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Perturbation theory for Markov chains addresses the question of how small differences in the transition
probabilities of Markov chains are reflected in differences between their distributions. We prove power-
ful and flexible bounds on the distance of the nth step distributions of two Markov chains when one of
them satisfies a Wasserstein ergodicity condition. Our work is motivated by the recent interest in approxi-
mate Markov chain Monte Carlo (MCMC) methods in the analysis of big data sets. By using an approach
based on Lyapunov functions, we provide estimates for geometrically ergodic Markov chains under weak
assumptions. In an autoregressive model, our bounds cannot be improved in general. We illustrate our the-
ory by showing quantitative estimates for approximate versions of two prominent MCMC algorithms, the
Metropolis–Hastings and stochastic Langevin algorithms.

Keywords: big data; Markov chains; MCMC; perturbations; Wasserstein distance

1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are one of the key tools in computational statis-
tics. They are used for the approximation of expectations with respect to probability measures
given by unnormalized densities. For almost all classical MCMC methods, it is essential to evalu-
ate the target density. In many cases, this requirement is not an issue, but there are also important
applications where it is a problem. This includes applications where the density is not available
in closed form, see [27], or where an exact evaluation is computationally too demanding, see [2].
Problems of this kind lead to the approximation of Markov chains and to the question of how
small differences in the transitions of two Markov chains affect the differences between their
distributions.

In Bayesian inference when big data sets are involved an exact evaluation of the target density
is typically very expensive. For instance, in each step of a Metropolis–Hastings algorithm the
likelihood of a proposed state must be computed. Every observation in the underlying data set
contributes to the likelihood and must be taken into account in the calculation. This may result
in evaluating several terabytes of data in each step of the algorithm. These are the reasons for
the recent interest in numerically cheaper approximations of classical MCMC methods, see [3,4,
23,42,47]. A reduction of the computational costs can, for example, be achieved by relying on a
moderately sized random subsample of the data in each step of the algorithm. The function value
of the target density is thus replaced by an approximation. Naturally, subsampling and alternative
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attempts at “cutting the Metropolis–Hastings budget” [23] induce additional biases. These biases
can lead to dramatic changes in the properties of the algorithms as discussed in [6].

We thus need a better theoretical understanding of the behavior of such approximate MCMC
methods. Indeed, a number of recent papers prove estimates of these biases, see [2,3,19,24,29,
35]. A key tool in these papers are perturbation bounds for Markov chains. One such result for
uniformly ergodic Markov chains due to Mitrophanov [33] is used in [2]. A similar perturbation
estimate implicitly appears in [3]. The focus on uniformly ergodic Markov chains is rather re-
strictive, especially for high-dimensional, non-compact state spaces such as R

m. Working with
Wasserstein distances has recently turned out to be a fruitful alternative in several contributions
on high-dimensional MCMC algorithms, see [11,12,14,18,25].

We provide perturbation bounds based on Wasserstein distances, which lead to flexible quanti-
tative estimates of the biases of approximate MCMC methods. Our first main result is the Wasser-
stein perturbation bound of Theorem 3.1. Under a Wasserstein ergodicity assumption, explained
in Section 2, it provides an upper bound on the distance of the nth step distribution between an
ideal and an approximating Markov chain in terms of the difference between their one-step tran-
sition probabilities. The result is well-suited for applications on a non-compact state space, since
the difference of the one-step transition probabilities is measured by a weighted supremum with
respect to a suitable Lyapunov function. For an autoregressive model, we show in Section 4.1
that the resulting perturbation bound cannot be improved in general. As a consequence of the
Wasserstein approach, we also obtain perturbation estimates for geometrically ergodic Markov
chains. We first adapt our Wasserstein perturbation bound to this setting. Then, as a second main
result, Theorem 3.2, we prove a refined estimate for geometrically ergodic chains where the per-
turbation is measured by a weighted total variation distance. Our perturbation bounds, and earlier
ones in [32,33], establish a direct connection between an exponential convergence property for
Markov chains and their robustness to perturbations. In particular, fast convergence to stationar-
ity implies insensitivity to perturbations in the transition probabilities. Geometric ergodicity has
been studied extensively in the MCMC literature. Thus, our estimates can be used in combination
with many existing convergence results for MCMC algorithms. In Section 4, we illustrate the ap-
plicability of both theorems by generalizing recent findings on approximate Metropolis–Hastings
algorithms from [3] and on noisy Langevin algorithms for Gibbs random fields from [2].

