
Bernoulli 25(1), 2019, 771–792
https://doi.org/10.3150/17-BEJ1006

Estimating the interaction graph of stochastic
neural dynamics
ALINE DUARTE1,*, ANTONIO GALVES1,**, EVA LÖCHERBACH2 and
GUILHERME OST1,†

Dedicated to Enza Orlandi, in memoriam
1Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São
Paulo, Brazil. E-mail: *alineduarte@usp.br; **galves@usp.br; †guilhermeost@gmail.com
2AGM, Université de Cergy-Pontoise, CNRS-UMR 8088, 95000 Cergy-Pontoise, France.
E-mail: eva.loecherbach@u-cergy.fr

In this paper, we address the question of statistical model selection for a class of stochastic models of
biological neural nets. Models in this class are systems of interacting chains with memory of variable length.
Each chain describes the activity of a single neuron, indicating whether it spikes or not at a given time. The
spiking probability of a given neuron depends on the time evolution of its presynaptic neurons since its last
spike time. When a neuron spikes, its potential is reset to a resting level and postsynaptic current pulses are
generated, modifying the membrane potential of all its postsynaptic neurons. The relationship between a
neuron and its pre- and postsynaptic neurons defines an oriented graph, the interaction graph of the model.
The goal of this paper is to estimate this graph based on the observation of the spike activity of a finite set of
neurons over a finite time. We provide explicit exponential upper bounds for the probabilities of under- and
overestimating the interaction graph restricted to the observed set and obtain the strong consistency of the
estimator. Our result does not require stationarity nor uniqueness of the invariant measure of the process.

Keywords: biological neural nets; graph of interactions; interacting chains of variable memory length;
statistical model selection

1. Introduction

This paper addresses the question of statistical model selection for a class of stochastic processes
describing biological neural networks. The activity of the neural net is described by a countable
system of interacting chains with memory of variable length representing the spiking activity of
the different neurons. The interactions between neurons are defined in terms of their interaction
neighborhoods. The interaction neighborhood of a neuron is given by the set of all its presynap-
tic neurons. We introduce a statistical selection procedure in this class of stochastic models to
estimate the interaction neighborhoods.

The stochastic neural net we consider can be described as follows. Each neuron spikes with a
probability which is an increasing function of its membrane potential. The membrane potential
of a given neuron depends on the accumulated spikes coming from the presynaptic neurons
since its last spike time. When a neuron spikes, its potential is reset to a resting level and at the
same time postsynaptic current pulses are generated, modifying the membrane potential of all its
postsynaptic neurons.
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Recently, several papers have been devoted to the probabilistic study of these models, starting
with [16] who provided a rigorous mathematical framework to study such systems with an infinite
number of interacting components, evolving in discrete time. Its continuous time version has
been subsequently studied in [10–12,14,21,29] and [32]. We also refer to [7] and the references
therein for a simulation study and mean field analysis. All these papers deal with probabilistic
aspects of the model, not with statistical model selection.

Statistical model selection for graphical models has been largely discussed in the literature.
Recently much effort has been devoted to estimating the graph of interactions underlying for
example, finite volume Ising models ([4,26,27] and [3]), infinite volume Ising models ([17,23]
and [24]), Markov random fields ([9] and [31]) and variable-neighborhood random fields ([25]).

Graphical models are very interesting from a mathematical point of view. However, their ap-
plication to the stochastic modeling of neural data has a major drawback, namely the assumption
that the configuration describing the neural activity at a given time follows a Gibbsian distri-
bution. To the best of our knowledge, this Gibbsian assumption is not supported by biological
considerations of any kind.

Statistical methods for selecting the graph of interactions in neural nets start probably with [6]
and [5]. Recently, new approaches have been proposed by [28] in the framework of multivariate
point processes and Hawkes processes. Let us also mention [30] where a new experimental design
is introduced and studied from a numerical point of view. These articles have the following
drawback. The first mentioned ones only consider finite systems of neurons or processes having
a fixed finite memory, the lastly cited does only propose a numerical study.

The present paper provides a rigorous mathematical approach to the problem of inference in
neural dynamics. Its main features are the following.

1. The processes we consider are not Markovian. They are systems of interacting chains with
memory of variable length.

2. Our approach does not rely on any Gibbsian assumption.
3. We can deal with the case in which the system possesses several invariant measures.
4. Infinite systems of neurons can be also treated under suitable assumptions on the synaptic

weights.

Let us briefly comment on Features 3 and 4. Feature 3 makes our model suitable to describe
long-term memory in which the asymptotic law of the system depends on its initial configuration.
This initial configuration can be seen as the effect of an external stimulus to which the system is
exposed at the beginning of the experiment. In this perspective, the asymptotic distribution can
be interpreted as the neural encoding of this stimulus by the brain. Feature 4 enables us to deal
with arbitrarily high dimensional systems, taking into account the fact that the brain consists of
a huge (about 1011) number of interacting neurons.

The models we consider can be seen as a version of the Integrate and Fire (IF) model with ran-
dom thresholds, but only in cases in which the postsynaptic current pulses are of the exponential
type. Indeed, only in such cases, the time evolution of the family of membrane potentials is a
Markov process. For general postsynaptic current pulses, this is not true.

Therefore, we could say that our model is a non-Markovian version of the IF model with
random thresholds. This fact places the class of models considered here within a classical and
widely accepted framework of modern neuroscience. Indeed, as pointed out by an anonymous
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referee, IF models have a long and rich history, going back to the fundamental work [22]. For
more insights on IF-models we refer the interested reader to classical textbooks such as [13] and
[19].

The inherent randomness of the thresholds in our model leads to random neuronal responses
instead of deterministic ones. The idea that the spike activity is intrinsically random and not
deterministic can be traced back to [2], see also [1]. Under the name of “escape noise”-models,
this question has then been further emphasized by [20] and [18].

We conclude this introduction by briefly describing the statistical selection procedure we pro-
pose. We observe the process within a finite sampling region during a finite time interval. For
each neuron i in the sample, we estimate its spiking probability given the spike trains of all other
neurons since its last spike time. For each neuron j �= i, we then introduce a measure of sen-
sibility of this conditional spiking probability with respect to changes within the spike train of
neuron j . If this measure of sensibility is statistically small, we conclude that neuron j does not
belong to the interaction neighborhood of neuron i.

