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We consider a Galton—Watson process with immigration (Z,), with offspring probabilities (p;) and immi-
gration probabilities (g;). In the case when pg =0, p; # 0, go = O (that is, when essinf(Z};) grows linearly
in n), we establish the asymptotics of the left tail P{WV < ¢}, as ¢ | 0, of the martingale limit VV of the pro-
cess (Zy). Further, we consider the first generation K such that Zj- > essinf(Zy-) and study the asymptotic
behaviour of K conditionally on {WW < €}, as ¢ | 0. We find the growth scale and the fluctuations of K and
compare the results with those for standard Galton—Watson processes.
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1. Introduction and main results

1.1. Galton—Watson process without immigration

Let (Z, : n > 0) be a supercritical Galton—Watson process with a non-degenerate offspring ran-
dom variable X. We denote the offspring probabilities by (px : k > 0) and assume that pg = 0.
Further, we assume that the process starts with one ancestor, that is, Zgp = 1, and denote by
a =EX > 1 the average offspring number.

It is well known by the Kesten—Stigum theorem that under the condition EX log X < oo the
martingale limit

W= lim =
n—oo q"
exists and is strictly positive almost surely. Moreover, the random variable W has a strictly pos-
itive continuous density, see [2]. However, only in a very limited number of examples can the
distribution of W be computed explicitly, and one has to rely on asymptotic results to describe
the behaviour of W.

The left tail asymptotics P{W < e} as ¢ | 0 of W has attracted a lot of mathematical attention,
both in its own right and in the broader context of small value problems, see [12]. Since small
values of the martingale limit W correspond to sub-average branching of the Galton—Watson
tree, one naturally has to distinguish between the Schrdder case when py > 0 and the Bottcher
case when p; = 0. In the Schroder case, small values of Z,, are achieved much more easily and,
in particular, the minimal value of Z,, is equal to one with positive probability. In sharp contrast
to that, in the Bottcher case the minimal tree grows exponentially.
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For two real-valued functions /#; and h; defined on (0, &) for some gy > 0 and such that

ha(e) # 0 for all € small enough, we say that i ~ hy as & |, 0 if limg o Z;Eg; = 1 and we say that
hi =< hj as ¢ | 0 if there are ¢, ¢ > 0 such that ¢ < 2;8 < ¢ for all sufficiently small e.

The Schroder case was first studied in [8], where it was shown that

Ee—sW <577 as s — 0o,

_logp,
loga *

as w(e) < 7!, which easily implies

with T =

Shortly after that in [9] it was proved that the density w of W decays at zero

P{W <&} <e’ ase | 0.

The asymptotics for the density w was then refined in [5] to w(g) ~ Iz(e)e’_1 with an analytic
multiplicatively periodic function L, which led to the corresponding improvement of the left tail
asymptotics

P{W < ¢}~ L(g)e* ase |0 (1.1)

with another analytic multiplicatively periodic function L.
In the Bottcher case, the situation is more complicated as the tail of W decays exponentially.
It was shown in [8] that the Laplace transform of W at infinity has the logarithmic asymptotics

sW

logEe™ = 5P as s — 00,

where 8 = llggg’; with © = min{n : p, > 0} > 2 being the minimal offspring number. This sug-

gested the logarithmic asymptotics

10g]P’{W<8}xe7% ase |0 (1.2)
and a more precise result was then obtained in [5], namely, that
log P{W <8}’\'—M(8)6‘_% ase |0,
where M is an analytic positive multiplicatively periodic function. A numerical example with

tiny but non-trivial oscillations in M was provided in [3], and an example with a constant M was
given in [11]. Finally, the full left tail asymptotics was computed in [10] to be

A B _B
P{W <&}~ M(g)e21=-H exp{—M(s)s 1-p } ase |0,
where both M and M are analytic, positive, and multiplicatively periodic.
The precise form of the above asymptotics as well as the approach developed in [10] made it

possible to understand the influence of small values of W on the Galton—Watson tree. Let

K =min{n: Z, > "}
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be the first generation, where a vertex has more than the minimal number of offspring. We will
call this event the first non-trivial branching of the tree. It was shown in [4] that, conditionally on
W < g, the first branching time K will grow in the Schroder case as

mwzgﬁﬁz (13)
oga

and in the Bottcher case as

_ log(1/¢) B loglog(1/¢)
~ log(a/p) loga

Yo(€) + H(e)

for some continuous multiplicatively periodic function H. However, more striking are the fluc-
tuations of K. It was proved in [4] that in the Bottcher case there are no fluctuations at all, with
K being equal to either [y, (¢)] or [y, ()] + 1 with probability tending to 1, conditionally on
W < ¢e. This is no longer true for the Schroder case. Our first result below shows that the random
variable K — y;5(¢) conditioned on W < ¢ has exponentially decaying left and right tails.

Theorem 1.1. In the Schrader case, as x — 00,

lim&)anF’{K — (&) >x | W <£} xlimsup]P’{K — (&) >x | W <8} = p]
£ el0

and
liminfP{K —ys(e) < —x | W < e} = limsupB(K —y(e) < —x | W <} = p{* =",
& el0

where A = min{k > 1 : p; # 0}.

Remark 1. It was shown in [4] that both tails of K — y;(¢) conditioned on W < ¢ are not heavier
than exponential but it was not known whether this estimate is sharp for either of the tails, and if
so what the correspondent exponents and rates are. To find the actual tail behaviour, we had to
control the error term of the asymptotics (1.1).

Remark 2. Under the conditioning W < ¢ there are two competing effects influencing the be-
haviour of K: branching too early would lead to higher values of W but on the other hand it
would be probabilistically expensive to suppress branching for too long. Having first branching
in generation roughly equal to ys(&) corresponds to the optimal trade-off between these two ef-
fects. The right tail of K — y5(g) corresponds to a late branching, and its decay is given by the
probability of having just one offspring in many generations, which is exponential with exponent
p1. The left tail corresponds to an early branching, which manifests itself in the appearance of
extra (A — 1) offspring too early. The left tail is therefore controlled by the probability of keep-
ing the sum of A (rather than one) i.i.d. copies of W small, which explains the exponent p*~!
governing the left tail.
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1.2. Galton—Watson process with immigration

The remarkable difference in fluctuations of K in the Schroder and Béttcher cases is due to the
fact that in the former setting the minimal tree does not grow at all, having just one offspring
in every generation, whereas in the latter one the minimal tree grows exponentially. A natural
question to ask is what happens if the process behaves similarly to the Galton—Watson process
but its minimum grows linearly. Galton—Watson process with immigration is a natural example
of such a process.

