

Hn(σ) = −nd

q∑
a=1

F
(
πn[a](σ )

)
(2.4)

with F(ν[a]) := 〈J ∗ ν[a], ν[a]〉 = ∫ ∫
ν[a](du)ν[a](dv)J (u − v) and where the convolution of

a function and a measure is defined as (f ∗ μ)(x) = ∫
f (x − y)μ(dy).

We will be interested in weak limits of color profiles in P(Td × {1, . . . , q}), especially those
having q-dimensional Lebesgue densities of the form ν = αλ = (α[1]λ, . . . , α[q]λ) with α ∈ B

where

B :=
{

α = (
α[1], . . . , α[q])T |0 ≤ α[a] ∈ L∞(

T
d , λ

)

with
q∑

a=1

α[a](x) = 1 for λ-a.e. x ∈ T
d

}
.

In the sequel, we will write

Pq(B) := {
ν ∈P

(
T

d × {1, . . . , q})|∃α ∈ B : ν = αλ
}
.

We have the following straightforward result, proven for completeness in Appendix A, which
indicates that Pq(B) is the relevant space of limiting profiles.

Lemma 2.1. If σn ∈ �q,n is a sequence such that πn(σn) converges weakly to ν in P(Td ×
{1, . . . , q}), then ν ∈Pq(B).

2.2. Sequential Gibbsianness for the Kac models

For n ≥ 1 and u ∈ T
d
n , we call π

(u)
n := π�d

n\{nu} the colour profile perforated at u ∈ T
d
n . We abbre-

viate Mq,n := πn(�q,n) ⊆ P(Td × {1, . . . , q}) and Mu
q,n := π

(u)
n (�q,n) ⊆ P(Td × {1, . . . , q})

for the sets of possible profiles of mesh-size n−1 and possible profiles of mesh-size n−1 perfo-
rated at site u. Note that by Lemma 2.1 any limit ν of profiles νn ∈ Mq,n or M(un)

q,n must lie in
Pq(B).

We slightly change the definition of sequential Gibbsianness defined for Kac models as in
[10] and [5]. This definition is essentially equivalent but notationally and mathematically more
convenient.
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Definition 2.2. Given any sequence (μn)n∈N with μn a probability measure on �q,n for every
n ∈N, define the single-spin conditional probabilities at site u ∈ T

d
n as

γ u
n

(·|ν(u)
n

) := μn

(
σ(nu) = ·|π(u)

n (σ ) = ν(u)
n

)
, ν(u)

n ∈Mu
q,n. (2.5)

(a) We call a colour profile ν ∈ Pq(B) good for a sequence of probability measures (μn)n∈N,
μn ∈ Mq,n, if there exists a neighbourhood Nν ⊆ P(Td × {1, . . . , q}) of ν such that for all
ν̃ ∈ Nν ∩Pq(B) and for all u ∈ T

d

γ u(·|ν̃) := lim
n↑∞γ un

n

(·|ν(un)
n

)
(2.6)

exists for all sequences un ∈ T
d
n with un → u and all sequences (ν

(un)
n )n∈N with ν

(un)
n ∈ Mun

q,n

for every n ∈ N such that limn↑∞ ν
(un)
n = ν̃ in the weak sense. Moreover the limit must be inde-

pendent of the choice of un and (ν
(un)
n )n∈N.

(b) A colour profile ν ∈Pq(B) is called bad for (μn)n∈N if it is not good for (μn)n∈N.
(c) (μn)n∈N is called sequentially Gibbs if it has no bad profiles in Pq(B).

Remark 2.3. By Lemma B.1 below, it follows that if (μn)n∈N is sequentially Gibbs, then the
map γ : Td ×Pq(B) → P({1, . . . , q}), defined by γ (u, ν) = γ u(·|ν) as in (2.6) is continuous.

2.3. Sequential Gibbsianness for the fuzzy Kac–Potts model

Next, we introduce the fuzzy Kac–Potts model. Consider a discretization map T : {1, . . . , q} →
{1, . . . , s} where 1 < s < q . More precisely, let R1, . . . ,Rs be a partition of {1, . . . , q} with
ri = |Ri | and

∑s
i=1 ri = q , then T (a) = i if a ∈ Ri . The map T induces a local discretization

map T : �q,n → �s,n by applying T at every site. The fuzzy Kac–Potts model is obtained from
the Kac–Potts model by applying the discretization map at every site: μT

n := μn◦T −1 ∈ P(�s,n),
where μn is the Kac–Potts measure.

We will refer to the sets R1, . . . ,Rs as fuzzy classes and in particular use the term Ising class
for fuzzy classes of size two.

Since Potts distributions do not depend on any ordering on the local spin space (this will be
further exploited in Section 3.5 below), all relevant information on the fuzzy transformation is
given by the numbers (r1, . . . , rs).

Definition 2.4. We call the generalized fuzzy Kac–Potts model sequentially Gibbs if all profiles
Ps(B) are good for the sequence μT

n .

Jahnel and Külske studied the question of sequential Gibbsianness in [10]. Their main result
states that for the fuzzy Kac–Potts model the critical parameters for Gibbs–non-Gibbs transitions
are the same as for the mean-field fuzzy Potts model if low-temperature Ising classes are avoided,
see (a) below. We denote by βc(r) the inverse critical temperature of the r-state mean-field Potts
model.
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Theorem 2.5 (Theorem 2.7 in [10]). Consider the q-state Kac–Potts model at inverse tempera-
ture β and the corresponding fuzzy Kac–Potts model with spin partition (r1, . . . , rs), ri ∈N\ {0},
s < q and

∑s
i=1 ri = q . Denote r∗ := min{r ≥ 3, r = ri for some i = 1, . . . , s}.

(a) Suppose that either β ≤ βc(2) or that ri �= 2 for all i = 1, . . . , s and β < βc(r∗), then the
fuzzy Kac–Potts model is sequentially Gibbs.

(b) If ri ≥ 3 for some i = 1, . . . , s and β ≥ βc(r∗), then the fuzzy Kac–Potts model is non-
Gibbs.