For this selection procedure, we give precise error bounds for the probabilities of under- and
overestimating finite interaction neighborhoods implying the consistency of the procedure in
Theorem 1. For interaction neighborhoods which are not contained within the sampling region,
a coupling between the process and its locally finite range approximation reduces the estimation
problem to the situation of Theorem 1. The coupling result is presented in Proposition 4. In our
proofs, we rely on a new conditional Hoeffding-type inequality which is of independent interest,
stated in Proposition 1.

We stress that, in our class of models, the probability of a neuron to spike depends only on the
history of the process since its last spike time. Therefore, temporal dependencies do not need to
be estimated, making our estimation problem different from classical context tree estimation as
considered in [9] and [15]. We refer the reader to the companion paper by [8] where our statistical
selection procedure is explored, tested and applied to the analysis of simulated and real neural
activity data.

The paper is organized as follows. In Section 2, we introduce the model and the selection
procedure, present the main assumptions and formulate the main results, Theorems 1 and 2. In
Section 3, we derive some exponential inequalities including a new conditional Hoeffding-type
inequality, presented in Proposition 1, which is interesting by itself. The proofs of Theorems 1
and 2 are presented in Sections 4 and 5, respectively. In Section 6, we discuss the time com-
plexity of our selection procedure. In the Appendix, we present the coupling result stated in
Proposition 4.

2. Model definition and main results

2.1. A stochastic model for a system of interacting neurons

Throughout this article, I denotes a countable set, Wj→i ∈ R with i, j ∈ I , a collection of real
numbers such that Wj→j = 0 for all j , and for i ∈ I , ϕi : R → [0,1] a non-decreasing measur-
able function and gi = (gi(t))t≥1 a sequence of strictly positive real numbers.

In order to be consistent with the neuroscience terminology (see [19]), we call
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• I the set of neurons,
• Wj→i the synaptic weight of neuron j on neuron i,
• ϕi the spike rate function of neuron i,
• gi the postsynaptic current pulse of neuron i.

We consider a stochastic chain (Xt )t∈Z taking values in {0,1}I , defined on a suitable prob-
ability space (�,A,P). For each i ∈ I and t ∈ Z, Xt(i) = 1, if neuron i spikes at time t and
Xt(i) = 0, otherwise. For each neuron i ∈ I and each time t ∈ Z, let

Li
t = sup

{
s ≤ t : Xs(i) = 1

}
, (2.1)

be the last spike time of neuron i before time t . Here, we adopt the convention that sup{∅} =
−∞.

For each t ∈ Z, we call Ft the sigma algebra generated by the past events up to time t , that is,

Ft := σ
(
Xs(j), s ≤ t, j ∈ I

)
.

The stochastic chain (Xt )t∈Z is defined as follows. For each time t ∈ Z, for any finite set F ⊂ I

and any choice a(i) ∈ {0,1}, i ∈ F ,

P
(
Xt+1(i) = a(i), i ∈ F |Ft

) =
∏
i∈F

P
(
Xt+1(i) = a(i)|Ft

)
P-a.s., (2.2)

where for each i ∈ I and t ∈ Z,

P
(
Xt+1(i) = 1|Ft

) = ϕi

(∑
j∈I

Wj→i

t∑
s=Li

t+1

gj (t + 1 − s)Xs(j)

)
P-a.s., (2.3)

if Li
t < t , and

P
(
Xt+1(i) = 1|Ft

) = ϕi(0) P-a.s.,

otherwise.
Suitable conditions ensuring the existence of a stochastic chain of this type are presented at

the beginning of Section 2.3.

2.2. Neighborhood estimation procedure

We write

x = (
xt (i)

)
−∞<t≤0,i∈I

for any configuration x ∈ {0,1}I×{...,−1,0}, and for any F ⊂ I , we write

xt (F ) = (
xt (i), i ∈ F

)
.
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Moreover, for any x ∈ {0,1}I×{...,−1,0},

X0−∞ = x, if Xt(i) = xt (i) for all −∞ < t ≤ 0 and for all i ∈ I.

Finally, for any � ≥ 1, t ∈ Z, F ⊂ I and w ∈ {0,1}{−�,...,−1}×F , we write

Xt−1
t−�(F ) = w, if Xt−s(j) = w−s(j), for all 1 ≤ s ≤ � and for all j ∈ F

and

Xt−1
t−�−1(i) = 10�, if Xt−s(i) = 0, for all 1 ≤ s ≤ � and Xt−�−1(i) = 1.

Throughout the article, s, t ∈ Z will be time indices, while n ∈ N will be saved for future use as
the length of the time interval during which the neural network is observed.

Let

Vi = {
j ∈ I \ {i} : Wj→i �= 0

}
(2.4)

be the set of presynaptic neurons of neuron i. The set Vi is called the interaction neighborhood
of neuron i. The goal of our statistical selection procedure is to identify the set Vi from the data
in a consistent way.

Let X1(F ), . . . ,Xn(F ) be a sample where F ⊂ I is a finite sampling region and n ≥ 3 is the
length of the time interval during which the network has been observed. For any fixed i ∈ F , we
want to estimate its interaction neighborhood Vi .

Our procedure is defined as follows. For each 1 ≤ � ≤ n − 2, local past w ∈
{0,1}{−�,...,−1}×F\{i} outside of i (see Figure 1) and symbol a ∈ {0,1}, we define

N(i,n)(w,a) =
n∑

t=�+2

1
{
Xt−1

t−�−1(i) = 10�,Xt−1
t−�

(
F \ {i}) = w,Xt(i) = a

}
.

The random variable N(i,n)(w,a) counts the number of occurrences of w followed or not by a
spike of neuron i (a = 1 or a = 0, respectively) in the sample X1(F ), . . . ,Xn(F ), when the last
spike of neuron i has occurred � + 1 time steps before in the past, see Figure 2.

Figure 1. Local past w ∈ {0,1}{−�,...,−1}×F\{i} outside of i with � = 5 and |F | = 7.
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Figure 2. Example for N(i,n)(w,1) = 2, where i = 1, for a given word w (in blue), � = 2, |F | = 3 and
n = 23.