Following the definition in [2], we fix a non-degenerate offspring random variable X with
distribution (py, k > 0) as before, and an immigration random variable Y with distribution (gy :
k > 0). We define the Galton—Watson process with immigration (Z, : n > 0) recursively by
setting Zy = Yo and

Zn+1=X§")+-~-+X(Z"n)+Yn+1, n>0,

where all X f") are independent and identically distributed with the same distribution as X, all

Y; are independent and identically distributed with the same distribution as Y, and all X i(") and
Y; are independent. In other words, the Galton—Watson process with immigration (Z,) differs
from the ordinary Galton—Watson process with offspring probabilities (px) by the property that,
in generation n, there is an immigration of a random number of individuals into the population
governed by immigration probabilities (gx) and independent of the rest of the process.

As before, we assume that py = 0. We also assume that p; > 0 as otherwise the linear effect of
immigration will be negligible with respect to the exponential growth of the population. For the
immigration probabilities, we assume that gy = 0 in order to avoid the extinction and sub-linear
growth of the minimal tree.

We assume that

EXlogX <oo and ElogY < oo

and denote a = EX, which is finite by the first condition above and greater than one since pg = 0.
It is a classical result, see [13] for example, that under the conditions above the limit

. Zy
W= lim —
n—oo qh
exists and is positive almost surely.

The following logarithmic left tail asymptotic was recently computed in [7]. As € | O,

logP{W < g} ~ —o log?(1/e), (1.4)
where
vlog(1/p1)
o=—"
2log’a
and

v=min{i :q; >0} > 1
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is the minimal number the immigration random variable can take with positive probability. As
it was natural to expect, the left tail of WV is thinner than that of the martingale limit W in the
Schrioder case (1.1) but thicker than that of W in the Boéttcher case (1.2). The above result was
then generalised to multitype processes in [6].

1.3. Main results

The aim of this paper is to find the full (non-logarithmic) left tail asymptotics of W at zero and
to describe the time of the first non-trivial branching

K=min{n: 2, >v(n+1)}

conditioned on WV < ¢ in the limit as ¢ |, 0. In particular, we want to compare the fluctuations of
KC around its typical growth with those for Galton—Watson processes without immigration in the
Schroder and Bottcher cases.

Let w be the function defined implicitly in a right neighbourhood of zero by

w(e) —logw(e) +logloga =log(1/¢). (1.5)

In the sequel we will drop ¢ in most notation and, in particular, in w = w(¢), if there is no risk of
confusion. We will also assume that ¢ is sufficiently small.

Theorem 1.2. As¢ | 0,
1
P{W<8}~exp{—oa)2+wM1(w) — Eloga)+M2(a))}, (1.6)

where M| and My are bounded functions periodic with respect to w with period loga.

Remark 3. The leading term of the asymptotics (1.6) agrees with the logarithmic asymptotics
(1.4) since w(¢) ~log(1/¢e) according to (1.5).

Remark 4. It is of course possible to express the asymptotics of P{)V < ¢} in terms of ¢ rather
than  but the formula would be too bulky and less transparent, and would require replacing w
by its asymptotic decomposition in € up to the fifth order term.

Now we turn our attention to the first branching time C. Similarly to the immigration-free
case, the second largest number of offspring

A=min{i > 1: p; > 0}

will play an important role in describing the behaviour of . It turns out that, conditionally on
W < ¢, the typical growth of IC is given by the scaling function y = y(¢) defined in a right
neighbourhood of zero by

_ log(1/¢) 1 1
" loga loga (A —1)logp1

y (&) :|10g10g(1/8). (L.7)
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The next theorem identifies y as the right scale and describes the fluctuations of X around it
conditionally on W < ¢.

Theorem 1.3. There are constants c1, ¢y > O such that

limsupIE”{IC > Ly(s)J +x| W< 5} = exp{—clp]_(k_l)x}, (1.8)
el0

1im¢%)anP’{lC >|ly@]+xW<e}l= exp{—czp]_(k_l)x} (1.9)
&€

forall x € Z.

Remark 5. Comparing y with y; in the Schroder case it is easy to see that the immigration
can both force the process to start branching earlier and later. The former situation occurs if
ap;‘_1 > 1 and the latter if aplk_l < 1. This is not intuitively clear at the first glance as we would
expect an earlier branching for small values of p;. However, the catch is that an early branching
would require suppressing a larger number of the subtrees to ensure W < ¢, which is hard if p;

is small.

Remark 6. Theorem 1.3 describes the fluctuations for every finite x € Z rather than just iden-
tifying the tail behaviour as x — £oo. It immediately implies that the fluctuations are of finite
order with a double-exponential right tail. This puts the Galton—Watson process with immigra-
tion strictly between the Bottcher case for the standard Galton—Watson process, where there are
no fluctuations at all, and the Schroder case, where the right tail decays exponentially by Theo-
rem 1.1. At the same time, the left tail still has an exponential decay since

A=Dxy _  —(A—Dx
}=p

1— exp{—cipl_( p

as x — —oo for i =1, 2. Moreover, according to Theorem 1.1, the exponent of decay of the left
tail is exactly the same as in the Schroder case, which shows that, unlike the right tail, the left
tail is not affected by the immigration.

The comparison between the fluctuations in all three cases is given in Figure 1.

1.4. Ideas of the proofs

It is well known that the left tail of a positive random variable at zero is closely related to its
Laplace transform at infinity. Following the approach suggested in [10], we use the precise
inversion formula to obtain P{)V < ¢} from the Laplace transform ¢.(z) = Ee?"V. This is a
technically challenging step but, unlike the standard large deviations techniques, it is capable
of providing the full asymptotics of P{JV < ¢} rather than the logarithmic one. Then we use
the immigration mechanism to relate ¢,(z) with the Laplace transform ¢(z) = EezV of the
immigration-free Galton—Watson process. Further, we rely on the well-known Poincaré func-
tional equation

9(za") = fu(e(2)). (1.10)
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Figure 1. Tail behaviour of K.

where f, is the nth iterate of the generating function of the offspring random variable X, in
order to understand the behaviour of ¢(z) for large z through the asymptotics of f;, as n tends to
infinity.