This result should be compared to Theorem 1.2 in [8], which establishes a full characterization
of the parameter regions for which the sequence of measures is sequentially Gibbs or not in the
mean-field fuzzy Potts model and the fuzzy Potts model on trees. Theorem 2.5 leaves open the
question what happens if there are fuzzy classes of size 2 and β > βc(2). The main result of this
paper establishes that the fuzzy Kac–Potts model is also sequentially Gibbs if all classes are of
size 2 or β < βc(r∗), establishing a full characterization with the same parameter regime as for
the mean-field fuzzy Potts model.

Theorem 2.6. Consider the q-state Kac–Potts model at inverse temperature β and the cor-
responding fuzzy Kac–Potts model with spin partition (r1, . . . , rs), ri ∈ N \ {0}, s < q and∑s

i=1 ri = q .

(a) Suppose that ri ≤ 2 for all i = 1, . . . , s. Then the fuzzy Kac–Potts model is sequentially
Gibbs for all β ≥ 0.

Assume that ri ≥ 3 for some i and denote r∗ := min{r ≥ 3, r = ri for some i = 1, . . . , s}, then
the following holds.

(b) If β < βc(r∗) then the fuzzy Kac–Potts model is sequentially Gibbs.
(c) If β ≥ βc(r∗) then the fuzzy Kac–Potts model is not sequentially Gibbs.

Like in the proof of Theorem 2.7 in [10], that is, Theorem 2.5, the analysis is based on a
representation of the single-site kernels in terms of diluted Potts models, and an identification
of the minimizers of an LDP for these diluted models. Unlike in the setting of classes of size
larger or equal to three, for the ‘low temperature’ Ising classes we find exactly two minimizers
with opposite local magnetization that are not spatially homogeneous. To give a representation
for the limiting kernels in Theorem 2.16 below, we therefore need to introduce the corresponding
representation and large deviation principle.

2.4. A representation for the fuzzy Potts–Kac model kernels and a diluted
large deviation principle

In order to determine Gibbsianness of the fuzzy Kac–Potts model, similar to (2.5), as well as to
give a representation for the limiting single-site kernels, we write for the single-site kernels

γ u
n,β,q,(r1,...,rs )

(k|ν) := μT
n

(
σ(nu) = k|π(u)

n (σ ) = ν
)
, (2.7)
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where β is the inverse temperature of the Kac–Potts model and ν ∈ Mu
s,n. It was shown in [10]

that the kernels can be re-expressed in terms of certain functionals integrated over Kac–Potts
models on the fuzzy classes.

Definition 2.7. Define the following three objects:

(a) For a measure ν ∈ Ms,n, u ∈ T
d
n and i ∈ {1, . . . , s}, denote by

�i,u(ν) := {
x ∈ �d

n \ {un}|ν[i](x/n) = 1
}

the set of sites with a spin-value in the ith class.
(b) μ�,β,r denotes the Kac–Potts model in the subvolume � ⊆ �d

n , � �=∅, with Hamiltonian

H�(σ) := − 1

|�|
∑

x,y∈�

J

(
x − y

n

)
1σ(x)=σ(y),

inverse temperature β and r local states. Denote by P�,β,r ∈ P(P(Td × {1, . . . , r})) the push-
forward of μ�,β,r under π�:

P�,β,r := μ�,β,r ◦ π−1
� .

(c) For each class size r , define Ar : P(Td × {1, . . . , r}) ×T
d ×R

+ → [r,∞) as

Ar (π,u,β) :=
r∑

i=1

exp
{
2β

(
J ∗ π[i])(u)

}
.

Note that the functional A that we introduce is not equal to A in [10]. The functional A

includes an integral, which A does not. This is done to allow for a better control on and repre-
sentation of the limiting problem, and the limiting kernels to be considered below.

Proposition 2.8 (Proposition 2.4 in [10]). Fix n ∈ N \ {0}, u ∈ T
d
n and νn ∈ Ms,n. Write

βl,u(νn) = βn−d |�l,u(ν)| = βνn[l](Td
n \ {u}) for the renormalized inverse temperature in class

l. Suppose that �l,u(νn) �=∅ for all l. Then we have the representation

γ u
n,β,q,(r1,...,rs )

(k|νn) =
∫
Ark (π,u,βk,u(νn))P�k,u(νn),βk,u(νn),rk (dπ)∑s

l=1

∫
Arl (π,u,βl,u(νn))P�l,u(ν),βl,u(νn),rl (dπ)

. (2.8)

For a classes l of size 0, that is, �l,u(νn) =∅, the weight∫
Arl

(
π,u,βl,u(νn)

)
P�l,u(νn),βl,u(νn),rl (dπ),

should be replaced with Arl (π,u,0) = rk , consistent with the fact that �l,u(νn) =∅ implies that
βl,u(νn) = 0.

Remark 2.9. In [10], classes of size 0 were not treated. The proof of the representation, however,
shows that indeed the weight equals the size of the class.
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We find that, to study the limiting behaviour of the kernels, we need to study the limiting be-
haviour of the measures P�l,u(νn),βl,u(νn),rl when νn → ν and, additionally, continuity properties
of Ar when (βn,un) → (β,u). We start by considering Ar .

Lemma 2.10. Let r ≥ 1 and let Ar be the map defined in Definition 2.7. Then

(a) For each pair (u,β) ∈ T
d × R

+ the map π �→ Ar (π,u,β) is an element of Cb(P(Td ×
{1, . . . , r})),

(b) Let {(un,βn)}n≥1 be a sequence of pairs in T
d ×R

+ converging to (u,β) ∈ T
d ×R

+, then
Ar (·, un,βn) converges uniformly as a function on P(Td ×{1, . . . , r}) to the function Ar (·, u,β).

We immediately obtain the following result, corresponding to the fact that
∫

fn dμn → ∫
f dμ

if fn converges uniformly to f and μn weakly to μ.

Lemma 2.11. Let νn → ν and un → u. Suppose that for each fuzzy class l ∈ {1, . . . , s} with
ν[l](Td) > 0 there exists some measure P l such that

P�l,un (νn),βl,un (νn),rl → P l

weakly, see Definition 2.7(a), (b). Then

γ
un

n,β,q,(r1,...,rs )
(k|νn) →

∫
Ark (π,u,βk(ν))P k(dπ)∑s

l=1

∫
Arl (π,u,βl(ν))P l(dπ)

.

As above, if a fuzzy class l has no limiting mass, that is, ν[l](Td) = 0, then the weight should be
replaced by Arl (·, u,0) = rl .