We define the empirical probability of neuron i having a spike at the next step given w by

p̂(i,n)(1|w) = N(i,n)(w,1)

N(i,n)(w)
, (2.5)

when N(i,n)(w) := N(i,n)(w,0) + N(i,n)(w,1) > 0.
For any fixed parameter ξ ∈ (0,1/2), we consider the following set

T(i,n) =
{

w ∈
n−2⋃
�=1

{0,1}{−�,...,−1}×F\{i} : N(i,n)(w) ≥ n1/2+ξ

}
. (2.6)

We use the notation |w| = � whenever w ∈ {0,1}{−�,...,−1}×F\{i}. If v,w both belong to
{0,1}{−�,...,−1}×F\{i} we write

v{j}c = w{j}c if and only if v−1
−�

(
F \ {j}) = w−1

−�

(
F \ {j}).

In words, the equality v{j}c = w{j}c means that v and w coincide on all but the j th coordinate.
Finally, for each w ∈ T(i,n) and for any j ∈ F \ {i} we define the set

T w,j

(i,n) = {
v ∈ T(i,n) : |v| = |w|, v{j}c = w{j}c

}
and introduce the measure of sensibility

�(i,n)(j) = max
w∈T(i,n)

max
v∈T w,j

(i,n)

∣∣p̂(i,n)(1|w) − p̂(i,n)(1|v)
∣∣.

Our interaction neighborhood estimator is defined as follows.

Definition 1. For any positive threshold parameter ε > 0, the estimated interaction neighborhood
of neuron i ∈ F , at accuracy ε, given the sample X1(F ), . . . ,Xn(F ), is defined as

V̂
(ε)
(i,n) = {

j ∈ F \ {i} : �(i,n)(j) > ε
}
. (2.7)



Estimating the interaction graph for neural dynamics 777

2.3. Consistency of the selection procedure for finite and fully observed
interaction neighborhoods

To ensure the existence of our process, we impose the following conditions.

Assumption 1. Suppose that

r = sup
i∈I

∑
j∈I

|Wj→i | < ∞.

Assumption 2. Suppose that g(t) = supj∈I gj (t) < ∞ for all t ≥ 1.

We define the set �adm of admissible pasts as follows

�adm = {
x ∈ {0,1}I×{...,−1,0} : ∀i ∈ I,∃�i ≤ 0 with x�i

(i) = 1
}
. (2.8)

Observe that if X0−∞ = x ∈ �adm, then Li
0 > −∞ for all i ∈ I . Therefore, Assumptions 1 and 2

assure that for each i ∈ I ,

∑
j∈I

Wj→i

0∑
s=Li

0+1

gj (1 − s)Xs(j) < ∞,

which implies that the transition probability P(X1(i) = 1|X0−∞ = x) is well-defined. By induc-
tion, for each t ≥ 0, the transition probabilities (2.3) are also well-fined. Thus, the existence of
the stochastic chain (Xt )t∈Z, starting from X0−∞ = x ∈ �adm, follows immediately. Observe that
we do not assume stationarity of the chain. To prove the consistency of our estimator we impose
also

Assumption 3. For all i ∈ I , ϕi ∈ C1(R, [0,1]) is a strictly increasing function. Moreover, there
exists a p∗ ∈ ]0,1[ such that for all i ∈ I and u ∈ R

p∗ ≤ ϕi(u) ≤ 1 − p∗.

Define for i ∈ I ,

Ki =
[ ∑

j∈V −
i

Wj→igj (1),
∑

j∈V +
i

Wj→igj (1)

]
, (2.9)

where V +
i = {j ∈ Vi : Wj→i > 0} and V −

i = {j ∈ Vi : Wj→i < 0}.
Notice that under Assumptions 1 and 2, this interval is always bounded. Finally, we define

mi = inf
u∈Ki

{
ϕ′

i (u)
}

inf
j∈Vi

{|Wj→i |gj (1)
}
. (2.10)
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The following theorem is our first main result. It states the strong consistency of the interac-
tion neighborhood estimator when Vi ⊂ F . By strong consistency we mean that the estimated
interaction neighborhood of a fixed neuron i equals Vi eventually almost surely as n → ∞.

Theorem 1. Let F ⊂ I be a finite set and X1(F ), . . . ,Xn(F ) be a sample produced by a the
stochastic chain (Xt )t∈Z compatible with (2.2) and (2.3), starting from X0−∞ = x for some fixed
x ∈ �adm. Under Assumptions 1–3, for any i ∈ F such that Vi ⊂ F , the following holds.

1. (Overestimation). For any j ∈ F \ Vi , we have that for any ε > 0,

P
(
j ∈ V̂

(ε)
(i,n)

) ≤ 4n3/2−ξ exp

{
−ε2n2ξ

2

}
.

2. (Underestimation). The quantity mi defined in (2.10) satisfies mi > 0, and for any j ∈ Vi

and 0 < ε < mi ,

P
(
j /∈ V̂

(ε)
(i,n)

) ≤ 4 exp

{
− (mi − ε)2n2ξ

2

}
+ exp

{−O
(
n1/2+ξ

)}
.

3. In particular, if we choose εn = O(n−ξ/2), where ξ is the parameter appearing in (2.6),
then

V̂
(εn)
(i,n) = Vi eventually almost surely.

The proof of Theorem 1 is given in Section 4.

2.4. Extension to the case of partially observed interaction neighborhoods

We now discuss the case when Vi is not fully included in the sampling region F , in particular,
the case when Vi is infinite. In this case, we also impose the following assumptions.

Assumption 4. γ = supj∈I ‖ϕ′
j‖∞ < ∞.

Assumption 5. There exists a constant C and p ≥ 1, such that g(t) = supj∈I gj (t) ≤ C(1 + tp)

for all t ≥ 1.