The paper is organised as follows. In Section 2, we introduce notation and prove a couple of
technical results for standard Galton—Watson processes. In Section 3, we establish the error term
of the asymptotics (1.1) and use it to prove Theorem 1.1. In Section 4, we introduce notation rel-
evant to immigration and get some preliminary asymptotic results for Galton—Watson processes
with immigration. In Section 5, we prove two technical lemmas describing the behaviour of the
Schroder function. In Section 6, we reduce the problem of describing the behaviour of W and K
to that of understanding the left tails of a certain sequence of random variables (},), and estab-
lish some asymptotic properties of their Laplace transforms. In Section 7 we study the left tails
of (V) and, finally, in Section 8§ we combine everything and prove Theorems 1.2 and 1.3.

2. Notation and preliminaries in immigration-free case

For any r > 0, let D, = {z € C: |z| < r} be the closed disc of radius r. Denote by
o
f@=) p?",  zeDy,
n=1

the generating function of the offspring random variable X. Denote by

p(2)=Ee ¥,  7eC,Rez>0,
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the Laplace transform of the martingale limit W of the underlying Galton—Watson pro-
cess.

Let fo(z) = z and, for each n > 1, denote f,(z) = f(f,—1(z)). Since the behaviour of the
iterates of f(z) for large n is mainly determined by its leading term p;z, it is convenient to use
the decomposition

n—1

1@ = f(fr1D) = p1 o (z)(l +p;! szf,ij(z)) =piz[[4;@. @D
j=0

I>1

where the functions A ; are defined on D; by

Aj@=1+p" Y pfi'@. 2.2)
I>1
For each |z| < 1, denote
o0
S@)=z]]A@. (2.3)
j=0

It is well-known (see [1], Lemma 3.7.2 and Corollary 3.7.3) that this infinite product converges
uniformly on each D,, r € (0, 1), and the function S is called the Schroder function. It is easy to
see that

S(z) = lim f"—(nz)

n—oo pl

(2.4)

In particular, on each D,, r € (0, 1), the Schroder function S is bounded and A;(z) — 1 uni-
formly on D, as j — oco. Denote

B={zeC:[z| <1,S(z) #0}.
For eachn > 0 and |z| < 1, denote
Ry (2) =8@2) — p;" fu(2). (2.5)

The asymptotic behaviour of R, will be crucial for our analysis. In the remaining part of this
section we prove some elementary properties of the functions S, R;, and A,,.

Lemma 2.1.

(@) S| = S(zl) forany |z| < 1.
(b) The functions s — S(s) and s — S(s)/s are increasing on [0, 1).

Proof. (a) This follows from the same property for each A; which, in turn, follows from the
same property for each f;.

(b) Obviously, it suffices to prove the second statement only. Observe that S(s)/s is a product
of Aj(s), and each A; is increasing since each f; is increasing. O
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For two complex-valued sequences (a,,) and (b,), where b, # 0 eventually, we say that a,, ~
by if limy,_s 00 Z—'i =1
Lemma 2.2.

(a) Letr € (0, 1). Then there are constants cy, co > 0 such that
An(@) = 1~ S pioD

and
Ru(2) ~ e28™ (@) p ¢
as n — oo uniformly on D, N B.
(b) R,(z) =0ifz e D, \ B forall sufficiently large n.

Proof. (a) Every convergence and equivalence mentioned in the proof below is meant to be
uniform on D, N B.
Using (2.1) and (2.3), we obtain

R, () = pl_nfn(Z)<l_[ Ar(2) — 1)

k=n

Since Aj(z) — 1 as j — oo and using (2.4) we have

Ry(2) ~ $(2) |:exp{210g A ,-(z)} - 1]. (2.6)

J=n

Observe that A ;(z) # 1 eventually on B. Indeed, it follows from (2.4) that f,(z) — 0 asn — oo.
Hence the first term of the sum in (2.2) dominates over the remaining terms

Y onfiT'@

>\

<@ =o( 7' @]). 2.7)

It remains to notice that f;,(z) # 0 eventually by (2.4) and use (2.2) together with (2.7).
Now the first statement follows from
Dr - i(A—1)—1 _
logAj(z) ~Aj(z)—1~ ;f}‘ Y) ~ PAP{( st

with ¢; = p,/p1, where the middle equivalence is implied by (2.7) and the last one by (2.4).
Now we have

o0 o0

f(A—1)—1 _ _ _
Y logAj@~ Y pap]® VT IS@M ! ~ S pft
j=n j=n

with some ¢, > 0. Substituting this into (2.6) we obtains the required asymptotics.
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(b) It is easy to see from (2.3) that S(z) = 0 implies z =0 or Aj(z) =0 for some j. Then
fn(2) =0 eventually by (2.1) and so R, (z) =0 as well. U

3. Fluctuations in the Schroder case

In this section, we prove Theorem 1.1. The proof for the right tail of K — y will be rather
straightforward. The left tail, however, is controlled by the second term of the asymptotics of
P{W < ¢}, which we estimate in the proposition below.

Proposition 3.1. In the Schrider case,
P(W <&} =L(e)e” — L(e)e™ +o(e™),
L(e)e™ —P{W < ¢} < &™,
__logpi
Toga °

(0, 0o) with period a. The function L is analytic and the function L is bounded away from zero
and infinity for all sufficiently small €.

as € | 0, where T = and L and L are multiplicatively periodic positive functions on

Proof. Since W is almost surely positive and has no atoms, its left tail can be computed by the
inversion formula

1 © 1 _efits
P{W <&} = 5/ ———¢(-indr. (3.1)
—00

Recall the definition (1.3) of y;. Changing the integration contour from the vertical axis to the
vertical line passing through a %! and substituting T = tal”! we obtain

00 eeaLVSJ(lfit) -1

1
]P’{W<8}=—/ _
27 J—so 1—it

By the definition of ys we have eal”! = a~{»s). Further, the Poincaré functional equation (1.10)
and (2.5) imply

o((1—ina™) = fi, (e —in) = pIIS(p(1 —in) — pPIR, (01 —in).  (3.3)

Substituting this into (3.2) and taking into account that plLbe =g’ pl_{VS} by the definition of 7,

we obtain

o((1 —ina'rd)dr. (3.2)

P{W<¢e}=c¢

pf{ys} 00 La~l1-in _
2l / [S(e(Q —it)) — Ry (o1 —in)]dt.  (3.4)

2 J)ooe -t

This representation naturally splits the left tail probability into the leading term corresponding to
S and the error term corresponding to R|,,|. Namely, we define

L(e) =

—{r) oo aWsl(1—iny _ 4
! / ¢ S(p(1 —in)dr. (3.5)

27 J_o 1—it
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In order to prove that the integral is finite, we first observe that the ratio under the integral is
bounded. Then we get by Lemma 2.1

S(p))
e

and use [10], Lemma 16, which claims that |¢(1 — it)| is integrable over R with respect to ¢.