In the situation of the lemma above, we will denote by

P l
n := P�l,un (νn),βl,un (νn),rl ,

with the right-hand side as defined in Definition 2.7(a), (b), the distribution of the colour-profile
associated with fuzzy class l on the discrete torus of size n. Consistent with the notation in the
lemma above we write P l := limn→∞ P l

n, if the limit exists in the weak topology.
To study the limiting properties of the sequences (P l

n)n∈N, we proceed with the large deviation
principle proven in [10] for the measures P�l,un (νn),βl,un (νn),rl .

Definition 2.12. We say that a sequence of volumes �n ⊆ �d
n = nTd

n converges to some measure
ρ ∈ M+(Td), denoted by �n ⇒ ρ if the empirical measure

1

nd

∑
i∈�n

δx/n ∈ M+
(
T

d
)

converges weakly to ρ. Abusing notation, if ρ has a density with respect to the Lebesgue measure,
then we will denote this density by ρ.
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Proposition 2.13 (Proposition 2.5 in [10] (Diluted version of LDP for empirical color pro-
files)). Consider a sequence of inverse temperatures β̃n → β̃ and a sequence of diluted sets
�n ⊆ �d

n with �n ⇒ ρ for some Lebesgue density ρ with Nρ := ρλ(Td) > 0. Denote ρ̃(u) :=
N−1

ρ ρ(u), then the measures μ�n,β̃n,q ◦ (π�n)
−1 satisfy an LDP on the space P(Td ×{1, . . . , q})

with rate |�n| and rate function Iρ̃,β̃ − infϕ∈P(Td×{1,...,q}) Iρ̃,β̃ (ϕ) where

Iρ̃,β̃ (ϕ) =

⎧⎪⎨
⎪⎩

−β̃

q∑
a=1

〈
J ∗ ρ̃α[a], ρ̃α[a]〉 + 〈

S(α|eq), ρ̃λ
〉

if ϕ[a] = ρ̃α[a]λ,α ∈ B,

∞ otherwise.

(2.9)

Remark 2.14. Proposition 2.5 in [10] was originally proven for fixed β̃ . Changing the result
to include β̃n → β̃ follows immediately from Varadhan’s lemma for a uniformly converging
sequence of bounded continuous functions.

2.5. Minimizers of the rate function for Ising classes and a limiting form of
the single-site kernels

A more careful analysis of the rate function for the Ising classes gives an extension of the repre-
sentation of the limiting kernels of Theorem 2.7 in [10]. For any ϕ = αρ̃λ, we first re-express α

in terms of the local magnetization

mα(u) := α[1](u) − α[2](u).

Proposition 2.15. Consider the rate function in Proposition 2.13 for an Ising class with �n ⇒
ρ �= 0. Denote by Pn := μ�n,β̃n,2 ◦ (π�n)

−1 the distribution of the colour profile associated to
the Ising class on the discrete torus of size n. Then the following two situations can occur.

(a) There is exactly one global minimizer ϕ∗ = ϕ∗(ρ̃, β̃) for Iρ̃,β̃ , which is the spatially ho-
mogeneous equi-distribution, that is, corresponding to local magnetization profile mρ̃,β̃ = 0. We
have Pn → δϕ∗ .

(b) There are exactly two global minimizers ϕ∗,+ = ϕ∗,+(ρ̃, β̃) and ϕ∗,− = ϕ∗,−(ρ̃, β̃) for
Iρ̃,β̃ . Let mρ̃,β̃ denote the local magnetization of ϕ∗,+. Then mρ̃,β̃ is everywhere positive, and the

local magnetization of ϕ∗,− equals −mρ̃,β̃ . We have Pn → 1
2 (δϕ∗,+ + δϕ∗,−).

Thus, for classes of size 2, and ρ �= 0, we have a well defined local magnetization mρ̃,β̃ . For a
class of size 2 and ρ = 0, set mρ̃,β̃ = 0. Define for each r ≥ 2 the function

Dr : Td × Pr(B) ×R
+ → [1,∞), Dr(u, ρ̃, β̃) := 1{r �=2} + 1{r=2}

1√
1 − mρ̃,β̃ (u)2

.
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Theorem 2.16. Consider the setting of Theorem 2.6. Let νn → ν and un → u. Suppose the
parameters are in setting (a) or (b). Then the limiting conditioning kernel is given by

lim
n→∞γ u

n,β,q,(r1,...,rs )
(k|νn) = rk exp{2βr−1

k

∫
dvν[k](v)J (u − v)}Drk (u, ν̃k, β̃k)∑s

i=1 ri exp{2βr−1
i

∫
dvν[i](v)J (u − v)}Dri (u, ν̃i , β̃i )

,

where ν̃i := ν[i](Td)−1ν[i] and β̃i = ν[i](Td)β .

3. Proofs of main results

We start by proving our main Theorem 2.6 using Lemmas 2.10, 2.11 and Proposition 2.15. We
prove the two lemmas immediately afterwards.

Then, in Sections 3.3 to 3.6, we analyse the set of minimizers of the rate function for Ising
classes which leads to a proof of Proposition 2.15. We conclude in Section 3.5 with a proof of
Theorem 2.16.

3.1. Proof of Theorem 2.6

We proceed with the proof of our main result, which is based on Lemmas 2.10 and 2.11 and
Proposition 2.15.

Proof of Theorem 2.6. First, we prove (a), that is, all classes have size 1 or 2. Let νn → ν

and un → u. For classes l ∈ {1, . . . , s} and n ≥ 1 such that �l,un(νn) �= ∅, recall the notation
P l

n := P�l,un (νn),βl,un (νn),rl .
To prove our result, it suffices to verify the conditions for Lemma 2.11. Note that we do not

need to consider classes with no limiting mass. Thus, without loss of generality, we assume all
fuzzy classes have non-zero limiting mass.

First suppose that class l has size 1. Then it follows that the measures P l
n converge to ν̃l .

For classes of size 2 with non-zero mass in the limit, we find by Proposition 2.13 with �n =
�l,un(νn), β̃n = βl,un(νn) and ρ = ν[l] that P l

n satisfies a large deviation principle with good rate
function. By Proposition 2.15 there is a measure P l , independent of the sequences νn and un,
such that P l

n → P l . Thus, Lemma 2.11 implies the limit of the kernels exists and is independent
of the sequences νn and un.