Let �∞ = {ξ = (ξj )j∈I : ∀j ∈ I, ξj ∈ R and ‖ξ‖∞ := supj∈I |ξj | < ∞} be the space of all
bounded series of real numbers indexed by I . Under Assumption 5, we may introduce, for each
t ≥ 1, the continuous operator H(t) : �∞ → �∞ defined by (H(t)ξ)j = ∑

k∈I Hj,k(t)ξk , for all
j ∈ I , where

Hj,k(t) := γ |Wk→j |gk(t), for j �= i, (2.11)

and, for p∗ as in Assumption 3,

Hi,i(t) := (1 − p∗)1{t=1}.
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By our assumptions, the norm of the operator H(t) defined by∣∣∣∣∣∣H(t)
∣∣∣∣∣∣ = sup

{∥∥H(t)ξ
∥∥∞ : ξ ∈ �∞,‖ξ‖∞ = 1

}
satisfies ∣∣∣∣∣∣H(t)

∣∣∣∣∣∣ ≤ Cγ r
(
1 + tp

) + (1 − p∗)1{t=1}.

Then for any α > 0, the linear operator

�(α) =
∞∑
t=1

e−αtH(t)

is well-defined and continuous as well. In particular, there exists α0 ≥ 0 such that∣∣∣∣∣∣�(α0)
∣∣∣∣∣∣ < 1. (2.12)

We are now ready to state our second main result. It gives precise error bounds for the inter-
action neighborhood estimator when Vi is not fully observed. These error bounds depend on the
tail of the series

�i(F ) :=
∑

j /∈Vi∩F

|Wj→i |. (2.13)

To state the theorem, we shall also need the definitions

K
[F ]
i =

[ ∑
j∈V −

i ∩F

Wj→igj (1),
∑

j∈V +
i ∩F

Wj→igj (1)

]

and

m
[F ]
i = inf

u∈K
[F ]
i

{
ϕ′

i (u)
}

inf
j∈Vi∩F

{|Wj→i |gj (1)
}
.

Theorem 2. Let F ⊂ I be a finite set and X1(F ), . . . ,Xn(F ) be a sample produced by a the
stochastic chain (Xt )t∈Z compatible with (2.2) and (2.3), starting from X0−∞ = x for some fixed
x ∈ �adm. Under Assumptions 1–5, for any i ∈ F such that Vi ∩ F �=∅, the following assertions
hold true.

1. (Overestimation). For any j ∈ F \ Vi , we have that for any ε > 0,

P
(
j ∈ V̂

(ε)
(i,n)

) ≤ 4n3/2−ξ exp

{
−ε2n2ξ

2

}
+ C

(
eα0n ∨ n

)
�i(F ).

2. (Underestimation). We have that m
[F ]
i > 0, and for any j ∈ Vi ∩ F and 0 < ε < m

[F ]
i ,

P
(
j /∈ V̂

(ε)
(i,n)

) ≤ 4 exp

{
− (m

[F ]
i − ε)2n2ξ

2

}
+ exp

{−O
(
n1/2+ξ

)} + C
(
eα0n ∨ n

)
�i(F ).



780 Duarte, Galves, Löcherbach and Ost

The proof of Theorem 2 is given in Section 5.

3. Exponential inequalities

To prove Theorems 1 and 2, we need some exponential inequalities, including a new conditional
Hoeffding-type inequality, stated in Proposition 1 below, which is interesting by itself.

For each � ≥ 1, F ⊂ I finite and w ∈ {0,1}{−�,...,−1}×F\{i}, we write

pi(1|w) = P
(
X�+2(i) = 1|X�+1

1 (i) = 10�,X�+1
2

(
F \ {i}) = w

)
. (3.1)

Notice that pi(1|w) = pi(1|w(Vi)) for any set F ⊃ Vi , where w(Vi) is the configuration w

restricted to the set Vi . Moreover, the homogeneity of the transition probability (2.3) implies
that, whenever F ⊃ Vi , for any t ≥ � + 2,

pi(1|w) = P
(
Xt(i) = 1|Xt−1

t−�−1(i) = 10�,Xt−1
t−�

(
F \ {i}) = w

)
.

Proposition 1. Suppose Vi finite and Vi ⊂ F . Then for any � ≥ 1, w ∈ {0,1}{−�,...,−1}×F\{i},
λ > 0 and all t > � + 1,

P
(∣∣M(i,t)(w)

∣∣ > λ
) ≤ 2 exp

{
− 2λ2

t − � + 1

}
P
(
N(i,t)(w) > 0

)
, (3.2)

where M(i,t)(w) := N(i,t)(w,1) − pi(1|w)N(i,t)(w).

Proof. We denote p = pi(1|w) and for each t ≥ � + 1, N(i,t)(w) = Nt , Yt = 1{Xt(i) = 1} − p,
χt = 1{Xt−1

t−�(F \ {i}) = w,Xt−1
t−�−1(i) = 10�} and also M(i,t)(w) = Mt with the convention that

M�+1 = 0. Thus for t ≥ � + 2,

Mt = Mt−1 + χtYt . (3.3)

Since P(Mt > λ) = P(Mt > λ,Nt > 0), the Markov inequality implies that

P(Mt > λ) ≤ e−λσ E
[
eσMt 1{Nt > 0}],

for all σ > 0. Notice that {Nt > 0} = {Nt−1 > 0}∪{Nt−1 = 0, χt = 1}, so that by (3.3), it follows
that E[eσMt 1{Nt > 0}] can be rewritten as

E
[
eσMt−1eσχtYt 1{Nt−1 > 0}] +E

[
eσYt 1{Nt−1 = 0, χt = 1}]. (3.4)

From the assumption Vi ⊂ F it follows that p = pi(1|w) = pi(1|w(Vi)) and E[χtYt |Ft−1] = 0.
Since −p ≤ χtYt ≤ 1 − p, the classical Hoeffding bound implies that E[eσχtYt |Ft−1] ≤ eσ 2/8

and therefore the expression (3.4) can be bounded above by

E
[
eσMt 1{Nt>0}

] ≤ eσ 2/8
E

[
eσMt−11{Nt−1>0}

] + eσ 2/8
E[1{Nt−1=0,χt=1}].