Hence the function L is well-defined, bounded, and multiplicatively periodic with period a since

ys(&) — ys(ag) = 1 € Z. In particular, once we have shown that the error term is negligible, it will

imply that the function L must be the same as in (1.1) and hence real-valued and is analytic.
For the error term, we use Lemma 2.2 with r = ¢(1) to get

IS(p(1 —in)| < S(Jp(1 —in)|) < lo(1 —it)] (3.6)

L(g)e" —P{W <¢)=¢

pl_{%s} o0 ea_{ys)(l—it) 1 A .
' / Ry (91 —in))di ~ L()e™,

27 J_xo 1—it
where
sl (1—ir)
> €2 —Aln) et — 1l .
L(g)=— R ) 1—it))de|.
©) =-p e[/_w - (p(1 —in)

Observe that L is multiplicatively periodic with period a since ys(¢) — ys(ag) = 1. It remains to
show that it is positive and bounded away from zero and infinity.

To do so, consider A independent random variables Wy, ..., W, with the same distribution as
W. Observe that

T <P{W) <g/h, ..., Wy <e/A} <P{W;+---+ W, <&}

(3.7
<P{W, <e,....,W, <e} <.
Similarly to (3.1), (3.2), (3.3), and (3.4) we have
P{Wi+---+ W, <¢}
1 © 1 —ite
- — | = ivar
27 J_so iT (3.8)
—Mys} oo La~Wsi1—ir) _ 1
~ gt / ¢ —[S(¢(1 —in) = Ry (o1 —in)]*dr.
2w —o0 1—it

By Lemma 2.2 and boundedness of S we have, forall 1 < j <A,

o0 ea*(m(lﬂ'r) _1 ] )
'/ ————— " (p(1 - in)R/, (p(1 —in)dt

o 1t

o0

= o(gff“*l))/ |S*=IHM (p(1 — in)) | dt.

—00
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Since S is bounded and A — j 4+ Aj > 1, the integral on the right-hand side is finite by the same
argument as above in (3.6) combined with [10], Lemma 16. Since 7j (A — 1) > 0, this implies that
the expression on the left-hand side is o(1) for any j. Hence, the main term of the asymptotics
(3.8) is given by

PIW, 4+ W ~ght 2l 1 —it))dt~
Wit Woe) "2 | S et —in) &2

py /00 e M 1 Le)
since the expression on the left-hand side is real. Now (3.7) implies that Lis positive and bounded
away from zero and infinity eventually. O

Proof of Theorem 1.1. It suffices to prove the theorem for x € Z. Observe that the condition
K > ys+x is equivalent to having just one offspring in the generation | ys | +x. On this event, the
condition W < ¢ is equivalent to W < alrnltag, where W is the martingale limit of the Galton—
Watson subtree generated by that offspring. Hence, W has the same distribution as W but is also
independent of the event Z|,, |+, = 1. Using (1.3), we obtain

P{K > ys +x,W<8}:IP{ZWSJ+x:1’W<aLVsJ+x L= pLySHx]P’{W<a el

Combining this with the left tail asymptotics (1.1) and using pi/s =¢&7 we get

\.VSJ +x —{ys}+x

IE”{W < af{y“}ﬂ} - h

P{K>VS+X|W<€}’\’ m

]P’{W < cf{”*}”}

L(es)sr

as ¢ | 0 since L is multiplicatively periodic with period a and ¢ = a~7s. Observe that, for a fixed
x, the expression on the right-hand side only depends on {y;} and so is multiplicatively periodic
in ¢. This implies that

—ay

sy Py 1 —o+x
l1r£nﬁ)anP’{K>)/S+x|W<s}_p1 L al)IP’{ <q ™™ }’
P

limsupP(K > ys+x | W <&} = P{W <a~+],

P
€10 'La)

for some a1, ar € [0, 1]. It suffices now to show that uniformly for all @ € [0, 1]

p—a
X 1 1 —a+x X
PiW =
Pi L(a=) (W <a b=
and
e P 2 —a—x\ _ . (a—Dx
1—p, L) {W<a },\p1

as x — 0o. The first identity easily follows from the fact that

]P’{W <a7°‘+x} z]P’{W <a*1+x} -1
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as x — oo. For the second one we observe that a=*™* || 0 as x — 0o and so we can derive
the above asymptotics from the left tail asymptotics of the martingale limit obtained in Proposi-
tion 3.1. As L is multiplicatively periodic with period a and x is an integer we have

1—p* Py ]P’{W < a_“_x} = pl_x(L(a_"‘_x)a_T(““) — ]P’{W < a_“_x})

- p;xa—tk(a+x) - p?»*l)x

since a”* = pj. O

4. Immigration

In this section, we introduce notation relevant to the immigration and prove some preliminary
results which will be necessary to deal with it. Denote by

oo
h(Z)=anz", z€D
n=v

the generating function of the random variable Y. We will see in Section 6 that in order to find
the left tail asymptotics of VW we will have to control the products

N

[1r(5m@) @4.1)

n=1

for N € N. Since f,(z) will typically tend to zero as n — oo, the function £ (z) will essentially
behave according to its leading term ¢, z”. This observation suggests using the decomposition

h(fa@) =au £ (2) (1 +a,' Y f,i”(z)) =g,/ (2)Ba(2), (4.2)
[>v
where the functions B,, are defined by

Bu@)=1+¢,"Y afi™(). zeDi. (4.3)

