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We consider the equivalent problems of estimating the residual variance, the proportion of explained vari-
ance η and the signal strength in a high-dimensional linear regression model with Gaussian random design.
Our aim is to understand the impact of not knowing the sparsity of the vector of regression coefficients and
not knowing the distribution of the design on minimax estimation rates of η. Depending on the sparsity k

of the vector regression coefficients, optimal estimators of η either rely on estimating the vector of regres-
sion coefficients or are based on U -type statistics. In the important situation where k is unknown, we build
an adaptive procedure whose convergence rate simultaneously achieves the minimax risk over all k up to
a logarithmic loss which we prove to be non avoidable. Finally, the knowledge of the design distribution
is shown to play a critical role. When the distribution of the design is unknown, consistent estimation of
explained variance is indeed possible in much narrower regimes than for known design distribution.
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1. Introduction

1.1. Motivations

In this paper, we investigate the estimation of the proportion of explained variation in high-
dimensional linear models with random design, that is the ratio of the variance of the signal to
the total amount of variance of the observation. Although this question is of great importance in
many applications where the aim is to quantify to what extent covariates explain the variation of
the response variable, our analysis is mainly motivated by problems of heritability estimation. In
such studies, the response variable is a phenotype measured on n individuals and the predictors
are genetic markers on each of these individuals. Then, heritability corresponds to the proportion
of phenotypic variance which can be explained by genetic factors. Usually, the number of pre-
dictors p greatly exceeds the number n of individuals. When the phenotype under investigation
can be explained by a small number of genetic factors, the corresponding regression coefficient
vector is sparse, and methods exploiting sparsity are of utmost interest. It appeared recently in
biological studies that, for some complex human traits, there was a huge gap (which has been
called the “dark matter” of the genome) between the genetic variance explained by populations
studies and the one obtained by genome wide associations studies (GWAS), see [25,28] or [17].
To explain this gap, it has been hypothesized that some traits might be “highly polygenic”, mean-
ing that genetic factors explaining the phenotype could be so numerous that the corresponding
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regression coefficient vector may not be considered as sparse. This may be the case for instance,
when psychiatric disorders are associated to neuroanatomical changes as in [2] or [27], see also
[30]. As a consequence, sparsity-based methods would be questionable in this situation. When
the researcher faces the data, she does not know in general the proportion of relevant predictors,
that is the level of sparsity of the parameter. In this work, our first aim is to understand the impact
of the ignorance of the sparsity level on heritability estimation. Another important feature of the
model when estimating proportion of explained variation is the covariance matrix of the predic-
tors. There is a long standing gap between estimation procedures that assume the knowledge of
this covariance (e.g., [7,21]) (which mathematically is the same as assuming that the covariance
is the identity matrix) and practical situations where it is generally unknown. Our second aim is
to evaluate the impact of the ignorance of the covariance matrix on heritability estimation.

To be more specific, consider the random design high-dimensional linear model

yi = xiβ
∗ + εi, i = 1, . . . , n, (1)

where yi, εi ∈R, i = 1, . . . , n, β∗ ∈ R
p , and

X =
⎛⎜⎝x1

...

xn

⎞⎟⎠ ∈R
n×p.

We assume that the noise ε = (ε1, . . . , εn)
T and the rows xi , i = 1, . . . , n, of X are indepen-

dent random variables. We also assume that the εi , i = 1, . . . , n, are independent and identically
distributed (i.i.d.) with distribution N (0, σ 2), and that the rows xi , i = 1, . . . , n, of X are also
i.i.d. with distribution N (0,�). Throughout the paper, the covariance matrix � is assumed to
be invertible and the noise level σ is unknown (the case of known noise level is evoked in the
discussion section). Our general objective is the optimal estimation of the signal-to-noise ratio

θ := E[‖xT
1 β∗‖2

2]
σ 2

= ‖�1/2β∗‖2
2

σ 2
, (2)

or equivalently the proportion of explained variation

η = η
(
β∗, σ
) := E[‖xT

1 β∗‖2
2]

Var(y1)
= θ

1 + θ
(3)

when the vector β∗ is unknown and possibly sparse. In the sequel, β∗ is said to be k-sparse, when
at most k coordinates of β∗ are non-zero.

Note that estimating η amounts to deciphering the signal strength from the noise level in
Var(y1) = σ 2 + ‖�1/2β∗‖2

2. Since ‖Y‖2
2/Var(y1) follows a χ2 distribution with n degrees of

freedom, it follows that ‖Y‖2
2/n = Var(y1)[1 + OP (n−1/2)] and it is therefore almost equivalent

(up to a parametric loss) to estimate the proportion of explained variation η, the quadratic func-
tion β∗T �β∗ or the noise level σ 2. For the sake of presentation, we mostly express our results in
terms of the estimation of η, but they can be easily extended to the signal strength or to the noise
estimation problems.
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1.2. Main results

There are two main lines of research for estimating σ or η in a high-dimensional setting. Under
the assumption that β∗ is k-sparse with some small k, it has been established that β∗ can be
estimated at a fast rate (roughly k logp/n) using for instance Lasso-type procedures, so that
using an adequate plug-in method one could hope to estimate η well. Note that in this paper the
rate is understood as that of the quadratic risk. Following this general approach, some authors
have obtained (k log(p)/n)2-consistent [29] and 1/n-consistent [5,16] estimators of σ in some
specific regimes. When β∗ is dense (that is when many coordinates of β∗ are nonzero), such
approaches fail. In this regime, a U -type estimator [13] has been proved to achieve consistency
at the rate p/n2. However, its optimality has never been assessed.

Our first main contribution is the proof that the adaptation to unknown sparsity is indeed
possible when � is known, but at the price of a log(p) loss factor in the convergence rate when
β∗ is dense. The idea is the following. Let η̂D(�−1) be a U -type estimator which is p/n2-
consistent, the true parameter β∗ being sparse or not. We shall denote it the dense estimator.
Let also η̂SL be a (k log(p)/n)2-consistent estimator when β∗ is k-sparse for some small k.
Then, if the real β∗ is sparse, both estimators should be fairly accurate and should give similar
answers, and if the real β∗ is dense, or not sparse enough, then η̂SL will be quite wrong and
will give an answer slightly different from the dense estimator. Therefore, the idea is to choose
the sparse estimator η̂SL when both estimators are close enough, so that the quick convergence
rate is obtained when the unknown sparsity k is small, and to choose the dense estimator when
both estimators are not close, in which case the slower rate is attained which is appropriate in
the dense regime. Such a procedure should adapt well to unknown sparsity. Now, to be able to
give a precise definition of the estimator, that is to set what “close enough” quantitatively means,
one needs a precise understanding of the behavior of the dense and of the sparse estimators.
Thus as a first and preliminary step, we obtain a deviation inequality for the dense estimator,
see Theorem 2.1. We also establish the minimax estimation risk of η as a function of (k, n, p)
when the parameter β∗ is k-sparse (see Table 1) and when � is known, thereby assessing that
Dicker’s procedure [13] is optimal in the dense regime (k ≥ √

p) and an estimator based on
the square-root Lasso [29] is near optimal in the sparse regime (k ≤ √

p). Again for known �,
we finally construct a data-driven combination of η̂D(�−1) (the dense estimator) and η̂SL (the
sparse estimator) following the idea explained before. We prove that such a procedure is indeed

Table 1. Optimal estimation risk E[(̂η − η)2] when β∗ is k-sparse and � is known. Here, a ∈ (0,1/2) is
any arbitrarily small constant and it is assumed below that n ≤ p ≤ n2. The results remain valid for p ≥ n2

if we replace the quantities k2 log2(p)

n2 and p

n2 by k2 log2(p)

n2 ∧ 1 and p

n2 ∧ 1, respectively

Sparsity regimes Minimax risk Near-optimal procedure

k ≤
√

n
log(p)

1
n square-root Lasso estimator η̂SL (12)√

n
log(p)

≤ k ≤ p1/2−a k2 log2(p)

n2 square-root Lasso estimator η̂SL (12)

k ≥ √
p

p

n2 Dense estimator η̂D(�−1) (8) (see also [13])
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adaptive to unknown sparsity, see Theorem 3.2, and that it achieves the minimax adaptive rate
with a log(p) loss factor compared to the non adaptive minimax rate. This logarithmic term is
proved to be unavoidable, see Proposition 3.1.

Our second main contribution is an analysis of the proportion of explained variance estimation
problem under unknown �. The construction of dense estimators such as η̂D(�−1) requires the
knowledge of the covariance matrix �. But in many practical situations, the covariance structure
of the covariates is unknown. For unknown �, there are basically two main situations:

• Under sufficiently strong structural assumptions on � so that �−1 can be estimated at the
rate p/n2 in operator norm, a simple plug-in method allows to build a minimax and an
adaptive minimax procedure with the same rates as when � is known, see Corollary 4.4.