Cases (b) and (c) follow from the arguments of [10], combined with the result of the present
paper that even when Ising-classes are present, they do not provide a source of discontinuity. �

3.2. Proof of Lemmas 2.10 and 2.11

Proof of Lemma 2.10. Fix r ≥ 1 Recall that Ar : P(Td ×{1, . . . , r})×T
d ×R

+ → [1,∞) was
defined as

Ar (π,u,β) :=
r∑

i=1

exp
{
2β

(
J ∗ π[i])(u)

}
. (3.1)
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We start with proving (a), the continuity of π �→ Ar (π,u,β) for all (u,β) ∈ T
d ×R

+. Clearly,
this result follows if π �→ (J ∗ π[i])(u) is continuous for all i. But this is immediate as J is a
continuous function and M+(Td) is equipped with the weak topology.

We proceed with the proof of (b). Let (un,βn) → (u,β). Note that the uniform convergence,
again, follows by proving that the function fn,i(π) := (J ∗ π[i])(un) converges uniformly to
fi(π) := (J ∗ π[i])(u). This, however, follows immediately from the uniform continuity of the
function J (Td is compact). �

Proof of Lemma 2.11. Let νn → ν and un → u. By the representation for the kernels given in
Proposition 2.8, using that the weight of class l is bounded below by rl , we find that the limiting
statement holds if for all classes l ∈ {1, . . . , s}, we have that∫

Arl

(
π,un,βl,un(νn)

)
P l

n(dπ) →
∫

Arl (π,u,βl)P
l(dπ), (3.2)

where the weights need to be replaced by rl if the set �l,un(νn) = ∅ on the left-hand side, or if
ν[l](Td) on the right-hand side.

Fix l. First, suppose that ν[l](Td) = 0 and hence �l,un(νn) ⇒ 0. If the set �l,un(νn) =∅, then
the weight in (2.8) equals rl . If the set is not empty, then, we need to consider the integral∫

Arl

(
π,u,βl,un(νn)

)
P�l,un (νn),βl,un (νn),rl (dπ).

Regardless of which case we have, we have that βl,un(νn) → 0, and by definition of Arl , see
(3.1),

Arl

(·, βl,un(νn), un

) → Arl (·,0, u) = rl

uniformly by Lemma 2.10. This implies that the weight of class l has a unique limit, which
equals rl .

Next, we assume that ν[l](Td) > 0. This implies that for sufficiently large n, the set
�l,un(νn) �= ∅. As βl,un(νn) = βn−d |�l,un(νn)| = βνn[l](Td), that is, we find by the weak con-
vergence of νn → ν that βl,un(νn) → βl := βν[l](Td). Because also un → u, we find that the
continuous functions Arl (·, un,β(νn)) converge uniformly to the continuous function Arl (·, u,β)

by Lemma 2.10. Thus, the weak convergence P l
n → P l establishes (3.2). �

3.3. Preliminaries for the Ising-class analysis

Before identifying minimizers of the rate function of Proposition 2.13 for Ising classes, we first
reparametrize our Ising profiles in terms of the magnetization of the profile. Afterwards, we
rewrite our rate function in terms of a local term, analogous to that of the Curie–Weiss model,
and a global term that expresses the non-local interactions.

Consider β̃ ≥ 0 and a profile ρλ ∈ M+(Td) with Lebesgue density ρ and assume that Nρ :=
ρλ(Td) > 0. Set ρ̃ = N−1

ρ ρ as in Proposition 2.13. We study the minimizers of Iρ̃,β̃ , which is
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equivalent to studying the minimizers of the rate function Iρ̃,β̃ − infϕ Iρ̃,β̃ (ϕ), where

Iρ̃,β̃ (ϕ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
duρ̃(u)

{
−β̃

∫
dvρ̃(v)

(
α[1](u)α[1](v) + α[2](u)α[2](v)

)
J (u − v)

+ S
(
α[·](u) |eq)}

if ϕ = αρ̃λ,α ∈ B2,

∞ else.

Thus, Iρ̃(ϕ) is expressed in terms of α ∈ B2, where ϕ = αρ̃λ. First, we will rewrite the rate
function in terms of the local magnetization m in the closed ball

Ball
(
L∞) := {

m ∈ L∞(
T

d, λd
)| esssup |m| ≤ 1

}
,

defined by m(u) := α[1](u) − α[2](u). To re-express the diluted rate function in terms of mag-
netization functions, we express the quadratic term in terms of m:

α[1](v)α[1](u) + α[2](u)α[2](v) = 1 + m(u)m(v)

2
.

Substituting the representation into the rate function gives

Iρ̃,β̃ (ϕ) =
∫

duρ̃(u)

{
− β̃

2

∫
dvρ̃(v)

(
1 + m(u)m(v)

)
J (u − v) + I

(
m(u)

)}
,

where I denotes the entropy-term in the Curie–Weiss rate function

I (x) =
⎧⎨
⎩

1 + x

2
log(1 + x) + 1 − x

2
log(1 − x) if x ∈ (−1,1),

log(2) if x ∈ {−1,+1}.
Note, that, since the final rate function equals Iρ̃,β̃ plus some constant we can omit any terms in
the integrand which do not depend on m. We will further write Iρ̃,β̃ (m) instead of Iρ̃,β̃ (ϕ) if ϕ

has a magnetization represented by m. We conclude that it suffices to study minimizers of the
functional

Iρ̃,β̃ (m) =
∫

duρ̃(u)

{
− β̃

2

∫
dvρ̃(v)m(u)m(v)J (u − v) + I

(
m(u)

)}
(3.3)

on the set Ball(L∞). Analogous to the discussion in the case of all classes of size at least three
in [10], we may rewrite the rate function (3.3) by

Iρ̃,β̃ (m) = β̃

4

∫
duρ̃(u)

∫
dvρ̃(v)

[
m(u) − m(v)

]2
J (u − v)

+
∫

duρ̃(u)

[
−1

2
bβ̃,ρ̃,J (u)m2(u) + I

(
m(u)

)] (3.4)
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with the local inverse temperature at site u given by the convolution

bβ̃,ρ̃,J (u) := β̃

∫
dvρ̃(v)J (u − v). (3.5)

To elucidate the equivalence between the bracketed expression in the second term of Iρ̃ and the
Curie–Weiss rate function at (site-dependent) inverse temperature bβ,ρ̃,J (u) and magnetization
m(u), we further use the notation

�u(m) =: −1

2
bβ̃,ρ̃,J (u)m2 + I (m), u ∈ T

d,m ∈ [−1,1].