[>v
Combining (2.1) and (4.2), we obtain

n—1

h(f2(2) =qup}'2" Ba(2) [ [ A% (). (4.4)

j=0
For any r € (0, 1) and 0 € (0, 7 /2), denote

Do ={z€D,:2#0,|argz| <6}.
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Lemmad4.1. Letr € (0,1). Asn — o0,

[18i@— B@

j=1

uniformly on D,, where B is a bounded holomorphic function.
Further, there exists 6 € (0, w/2) such that on D, g:

(@) S(z) # 0 and, in particular, Ay (z) # 0 for all k;
(b) B(z) #0;
©

[[477@—c@#0

j=1

uniformly as n — oo, where C is a bounded holomorphic function.
Proof. Using (4.3) and monotonicity of f,, as well as that it is bounded by 1 on (0, 1) we get

Bj) —1|<a.' Y ailf7 @ <4 £;0) ~ a7 S p] 4.5)

[>v

for all z € D, uniformly. Since the sum over j of the expressions on the right-hand side is finite,
H?:] Bj(z) converges uniformly on D,, and hence B is holomorphic and bounded.

Let us now prove the second part of the lemma.

(a) Observe that S is holomorphic on D, as a uniform limit of holomorphic functions. Hence,
it can only have isolated zeroes, and it suffices to observe that S(s) # 0 for s € (0, 1) and choose
0 sufficiently small.

(b) Similarly, B can only have isolated zeroes, and it is easy to see from (4.3) that B(s) > 1
for s € [0, 1]. Hence, one can choose 6 small enough so that B has no zeroes on D, g.

(c) First, we observe that by (a) the product is well defined for a sufficiently small 8. Second,
by Lemma 2.2 we know that

jlogAj(@) ~eS@ ! jp{*"
uniformly as j — oo, where S(z) # 0 by (a) if 6 is small enough. Again, the sum over j of the
expressions on the right hand side is finite, and we can apply the same arguments as for the first
product. U

Lemma 4.2.

(a) Letr € (0,1). There is ¢ > 0 such that, for all s € (0,r], N and z € Dy,

lz| n -G N
SC?% Py Fn1 (). (4.6)

N
[[r(£@)
n=1
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(b) Letr € (0, 1) and let 0 be chosen according to Lemma 4.1. Then

vN(N+1)

N
H (@) ~F@aq)p, 7 L@ (4.7)

as N — oo uniformly on D, g, where F is a bounded function on D, g, which is nowhere
equal to zero.

Proof. It follows from (4.4) that, for all N > 1, we have

N e N n—1 N
[Tr(n@)=a)'p, * 2N (1"[ [14; (z)) (]‘[ Bn<z)). (4.8)
n=1

n=1 j=0 n=1

(a) Observe that the last term is uniformly (in s and z) bounded by Lemma 4.1. Further, it
follows from (2.2) that |A;(z)| < Aj(s) for all j on Dy. Hence, for all z € Dy,

N n—1 N n—1
VNHI_[A (Z) <|Z|SUN lHl_[AU(S)_|Z|SVN lnAV(N ])(S)
n=1j=0 n=1j=0

where we included j = N into the product since the corresponding term equals one. As all
Aj(s) > 1 we can drop j in the exponent which together with (2.1) implies

N n—1

vNHl_[A (Z)

n=1j=0

vN(N+1)fN 1
+

(b) It follows from Lemma 4.1 that all A;(z) # 0 and so we can rearrange the middle product
in (4.8) and use (2.1) to get

N n—1 N
N— N(N+1 —vj
UNHHAV(Z)_ZUNHAV( J)(Z) —VvN(N+ )fN+1( )HAJ W(Z)-
n=1 j=0 Jj=0
Now the statement of the lemma follows from Lemma 4.1 with F(z) = B(z)C"(z). O

5. Finer properties of the Schroder function S
Lemma 5.1. The function s +— log S(s) is well-defined and analytic on (0, 1), and
(logS(s)) = 1/s

forall s € (0, 1).
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Proof. Since S(s) > s by (2.3) the logarithm is well defined in a complex neighbourhood of s,
and the analyticity follows from log S being holomorphic there. Differentiating the uniform limit
of holomorphic functions (2.4) we obtain

S'(s) fa(5)
1 S ! = = 1i n > 1
(log 5(5)) S(s) 00 fals) = /s
since this inequality is true term by term for f;, and f,. (]

Denote
v(s) :logS(ga(s)), s > 0.
Lemma 5.2. The function v is analytic, " (s) > 0 for all s, and

lim y/(s)=0 and 1i£¢’(s)=—oo. 5.1)

Proof. The function ¢ is analytic as a composition of analytic functions. Compute

o PO s
V=50
sy = € OS @6+ @S @0))S@) ~ ¢S (@)

52(¢(s))

It was shown in [10], (75), that " (s)@(s) > (¢'(s))* for all s > 0. Further, S is positive according
to (2.3) and S’ is positive by Lemma 5.1. This implies

- (5" (@) + 9()S" (@) (@' ()2 S(9(5)) — 9(5)9' () (S (9(5)))*
S2(p(s))e(s) '

Using [10], (63), for f; instead of f we obtain
(Sf,{ (s) >/ o

Ju(s)

for all s € (0, 1) and all n, which extends to
/ /

sS'(s) -0

NGO
for all s € (0, 1) since one can differentiate uniformly convergent series of analytic functions.
This implies

v (s)

(5.2)

(S'(s) +58"(5))S(s) = 5(5'(5))*
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for all s € (0, 1). Substituting this into (5.2), we get

(@' () = D' () (S'(9(5)))?
> >

0
52 (¢ (s5)) B

¥ (s)

for all s > 0 since ¢'(s) < 0.
To prove (5.1), we observe that by the Poincaré functional equation and (2.4) we have

¥ (sa") =log S(fa(@(s))) = log(piS(¢(s))) =¥ (s) +nlog pi
and so
a"y'(sa") =y’ (s)
for all s > 0 and all n. Since v” is positive ¥’ is decreasing and so
lim ¥'(s) = lim ¥'(a") = ¢/(1) lim a™" =0,
§—> 00 n—o0 n—od
limy/(s) = lim ¢'(a™") =v'(1) lim a" = —o0,
s40 n—o0o n—o0o

as required. ]