• Our main result is that, for a general covariance matrix �, it is basically impossible to build
a consistent estimator of η when k is much larger than n; see Theorem 4.5 and its comments
for a precise statement. This is in sharp contrast with the situation where � is known, for
which the problem of estimating η can be handled in regimes where β∗ is impossible to
estimate (e.g. k = p and p = n1+κ with κ ∈ (0,1) as depicted in Table 1). For unknown
and arbitrary �, the range of (k, n,p) for which η can be consistently estimated seems to
be roughly the same as for estimating β∗, suggesting that signal estimation (β∗) is nearly as
difficult as signal strength estimation (β∗T �β∗). This impossibility result unveils that, in the
high-dimensional dense case, the knowledge of the covariance matrix is fundamental and
one cannot extend known procedures such as [13,14] or η̂D(�−1) to this unknown variance
setting.

1.3. Related work

The literature on minimax estimation of quadratic functionals initiated in [15] is rather extensive
(see, e.g., [10,24]). In the Gaussian sequence model, that is n = p and X = Ip , Collier et al. [12]
have derived the minimax estimation rate of the functional ‖β∗‖2

2 for k-sparse vector β∗ when the
noise level σ is known. However, we are not aware of any minimax result in the high-dimensional
linear model even under known noise level.

Another problem related to the estimation of the quadratic functional β∗T �β∗ is signal de-
tection, which aims at testing the null hypothesis H0: “β∗ = 0” versus H1,k[r]: “‖�1/2β∗‖2

2 ≥ r

and |β∗|0 ≤ k” (where |β∗|0 denotes the number of non null coordinates of β∗). The minimax
separation distance is then the smallest r such that a test of H0 vs H1,r is able to achieve small
type I and type II error probabilities. This minimax separation distance is somewhat analogous to
a local minimax estimation risk of ‖�1/2β∗‖2

2 around β∗ = 0. In the Gaussian sequence model,
minimax separation distances haven been studied in [4,19]. These results have been extended to
the high-dimensional linear model under both known [3,20] and unknown [20,34] noise level.
Our first minimax lower bound (Proposition 2.4) is largely inspired from these earlier contribu-
tions, but the minimax lower bounds for adaptation problems require more elaborate arguments.
In particular, the proof of Theorem 4.5 is largely based on new ideas.

Recent works have been devoted to the adaptive estimation of sparse parameters β∗ in (1)
under unknown variance. As a byproduct, one can then obtain estimators of the variance [5,29].
See also [16] for more direct approaches to variance estimation. In Section 2, we rely on the
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square-root Lasso estimator to construct the estimator η̂SL which turns out to be minimax in the
sparse regime.

In the dense regime, we already mentioned the contribution of Dicker [13] that proposes
method of moments and maximum likelihood based procedures to estimate η when � is known.
It is shown that the square risk of these estimators goes to 0 at rate p/n2. When p/n converges to
a finite non-negative constant, these estimators are asymptotically normally distributed. Dicker
also considers the case of unknown � when � is highly structured (allowing � to be estimable in
operator norm at the parametric rate n−1). Janson et al. [21] introduce the procedure EigenPrism
for computing confidence intervals of η and study its asymptotic behavior when � is known
and p/n converges to a constant c ∈ (0,∞). Under similar assumptions, Dicker et al. [14] have
considered a maximum likelihood based estimator. Bonnet et al. [7] consider a mixed effect
model, which is equivalent to assuming that the parameter β∗ follows a prior distribution. In the
asymptotic regime where p/n → c, they also propose a n−1-rate consistent estimator of η. To
summarize, none of the aforementioned contributions has studied minimax convergence rates,
the problem of adaptation to sparsity or the estimation problem for unknown � (to the exception
of [13]).

Finally, there has been a recent interest in the adaptive estimation of other functionals in the
linear model (1), such as the coordinates β∗

i of β∗ or the sum of coordinates
∑n

i=1 β∗
i [9,22,

23,31,35]. However, both the statistical methods and the regimes are qualitatively different for
these functionals. After our work was made publicly available, Guo et al. [18] have introduced
a procedure based on square-root Lasso to estimate the functional ‖β∗‖2

2 which, for � = I,
is equivalent to estimating β∗T �β . When the parameter β∗ is k-sparse with k � √

p and for
� = I, the convergence rate of their estimator corresponds to the one of our sparse estimator
η̂SL. However, Guo et al. did not study denser settings. Also, for general �, it is not clear whether
optimal rates are the same for estimating ‖β∗‖2

2 and β∗T �β∗ in the dense case (k � √
p).

1.4. Notations and organization

The set of integers {1, . . . , p} is denoted [p]. For any subset J of [p], XJ is the n × |J | corre-
sponding submatrix of X. Given a symmetric matrix A, λmax(A) and λmin(A) respectively stand
for the largest and the smallest eigenvalue of A, |A| denotes the determinant of A. For a vector
u, ‖u‖p denotes its lp norm and |u|0 stands for its l0 norm (ie its number of non-zero com-
ponents). For any matrix A, ‖A‖p denotes the lp norm of the vectorized version of A, that is
(
∑ |Ai,j |p)1/p . The Frobenius norm is also denoted ‖A‖F . Finally, the l2 operator norm of a

matrix A writes ‖A‖op. In what follows, C, C′, . . . denote universal constants whose value may
vary from line to line whereas C1,C2 and C3 denote numerical constants that will be used in
several places of our work.

In Section 2, we introduce the two main procedures and characterize the minimax estimation
risk of η when both the covariance matrix � and the sparsity are known. Section 3 is devoted
to the problem of adaptation to the unknown sparsity, whereas the case of unknown covariance
� is studied in Section 4. Extensions to fixed design regression and other related problems are
discussed in Section 5. All the proofs are postponed to the end of the paper and to the supplement
(see [33]).
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2. Minimax rates for known sparsity

In this section, we consider two estimators. In the spirit of [13], the first estimator η̂D(�−1) is
designed for the dense regime (|β∗|0 ≥ p1/2) and it is proved to be consistent with rate p/n2

irrespectively of the parameter sparsity. When β∗ is in fact highly sparse, the estimator η̂SL

based on the square-root Lasso better exploits the structure of β∗ and achieves the estimation
rate (

|β∗|0 log(p)
n

)2 + n−1. It turns out that these two procedures (almost) achieve the minimax
estimation rate when it is known whether β∗ is sparse or not.

2.1. Dense regime

In this subsection, we introduce an estimator of η which will turn out to be mostly interesting for
dense parameters β∗. Its definition is close to that in [13]. We provide a detailed analysis of this
estimator, and our concentration inequality in Theorem 2.1 below will turn out to be useful both
for the adaptation problem and for the case of unknown �.

Since Var(y1) is easily estimated by ‖Y‖2
2/n, the main challenge is to estimate ‖�1/2β∗‖2.

Thus, the question is how to separate in Y the randomness coming from Xβ∗ from that coming
from the εi ’s, i = 1, . . . , n. The idea is to use the fact that the noise ε is isotropic whereas, con-
ditionally on X, Xβ∗ is not isotropic. Respectively, denote (λi, ui), i = 1, . . . , n the eigenvalues
and eigenvectors of (XXT )/p. We will prove, that in a high-dimensional setting where p > n,
Xβ∗ is slightly more aligned with left eigenvectors of X associated to large eigenvalues than with
those associated to small eigenvalues. This subtle phenomenon suggests that the distribution of
the random variable T

T := p

n2

n∑
i=1

(λi − λ̄)
(
YT ui

)2
, where λ̄ :=

n∑
i=1

λi/n,

(almost) does not depend on the noise level σ and, at the same time, captures some functional of
the signal β∗. This functional turns out to be β∗T �2β∗. One can rewrite the random variable as
a quadratic form of Y

T = YT (XXT − tr(XXT )In/n)Y

n2
. (4)

Working with a normalized estimator V̂ := T n2

‖Y‖2
2(n+1)

, we state in the following theorem that V̂

concentrates exponentially fast around β∗T �2β∗/Var(y1). Note that, due to the fact that � is
squared in the numerator, V̂ does not concentrate around η (except in case � = Ip). However,
an appropriate modification explained below will allow to use the following theorem to estimate
η for known general �.

Theorem 2.1. Assume that p ≥ n.
There exist numerical constants C1 and C2 such that for all t ≤ n1/3,

P

[∣∣∣∣V̂ − β∗T �2β∗

Var(y1)

∣∣∣∣≤ C1‖�‖op

√
pt

n

]
≥ 1 − C2e

−t . (5)
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There exists a numerical constant C such that

E

[(
V̂ − β∗T �2β∗

Var(y1)

)2]
≤ C‖�‖2

op
p

n2
. (6)

Remark 2.1. The proof relies on recent exponential concentration inequalities for Gaussian
chaos [1] and a new concentration inequality of the spectrum of XXT /n around tr(�)/n

(Lemma C.2). The concentration inequality (5) will be the key tool in the construction of adaptive
estimators in the next section.