We see that the rate functional expresses the competition between the local Curie–Weiss term
and a global term that penalizes spatial inhomogeneity.

To visualize this competition, Figure 1 shows three different magnetization profiles on the
one-dimensional torus at fixed interaction-function J , (conditioning) density ρ̃ and inverse tem-
perature β̃ . The profile mloc (see Lemma 3.1 below) is given as

mloc(u) := argmin
m∈[0,1]

(
�u(m)

)
,

Figure 1. β̃ = 1.3, ρ̃(·) = 1 + cos(2π ·), J (·) = 1 + cos(2π ·).
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whereas mflat is the minimizer to the local Curie–Weiss term in the class of non-negative spatial
homogeneous profiles. The profile mstat arises from the necessary condition of vanishing gradient
at minimizing profiles to Iβ̃,ρ̃ .

3.4. Identifying the minimizers of the rate function for Ising classes

We exploit the representation of our rate function in terms of the local magnetization m to study
minimizers of I . We first argue based on the assumption that a local minimizer exists. Based
on this assumption and natural symmetry properties in the rate function, we show that we can
find a local minimizer with lower cost that is non-negative. In addition, we show, using the
decomposition of I into a local and global term that local minimizers are bounded away from
−1 and 1.

Lemma 3.1. A local (global) minimizer m of the rate function Iρ̃,β̃ has the following properties:

(a) By symmetry of Iρ̃,β̃ , the profile −m is also a local (global) minimizer.
(b) We can always find a non-negative profile m̃, such that Iρ̃,β̃ (m̃) ≤ Iρ̃,β̃ (m). If both

ρ̃λ({m > 0}) > 0 and ρ̃λ({m < 0}) > 0 then the inequality is strict.
(c) m is an interior point of Ball(L∞), that is, esssup(|m|) < 1.

Proof. (a) is immediate. For (b), consider the profile m̃ := |m| given as the point-wise absolute
value of m. The entropy functional I (·) is symmetric, implying∫

duρ̃(u)I
(
m̃(u)

) =
∫

duρ̃(u)I
(
m(u)

)
.

At any (u, v) ∈ T
d ×T

d we further have

−m̃(u)m̃(v)

{
= −m(u)m(v) if (u, v) ∈ {m ≥ 0}2 ∪ {m < 0}2,

< −m(u)m(v) else,

which leads to ∫
duρ̃(u)

{
− β̃

2

∫
dvρ̃(v)m̃(u)m̃(v)J (u − v)

}

≤
∫

duρ̃(u)

{
− β̃

2

∫
dvρ̃(v)m(u)m(v)J (u − v)

}

with the inequality being strict if ρ̃λ({m > 0}) > 0 and ρ̃λ({m < 0}) > 0. We conclude

Iρ̃,β̃ (m̃) ≤ Iρ̃,β̃ (m)

with strict inequality in the case discussed above.
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For the proof of (c), let m ≥ 0 be any magnetization-profile with esssup(m) = 1. Consider the
representation (3.4) of Iρ̃,β̃ and define

mloc(u) := argmin
m∈[0,1]

(
�u(m)

)
.

By continuity, the local inverse temperature bβ̃,J,ρ̃ is bounded on T
d , so mloc, given as non-

negative solution to the mean-field equation

mloc(u) = tanh
(
bβ̃,J,ρ̃ (u)mloc(u)

)
, (3.6)

is bounded from above by a constant c < 1. Since esssup(m) = 1, we clearly have ρ̃λ(m >

c) > 0. Thus, the profile m̃(·) = m(·) ∧ c is an interior point of Ball(L∞). By construction, the
contribution of the local part of (3.4) for m̃ is lower than for m. By a straightforward verification,
the same follows for the global part, as |m̃(u) − m̃(v)| ≤ |m(u) − m(v)| for all u, v. We find
Iρ̃,β̃ (m̃) < Iρ̃,β̃ (m). �

By (c) of Lemma 3.1, we know that mimimizers lie in the interior of Ball(L∞). This implies
we can differentiate the function Iρ̃,β̃ to get further conditions on minimizers. We start with a
technical lemma that identifies the gradient of Iρ̃ .

Lemma 3.2. For any two magnetization-profiles m1 and m2 and any t ∈ [0,1] such that there is
an open neighborhood t ∈ U ⊆R with

m1 + t̂m2 ∈ Ball
(
L∞)

for all t̂ ∈ U

the derivative d
dt̃

Iρ̃,β̃ (m1 + t̃m2)|t̃=t exists and is given by

d

dt̃
Iρ̃,β̃ (m1 + t̃m2)|t̃=t

=
∫

duρ̃(u)m2(u)

{
−β̃

∫
dvρ̃(v)(m1 + tm2)(v)J (u − v) + I ′((m1 + tm2)(u)

)}
.

Proof. We have

d

dt̃
Iρ̃ (m1 + t̃m2)|t̃=t

= − β̃

2

d

dt̃

∫
duρ̃(u)

∫
dvρ̃(v)(m1 + t̃m2)(u)(m1 + t̃m2)(v)J (u − v)|t̃=t

+ d

dt̃

∫
duρ̃(u)I

(
(m1 + t̃m2)(u)

)|t̃=t .

We first consider the first term on the right-hand side. As the integrand in the first term is contin-
uously differentiable in t̃ and using the fact that both m1 and m2 are essentially bounded, we can
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interchange integration and differentiation, cf. [12], Lemma 6.28, or [1], Exercise 5.8.135:

− β̃

2

∫
duρ̃(u)

∫
dvρ̃(v)

d

dt̃

{
(m1 + t̃m2)(u)(m1 + t̃m2)(v))J (u − v)

}|t̃=t

= − β̃

2

∫
duρ̃(u)m2(u)

∫
dvρ̃(v)(m1 + tm2)(v)J (u − v)

− β̃

2

∫
duρ̃(u)(m1 + tm2)(u)

∫
dvm2(v)J (u − v).