6. The random variables V), and their Laplace transforms

Denote by
() =Ee™,  7eC,Rez>0, 6.1)

the Laplace transform of the random variable J/. Observe that the mth generation of the Galton—
Watson tree with immigration can be written as

Yo
Z,=> 20+ 2,1, (6.2)

i=1

where where Z® is the Galton—Watson process corresponding to the ith immigrant in the gen-
eration zero, and Z is the Galton—Watson process with immigration starting with the immigrants
of generation one. It is easy to see that the process Z and all processes Z) are independent, and
Z has the same distribution as Z. Dividing by a” and passing to the limit we obtain

Yo
W=> Wi+a'W, 6.3)

i=1

where W; are the Inartingale lAimits of the processes Z®  and W is the limit random variable
corresponding to Z. Clearly, WV and all W; are independent and have the same distribution as W
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and W, respectively. This implies

9:(2) =h(9(2)) s (za™"). (6.4)
Further, for any k > —1, denote by

v(k+1)
Vi=a™ Y w4 a e, 6.5)
i=1

where Wl.(k), 1 <i <v(k+1), are the martingale limits of independent Galton—Watson processes
indexed by the first v immigrants of all generations between 0 and k, and W® s the limit
random variable of the independent Galton—Watson process with immigration starting with the
immigrants of generations strictly after k. Similarly to (6.3) we observe that

W=V on the event {IC > k}

since the minimal number of individuals in generation k is v(k 4+ 1) given by v immigrants in
each generation and having just one offspring each. Denote the Laplace transform of V; by

or(2) = Ee~%%, z€C,Rez>0.
It follows from (6.5) that

oc@) = p(za™*) Vg, (a7, (6.6)

Observe that V_1 =W and ¢_| = ¢,. We also denote Z_1 =0.
For each kK > —1 we have

vk(k+1)

PIK>kW<el=P{Zi=vk+ 1), Vi <e}=¢*'p, 2 P <e). 6.7)

This means that our main aim now is to understand the left tail probabilities of V. Those corre-

sponding to k = —1 will give us the left tail asymptotics of W, and those with k = y (¢) + x will

control the fluctuations. Recall that the left tail of Vy is closely related to the behaviour of the

Laplace transform ¢y, for large values of the argument. The next lemma enables us to understand

it through the asymptotic properties of the iterations f,, and the immigration mechanism # in the

same spirit as the Poincaré functional equation does it for a standard Galton—Watson process.
For any k and N, denote

VN(N+1D)—vk(k+1)
_ N—k—1 2
Cin = 9y Py

Further, for any z € B, denote

Ry (2) ) N

‘I”k,N(Z) = <1 - TZ)
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Lemma 6.1.

(a) Letr € (0, 1). There is ¢ > 0 such that

N | |¢(Z)|

)| =e

C NS(s )UN

|(0k (Za

forallk < N,s € (0,r], and all 7 satisfying |¢(z)| <s.
(b) Letr € (0, 1) and let 0 be chosen according to Lemma 4.1. Then

o (za™) ~ Wi v (9(2) s ) F (0(2)) Cn S (0())

as N —k — oo uniformly on {z : ¢(z) € Dyg}.

Proof. Using (6.6) and iterating it according to (6.4), we obtain

N—k—1
o (zaV) = 0@ (za" )"V TT h(e(za™)).
n=1

The Poincaré functional equation (1.10) implies

—k—

i (za™) = 0. f "V (0(2)) ]‘[ (fa(e(2)))

(a) Estimating the Laplace transform ¢, by one, the second term of (6.10) by

| fv-i(e@)] = fu-i(Je@)]) = fy-k (),
and the product by Lemma 4.2 we have

7 L _uNok=D(N=k)
N)|§c|(p( )| Nek—1 ———5

|k (za R IR A C)

with some ¢ > 0. Taking into account

Fyv—i(s) < pNES(s),

which follows from (2.1) and (2.3) we obtain the required bound.
(b) Using the asymptotics for the product in (6.10) obtained in Lemma 4.2 we get

v(N—k—=1)(N—k)

Ok (zaN) ~ w*(Z)F(<p(Z))qlﬂv_k_1P; : Iy k(‘P(Z))

as N — k — oo uniformly on {z : ¢(2) € D, p}. Taking into account

fv—ik(e@) = pY *S(e@) — pY *Ry_i(¢(2))

and observing that S(¢(z)) # 0 on {z: ¢(z) € D, »} by Lemma 4.1 we arrive at (6.9).

N. Sidorova

(6.8)

(6.9)

(6.10)
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7. Left tail of Vy

The aim of this section is to compute the left tail asymptotics for Vi for two types of k. The first
case is simply

k=—1. (7.1)

Combined with (6.7), this would give us the left tail asymptotics of VW and prove Theorem 1.2.
The second case is

k=k(e,x)=|y(e)|+x (7.2)

for a fixed integer x. This is needed to prove Theorem 1.3. It turns out that both cases can be
handled simultaneously so in this section we always assume that k satisfies either (7.1) or (7.2).
Let p be the function defined implicitly in a right neighbourhood of zero by

p(e)aP® =¢. (7.3)

It is easy to see that
w=ploga. (7.4)

and that the first three leading terms! of the asymptotics of p are given by
1
ple) = @[log(l/g) +loglog(1/¢) — (14 o(1))logloga]. (7.5)
It is worth mentioning that the definition (1.7) of y manifested itself from the condition

p(e)ptVPETE) 1 ase )0, (7.6)

which will prove to be crucial later on.
Now fix

N=N(e)=|p()].
and choose u = u(¢) in such a way that
v’ () = —a P, (1.7)
This is possible by Lemma 5.2 since ¥’ takes all negative values. Moreover, since the right

hand side of (7.7) is bounded between —1 and —1/a and v/’ is decreasing by Lemma 5.2, there

Iwe only need the three leading terms to understand the left tail asymptotics of Vj. However, one can easily obtain the
more precise asymptotics

loglog(1 logl 1
w(e) =log(l/e) +loglog(1l/e) —logloga + oglog(l/¢) 0gl08d 0( )

log(1/¢) h log(1/¢) log(1/¢)

which, if substituted into (1.6), provides an explicit asymptotics of P{WV < ¢} in terms of ¢.
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exist positive and independent of ¢ constants u, and u* such that u € [u,, u*] for all sufficiently
small ¢.
Similarly to (3.1), the lower tail of V. can be computed by the inversion formula