Remark 2.2. When � = Ip , the above theorem enforces that V̂ estimates the proportion of
explained variation η at the rate p/n2, uniformly over all β∗ and σ > 0. Note that V̂ is only
consistent in the regime where n2 is large compared to p.

For arbitrary � (with bounded eigenvalues), the above theorem only implies that V̂ is of the
same order as η, that is, there exists positive constant c and C such that cλmin(�) ≤ V̂ /η ≤
Cλmax(�).

Nevertheless, when the covariance � is known, it is possible to get a consistent estimator of η.
Replace the design matrix X in the linear regression model by X̃ := X�−1/2 in such a way that
its rows x̃i follow i.i.d. standard normal distributions and

Y = X̃�1/2β∗ + ε. (7)

Then, we define the estimator η̂D as V̂ where X is replaced by X̃, so that η̂D is a quadratic form
of Y with a matrix involving the precision matrix, that is the inverse covariance matrix �−1. Let
us denote � := �−1, and define

η̂D(�) := YT (X�XT − tr(X�XT )In/n)Y

(n + 1)‖Y‖2
(8)

(we could replace tr(X�XT ) by p in the above definition without changing the rate in the corol-
lary below). We straightforwardly derive from Theorem 2.1 that η̂D(�) estimates η at the rate
p/n2.

Corollary 2.2. Assume that p ≥ n. There exists a numerical constant C such that the estimator
η̂D(�) satisfies

E
[(̂

ηD(�) − η
)2]≤ C

p

n2
. (9)

Remark 2.3. It turns out that η̂D(�) is consistent for p small compared to n2 even though
consistent estimation of β∗ is impossible in this regime. Although developed independently, the
estimator η̂D(�) shares some similarities with the method of moment based estimator of Dicker
[13], which also achieves the p/n2 convergence rate.

Remark 2.4. In the low-dimensional case p ≤ n, one may easily adapt the proof of Theorem 2.1
to get that E[(̂ηD(�) − η)2] ≤ C/n for some constant C > 0.
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2.2. Sparse regime: Square-root lasso estimator

When β∗ is highly sparse, the signal to noise ratio estimator is based on a Lasso-type estimator of
β∗ proposed in [6,29]. As customary for Lasso-type methods, we shall work with a standardized
version W of the matrix X, whose columns W•j satisfy ‖W•j‖2 = 1. Since the noise-level σ is
unknown, we cannot readily use the classical Lasso estimator whose optimal value of the tuning
parameter depends on σ . Instead, we rely on the square-root Lasso [6] defined by

β̃SL := arg min
β∈Rp

√
‖Y − Wβ‖2

2 + λ0√
n
‖β‖1, (β̂SL)j := (β̃SL)j /‖xj‖2. (10)

In the sequel, the tuning parameter λ0 is set to λ0 := 13
√

log(p) (there is nothing specific with
this particular choice). In the proof, we will also use an equivalent definition of the square-root
estimator introduced in [29]

(β̃SL, σ̃SL) = arg min
β∈Rp,σ ′>0

[
nσ ′

2
+ ‖Y − Wβ‖2

2

2σ ′

]
+ λ0‖β‖1. (11)

(To prove the equivalence between the two definitions, minimize (11) with respect to σ ′.) Notice
that σ̃SL = ‖Y − Wβ̃SL‖2/

√
n = ‖Y − Xβ̂SL‖2/

√
n. Then, we define the estimator

η̂SL := 1 − nσ̃ 2
SL

‖Y‖2
2

= 1 − ‖Y − Xβ̂SL‖2
2

‖Y‖2
2

. (12)

The following proposition is a consequence of Theorem 2 in [29].

Proposition 2.3. There exist two numerical constants C and C′ such that the following holds.
Assume that β∗ is k-sparse, that p ≥ n and

k log(p)
λmax(�)

λmin(�)
≤ Cn. (13)

Then the square-root Lasso based estimator η̂SL satisfies

E
[(̂

ηSL − η
)2]≤ C′

[
1

n
+ k2 log2(p)

n2

λ2
max(�)

λ2
min(�)

]
. (14)

Remark 2.5. Condition (13) is unavoidable, as the minimax risk of proportion of explained vari-
ation estimation is bounded away from zero when k log(p) is large compared to n (see Propo-
sition 2.4 later). To ease the presentation, we have expressed Condition (13) in terms of largest
and smallest eigenvalues of �. One could also replace these quantities by local ones such as
compatibility constants (see the proof for more details).
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2.3. Minimax lower bound

We shall prove in the sequel that a combination of the estimators η̂D(�) and η̂SL essentially
achieves the minimax estimation risk. In the following minimax lower bound we assume that the
covariance � is the identity matrix Ip .

Define B0[k] the collection of k-sparse vectors of size p. Given any estimator η̂, define the
maximal risk R(̂η, k) over k-sparse parameters by

R(̂η, k) := sup
β∈B0[k],σ>0

Eβ,σ

[{
η̂ − η(β,σ )

}2]
, (15)

where Eβ,σ [·] is the expectation with respect to (Y,X) where Y = Xβ + ε, with ε ∼N (0, σ 2In)

and the covariance matrix of the rows of X is Ip . Then, the minimax risk is denoted R∗(k) :=
infη̂ R(̂η, k), where the infimum is taken over all estimators η̂ measurable with respect to (Y,X).
Notice that the minimax risk is therefore a function of (k, n,p). For ease of notations, we use
R∗(k) and not R∗(k, n,p) since we are interested in the adaptivity to unknown k.

Proposition 2.4 (Minimax lower bound). There exists a numerical constant C > 0 such that
for any 1 ≤ k ≤ p,

R∗(k) ≥ C

({[
k

n
log

(
1 + p

k2
∨
√

p

k2

)]2

∧ 1

}
+ 1

n

)
. (16)

The proof of this proposition follows the lines developed to derive minimax lower bounds for
the signal detection problem (see, e.g., Theorem 4.3 in [34]). Nevertheless, as this proposition is
a first step towards more complex settings, we provide a self-contained proof in Section 6.1.

In (16), we recognize three regimes:

• If k ≥ p1/2, the minimax rate is larger than (p/n2) ∧ 1. This optimal risk is achieved by the
dense estimator η̂D(�) up to a constant number.

• If k ≤ p1/2−γ for some arbitrary small γ > 0, the minimax rate is of order

1

n
+
(

k log(p)

n

)2

∧ 1.

More precisely for k ≤ [√n/ log(p)], it is of order n−1, whereas for larger k it is of order
(k log(p)/n)2 ∧ 1. This bound is achieved by the square-root Lasso estimator η̂SL, which
does not require the knowledge of � and k.

• For k close to p1/2 (e.g., k = (p/ log(p))1/2), the minimax lower bound (16) and the upper
bound (14) only match up to some log(p) factors. Such a logarithmic mismatch has also
been obtained in the related work [4] on minimax detection rates for testing the null hypoth-
esis β∗ = 0 when the design matrix is fixed and orthonormal, that is p = n and X = Ip . In
this orthonormal setting, Collier et al. [12] have very recently closed this gap. Transposed
in our setting, their results would suggest that the optimal risk is of order (k log(p/k2)/n)2,
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suggesting that Proposition 2.4 is sharp. In the specific case where � = Ip , it seems pos-
sible to extend the estimator of ‖β∗‖2

2 introduced by [12] to our setting by considering the
pairwise correlations YT W•j for j = 1, . . . , p. Such estimator would then presumably be
(k log(p/k2)/n)2 consistent. As this approach does not seem to extend easily to arbitrary
�, we did not go further in this direction.

Remark 2.6. In the definition (15) of R[̂η, k] and in the definition of the minimax risk R∗[k],
we restricted ourselves to the case where the covariance matrix � of the covariates is the identity.
For known but general �, we do not have a matching lower bound. Nevertheless, one deduces
from the above results that, when either k � p and (13) is satisfied or when k ≥ √

p and � is
invertible, the optimal risk is (up to numerical constants) not larger than than R∗[k].

3. Adaptation to unknown sparsity

In practice, the number |β∗|0 of non-zero components of β∗ is unknown. In this section, our
purpose is to build an estimator η̂ that adapts to the unknown sparsity |β∗|0. Although the com-
putation of the estimators η̂D(�) and η̂SL does not require the knowledge of |β∗|0, the choice
of one estimator over the other depends on this quantity. Observe that, when p ≥ n2, the dense
estimator η̂D(�) is not consistent. Therefore, only the estimator η̂SL is useful and η̂SL alone is
minimax adaptive to the sparsity k (up to a possible log factor when k is of the order of p1/2).
This is why we focus on the regime where p is large compared to n and where p logp ≤ n2.