Using the Fubini–Tonelli-theorem on the second term on the right-hand side and then switching
roles of u and v we find

− β̃

2

∫
duρ̃(u)m2(u)

{∫
dvρ̃(u)(m1 + tm2)(v)

(
J (u − v) + J (v − u)

)}

= −β̃

∫
duρ̃(u)m2(u)

{∫
dvρ̃(u)(m1 + tm2)(v)J (u − v)

}
.

In the same way we have:

d

dt̃

∫
duρ̃(u)I

(
(m1 + t̃m2)(u)

)|t̃=t =
∫

duρ̃(u)
d

dt̃

{
I
(
(m1 + t̃m2)(u)

)}|t̃=t

=
∫

duρ̃(u)m2(u)I ′(m1(u) + tm2(u)
)
,

concluding the proof of the lemma. �

By differentiation of Iρ̃,β̃ at a local minimizer, we immediately find the following necessary
condition for minimizers.

Lemma 3.3. A minimizer m to Iρ̃,β̃ satisfies the stationarity equation

−β̃

∫
dvρ̃(v)m(v)J (u − v) + I ′(m(u)

) = 0 for ρ̃λ-a.e. u ∈ T
d, (3.7)

or equivalently,

m(u) = tanh

(
β̃

∫
dvρ̃(v)m(v)J (u − v)

)
for ρ̃λ-a.e. u ∈ T

d . (3.8)

Proof. Let m be a local minimum and m̃ an arbitrary profile. By Lemma 3.1, we may assume m

to be an interior point of (3.2), so, by Lemma 3.2 the derivative

d

dt̃
Iρ̃,β̃ (m + t̃ m̃)|t̃=0
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exists and must vanish for m being a local minimum of Iρ̃,β̃ . Rewriting I ′ = arctanh leads to the
second expression. �

An immediate consequence of the stationarity equation is a further restriction of the set of
possible minimizers.

Lemma 3.4. A nontrivial non-negative minimizer to Iρ̃,β̃ is strictly positive.

Proof. By assumption, J > 0, which implies by the stationarity equation (3.8) that a minimizers
is strictly positive. �

For the arguments that follow, we only need one side of the stationarity equation.

Definition 3.5. We say that m satisfies the stationarity inequality if

−β̃

∫
dvρ̃(v)m(v)J (u − v) + I ′(m(u)

) ≤ 0 for ρ̃λ-a.e. u ∈ T
d, (3.9)

or equivalently,

m(u) ≤ tanh

(
β̃

∫
dvρ̃(v)m(v)J (u − v)

)
for ρ̃λ-a.e. u ∈ T

d .

We start with a technical result based on the stationarity inequality and convexity that, after-
wards, will allow us to establish the uniqueness of non-negative minimizers.

Lemma 3.6. For any two different (i.e. ρ̃λ({m1 �= m2}) > 0) non-negative solutions m1 and m2
to the stationarity inequality (3.9) we have

ρ̃λ
({m2 < m1}

) = 0 ⇒ Iρ̃(m2) < Iρ̃(m1).

Proof. Assume, that m1 and m2 are two different non-negative solutions to (3.9) where
ρ̃λ({m2 < m1}) = 0 (so, ρ̃λ({m2 > m1}) > 0). Consider the linear interpolation

F : [0,1] ×T
d → [0,1]; F(t, u) := (1 − t)m1(u) + tm2(u).

Then Iρ̃,β̃F is a continuous, differentiable function in t , so at any 0 ≤ s ≤ 1 the Fundamental
theorem of calculus gives

Iρ̃,β̃

(
(1 − s)m1 + sm2

) − Iρ̃(m1) =
∫ s

0
(Iρ̃,β̃F )′(t)dt,

where by Lemma 3.2

(Iρ̃,β̃F )′(t)

=
∫

duρ̃(u)
(
m2(u) − m1(u)

){−β̃

∫
dvρ̃(v)F (t, v)J (u − v) + I ′(F(t, u)

)}
.

(3.10)
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Inserting ±((1− t)I ′(m1(u))+ tI ′(m2(u))), we may restate the bracketed expression in (3.10)
in terms of the stationarity inequality:

−β̃

∫
dvρ̃(v)F (t, v)J (u − v) + I ′(F(t, u)

)

=
(

−β̃

∫
dvρ̃(v)F (t, v)J (u − v) + (1 − t)I ′(m1(u)

) + tI ′(m2(u)
))

+ I ′(F(t, u)
) −

(
(1 − t)I ′(m1(u)

) + tI ′(m2(u)
)

= (1 − t)

(
−β̃

∫
dvρ̃(v)m1(v)J (u − v) + I ′(m1(u)

))

+ t

(
−β̃

∫
dvρ̃(v)m2(v)

)
J (u − v) + I ′(m2(u)

))

+ I ′(F(t, u)
) − ((1 − t)I ′(m1(u)

) + tI ′(m2(u)
)
.

Thus, using that m1, m2 satisfy the stationarity inequality (3.9), we find

−β̃

∫
dvρ̃(v)F (t, v)J (u − v) + I ′(F(t, u)

)
≤ I ′((1 − t)m1(u) + tm2(u)

) − ((1 − t)I ′(m1(u)
) + tI ′(m2(u)

)
.

The function I ′(·) = arctanh(·) is strictly convex on [0,∞). Using that ρ̃λ({m2 < m1}) = 0 and
ρ̃λ({m2 > m1}) > 0, we find by (3.10) that for all t ∈ (0,1):

(Iρ̃,β̃F )′(t) < 0

which establishes the claim. �

Lemma 3.7. A non-negative global minimizer to the rate function Iρ̃,β̃ is unique.

Proof. Assume that there are two different non-negative global minimizers m1 and m2 for Iρ̃,β̃ .
Then both of them satisfy the stationarity equation (3.7) and, hence, the stationarity inequality
(3.9). Since m1 and m2 are different, at least one of them is different to the point-wise maximum
m1 ∨ m2, and both m1 and m2 are bounded from above by m1 ∨ m2. Therefore, showing, that
m1 ∨ m2 satisfies the stationarity inequality (3.9), one may apply the Lemma 3.6 to get the
contradiction

Iρ̃,β̃ (m1 ∨ m2) < Iρ̃,β̃ (m1) ∨ Iρ̃,β̃ (m2) = Iρ̃,β̃ (m1) ∧ Iρ̃,β̃ (m2).