00 | _ p—ite

1
PV, <} = E/ Tgok(—ir) drt.

—00

Similarly to (3.2), we will move the integration contour far to the right and rescale the integration
accordingly. However, we have to do it more carefully. Namely, we replace the vertical coordinate
axis by the vertical line passing through ua® and substitute T = ta’V. This gives

oo ea (u—ir) _ 1

e

P{V; <&} = %/ oc((w —inya)dt. (7.8)

PSS u—it

In order to understand the impact of the term ¢y in the integral, we will combine Lemma 6.1
with the saddle point approximation for S§. Choose r in such a way that p(u,) <r < 1
and choose 6 according to Lemma 4.1. The composition S o ¢ maps the interval [u,, u*] to
[S(p ™)), S(p(uy))] since ¢ is decreasing on [0, 0co) and S is increasing on [0, 1) by Lemma 2.1.
Hence we can choose 1 > 0 small enough so that ¢ maps [u., u*] x [—B1, B1]1to D, g and So ¢
maps [uy, u*] x [—B1, B1] to {z € C: Rez > 0}. Now the function log(S o ¢) is well-defined on
[, u*] x [—B1, B1] and its third order derivatives are bounded. Expanding into the Taylor series

2
log S(p(u —it)) =log S(pw)) — ity (u) — %w”(u) +0(r) (7.9)

as t — 0 uniformly in ¢ and using the fact that " is positive by Lemma 5.2, we choose 8 €
(0, B1) in such a way that

2

Re[log S(pu —it))] <log S(p)) — tzl//”(u) (7.10)

for all t € [—f, B] and all & small enough. Finally, we choose @ = «(¢) so that « | 0,

@M 50 and o®N/logN — 0. (7.11)
We assume that ¢ is small enough so that « < 8. In Lemmas 7.2, 7.3, and 7.4 below we will
compute the main part of the integral (7.8) coming from integrating over [—«, ], and show that
the integrals over the remaining parts {|?| € [«, 8]} and {|¢| > B} are negligible.

However, before turning our attention to the integral (7.8) we compute the asymptotics of
Wy n, which plays a crucial role for ¢y ((u — i Ha) according to Lemma 6.1.

Lemma 7.1. Letr € (0, 1) and let 6 be chosen according to Lemma 4.1.

(a) W_1.n(z) ~1ase] 0uniformly on D,g.
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(b) Let k be of the form (7.2). Then there is w = w(e) bounded away from zero and infinity
such that

—(—1 _
Wi v (2) ~ exp| —wop;y ATV s(2)* 1)

as € |, 0 uniformly on D, .

Proof. Comparing the definition of y in (1.7) and the asymptotics (7.5) of p it is easy to see that
N —k — oo as ¢ | 0 in both cases. Observe that S(z) # 0 on D,y by Lemma 4.1. Lemma 2.2

now implies that
Ry —1(2) h=1, A=D(N=k)
SQ) 152" py

with some ¢; > 0 and hence

log Wi, v ~ —cy vNS(z)}‘_lpE)‘fl)(ka)
as ¢ |, 0 uniformly on D,
(a) If k = —1 then we use N ~ % to obtain

lim Np*~DVFD
el0 Py

(b) Fork=y — {y}+x we get

A—D(N—k —x(a=1) _(—D({y}- A—1)(p—
Np§ )( )Np]x( )Pi (V2 V)] 5 )p=y)

pp

A=D(p=y)

Since ppg ~ ¢, according to (1.7) and the three leading terms of p given by (7.5), we

obtain the required asymptotics with w = w(e) = clcng)‘_l)({y}_{p}). O

Lemma 7.2. Suppose that k is of the form (7.1) or (7.2). Then

1 o esaN (u—it)

_ - —inyaN
) i (pk((u it)a )dt

1
~ @ NCi.N exp{ueaN +vNlog S(pu)) — 3 logN}

as € | 0, where

@x () Fpu))
/2oy ()

Proof. By our choice of B we have ¢(u — it) € D,y for all t € [, B]. By Lemma 6.1 we
obtain

Oy n=Dy N(e) = Wi v (o).

oc(w —it)a™) ~ Wy (o —it)) i (u — it)F (p(u — it)) Ci, v S (0 — it))”N (7.12)
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as ¢ | 0 uniformly for all # € [— g, B]. Taking into account that @ |, 0 we have
or(( —ina™) ~ Wiy (90) @u () F(p()) o S (0w — i)™

as ¢ |, 0 forall # € [—«, @] since W,y is regular enough by Lemma 7.1. We obtain

o esaN(ufil)
| S alw=ina)a

_a u—it
)7¢*(M)F(¢(")) ) " 0§ (o — in))""
u —a

(7.13)
~ Cr,n Yk N (9 ()

For the integral above, we use the Taylor expansion (7.9) to obtain

a .
/ eE”N(W”)S((p(u — it))UN dt
—a
o 2‘2 Nv”
VN (u)}dt,

~ exp{ueaN +vNlog S(p@w))} / 2

—

exp{—it(saN +VNY () —

where we have also used ae¥*’ — 0 from (7.11) to get rid of the negligible terms in the Taylor

expansion. Observing that by (7.3) and (7.7)

ga +vNY/ (u) = ea” P 4 voy' () — v{p}y' (u)
= p(a™ + vy’ W) — vip}y ()
= —v{p}y'(u)

we obtain

o
/ ee“N("f”)S(go(u — it))VN dt
—

N (7.14)

2Ny (u) } 4

~ exp{uea” +vN10gS(<p(u))}/ 5

—o

exp{iw{p}lﬂ’(n) -

Substituting T = t/VN ¢ (u) we get

2vNY" (u) } "

/ exp{itv{p}w/(u) - >

/ VNI {iw{p}vf’(u)_r_z}dTN Var
«/vap”(u —a VNV () VYN (u) 2 VYN (1)
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since, as ¢ |, 0, the interval of integration increases to R by (7.11) and the first order term tends
to zero (see for example [4], Lemma 11). Combining this with (7.14), we obtain

o
/ e'S“N(”_”)S((p(u — it))vN
—

~ % exp{usaN + vN log S(go(u)) - %logN}.

Together with (7.13), this proves the required asymptotics.