It turns out that no estimator η̂ can simultaneously achieve the minimax risk R∗(k) over all k =
1, . . . , p, and that there is an unavoidable loss for adaptation. This may be seen in the following
proposition.

Proposition 3.1. Assume that p logp ≤ n2, and that for some a ∈ ]0,1/2[, p1−a(logp)2 ≥ 16n.
Then for any estimator η̂, for all k such that

√
p logp ≤ k ≤ p, one has

R(̂η,1)

1
n

√
p
n

+ R(̂η, k)

p logp

n2

≥ a2

45
.

Recall that R∗(1) is of order 1/n and R∗(k) is of order p/n2. Proposition 3.1 implies that any
estimator η̂ whose maximal risk over B0[k] is smaller than p log(p)/n2 exhibits a huge maximal
risk over B0[1]. As a consequence, any estimator admitting a reasonable risk bound over B0[1]
should have a maximal risk at least of order p log(p)/n2 for all k ∈ [√p log(p),p]. Next, we
define an estimator η̂A simultaneously achieving the risk R∗(k) for k small compared to

√
p and

achieving the risk R∗(k) logp in the dense regime where k ≥ √
p logp.

Define the numerical constant c0 as two times the constant C1 arising in the deviation bound
(5) of Theorem 2.1. We build an adaptive estimator by combining the estimator η̂SL and η̂D as
follows

η̂A :=
{

η̂SL if
∣∣̂ηD

T (�) − η̂SL
∣∣≤ c0
√

p log(p)/n,

η̂D
T (�) else,

(17)
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where, for technical reasons, we consider η̂D
T (�) := min(1,max(0, η̂D(�))) a truncated version

of η̂D(�) which lies in [0,1].
The rationale behind η̂A is the following. Suppose that β∗ is k-sparse, with k ≤ √

p, in
which case, η̂SL achieves the optimal rate. With large probability, |̂ηD

T (�) − η| is smaller
than c0

√
p log(p)/(2n) (this is true for arbitrary β∗) and |̂ηSL − η| is smaller than (1/

√
n +

k log(p)/n) which is smaller than c0
√

p log(p)/(2n). Hence, η̂A equals η̂SL with large proba-
bility. Now assume that k ≥ √

p, in which case the optimal rate is of order p/n2 and is achieved
by η̂D

T (�). Observe that η̂A = η̂D
T (�) except if η̂SL is at distance less than c0

√
p log(p)/n from

η̂D
T (�). Consequently, |̂ηA − η| ≤ c0

√
p log(p)/n + |̂ηD

T (�) − η|. Formalizing the above argu-
ment, we arrive at the following.

Theorem 3.2. There exists a numerical constant C such that the following holds. Assume that
p ≥ n. For any integer k ∈ [p], any k-sparse vector β∗ and any σ > 0, the estimator η̂A satisfies

E
[(̂

ηA − η
)2]≤ C

[
1

n
+
(

k2 log2(p)

n2

λ2
max(�)

λ2
min(�)

)
∧
(

p log(p)

n2

)]
.

For all k ≥√p log(p), the risk R(̂ηA, k) is of order p log(p)/n2 whereas R(̂ηA,1) is of or-
der 1/n. In view of Proposition 3.1, it is therefore impossible to improve the rates R(̂ηA, k)

for k ≥ √p log(p) without drastically deteriorating R(̂ηA,1). As a consequence of Proposi-
tions 2.4, 3.1 and Theorem 3.2, and, in the asymptotic regime where p logp ≤ n2 and p1−a

is large compared to n for some positive a, η̂A achieves the optimal adaptive risk for all
k ∈ {1, . . . , p1/2−γ } ∪ {(p log(p))1/2, . . . , p} where γ > 0 is arbitrary small. For k close to

√
p,

there is still a logarithmic gap between the upper and lower bounds as in the non-adaptive section.

Remark 3.1. Theorem 2.1 is the basic stone for the construction of η̂A by the use of the deviation
inequality.

Remark 3.2. In the low-dimensional case p ≤ n, the estimator η̂D achieves the parametric rate
E[(̂ηD(�) − η)2] ≤ C/n regardless of the sparsity of the parameter β∗. Thus, η̂D alone is adap-
tive to the unknown sparsity.

4. Minimax estimation when � is unknown

In this section, we investigate the case where the covariance matrix � is unknown. As the com-
putation of the sparse estimator η̂SL does not require the knowledge of �, the optimal estimation
rate is unchanged when |β∗|0 is much smaller than

√
p. In what follows we therefore focus on

the regime where |β∗|0 ≥ √
p.

4.1. Positive results under restrictions on �

Here, we prove that a simple plug-in method allows to achieve the minimax rate as long as one
can estimate the inverse covariance matrix � sufficiently well. Without loss of generality, we
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may assume that we have at our disposal an independent copy of X, denoted X(2) (if it is not the
case, simply divide the data set into two subsamples of the same size).

Given an estimator �̂ of � := �−1 based on the matrix X(2), the proportion of explained
variation η is estimated as in Section 2.1, using (8), except that the true inverse covariance matrix
is replaced by its estimator:

η̂D(�̂) := YT (X�̂XT − tr(X�̂XT )In/n)Y

(n + 1)‖Y‖2
. (18)

Notice that Dicker [13] has already proposed a similar procedure and has derived asymptotic
rates similar to the ones we may deduce from Proposition 4.1. However, deviation inequalities
(and not only asymptotic rates) are required to construct an estimator that is adaptive to the
unknown sparsity.

Proposition 4.1. Assume that p ≥ n. For any non-singular estimator �̂ based on the sample
X(2),

P

[∣∣̂ηD(�̂) − η
∣∣≥ C1‖�‖op‖�̂‖op

√
pt

n
+ ‖�‖op‖�̂ − �‖op|X(2)

]
≤ C2e

−t , (19)

for all t < n1/3. Here, C1 and C2 are the numerical constants that appear in Theorem 2.1.

Thus, if one is able to estimate � at the rate p/n2, then η̂D(�̂) achieves the same estimation
rate as if � was known. To illustrate this qualitative situation, we describe an example of a class
U of precision matrices and an estimator �̂ satisfying this property.

For any square matrix A, define its matrix l1 operator norm by

‖A‖1→1 = max
1≤j≤p

∑
1≤i≤p

|Ai,j |.

Given any M > 0 and M1 > 0, consider the following collection U of sparse inverse covariance
matrices

U := U(M,M1)

:=
{

� : � � 0 : 1

M1
≤ λmin(�) ≤ λmax(�) ≤ M1,‖�‖1→1 ≤ M,

max
1≤j≤p

p∑
i=1

1�i,j �=0 ≤
√

p

n log(p)

}
.

(20)

Cai et al. [8] introduced the CLIME estimator to estimate sparse precision matrices. Let λn > 0
and ρ > 0 be two tuning parameters, whose value will be fixed in Lemma 4.2 below. Denote

�̂
(2) := X(2)T X(2)/n the empirical covariance matrix based on the observations X(2).
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Let �̂1 be the solution of the following optimization problem

min
∥∥�′∥∥

1, subject to
∥∥�̂(2)

�′ − Ip

∥∥∞ ≤ λn,�
′ ∈R

p×p. (21)

Then, the CLIME estimator �̂CL is obtained by symmetrizing �̂1: for all i, j , we take (�̂CL)i,j =
(�̂1)i,j if |(�̂1)i,j | ≤ |(�̂1)j,i | and (�̂CL)i,j = (�̂1)j,i in the opposite case. We may now apply
Theorem 1.a in [8] to our setting with η = 1/5 ∧ 1/

√
M1, K = e1/2 and τ = 1. This way we

obtain the following.

Lemma 4.2. There exists a numerical constant C3 > 0 such that the following holds. Fix λn =
2[25∨M1](3+e3(5∨√

M1)
2M
√

log(p)/n. Assume that log(p) ≤ n/8 and that � belongs to U .
Then, the CLIME estimator satisfies

‖�̂CL − �‖op ≤ C3M
2M2

1

√
p

n
, (22)

with probability larger than 1 − 4/p.

Let us modify the estimator of η so that it effectively lies in [0,1]. Let η̂D
T (�̂) :=

min(1,max(0, η̂D(�̂))).

Corollary 4.3. Assume that p ≥ n and that � belongs to the collection U defined above. Then,
there exists a universal constant C > 0 such that the following holds. For any β∗ and σ > 0,

E
[{

η̂D
T (�̂CL) − η

}2]≤ [CM4M6
1

p

n2

]
∧ 1.

We shall now define an adaptive estimator η̂A
CL in the same spirit as η̂A in the previous subsec-

tion. Define c0(M,M1) by

c0(M,M1) := 4C1M
2
1 + 2C3M

2M3
1 .