Estimating the interaction graph for neural dynamics 781

By iterating the inequality above and using the identity

1{Nt > 0} = 1{N�+1 > 0} +
t∑

s=�+2

1{Ns−1 = 0, χs = 1},

we obtain that E[eσMt 1{Nt > 0}] ≤ e(t−�+1)σ 2/8
P(Nt > 0). Thus, collecting all these estimates,

we deduce, by taking σ = 4λ(t − � + 1)−1, that

P(Mt > λ) ≤ exp

{
− 2λ2

t − � + 1

}
P(Nt > 0).

The left-tail probability P(Mt < −λ) is treated likewise. �

As a consequence of Proposition 1, we have the following result.

Proposition 2. Suppose that Vi is finite and Vi ⊂ F . Then for any � ≥ 1, t > � + 1, w ∈
{0,1}{−�,...,−1}×F\{i}, ξ ∈ (0,1/2) and ε > 0, we have

P
(∣∣p̂(i,t)(1|w) − pi(1|w)

∣∣ > ε,N(i,t)(w) ≥ t1/2+ξ
) ≤ 2 exp

{−2ε2t2ξ
}
P
(
N(i,t)(w) > 0

)
.

Proof. For any w ∈ {0,1}{−�,...,−1}×F\{i} and t > � + 1,

Mt(w) = (
p̂(i,t)(1|w) − pi(1|w)

)
N(i,t)(w),

so that

P
(∣∣p̂(i,t)(1|w) − pi(1|w)

∣∣ > ε,N(i,t)(w) ≥ t1/2+ξ
) ≤ P

(∣∣Mt(w)
∣∣ > εt1/2+ξ

)
.

Thus the result follows from Proposition 1 by taking λ = εt1/2+ξ . �

The next two results will be used to control the probability of underestimating Vi . We start
with a simple lower bound which follows immediately from Assumption 3.

Lemma 1. For any fixed i ∈ F , t > � + 1 and w ∈ {0,1}{−�,...,−1}×F\{i}, we define for 1 ≤ s ≤
t − �,

Zs = 1
{
Xs+�

s (i) = 10�,Xs+�
s+1

(
F \ {i}) = w

}
.

Under Assumption 3, it follows that

P(Zs = 1|Fs−1) ≥ p
|F |�+1
min ,

where pmin = min{p∗, (1 − p∗)} > 0 with p∗ as in Assumption 3.
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Lemma 2. Suppose Assumption 3. For any ξ ∈ (0,1/2), i ∈ F and w ∈ {0,1}{−1}×F\{i}, it holds
that

P
(
N(i,t)(w) < t1/2+ξ

) ≤ exp
{−O

(
t1/2+ξ

)}
.

Proof. For each 1 ≤ s ≤ t − 1, let Zs be the random variable defined as in Lemma 1 with � = 1.
Now we define Ys = Z2(s−1)+1 for 1 ≤ s ≤ �t/2� and observe that Gs := σ(Y1, . . . , Ys) ⊂ F2s .
Thus, by Lemma 1,

P(Ys = 1|Gs−1) = E
[
P(Z2(s−1)+1 = 1|F2(s−1))|Gs−1

] ≥ p
|F |+1
min .

Define q∗ = p
|F |+1
min . Then Lemma A.3 of [9] implies for every ν ∈ ]0,1[,

P

(
1

�t/2�
�t/2�∑
s=1

Ys < νq∗

)
≤ exp

{
−�t/2�q∗

4
(1 − ν)2

}
.

Clearly N(i,t)(w) = ∑t−1
s=1 Zs ≥ ∑�t/2�

s=1 Ys , so that it follows from the inequality above that

P
(
N(i,t)(w) < νq∗�t/2�) ≤ exp

{
−�t/2�q∗

4
(1 − ν)2

}
.

Finally, for any fixed ν ∈ (0,1) and all t large enough, �t/2� q∗
4 (1−ν)2 > t1/2+ξ and νq∗�t/2� >

t1/2+ξ , implying the assertion. �

4. Proof of Theorem 1

Suppose that Vi ⊂ F and notice that for any � ≥ 1 and w ∈ {0,1}{−�,...,−1}×Vi , it holds that

pi(1|w) = ϕi

(∑
j∈Vi

Wj→i

−1∑
t=−�

gj (−t)wt (j)

)
. (4.1)

Proof of Item 1 of Theorem 1. Using the definition of V̂
(ε)
(i,n) and applying the union bound, we

deduce that

P
(
j ∈ V̂

(ε)
(i,n)

) = P
(
�(i,n)(j) > ε

)
≤ E

[ ∑
(w,v)

1
{
A

w,v,j

(i,n) ,
∣∣p̂(i,n)(1|w) − p̂(i,n)(1|v)

∣∣ > ε
}]

,
(4.2)

where A
w,v,j

(i,n)
:= {(w,v) ∈ T(i,n) × T w,j

(i,n)
}. Since j /∈ Vi and Vi ⊂ F , the configurations of any

pair (w,v) ∈ T(i,n) × T w,j

(i,n) coincide in restriction to the set Vi . In other words, w(Vi) = v(Vi).
In particular, it follows from (4.1) that pi(1|w) = pi(1|w(Vi)) = pi(1|v(Vi)) = pi(1|v).
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Therefore, applying the triangle inequality, it follows that on A
w,v,j

(i,n) ,

1
{∣∣p̂(i,n)(1|w) − p̂(i,n)(1|v)

∣∣ > ε
} ≤

∑
u∈{w,v}

1
{∣∣p̂(i,n)(1|u) − pi(1|u)

∣∣ > ε/2
}
,

so that the expectation in (4.2) can be bounded above by

2E

[∑
w

1{w∈T(i,n)}
∑

v

1{v∈T(i,n)}1
{∣∣p̂(i,n)(1|v) − pi(1|v)

∣∣ > ε/2
}]

. (4.3)

Now, since
∑

w N(i,n)(w) ≤ n, we have that

n ≥
∑

w:N(i,n)(w)≥n1/2+ξ

N(i,n)(w) ≥ n1/2+ξ
∣∣{w : N(i,n)(w) ≥ n1/2+ξ

}∣∣,
which implies that |T(i,n)| ≤ n1/2−ξ . From this last inequality and Proposition 2, which is stated
in Section 3 below, we obtain the following upper bound for (4.3),

4n1/2−ξ exp

{
−ε2n2ξ

2

}
E

[∑
w

1
{
N(i,n)(w) > 0

}]
. (4.4)

Since
∑

w 1{N(i,n)(w) > 0} ≤ n, the result follows from inequalities (4.2) and (4.4). �

Before proving Item 2 of Theorem 1, we will prove the following lemma.