Lemma 7.3. Suppose that k is of the form (7.1) or (7.2). Then

saN(u —it)
‘[ ((u — it)aN) dt
7)€l B M—lf

<Ck.nN exp{usa + vN log S(go(u)) — logN},

for all & small enough.

Proof. Observe that (7.12) is in particular true for all 7 such that |¢] € [«, B]. Since |u — if| > uy,

l@s«(u —it)| <1, F is bounded by Lemma 4.2, and ¥;_y is uniformly bounded by Lemma 7.1
there is a positive constant ¢ such that

saN(u it)
’/ oc((u —itya™) dt
lrlele,] U — Cu—it

(7.15)
<cCy.N / emN(“_i’)S(w(u — it))UN
ltl€la, Bl
For the integral above, we use the Taylor bound (7.10) to obtain
‘/ ew””*”)S(w(u - it))”N dt
HECH:]
N 2Ny (u)
< exp{usa + vNlog S(go(u))} expy ——— 1 dt (7.16)
Irlela. Bl 4

2 /"
=28 eXp{usaN + VN log S(p(u)) — %"’(”) }

Taking into account the fact that «>N/log N — oo according to (7.11) and combining (7.15)
with (7.16), we obtain the desired estimate.

O
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Lemma 7.4. Suppose that k is of the form (7.1) or (7.2). There exists § > 0 such that

saN(u —it)
‘/ oc((u —iya) dt
=g U — lt

7.17)
<Ck.N exp{ueaN +vNlog S(go(u)) — 8vN}
and
* 1
‘/ - (pk((u—it)aN)dt
oo U — 1t (7.18)

< Cx,nvexp{vN log S(p(u)) — SvN}

for all ¢ small enough.

Proof. Similarly to the proof of [10], Lemma 16, we use the fact that, for each v € [uy, u*],
t— ¢(v —it)/p(v) is the characteristic function of some absolutely continuous law (Cramér
transform), the continuity of the mapping (v, ) — ¢(v — it)/¢(v), and the compactness of
[, u™] to conclude that there is a constant i such that

o —in| < (1 —me@)  forall|r|>p (7.19)

and all ¢ small enough. Using Lemma 6.1 with s = 5(¢) = (1 — )9 (1) < ¢(u,) < r and taking
into account that s > (1 — n)@(u*) and so is separated from zero, we obtain, with some positive
constant ¢y,

lox (@ = ina")| < e1|o — in|CenS((1 = me@)™
By Lemma 5.1 and the mean value theorem
log S((1 — M) <log S(pw)) —n,
which implies

o ((u — in)a" )| < erpu — in)|Cin S(p) eV,

Substituting this estimate into the integral (7.17) and using |u — if| > u, we obtain

euN(u it)
‘/ k((u—it)aN)dt
lt|=B

L{—lt

(7.20)
o0
< 2Cy,y exp{uea®™ +vNlog S(p(u)) — nvN} / lo(u —it)|dt
—o0

with some ¢ > 0. It was shown in [10], Lemma 16, that the integral above is uniformly bounded.
This implies the required estimate with some § < 1.

The estimate (7.18) is obtained in the same way as (7.17) with the only difference that the

N

N : .
terms e?@ @~ and uea™ are omitted. O
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8. Proofs of the main theorems
In this section, we establish the joint probability (6.7) and then prove Theorems 1.2 and 1.3.

Proposition 8.1. Suppose that k is of the form (7.1) or (7.2). As ¢ | 0,

WN(N+1)

1
PIC>kW<eb~qlp, > Oy exp{usaN +vNlog S(pu)) — 5 logN}. 8.1)

Proof. Combining (6.7) and (7.8) we obtain

eaaN(ufil) -1

vk(k+1) l 00
PIC>kW<el=qgp 2 / oc((w —iya) dt.

27 J—so u—it

Let us split the integral into the sum of the three integrals corresponding to keeping ea" u=it) jn
the numerator and integrating over [—o, ], {# : |t| € [e, B]}, and {t : |t| > B}, respectively, and
the integral corresponding to keeping —1 in the numerator and integrating over R. Lemma 7.2
gives the asymptotics of the first integral, while Lemmas 7.3 and 7.4 imply that the remaining
three integrals are negligible since W y is bounded away from zero and infinity by Lemma 7.1.
Substituting the asymptotics for the first integral given by Lemma 7.2 we arrive at the required
formula. (]

Proof of Theorem 1.2. We use Proposition 8.1 with k = —1 as
PW<e}=PK>—-1,W<e¢}.

By Lemma 7.1, we have

@) F(pw)

PN @)

Using (7.3), we get

uea™ =uea” Pt = upa=P},

v log S (¢(u)) = vplog S(p(w)) — vip}log S (¢ ().
log N =logp + o(1).

Further,

g =exp{plogq, — {p}logqy}.

VN(N+1)
2

1
2 =eXp{%(p2+p(l—Z{p})+{p}2—{p})}-
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Substituting all of the above into (8.1), we obtain the required asymptotics (1.6) with

1 - w
Mi(w) = M, ,
loga loga

1 ~ w
My (w) = 3 logloga + Mz(loga)’

where
A vlo
i1(p) = (1= 24p)) +ua™ + viog S(p(w)) + log .
- w*(u)F(w(u))} vlogpi 5
M: =1lo — —v{p}log S(e(u)) — lo ,
2(p) g[u ET) 5 ({p}* — {p}) — vi{p}log S(p(w)) — {p}logq,
which are bounded periodic functions of p with period one since u is a bounded function of {p}
by (7.7). (]

Proof of Theorem 1.3. Let x € Z. Using Proposition 8.1 both with k = —1 and k = k(¢) =
Ly ] + x we obtain

P : Dy ax
P>yl +x|W<e}= K>1yl+x, W<el  Puyjtan

]P{IC>_1,W<8} q)—l’N
— \PWHX—N((’D(M)) ~ B —(—D)x el
Vo N (e@) exp{—wvp, S(e@)" "}

by Lemma 7.1. This implies (1.8) and (1.9) with

1= vliminf[wS(go(u))A_l] and ¢ = vlimsup[wS((p(u)))‘_l]
el0 el0

which are both positive and finite since S o ¢ is continuous on [u,, u*] and w is bounded away
from zero and infinity by Lemma 7.1. ]
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