Here, C1 is the numerical constant that appears in Theorem 2.1 and C3 the numerical constant
that appears in Lemma 4.2. Define the estimator as:

η̂A
CL :=

{
η̂SL if

∣∣̂ηD
T (�̂CL) − η̂SL

∣∣≤ c0(M,M1)
√

p log(p)/n,

η̂D
T (�̂CL) else.

(23)

We then obtain that η̂A
CL is asymptotically minimax adaptive to � (if it is known that � ∈ U )

and to sparsity, in the same regimes as those in which η̂A is asymptotically minimax adaptive to
sparsity.

Corollary 4.4. Assume that � belongs to the collection U defined above. Then, there exists a
constant C(M,M1) > 0 only depending on M and M1 such that the following holds. For any
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integer k ∈ [p], any k-sparse vector β∗ and any σ > 0,

E
[(̂

ηA
CL − η

)2]≤ C(M,M1)

[
1

n
+
(

k2 log2(p)

n2

)
∧
(

p log(p)

n2

)]
. (24)

Remark 4.1. When � belongs to U , the estimator η̂D
T (�̂CL) achieves a similar risk bound to

that of η̂D
T (�). Also, η̂A

CL performs as well as estimator η̂A which requires the knowledge of �.
As a consequence, there does not seem to be a price to pay for the adaptation to � under the
restriction � ∈ U .

Remark 4.2. If the quantity
√

p/(n log(p)) in the sparsity condition max1≤j≤p

∑p

i=1 1�i,j �=0 ≤√
p/(n log(p)) in the definition (20) of U is replaced by some s ≥√p/(n log(p)), the CLIME-

based estimator η̃D
T (�̂CL) will only be consistent at the rate s2 log(p)/n which is slower than

the desired p/n2. This is not completely unexpected as we prove in the next subsection that a
reliable estimation of η becomes almost impossible when the collection of precision matrices is
too large.

4.2. Impossibility results

We now turn to the general problem where � is only assumed to have bounded eigenvalues. As
explained in the beginning of Section 3, the estimator η̂SL, which does not require the knowledge
of �, is minimax adaptive to B0[k] when p ≥ n2. Hence, we focus in the remainder of this section
on the regime n ≤ p ≤ n2.

In this subsection and the corresponding proofs, we denote Pβ,σ,� the distribution of (Y,X),
in order to emphasize the dependency of the data distributions with respect to the covariance
matrix of X. For any M > 1, let us introduce [M] the set of positive symmetric matrices of size
p whose eigenvalues lie in the compact [1/M,M]. The purpose of these bounded eigenvalues in
(1/M,M) is to prove that the difficulty in the estimation problem does not simply arise because
of poorly invertible covariance matrices.

Denote R
∗[p,M] the minimax estimation risk of the proportion of explained variation η when

the covariance matrix is unknown

R
∗[p,M] := inf

η̂
sup

β∈B0[p],σ>0
sup

�∈[M]
Eβ,σ,�

[(̂
η − η(β,σ )

)2]
, (25)

where the infimum is taken over all estimator η̂ measurable with respect to (Y,X).
When the covariance matrix � is known, the minimax rate has been shown to be of order

at most p/n2 and therefore goes to 0 as soon as p is small compared to n2. The following
proposition shows that, for unknown �, there is no consistent estimators of η when p is large
compared to n.

Theorem 4.5. Consider an asymptotic setting where both n and p go to infinity. Then, there
exists a positive function C : (0,∞) × (1,∞) �→ (0,1) such that the following holds. If for some
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ς > 0,

n1+ς

p
→ 0, (26)

then, for any M > 1, the minimax risk R
∗[p,M] is bounded away from zero, that is

limn,pR
∗[p,M] ≥ C(ς,M).

Remark 4.3. Theorem 4.5 tells us that it is impossible to consistently estimate the propor-
tion of explained variation in a high-dimensional setting where p is much larger than n. This
lower bound straightforwardly extends to R

∗[k,M] when k is much larger than n in the sense
n1+ς/k → 0 for some ς > 0.

Let us get a glimpse of the proof by trying to build an estimator of η(β∗, σ ) in the high-
dimensional regime p ≥ n. As � is unknown and cannot be consistently estimated in this regime,
a natural candidate would be to consider η̂D(Ip) = V̂ as defined below (4). By Theorem 2.1, one
has

η̂D(Ip) = β∗T �2β∗

Var(yi)
+ OP

(√
p

n

)
.

Although the signal strength β∗T �β∗ cannot be consistently estimated for unknown � (Theo-
rem 4.5), it is interesting to note that some regularized version of the signal strength β∗T �2β∗ is
estimable at the rate p/n2 (this phenomenon was already observed in [13]).

Going one step further, one can consistently estimate β∗T �3β∗ for p ≤ n3/2 by considering
a quadratic form of Y as in T (4) but with higher-order polynomials of X. For p of order n1+ς

for some small ς > 0, it will be possible to consistently estimate all aq := β∗T �qβ∗ for q =
2,3, . . . , r(ς) where r(ς) is a positive integer only depending on ς .

Then, one may wonder whether it is possible to reconstruct a1 = β∗T �β∗ from (aq), q =
2, . . . , r(ς). Observe that aq is the qth moment of a positive discrete measure μ supported by
the spectrum of � and whose corresponding weights are the square norms of the projections of
β∗ on the eigenvectors of �. As a consequence, estimating β∗T �β∗ from (aq), q = 2, . . . , r(ς)

is a partial moment problem where one aims at recovering the first moment of the measure μ

given its higher order moments up to r(ς). Following these informal arguments, we build, in
the proof of Theorem 4.5, two discrete measures μ1 and μ2 supported on (1/M,M) whose qth
moments coincide for q = 2, . . . , r(ς) and whose first moments are far from each other. Define
B1 (resp. B2) the collection of parameter (β∗,�) whose corresponding measure is μ1 (resp. μ2).
Then, we show that no test can consistently distinguish the hypothesis H0 : (β∗,�) ∈ B1 from
H1 : (β∗,�) ∈ B2. As the signal strengths β∗T �β∗ of parameters in B1 are far from those in B2,
this implies that consistent estimation is impossible in this setting.

Remark 4.4. Let us summarize our findings on the minimax estimation risk when � is unknown
and n ≤ p ≤ n2:
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• if k is small compared to
√

p, the minimax risk is of order [k log(p)/n ∧ 1]2 + n−1 and is
achieved by the square-root Lasso estimator η̂SL.

• if k is large compared to n (in the sense n1+ς/k → 0 for some ς > 0), then consistent
estimation is impossible.

• if k lies between
√

p and n/ log(p), the square-root Lasso estimator η̂SL is consistent at the
rate (k log(p)/n)2. We conjecture that this rate is optimal.

• if k lies between n/ log(p) and n, we are not aware of any consistent estimator η and we
conjecture that consistent estimation is impossible.

5. Discussion and extensions

We focused in this work on the estimation risk of η in high-dimensional linear models under two
major assumptions: the design is random (with possibly unknown covariance matrix) and the
level of noise σ is unknown. We first discuss how the difficulty of the problem is modified when
the two assumptions are not satisfied: when the design is not random, then consistent estimation
of η is impossible in the dense regime, and when the level of noise is known, then the estimation
of η becomes much easier in the dense regime. Finally, we mention the problem of constructing
optimal confidence intervals.

5.1. Fixed design

If the regression design X is considered as fixed, then the counterpart of the proportion of ex-
plained variation would be

η
[
β∗, σ,X

] := ‖Xβ∗‖2
2/n

‖Xβ∗‖2
2/n + σ 2

.

In this new setting, the square-root Lasso estimator still estimates η[β∗, σ,X] at the rate
n−1 + (k log(p)/n)2 up to multiplicative constants only depending on the sparse eigenvalues
and compatibility constants of X. In contrast, the construction of V̂ relies on the fact that X is
random and is independent of the isotropic noise ε. When X is considered as fixed, V̂ does not
consistently estimate η[β∗, σ,X] for p small compared to n2. As a simple example, take σ = 1
and define β∗ by β∗T vi = λ

−1/2
i for i = 1, . . . , n where (vi)i denote the right eigenvectors of X

and (λ
1/2
i )i its singular values. Then, the random variables T and V̂ (defined in Section 2.1) are

concentrated around 0, whereas η[β∗, σ,X] equals 1/2.
More generally, the next proposition states that it is impossible to consistently estimate

η[β∗, σ,X] in a high-dimensional setting p ≥ n + 1. The randomness of X therefore plays a
fundamental role in the problem.