Lemma 3. Suppose that Vi is finite and define for each j ∈ Vi ,

mi,j := max
w,v∈{0,1}{−1}×Vi :w{j }c=v{j }c

∣∣pi(1|w) − pi(1|v)
∣∣.

Then, under Assumption 3, we have that

inf
j∈Vi

mi,j ≥ inf
x∈Ki

{
ϕ′

i (x)
}

inf
j∈Vi

{|Wj→i |gj (1)
} = mi > 0, (4.5)

where Ki is defined in (2.9).

Proof. For each j ∈ Vi take any pair w,v ∈ {0,1}{−1}×Vi such that w{j}c = v{j}c with w−1(j) =
1 and v−1(j) = 0. By Assumption 3, the function ϕi is differentiable such that, for � = 1,

∣∣pi(1|w) − pi(1|v)
∣∣ ≥ inf

x∈Ki

{
ϕ′

i (x)
}∣∣∣∣∣

∑
k∈Vi

Wk→i

−1∑
t=�

gk(−t)
(
wt(k) − vt (k)

)∣∣∣∣∣.
Since |∑k∈Vi

Wk→i

∑−1
t=−� gk(−t)(wt (k) − vt (k))| = |Wj→i |gj (1), the inequality above im-

plies the first assertion of the lemma.
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By Assumption 3, the function ϕi is strictly increasing ensuring that infx∈Ki
{ϕ′

i (x)} > 0. Thus,
since for all j ∈ I the sequence gj is strictly positive and Vi �= ∅ is finite, we clearly have that
mi > 0. �

We are now in position to conclude the proof of Theorem 1.

Proof of Item 2 of Theorem 1. Lemma 3 implies that mi defined in (4.5) is positive. Let 0 <

ε < mi . If j ∈ Vi , Lemma 3 implies the existence of strings w∗, v∗ ∈ {0,1}{−1}×F\{i} such that
w∗{j}c = v∗{j}c and

∣∣pi

(
1|w∗) − pi

(
1|v∗)∣∣ = ∣∣pi

(
1|w∗(Vi)

) − pi

(
1|v∗(Vi)

)∣∣ ≥ mi.

Denoting by Cn = {N(i,n)(w
∗) ≥ nξ+1/2,N(i,n)(v

∗) ≥ nξ+1/2} it follows that

P
(
j /∈ V̂

(ε)
(i,n)

) ≤ P
(∣∣p̂(i,n)

(
1|w∗) − p̂(i,n)

(
1|v∗)∣∣ < ε,Cn

) + P
(
Cc

n

)
. (4.6)

Now notice that the first term on the right in (4.6) is upper bounded by∑
u∈{w∗,v∗}

P
(∣∣p̂(i,n)(1|u) − pi(1|u)

∣∣ > (mi − ε)/2,N(i,n)(u) ≥ nξ+1/2),
and since mi > ε, the result follows from Proposition 2 and Lemma 2, both stated in Section 3
above. �

Proof of Item 3 of Theorem 1. Define for n ∈ N the sets

On = {
j ∈ F \ Vi : j ∈ V

(εn)
(i,n)

}
and Un = {

j ∈ Vi : j /∈ V
(εn)
(i,n)

}
.

Applying the union bound and then Item 1, we infer that

P(On) ≤ 4
(|F | − |Vi |

)
n3/2−ξ exp

{
−ε2

nn
2ξ

2

}
.

Applying once more the union bound and then using Item 2, we also infer that

P(Un) ≤ |Vi |
(

4 exp

{
− (mi − εn)

2n2ξ

2

}
+ exp

{−O
(
n1/2+ξ

)})
.

Since {V (ε)
(i,n) �= Vi} = On ∪ Un, we deduce that

∑∞
n=1 P(V

(εn)
(i,n) �= Vi) < ∞, so that the result

follows from the Borel–Cantelli lemma. �

5. Proof of Theorem 2

To deal with the case Vi �⊂ F , we couple the process X = (Xt )t∈Z with its fixed range approx-
imation X[F ] = (X

[F ]
t )t∈Z, where X[F ] follows the same dynamics as X, defined in (2.2) and
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(2.3) for all j �= i, except that (2.3) is replaced – for the fixed neuron i – by

P
(
X

[F ]
t+1(i) = 1|Ft

) = ϕi

( ∑
j∈Vi∩F

Wj→i

t∑
s=L

i,[F ]
t +1

gj (t + 1 − s)X[F ]
s (j)

)
. (5.1)

Also, suppose that X and X[F ] start from the same initial configuration X0−∞ = (X[F ])0−∞ = x,
where x ∈ �adm. We will show in Proposition 4 in the Appendix that Assumptions 1, 4 and 5
imply the existence of a coupling between X and X[F ] and of a constant C > 0 such that

sup
j∈I

P
(∃t ∈ [1, n] : Xt(j) �= X

[F ]
t (j )

) ≤ C
(
eα0n ∨ n

) ∑
j /∈Vi∩F

|Wj→i |. (5.2)

Write

En =
⋂

1≤s≤n

{
Xs(i) = X[F ]

s (i)
}
.

On En, instead of working with Xs(i),1 ≤ s ≤ n, we can therefore work with its approximation
X

[F ]
s (i),1 ≤ s ≤ n, having conditional transition probabilities (for neuron i) given by

p
[F ]
i (1|w) = ϕi

( ∑
j∈Vi∩F

Wj→i

−1∑
s=−�

gj (−s)wj (s)

)

which only depend on w(Vi ∩ F). As a consequence, on En the proof of Theorem 2 works as in
the preceding section, except that we replace mi by

m
[F ]
i = inf

x∈K
[F ]
i

{
ϕ′

i (x)
}

inf
j∈Vi∩F

{|Wj→i |gj (1)
}

> 0

if Vi ∩ F �=∅. Here K
[F ]
i is defined by

K
[F ]
i =

[ ∑
j∈V −

i ∩F

Wj→igj (1),
∑

j∈V +
i ∩F

Wj→igj (1)

]
.