By non-negativity of J and ρ̃ and the application of the stationarity inequality (3.9) to m1 and
m2, we have at ρ̃λ-a.e. u ∈ T

d :

tanh
(
β̃
((

ρ̃(m1 ∨ m2)
) ∗ J

)
(u)

) ≥ tanh
(
β̃
(
(ρ̃m1) ∗ J

)
(u)

) ≥ m1(u),
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tanh
(
β̃
((

ρ̃(m1 ∨ m2)
) ∗ J

)
(u)

) ≥ tanh
(
β̃
(
(ρ̃m2) ∗ J

)
(u)

) ≥ m2(u),

so,

tanh
(
β̃
((

ρ̃(m1 ∨ m2)
) ∗ J

)
(u)

) ≥ (m1 ∨ m2)(u) ρ̃λ-a.s.

which concludes the proof. �

A combination of the results above allows us to identify the minimizers of Iρ̃,β̃ .

Proposition 3.8 (Characterization of the set of minimizers to Iρ̃ ). The rate function Iρ̃,β̃ is
either uniquely minimized by the trivial profile m ≡ 0, or there are exactly two minimizers m1
and m2 where

(a) m1 is strictly positive and
(b) m2 = −m1.

Proof. Since Iρ̃,β̃ has compact level sets, there is at least one global minimizer m. Suppose this
particular minimizer m is not equal to 0. Then by Lemma 3.1(b), there are two global minimizers
m1, m2 with m1 ≥ 0 and m1 = −m2 and in addition m ∈ {m1,m2}. By (c), m1 is an interior point
of Ball(L∞), which implies by Lemma 3.4 that m1 is strictly positive.

The uniqueness of a non-negative profile was established in Lemma 3.7. �

3.5. Convergence of profiles, proof of Proposition 2.15

For the proof of Proposition 2.15, we will critically exploit symmetry properties of the Potts
model. We start with a short discussion to establish the permutation invariance of the profiles
that are obtained from the r-state Potts model under the maps π�.

Suppose our fuzzy class has r elements. Let s be an element from the permutation group of
{1, . . . , r}. Also denote by s the map induced by s on {1, . . . , r}� by acting coordinate-wise.
In turn, we can define a map ŝ : P(Td × {1, . . . , r}) → P(Td × {1, . . . , r}), by (ŝπ)(u, i) =
π(u, s(i)). Recall the definition of π� in (2.3). By construction, we have the following permuta-
tion property: π� ◦ s = ŝ ◦ π�. Also, by definition of the Potts model, we have μ�,β,r ◦ s−1 =
μ�,β,r .

Combining these statements, we obtain

P�,β,r ◦ ŝ−1 = μ�,β,r ◦ π−1
� ◦ ŝ−1 = μ�,β,r ◦ s−1 ◦ π−1

� = μ�,β,r ◦ π−1
� = P�,β,r ,

i.e. the permutation symmetry of the Potts model carries over to that of the density profiles.

Proof of Proposition 2.15. The set

U := {
Q ∈P

(
P

(
T

d × {1,2}))|for all permutations s : Q ◦ ŝ−1 = Q
}

is closed for the weak topology, due to the continuity of the maps s. It follows that any limit point
of the measures Pn must be in U as well.
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By Lemma C.1, it follows that limiting points must be concentrated on the minimizers of the
large deviation rate function, which have been identified in Proposition 3.8.

In both setting (a) and (b), the intersection of these two sets contains only one element, proving
the result. �

3.6. The limiting kernel, proof of Theorem 2.16

To establish the result of Theorem 2.16, it suffices by Lemma 2.11 to find a unique limiting
measure for each fuzzy class. In the proof of Theorem 2.7 in [10], it has been shown for fuzzy
classes l of size at least 3 that if the profile ν is good then the limiting measure is the spatially
homogeneous equi-distribution. Integrating this measure against the function Arl yields one of
the factors in the limiting kernel. Thus, it suffices to give an explicit formula for the integral of
A2 for the Ising classes.

Lemma 3.9. Let β ≥ 0 and let ρ be a density profile on T
d with ρλ(Td) > 0. Denote β̃ =

βρλ(Td) and ρ̃ = (ρλ(Td))−1ρ. Suppose that ϕ∗,+ is the unique minimizer of Iρ̃,β̃ with non-

negative local magnetization mρ̃ . Set P ∈P(Td × {1,2}) by

P = 1

2
(δϕ∗,+ + δϕ∗,−).

Note that if the Iρ̃,β̃ has a unique global minimizer ϕ∗ = ϕ∗,+ = ϕ∗,− with 0 local magnetization,
then the formula for P remains valid also.

Then we have that∫
A2(π,u, β̃)P (dπ) = 2 exp

{
β̃

∫
dvρ̃(v)J (u − v)

}
1√

1 − mρ̃(u)2
.

Proof. Recall, that the magnetization profiles ±mρ̃ correspond to color profiles having densities

dπ [1]
dρ̃λ

(·) = 1 ± mρ̃(·)
2

and
dπ [2]
dρ̃λ

(·) = 1 ∓ mρ̃(·)
2

.

We thus obtain∫
A2(π,u, β̃)P (dπ)

=
∫ 2∑

i=1

exp
{
2β̃

(
J ∗ π[i])(u)

}(1

2
δϕ∗,+ + 1

2
δϕ∗,−

)
(dπ)

= 2

(
1

2
exp

{
2β̃

∫
1 + mρ̃(v)

2
J (u − v)ρ̃(v)dv

}

+ 1

2
exp

{
2β̃

∫
1 − mρ̃(v)

2
J (u − v)ρ̃(v)dv

})
(3.11)
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= exp

{
β̃

∫
ρ̃(v)J (u − v)dv

}(
exp

{
β̃

∫
ρ̃(v)mρ̃(v)J (u − v)dv

}

+ exp

{
−β̃

∫
ρ̃(v)mρ̃(v)J (u − v)dv

})
.

We first simplify the term involving two exponentials with mρ̃ factors. By application of the
stationarity equation (3.8)

β̃

∫
ρ̃(v)mρ̃(v)J (u − v)dv = arctanh

(
mρ̃(u)

) = 1

2
log

(
1 + mρ̃(u)

1 − mρ̃(u)

)
,

the braced expression further becomes

exp

{
β̃

∫
ρ̃(v)mρ̃(v)J (u − v)dv

}
+ exp

{
−β̃

∫
ρ̃(v)mρ̃(v)J (u − v)dv

}

=
√

1 + mρ̃(u)

1 − mρ̃(u)
+

√
1 − mρ̃(u)

1 + mρ̃(u)
= 2√

1 − mρ̃(u)2
.