Proposition 5.1. Assume that p > n and consider any fixed design X such that Rank(X) = n.
Given β∗ and σ , denote Pβ∗,σ and Eβ∗,σ the probability and expectation with respect to the
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distribution Y = Xβ∗ + ε with ε ∼N (0, σ 2In). Then, the minimax estimation risk satisfies

inf
η̂

sup
β∗∈Rp,σ≥0

Eβ∗,σ
[(

η̂ − η
[
β∗, σ,X

])2]≥ 1

4
, (27)

where the infimum is taken over all estimator η̂ measurable with respect to Y .

5.2. Knowledge of the noise level

Throughout this manuscript, we assumed that the noise level σ was unknown. As explained in
the introduction, the situation is qualitatively different when σ is known. Let us briefly sketch the
optimal convergence rates in this setting, still restricting ourselves to p ≥ n. For any k = 1, . . . , p

define the maximal risk of an estimator η̂ and the minimax risk as

R(̂η, k, σ ) := sup
β∈B0[k]

Eβ,σ

[{
η̂ − η(β,σ )

}2]
, R∗(k, σ ) := inf

η̂
R(̂η, k, σ ).

It follows from the minimax lower bounds for signal detection [3,20], that for some C > 0 (lower
bounds in [3,20] are asymptotic but it is not difficult to adapt the arguments to obtain non-
asymptotic bounds to the price of worse multiplicative constants),

R∗(k, σ ) ≥ C

(
k

n
log

(
1 + p

k2

))2

∧ 1

n
, (28)

which is of order [k log(p)/n]2 ∧ n−1 except in the regime where n is of order p and where k

is of order p1/2 in which case the logarithmic factors do not match. As for the upper bounds,
since ‖Y‖2

2/[σ 2 + β∗T �β∗] follows a χ2 distribution with n degrees of freedom, the estimator

η̂D,σ := 1− nσ 2

‖Y‖2
2

admits a quadratic risk (up to constants) smaller than 1/n. This implies that the

proportion of explained variation η can be efficiently estimated for arbitrarily large p. For small
k, one can use the Gauss-Lasso estimator based on β̃SL. Let Ĵ be the set of integers j such that
β̃SL �= 0 and define:

η̂GL,σ := ‖�
Ĵ
Y‖2

2/n

σ 2 + ‖�
Ĵ
Y‖2

2/n

where �
Ĵ

= X
Ĵ
(XT

Ĵ
X

Ĵ
)−1XT

Ĵ
is the orthogonal projector of Rn onto the space spanned by the

columns of X
Ĵ

. The Gauss-Lasso estimator was introduced to get an estimator of heritability in
the sparse situation in a first version of this work [32]. Following the proof of Theorem 2.3 in
[32] we may obtain that, under Assumption (13) and when |β∗|0 = k,

E
[(̂

ηGL,σ − η
)2]≤ C′ k2 log2(p)

n2

λ2
max(�)

λ2
min(�)

.

In conclusion, the rate [k log(p)/n]2 ∧ n−1 is (up to a possible logarithmic multiplicative term)
optimal. These results contrast with the case of unknown σ in two ways: (i) The optimal rate is
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order-wise faster when σ is known especially when k is small (n−1 versus (k log(p)/n)2) and
when k,p are larger (p/n2 versus n−1). (ii) Since η̂D,σ and η̂GL,σ do not use the knowledge of
�, adaptation to unknown covariance of the covariates is possible.

5.3. Minimax confidence intervals

In practice, one may not only be interested in the estimation of η(β∗, σ ), but also on building
confidence intervals [21]. In the proof of Theorem 2.1 and in Proposition 2.3, we obtain expo-
nential concentration inequalities of η̂D(�) and η̂SL around β∗. This allows to get, for any α > 0
and any k = 1, . . . , p, confidence intervals

CIDα :=
[
η̂D(�) ± C(α)

√
p

n

]
,

CISL
α,k :=

[
η̂SL ± C′(α)

(
1

n1/2
+ k log(p)

n

λ2
max(�)

λ2
min(�)

)]
,

where C(α) and C′(α) are universal constants only depending on α. When p ≥ n, CIDα is honest
over Rp in the sense that

inf
β∈B0[p],σ>0

Pβ,σ

[
η ∈ CIDα

]≥ 1 − α.

For p ≥ n and if Assumption (13) is satisfied, then the confidence interval CISL
α,k is honest over

B0[k] in the sense that

inf
β∈B0[k],σ>0

Pβ,σ

[
η ∈ CISL

α,k

]≥ 1 − α.

In high-dimensional linear regressions, there have been recent advances towards the construc-
tion of optimal confidence regions both for the unknown vector β∗ [26] or low-dimensional
functional of the parameters such as components β∗

i [9,22,31,35] or
∑

i β
∗
i [9]. Building on this

line of work, it seems at hand to prove the minimax optimality of CIDα and CISL
α,k , proving the

existence of such honest confidence intervals. Of course, as already noticed when constructing
our adaptive estimator, the choice of the constants C(α) and C′(α) are probably far to be optimal
in applications.

A further step would be to study the problem of the construction (if possible) of adaptive
confidence intervals. We leave those important questions for future research.

6. Proofs of the minimax lower bounds

6.1. Proof of Proposition 2.4

6.1.1. Proof of the parametric rate R∗(k) ≥ R∗(1) ≥ Cn−1

First, we prove that η cannot be estimated faster than the parametric rate n−1. Fix σ = 1, β∗
1 =

(1,0, . . . ,0)T and β∗
2 = (1 + n−1/2,0, . . . ,0)T . Then η1 = η(β∗

1 , σ ) = 1/2 and η2 = η(β∗
2 , σ ) ≥
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1/2 + n−1/2/4. Denoting K(Pβ∗
1 ,σ ;Pβ∗

2 ,σ ) the Kullback-Leibler divergence between Pβ∗
1 ,σ and

Pβ∗
2 ,σ , we have

K(Pβ∗
1 ,σ ;Pβ∗

2 ,σ ) = E

[‖X(β∗
1 − β∗

2 )‖2
2

2

]
= 1

2
.

Using Pinsker’s inequality, we provide a lower bound of R∗(1) in terms of K(Pβ∗
1 ,σ ;Pβ∗

2 ,σ ) and

(η1 − η2)
2 as follows:

R∗(1) ≥ inf
η̂
Eβ∗

1 ,σ

[
(̂η − η1)

2]∨Eβ∗
2 ,σ

[
(̂η − η2)

2]
≥ (η2 − η1)

2

4
inf
η̂
Pβ∗

1 ,σ

[̂
η ≥ (η1 + η2)/2

]∨ Pβ∗
2 ,σ

[̂
η ≤ (η1 + η2)/2

]
≥ (η2 − η1)

2

8
inf
A

Pβ∗
1 ,σ (A) + Pβ∗

2 ,σ

(
Ac
)
, where A is any measurable event

≥ (η2 − η1)
2

8

[
1 − ‖Pβ∗

1 ,σ − Pβ∗
2 ,σ ‖TV

]
≥ (η2 − η1)

2

8

[
1 − 2−1/2

K
1/2(Pβ∗

1 ,σ ;Pβ∗
2 ,σ )
]
, by Pinsker’s inequality

≥ (η2 − η1)
2

16
≥ 1

162n
,

which concludes the proof.

6.1.2. Proof of R∗(k) ≥ C{[ k
n

log(1 + p

k2 ∨
√

p

k2 )]2 ∧ 1}

In this proof, we follow the standard strategy of reducing the heritability estimation problem to a
detection problem, thereby taking advantage on available bounds of [34]. We could simply derive
Proposition 2.4 from Theorem 4.3 in [34], but we prefer to detail the arguments as a first step
towards the minimax lower bounds for adaptation problems.

Denote P0 the distribution of (Y,X) when β∗ = 0 and σ = 1. Let ρ > 0 be a positive quantity
that will be fixed later. Also, denote B the collection of all vectors β ∈ R

p with exactly k non-
zero components that are either equal to ρ

[(1+ρ2)k]1/2 or − ρ

[(1+ρ2)k]1/2 . Defining σ 2
ρ := (1 +ρ2)−1,

we obtain, for all β ∈ B, η(β,σρ) = ρ2/(1 + ρ2). Following the beaten path of Le Cam’s ap-
proach, we consider μ the uniform measure on B and denote Pμ the mixture probability mea-
sure

Pμ =
∫
B
Pβ,σρ μ(dβ). (29)
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The minimax risk R∗(k) is obviously lower bounded as follows:

R∗(k) ≥ inf
η̂

{
E0
[̂
η2]∨∨

β∈B
Eβ,σρ

[(
η̂ − ρ2

1 + ρ2

)2]}

≥ 1

2
inf
η̂

[
E0
[̂
η2]+ Eμ

[(
η̂ − ρ2

1 + ρ2

)2]]
≥ ρ4

8(1 + ρ2)2
inf
η̂

[
P0

[
η̂ >

ρ2

2(1 + ρ2)

]
+ Pμ

[
η̂ ≤ ρ2

2(1 + ρ2)

]]
.