Finally, writing

On = {
j ∈ F \ Vi : j ∈ V

(εn)
(i,n)

}
and Un = {

j ∈ Vi ∩ F : j /∈ V
(εn)
(i,n)

}
,

we obtain

P(On) ≤ P(On ∩ En) + P
(
Ec

n

)
, P(Un) ≤ P(Un ∩ En) + P

(
Ec

n

)
,

where as before in Theorem 1,

P(On ∩ En) ≤ 4n3/2−ξ exp

{
−ε2

nn
2ξ

2

}
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and

P(Un ∩ En) ≤ |F |
(

4 exp

{
− (m

[F ]
i − εn)

2n2ξ

2

}
+ exp

{−O
(
n1/2+ξ

)})
.

Finally, by inequality (5.2),

P
(
Ec

n

) = P
(∃t ∈ [1, n] : Xt(i) �= X

[F ]
t (i)

) ≤ C
(
eα0n ∨ n

) ∑
j /∈Vi∩F

|Wj→i |,

for some constant C. This concludes the proof.

6. Time complexity of the estimation procedure

The time complexity of our selection procedure has quadratic growth with respect to n, the
length of the time interval during which the neural network is observed. This is the content of the
following proposition.

Proposition 3. The number of operations needed to compute the set V̂
(ε)
(i,n) is O(n2).

Proof. All the random variables involved in the definition of the random set V̂
(ε)
(i,n) can be writ-

ten in terms of the counting variables N(i,n)(·). Besides, all counting variables N(i,n)(w) for
w ∈ {0,1}{−�,...,−1}×F\{i} with fixed length � can be computed simultaneously after n − � − 1
operations. Indeed, we set initially N(i,n)(w) = 0 for all pasts w ∈ {0,1}{−�,...,−1}×F\{i} and then
we increment by 1 the count of the past that has occurred at time � + 2 ≤ t ≤ n, leaving the
counts of all other pasts unchanged. Thus, we compute all the counting variables N(i,n)(w) with

�n−2−n1/2+ξ �∑
l=1

(n − � − 1) ≤ O
(
n2 − n1+2ξ

)

operations, for all local pasts w ∈ {0,1}{−�,...,−1}×F\{i}, for all 1 ≤ � ≤ �n − 2 − n1/2+ξ �, where
for each x ∈ R, �x� is the largest integer less than or equal to x .

Now, given all counting variables, to compute �(i,n)(j) we need at most

O(
∑

w∈T(i,n)
|T w,j

(i,n)
|) ≤ O(n1−2ξ ) computations which in turns implies that, given all counting

variables, with at most O(|F |n1−2ξ ) operations we compute our estimator V̂
(ε)
(i,n). Therefore, in

the overall, we need to perform at most

O
(
n2 − n1+2ξ

) + O
(|F |n1−2ξ

) = O
(
n2)

operations. �
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Appendix: Auxiliary results

In this section, we prove the coupling result (5.2) needed in the proof of Theorem 2. For that
sake, let F ⊂ I be a finite set, fix i ∈ F and let Ut(j), j ∈ I , t ≥ 1, be an i.i.d. family of random
variables uniformly distributed on [0,1].

The coupling is defined as follows. For any x ∈ �adm, we define Xt(j) = X
[F ]
t (j ) = xt (j) for

each t ≤ 0 and j ∈ I . For each t ≥ 1 and j ∈ I , we define

Xt(j) =
{

1, if Ut(j) > ϕj

(
ηt−1(j)

)
,

0, if Ut(j) ≤ ϕj

(
ηt−1(j)

)
and

X
[F ]
t (j ) =

{
1, if Ut(j) > ϕj

(
η

[F ]
t−1(j)

)
,

0, if Ut(j) ≤ ϕj

(
η

[F ]
t−1(j)

)
,

where for each t ≥ 0 and j ∈ I ,

ηt (j) =
∑
k∈Vj

Wk→j

t∑
s=L

j
t +1

gk(t + 1 − s)Xs(k)

and, if j �= i,

η
[F ]
t (j ) =

∑
k∈Vj

Wk→j

t∑
s=L

j,[F ]
t +1

gk(t + 1 − s)X[F ]
s (k), (A.1)

and finally

η
[F ]
t (i) =

∑
k∈Vi∩F

Wk→i

t∑
s=L

i,[F ]
t +1

gk(t + 1 − s)X[F ]
s (k). (A.2)

In other words, the process X[F ] has exactly the same dynamics as the original process X, except
that neuron i depends only on neurons belonging to Vi ∩F . Notice that we use the same uniform
random variables Ut(j) to update the values of Xt(j) and of X

[F ]
t (j ). In this way, we achieve a

coupling between the two processes. We shall write Ex to denote the expectation with respect to
this coupling. Then we have the following result.

Proposition 4. Assume Assumptions 1, 4 and 5, and let α0 be defined as in (2.12).

1. If α0 > 0, then

sup
j∈I

Px

(
t⋃

s=1

{
Xs(j) �= X[F ]

s (j)
}) ≤ Ceα0t

∑
k /∈Vi∩F

|Wk→i |. (A.3)
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2. Suppose now that α0 = 0 and write for any j ∈ I , �j = ∑∞
t=1 gj (t), � = supj∈I �i . Then

χ = (1 − p∗) + γ sup
j∈I

∑
k∈I

�k|Wk→I | < 1, (A.4)

and in this case

sup
j∈I

Px

(
t⋃

s=1

{
Xs(j) �= X[F ]

s (j)
}) ≤ γ �t

1 − χ

∑
k /∈Vi∩F

|Wk→i |. (A.5)

Proof. For notational convenience, we assume that the starting configuration x ∈ �adm satisfies
x0(i) = 1 and extend the definition of gj by defining gj (t) = 0 for all t≤ 0 and j ∈ I .

We start proving Item 1. Recall the definition of the continuous operator H(t) in (2.11). In the
sequel, we set also H(0) ≡ 0.