Inserting β̃ = βρλ(Td) and ρ̃ = ρ

ρλ(Td )
into the first factor of (3.11), we get the result

∫
A2(π,u, β̃)P (dπ) = 2 exp

{
β

∫
dvρ(v)J (u − v)

}
1√

1 − mρ̃(u)2
.

�

Appendix A: Absolute continuity of limiting measures

We start by establishing the result of Lemma 2.1.

Lemma A.1. For each n let �n ⊆ T
d
n . Set

νn := 1

|Tn
d |

∑
i∈�n

δi .

Then any weak limit point ν of the sequence νn can be considered as an element in the unit ball
of L∞(Td ,dx).

Proof. Let ν be a weak limit point of the sequence νn. Without loss of generality, we can assume
νn → ν weakly.

First, we prove that ν ∈ L1(Td ,dx). As the set L1(Td ,dx) can be interpreted as a subset
of M(Td), it suffices to show that for any element f ∈ L∞(Td ,dx) we have that 〈f, ν〉 ≤
‖f ‖L∞(Td ,dx) as this implies ‖ν‖L1(Td ,dx) ≤ 1.
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Fix ε > 0. By Lusin’s theorem, cf. [1], Theorem 7.1.13, there is a continuous function fε with
ν(f �= fε) ≤ ε and ‖fε‖ ≤ ‖f ‖. Thus∣∣∣∣

∫
f dν

∣∣∣∣ ≤ 2‖f ‖ε +
∣∣∣∣
∫

fε dν

∣∣∣∣.
The right-hand side is approximated by 〈fε, νn〉, which by assumption is bounded by ‖f ‖ uni-
formly in n. Sending ε ↓ 0, we find ∣∣∣∣

∫
f dν

∣∣∣∣ ≤ ‖f ‖

establishing that ν ∈ L1(Td ,dx).
Denote by g the density of ν with respect to the Lebesgue measure. We prove it is bounded by

using the same trick as above, but by pairing with functions f ∈ L1(Td ,dx). First, recall that the
space of bounded continuous functions is dense in L1(Td , ν), thus, we can approximate f in L1

by continuous bounded functions fk . We find∣∣∣∣
∫

fg dx

∣∣∣∣ = lim
k

∣∣∣∣
∫

fkg dx

∣∣∣∣ = lim
k

lim
n

〈fk, νn〉.

For each fixed k, the function fk is uniformly continuous. As the measures νn are constructed
by putting Dirac-masses at a grid with distance n−1 between neighboring points, we can bound
the integrals |〈fk, νn〉| ≤ | ∫ fk dx| + δk(n), where limn δk(n) = 0. It follows that | ∫ fg dx| ≤
‖f ‖L1(Td ,dx) implying that g ∈ L∞(Td ,dx) and ‖g‖L∞(Td ,dx) ≤ 1. �

Appendix B: Continuity of limiting functionals

The following lemma is an adaptation from Lemma 2.1 in [2], taking into account that for each
n, we consider a different space.

Lemma B.1. Let {Xn}n≥1 be a sequence of spaces and let (X , dX ) and (Y, dY ) be two metric
spaces. Suppose there are maps ηn : Xn → X in such a way that for every x ∈ X there are
xn ∈ Xn with ηn(xn) → x.

Let fn : Xn → Y , f : X → Y and suppose that for all sequences xn ∈ Xn with ηn(xn) → x,
we have fn(xn) → f (x). Then f is continuous.

Proof. As X is metric, it suffices to prove for any sequence xn ∈ X converging to x ∈ X that
f (xn) → f (x).

For every n let xn,k ∈ Xk be such that ηk(xn,k) → xn. By assumption, we find fk(xn,k) →
f (xn). Using that X and Y are metric, we can choose k(n) large enough such that

dX
(
ηk(n)(xn,k(n)), xn

) ≤ 1

n
, dY

(
fk(n)(xn,k(n)), f (xn)

) ≤ 1

n
. (B.1)
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The first inequality, combined with ηn(xn) → x, implies that limn ηk(n)(xn,k(n)) = x. By assump-
tion, we find that limn fk(n)(xn,k(n) = f (x). Therefore, using the second inequality in (B.1)

lim
n

dY
(
f (xn)

)
, f (x)) ≤ lim

n
dY

(
f (xn), fk(n)(xn,k(n))

) + dY
(
fk(n)(xn,k(n)), f (x)

) = 0.

We conclude that f is continuous. �

Appendix C: Limits when the LDP has multiple minimizers

The following result is folklore, for which the authors could not find a good reference.

Lemma C.1. Let (μn)n≥1 be a sequence of probability-measures on a Polish space X satisfying
an large deviation upper bound at speed {r(n)}n≥1 with good rate function I . Further assume,
that the rate function only possesses a finite number of minimizers m1, . . . ,ms .

Then, for any weakly convergent subsequence

μnk

k→∞→ μ ∈ M1
(
X,B(X )

)
there are λ1, . . . , λs ≥ 0 with

∑s
i=1 λi = 1 such that μ = ∑s

i=1 λiδmi
.

Proof. Assume, that μ /∈ {∑s
i=1 λiδmi

: λ1, . . . , λs ≥ 0 and
∑s

i=1 λi = 1}. Then we have
μ({m1, . . . ,ms}c) > 0. By inner regularity of the probability measure μ (e.g., [1], Theorem 7.1.7)
this still holds true for some compact subset K ⊆ {m1, . . . ,ms}c . Moreover, employing the fact,
that X is metrizable, we can find some open set O ⊆ X where

K ⊆ O ⊆ O ⊆ {m1, . . . ,ms}c.

The large deviation upper bound, using that O is a closed set not containing the minimizers
{m1, . . . ,ms} of I , yields

lim sup
n

1

r(n)
logμn(O) ≤ − inf

x∈O

I (x) < 0

and, hence,

lim
n

μn(O) = 0. (C.1)

On the other hand, using the lower bound in the Portmanteau theorem, we find

lim inf
k→∞ μnk

(O) ≥ lim inf
k→∞ μnk

(O) ≥ μ(O) ≥ μ(K) > 0,

which contradicts (C.1). �
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