Defining the test statistic T̂ := 1{̂η > ρ2/[2(1 + ρ2)]}, one recognizes in the bound above the
sum of type I and type II errors of a test of P0 versus Pμ. Taking the infimum over all tests T̂ ,
that is all measurables function of (Y,X) to {0,1}, we arrive at

R∗(k) ≥ ρ4

8(1 + ρ2)2
inf
T̂

[
P0[T̂ = 1] + Pμ[T̂ = 0]]

≥ ρ4

8(1 + ρ2)2
inf
T̂

[
1 − ∣∣P0(T̂ = 0) − Pμ(T̂ = 0)

∣∣]
≥ ρ4

8(1 + ρ2)2

[
1 −E0|Lμ − 1|] where Lμ = dPμ

dP0

≥ ρ4

8(1 + ρ2)2

[
1 − (χ2(Pμ,P0)

)1/2] (by Cauchy–Schwarz inequality)

(30)

where χ2(Pμ,P0) = E0[(Lμ − 1)2] stands for the χ2 distance between probability distributions.
As a consequence, we only need to bound the χ2 distance between Pμ and P0. Fortunately, this
distance has been controlled in [34] (take v = 1, Var(y) = 1 in [34], p. 741, line 14, and note that
kλ2 = ρ2/(1 + ρ2)).

Lemma 6.1 ([34]). We have

χ2(Pμ,P0) ≤ exp

[
k log

(
1 + k

p

(
cosh

(
nρ2

k

)
− 1

))]
− 1

2
. (31)

Let us fix ρ2 in such a way that

nρ2

k
= log

[
1 + p

k2
log(5/4) +

√(
1 + p

k2
log(5/4)

)2

− 1

]
. (32)

Using the classical equality cosh(log(1 + x + √
x2 + 2x)) = 1 + x for x ≥ 0, we arrive at

χ2(Pμ,P0) ≤ exp
[
k log
(
1 + log(5/4)/k

)]− 1/2 ≤ 3/4,
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which, together with (30), implies

R∗(k) ≥ ρ4

8(1 + ρ2)2

(
1 − (3/4)1/2).

Since log(1 + ux) ≥ u log(1 + x) for any u ∈ (0,1) and x > 0, we derive from (32) that

ρ2 ≥ log

(
5

4

)[
k

n
log

(
1 + p

k2
∨
√

p

k2

)]2

.

But

ρ2

1 + ρ2
≥ ρ2

2
∧ 1,

which concludes the proof.

6.2. Proof of Proposition 3.1

Define the quantity ρ > 0 by

ρ2 := a
√

p logp

4n
. (33)

We consider μ, Pμ, Eμ as introduced in the proof of Proposition 2.4.
Let η̂ be any given estimator. Define

R := n

√
n

p
E0
[̂
η2]+ n2

p logp
Eμ

[(
η̂ − ρ2

1 + ρ2

)2]
.

Then,

R(̂η,1)

1
n

√
p
n

+ R(̂η, k)

p logp

n2

≥ R.

Now define the event A(̂η) := {̂η ≥ ρ2/[2(1 + ρ2)]}. Then, one has

n

√
n

p
E0
[̂
η2]≥ n

√
n

p
P0
[
A(̂η)
] ρ4

4(1 + ρ2)2
≥ a2

44

√
p

n
logpP0

[
A(̂η)
]
.

Similarly, Eμ(̂η − ρ2/(1 + ρ2))2 ≥ Pμ(Ac(̂η))ρ4/4(1 + ρ2)2 ≥ a2

44
p logp

n2 Pμ(Ac(̂η)) so that

R ≥ a2

44
inf
A

{
P0[A]

√
p

n
logp + Pμ

[
Ac
]}

,
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where the infimum is taken over all measurable events A. Restricting the events A to have small
probability, we arrive at

R ≥ a2

44

{
1 ∧ inf

A,P0[A]≤√
n/(

√
p logp)

Pμ

[
Ac
]}

, (34)

so that it suffices to obtain a uniform lower bound for Pμ[Ac] over events A of small P0-
probability.

Pμ

(
Ac
)≥ 1 − P0(A) − ∣∣Pμ(A) − P0(A)

∣∣
≥ 1 − P0(A) − ∣∣E0

[
(Lμ − 1)1A

]∣∣ where Lμ = dPμ

dP0

≥ 1 − P0(A) − (P0[A]χ2(Pμ,P0)
)1/2 (by Cauchy–Schwarz inequality)

(35)

Define x = ap

2k2 log(p). Since
√

p logp ≤ k, and since log(1 + ux) ≥ u log(1 + x) for any u ∈
(0,1) and x > 0, we have

nρ2

k
≤ log[1 + x ∨ √

x] ≤ log
[
1 + x +

√
2x + x2

]
.

Together with Lemma 6.1 and the classical identity cosh[log(1 +u+√
2u + u2)] = 1 +u for all

u > 0, we arrive at
√

n√
p logp

χ2(Pμ,P0) ≤
√

n√
p logp

exp

[
k2

p
x

]
≤

√
n√

p logp
pa/2 =

√
n

p1−a

1

logp
. (36)

Coming back to the lower bound (35), we conclude that, for any event A satisfying P0(A) ≤√
n/(

√
p logp), we have

Pμ

(
Ac
)≥ 1 −

√
n

p

1

logp
−
(√

n

p1−a

1

logp

)1/2

.

Plugging this result in (34) and using the fact that p1−a(logp)2 ≥ 16n leads to the desired result.

6.3. Proof of Theorem 4.5

6.3.1. General arguments

Fix M > 1 and suppose that Condition (26) is satisfied for some ς > 0. Define r to be the smallest
integer such that ς ≥ 1/(2r) so that we can assume henceforth that n1+1/(2r)/p → 0.

In this proof, we follow the same general approach as in the other minimax lower bounds, that
is we define two mixture distributions P0 and P1

P0 :=
∫

Pβ,σ0,�μ0(dβ, d�), P1 :=
∫

Pβ,σ1,�μ1(dβ, d�),
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in such a way that P0 and P1 are almost indistinguishable and at the same time the function
η(β,σ ) takes different values for parameters in the support of the prior distribution μ0 and pa-
rameters in the support of the prior distribution μ1. The main difference with previous proofs lies
in the fact that μ0 and μ1 are now prior probabilities on both the regression coefficient vector β

and the covariance matrix �.
Let α0 = (αi,0), γ0 = (γi,0), i = 1, . . . r and α1 = (αi,1), γ1 = (γi,1), i = 0, . . . r be positive pa-

rameters whose exact values will be fixed later. We emphasize that the values of these parameters
will only depend on r and not on n and p. Given a positive integer q and α = (α1, . . . , αq) whose
coordinates αj are positive, define the probability distribution πα on vectors of Rq×p whose den-

sity is proportional to (|Ip +∑q

i=1 αixix
T
i |)−n/2e−∑q

i=1 p‖xi‖2
2/2 for xi ∈R

p , i = 1, . . . , q .
The distribution μ0 is defined as follows. Let (vi,0), i = 1, . . . , r be independently sampled

according to the distribution πα0 . Then, conditionally to (v1,0, . . . , vr,0), β and � are fixed to the
following values

β =
r∑

i=1

γi,0vi,0; �−1 = Ip +
r∑

i=1

αi,0vi,0v
T
i,0. (37)

Similarly, under μ1,

β =
r∑

i=0

γi,1vi,1; �−1 = Ip +
r∑

i=0

αi,1vi,1v
T
i,1, (38)

where the vectors (vi,1), i = 0, . . . , r are independently sampled according to the distribution
πα1 . Finally, the noise variances are fixed to the following values.

σ 2
0 = 1, σ 2

1 = 1 − ζ(r,M), (39)

where ζ(r,M) > 0 is introduced in Lemma 6.2.
To prove that P0 and P1 are almost indistinguishable we will consider separately the marginal

distribution of X and the conditional distribution of Y given X. We will see that the centered
Gaussian distribution of X under both P0 and P1 are indistinguishable from the standard normal
distribution when n = o(p), see Lemma 6.4 below.

Let us now choose the parameters γi,j and αi,j in such a way that the conditional distribution
of Y given X under P0 is indistinguishable from that under P1 when n1+1/(2r) = o(p). We first
consider a truncated moment problem.

Lemma 6.2. There exist two discrete positive measures ρ0 = ∑r
i=1 ξi,0δτi,0 on ρ1 =∑r

i=0 ξi,1δτi,1 supported on (0,1) such that

1. The atoms τi,j for j = 0,1 lie in [(5 + M)/(6M),1).
2. The total mass of ρ0 equals 1, whereas the total mass of ρ1 is 1+ ζ(r,M), where ζ(r,M) >

0 is introduced in the proof.
3. For all q = 1, . . . ,2r − 1, the qth moment of ρ0 and ρ1 coincide∫

xq dρ0 =
∫

xq dρ1 = 2M

M − 1

∫ (1+3M)/(4M)

(3+M)/(4M)

xq dx := mq.
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For j = 0,1, we set the values γi,j := [ξi,j /τi,j ]1/2 and αi,j := τ−1
i,j − 1.