Let for each t ≥ 0,

Dj(t) = 1
{
L

j
t �= L

j,[F ]
t

}
, j ∈ I,

and observe that

Px

(
Xt(j) �= X

[F ]
t (j )

) ≤ Ex

[
Dj(t)

]
. (A.6)

Given Ft , we update Dj(t) as follows. If neuron j spikes at time t + 1 in both processes, then
Dj(t + 1) = 0 regardless the value of Dj(t). By the definition of the coupling, this event occurs

with probability ϕj (ηt (j) ∧ η
[F ]
t (j )) ≥ p∗. When Dj(t) = 1, then Dj(t + 1) = 1 if and only if

neuron j does not spike in both processes. Clearly, this event has probability 1 − ϕj (ηj (t) ∧
η

[F ]
j (t)). Finally, if Dj(t) = 0, then Dj(t + 1) = 1 if and only if neuron j spikes only in one

of the two processes. This event occurs with probability |ϕj (ηt (j)) − ϕj (η
[F ]
t (j ))|. Thus for all

j ∈ I , we have

Ex

(
Dj(t + 1)|Ft

) = Dj(t)(1 − ϕj

(
ηt (j) ∧ η

[F ]
t (j )

)
+ ∣∣ϕj

(
ηt (j)

) − ϕj

(
η

[F ]
t (j )

)∣∣(1 − Dj(t)
)
.

(A.7)

Since ϕi is Lipschitz with Lipschitz constant γ and Li
t = L

i,[F ]
t on {Di(t) = 0}, we have on this

event,

1

γ

∣∣ϕi

(
ηt (i)

) − ϕi

(
η

[F ]
t (i)

)∣∣
≤ ∣∣ηt (i) − η

[F ]
t (i)

∣∣
≤

∑
k∈Vi∩F

|Wk→i |
t∑

s=Li
t+1

gk(t + 1 − s)
∣∣Xs(k) − X[F ]

s (k)
∣∣ (A.8)



Estimating the interaction graph for neural dynamics 789

+
∑

k /∈Vi∩F

|Wk→i |
t∑

s=1

gk(t + 1 − s)

≤
∑

k∈Vi∩F

|Wk→i |
t+1∑
s=1

gk(t + 1 − s)
∣∣Xs(k) − X[F ]

s (k)
∣∣

+
∑

k /∈Vi∩F

|Wk→i |
t+1∑
s=1

gk(t + 1 − s),

where we have used that gk(0) = 0 in order to replace the sum
∑t

s=1 by
∑t+1

s=1. Moreover, we

have used that Li
t = L

i,[F ]
t ≥ 0 for all t ≥ 0, by our choice of x.

Similarly, for all j �= i, we have on {Dj(t) = 0},

1

γ

∣∣ϕj

(
ηt (j)

) − ϕj

(
η

[F ]
t (j )

)∣∣ ≤
∑
k∈Vj

|Wk→j |
t+1∑
s=1

gk(t + 1 − s)
∣∣Xs(k) − X[F ]

s (k)
∣∣. (A.9)

For each j ∈ I , let δj (t) = Ex(Dj (t)) and write δ(t) = (δj (t))j∈I for the associated col-

umn vector. Taking expectation in (A.7)–(A.9) and using that Ex |Xs(k) − X
[F ]
s (k)| ≤ δk(s) (see

(A.6)), we obtain

δ(t + 1) ≤ H ∗ δ(t + 1) + γ�i(F )g ∗ 1(t + 1)ei, (A.10)

where ei is the i−the unit vector. In the above formula,

(
H ∗ δ(t)

)
j

=
∑
k∈I

t∑
s=0

Hj,k(t − s)δk(s)

is the operator convolution product, and the inequality in (A.10) has to be understood coordinate-
wise.

Now let α0 be as in (2.12) and introduce H̃ (t) = e−α0tH(t), δ̃(t) = e−α0t δ(t) and 1̃(t) = e−α0t .
Multiplying the above inequality with e−α0(t+1), we obtain

δ̃(t + 1) ≤ H̃ ∗ δ̃(t + 1) + g̃ ∗ 1̃(t + 1)γ�i(F )ei .

Let ‖δ̃‖1 = (‖δ̃i‖1, i ∈ I ) be the column vector where each entry is given by ‖δ̃i‖1 = ∑∞
t=0 δi(t).

Then we obtain, summing over t ≥ 0,

‖δ̃‖1 ≤ �(α0)‖δ̃‖1 + 1

1 − e−α0
‖g̃‖1�i(F )ei,

implying that

(
Id − �(α0)

)‖δ̃‖1 ≤ 1

1 − e−α0
‖g̃‖1�i(F )ei . (A.11)
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By (2.12), Id − �(α0) is invertible, and it is well-known that the operator norm of the inverse
is bounded by ∣∣∣∣∣∣(Id − �(α0)

)−1∣∣∣∣∣∣ ≤ (
1 − ∣∣∣∣∣∣�(α0)

∣∣∣∣∣∣)−1 = C(α0).

Moreover, (Id−�(α0))
−1 : �+∞ → �+∞, where �+∞ = {(ξj )j∈I : ξj ≥ 0}. Therefore, (A.11) implies

sup
j∈I

‖δ̃j‖1 ≤
[

1

1 − e−α0
‖g̃‖1�i(F )

]
C(α0). (A.12)

By using the union bound and (A.6), it follows that

sup
j∈I

Px

(∃s ∈ [1, t] : Xs(j) �= X[F ]
s (j)

) ≤ sup
j∈I

t∑
s=1

δj (s) ≤ eα0t sup
j∈I

‖δ̃j‖1,

which implies the assertion of Item 1.
The proof of Item 2 is similar to the above argument, except that now it is possible to work di-

rectly with g(t) instead of g̃(t). In this case, we write simply δ̄(t) = supj∈I δj (t). (A.10) implies
that (

sup
0≤s≤t

δ̄(s)
)

≤ χ
(

sup
0≤s≤t

δ̄(s)
)

+ γ �
∑

k /∈Vi∩F

|Wk→i |,

which implies the assertion. �

Proof of (5.2). The coupling inequality (5.2) follows now directly from (A.3) ((A.5), respec-
tively). �
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