Let us give a hint why such a choice leads to what we need. As a consequence of our parameter
choices, the following identities are satisfied

r∑
i=1

γ 2
i,0

1 + αi,0
+ σ 2

0 =
r∑

i=0

γ 2
i,1

1 + αi,1
+ σ 2

1 = 2, (40)

r∑
i=1

γ 2
i,0

(1 + αi,0)q
=

r∑
i=0

γ 2
i,1

(1 + αi,1)q
= mq−1, ∀q = 2, . . . ,2r. (41)

Had the random vectors (vi,j ) introduced in μj formed an orthonormal family, then we would

have had βT �qβ =∑i

γ 2
i,j

(1+αi,j )q
for any positive integer q . We shall prove later that, under the

distribution μj , the vectors vi,j have a norm close to one and are almost orthogonal with large
probability. Hence, identities (41) imply that the moments βT �qβ concentrate around the same
value under μ0 and μ1, this for all q = 2, . . . ,2r . This will lead to the fact that the conditional
distribution of Y given X under P0 is indistinguishable from that under P1 when n1+1/(2r) = o(p)

as proved in Lemma 6.5 below. In the same way, (40) will imply that βT �β + σ 2
j concentrate

around 2 under μj for j = 0,1 so that η will concentrate around different values under P0 and
P1 since σ 2

0 �= σ 2
1 . This is stated in Lemma 6.3 below.

Let us now define the quantities

η0 := 1− σ 2
0∑r

i=1
γ 2
i,0

1+αi,0
+ σ 2

0

= 1/2, η1 := 1− σ 2
1∑r

i=0
γ 2
i,1

1+αi,1
+ σ 2

1

= 1/2+ζ(r,M)/2. (42)

The next lemma states that, for j = 0,1, η(β,σ ) is close to ηj under μj .

Lemma 6.3. There exists three positive constants C1(r,M), C2(r,M) and C3(r) such that the
following holds for p ≥ nC1(r,M). First, one has

μj

[∣∣η(β,σ ) − ηj

∣∣≥ C2(r,M)

(
p−1/4 +

(
n

p

)1/2)]
≤ e−C3(r)p

1/2
, (43)

for j = 0,1. Also, the spectrum of � is bounded away from zero with large probability, that is
for j = 0,1,

μj

[
λmin(�) ≤ 1/M

]≤ e−C3(r)p
1/2

. (44)

By definition of μ0 and μ1, the largest eigenvalue of � is always equal to one. By Lemma 6.3,
with μ0 and μ1 probability going to one, the spectrum of � lies in [1/M,M].

Let us now bound the minimax risk R
∗[p,M]. Contrary to the prior distributions chosen in the

proof of Proposition 3.1, the proportion of explained variation η(β,σ ) is not constant either on μ0
or on μ1, so that we cannot directly relate the minimax estimation rate to the total variation dis-
tance as done before. Nevertheless, these proportions of explained variation concentrate around
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η0 and η1 so that it will be possible to work around this difficulty. This slight refinement of Le
Cam’s method has already been applied for other functional estimation problems (see, e.g., [11]).
Also to circumvent the issue that some eigenvalues of � are smaller than 1/M with positive (but
very small) probability, we consider a threshold version of the risk E∗

1[·] := E1[·1λmin(�)≥M−1]
and E∗

0[·] := E0[·1λmin(�)≥M−1].
Without loss of generality, we may assume that all the estimators η̂ below only take values in

[0,1].

R
∗[p,M] ≥ inf

η̂
E∗

0

[{
η̂ − η(β,σ )

}2]∨ E∗
1

[{
η̂ − η(β,σ )

}2]
≥ inf

η̂
E0
[{

η̂ − η(β,σ )
}2]∨ E1

[{
η̂ − η(β,σ )

}2]− ∨
i=0,1

μi

[
λmin(�) ≤ M−1]

≥ inf
η̂

1

2

∨
i=1,2

Ei

[{̂η − ηi}2]− ∨
i=1,2

Ei

[{
η(β,σ ) − ηi

}2]− ∨
i=0,1

μi

[
λmin(�) ≤ M−1],

where we used (x − y)2 ≥ (x − z)2/2 − (y − z)2. From (43) and the fact that η(β,σ ) belongs to
[0,1], we derive that for some positive constant C(r,M),∨

i=1,2

Ei

[{
η(β,σ ) − ηi

}2]≤ C(r,M)
(
p−1/2 + n/p

)
,

when p is large enough. Besides, the probabilities μi[λmin(�) ≤ M−1] are smaller than
e−C3(r)p

1/2
by (44). Then, we control the maximum

∨
i=1,2 Ei[{(̂η − ηi}2] using the total varia-

tion distance between P0 and P1 as we did in the proof of Proposition 2.4. More precisely,

R
∗[p,M] + C(r,M)

[
p−1/2 + (n/p)

] ≥ (η1 − η0)
2

8
inf
η̂

P0

(
η̂ ≥ η1 + η0

2

)
∨ P1

(
η̂ ≤ η1 + η0

2

)
≥ (η1 − η0)

2

16
inf
A

P0(A) + P1
(
Ac
)

≥ (η1 − η0)
2

16

[
1 − ‖P1 − P0‖TV

]
,

so that we only have to focus on ‖P1 − P0‖TV. Let us decompose the total variation distance
between P0 and P1 in a way enabling to consider separately the marginal distribution of X and the
conditional distributions of Y given X. Since the total variation distance is, up to a multiplicative
constant, the l1 distance between the density functions, we obtain

2‖P1 − P0‖TV =
∫ ∣∣f0(y,x) − f1(y,x)

∣∣dy dx

=
∫ ∣∣f0(y|x)f0(x) − f1(y|x)f1(x)

∣∣dy dx
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≤
∫

f1(y|x)
∣∣f0(x) − f1(x)

∣∣dy dx +
∫

f0(x)
∣∣f0(y|x) − f1(y|x)

∣∣dy dx

≤
∫ ∣∣f0(x) − f1(x)

∣∣dx +
∫

f0(x)
∣∣f0(y|x) − f1(y|x)

∣∣dy dx

≤ 2
∥∥PX

0 − PX
1

∥∥
TV + 2EX

0

[∥∥PY |X
0 − PY |X

1

∥∥
TV

]
, (45)

where, for i = 0,1, PX
i (resp. fi ) denotes the marginal probability distribution (resp. density)

of X under Pi , PY |X
i (resp. fi(·|x)) is the conditional distribution (resp. density) of Y given X

and EX
0 stands for the expectation with respect to PX

0 . The main difficulty in the proof lies in

controlling these two total deviation distances ‖PX
0 − PX

1 ‖TV and EX
0 [‖PY |X

0 − PY |X
1 ‖TV].

The marginal distribution of X under P0 and P1 is that of a n sample of p-dimensional normal
distribution whose precision matrix is a rank r perturbation of the identity matrix and whose r

principal directions are sampled nearly uniformly. In a high-dimensional setting, such perturba-
tions are indistinguishable from the standard normal distribution as shown in the next lemma.

Lemma 6.4. There exist two positive constants C(r,M) and C′(r,M) only depending on r and
M such that the following holds. If p ≥ C(r,M)n, then

∥∥PX
0 − PX

1

∥∥
TV ≤ C′(r,M)

√
n

p
.

The intricate construction of μ0 and μ1 (and especially the choices of the parameters αi,j and

γi,j ) has been made to force the conditional PY |X
0 and PY |X

1 to be close to each other. Informally,
the fact that the quantities βT �qβ almost coincide under μ0 and μ1, this for all q = 2, . . . ,2r ,
will translate into the total distance ‖PY |X

0 − PY |X
1 ‖TV as illustrated by the next lemma.

Lemma 6.5. There exist two positive constants C(r,M) and C′(r,M) only depending on r and
M such that the following holds. If p ≥ C(r,M)n, then

EX
0

[∥∥PY |X
0 − PY |X

1

∥∥
TV

]≤ C′(r,M)

(
n1+1/(2r)

p

)r

.

Under assumption (26), the distance ‖P1 − P0‖TV goes to 0, and the minimax risk R
∗[p,M]

is therefore bounded away from zero:

limR
∗[p,M] ≥ (η1 − η0)

2

32
≥ Cζ 2(r,M).
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Supplementary Material

Supplement to “Adaptive estimation of high-dimensional signal-to-noise ratios” (DOI:
10.3150/17-BEJ975SUPP; .pdf). This supplement contains the remaining proofs.
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