1.1. Related literature

We refer to [20,21] for an overview of the classical literature on perturbation theory for Markov
chains. However, as Stuart and Shardlow observed in [41], the classical assumptions on the per-
turbation might be too restrictive for many interesting applications. As a consequence, they de-
velop a perturbation theory for geometrically ergodic Markov chains [41] which requires to con-
trol perturbations of iterated transition kernels in a weaker sense. In our bounds for geometrically
ergodic Markov chains, we have similar flexibility in the perturbation due to the Lyapunov-type
stability condition, and require only a control on the errors of one-step transition kernels.

Mitrophanov, in [33], considers uniformly ergodic Markov chains and provides the best esti-
mates in those settings. In the geometrically ergodic case, there are further related results, see
[13] and the references therein. Compared to [13], our focus is on non-asymptotic estimates with
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explicit constants, while their main focus is on qualitative results such as inheritance of geometric
ergodicity by the perturbation. Earlier related results on perturbations induced by floating-point
roundoff errors are shown in [7,38].

Finally, let us point out that our paper is complementary to the work of Pillai and Smith [35]
who also present Wasserstein perturbation bounds for Markov chains. When moving beyond the
uniformly ergodic Markov chain case, an important challenge is to handle the issue that in many
applications suprema of relevant quantities over the whole state space are infinite. The authors of
[35] guarantee finiteness of supremum norms by restricting attention to subsets of the state space.
Their bounds thus involve exit probabilities from these subsets. Our approach circumvents these
issues by relying on Lyapunov-type stability conditions for the approximate algorithm.

2. Wasserstein ergodicity

Let G be a Polish space and B(G) be the corresponding Borel σ -algebra. Let d be a metric,
possibly different from the one which makes the space Polish, which is assumed to be lower semi-
continuous with respect to the product topology of G. Let P be the set of all Borel probability
measures on (G,B(G)). Then, we define the Wasserstein distance of ν,μ ∈ P by

W(ν,μ) = inf
ξ∈M(ν,μ)

∫
G

∫
G

d(x, y)dξ(x, y),

where M(ν,μ) is the set of all couplings of ν and μ, that is, all probability measures ξ on G×G

with marginals ν and μ. Indeed, on P the Wasserstein distance satisfies the properties of a metric
but is not necessarily finite, see [46], Chapter 6. For a measurable function f : G → R we define

‖f ‖Lip = sup
x,y∈G,x �=y

|f (x) − f (y)|
d(x, y)

,

which leads to the well-known duality formula

W(ν,μ) = sup
‖f ‖Lip≤1

∣∣∣∣∫
G

f (x)
(
dν(x) − dμ(x)

)∣∣∣∣. (2.1)

For details we refer to [45], Chapter 1.2. By δx we denote the probability measure concentrated
at x. Hence W(δx, δy) = d(x, y) is finite for x, y ∈ G.

Let P be a transition kernel on (G,B(G)) which defines a linear operator P : P → P given
by

μP(A) =
∫

G

P (x,A)dμ(x), μ ∈P,A ∈ B(G).

With this notation we have δxP (A) = P(x,A). Further, for a measurable function f : G → R

and μ ∈ P we have ∫
G

f (x)d(μP )(x) =
∫

G

Pf (x)dμ(x),
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with Pf (x) = ∫
G

f (y)P (x,dy) whenever one of the integrals exist, see, for example, [40],
Lemma 3.6. Now, by

τ(P ) := sup
x,y∈G,x �=y

W(δxP, δyP )

d(x, y)

we define the generalized ergodicity coefficient of transition kernel P . This coefficient can be
understood as a generalized Dobrushin ergodicity coefficient, see [8,9]. Dobrushin himself called
τ(P ) the Kantorovich norm of P , see [10], formula (14.34). Finally, τ(P ) also provides a lower
bound of the coarse Ricci curvature of P introduced in [34].

Two essential properties of the ergodicity coefficient are submultiplicativity and contractivity,
see [10], Proposition 14.3 and Proposition 14.4.

Proposition 2.1. For two transition kernels P and P̃ on (G,B(G)) and μ,ν ∈ P , we have

τ(P P̃ ) ≤ τ(P )τ(P̃ ) (Submultiplicativity),

and

W(νP,μP ) ≤ τ(P )W(ν,μ) (Contractivity).

As an immediate consequence of this contractivity, we obtain the following corollary.

Corollary 2.1. Let P be a transition kernel with stationary distribution π , that is, πP = π , and
assume for some (and hence any) x0 ∈ G it holds that

∫
G

d(x0, x)dπ(x) < ∞. Then

sup
x∈G

W(δxP,π)

W(δx,π)
≤ τ(P ). (2.2)

Proof. Because of the assumption
∫
G

d(x0, x)dπ(x) < ∞ we have that W(δx,π) is finite for
any x ∈ G. Thus, the assertion follows by Proposition 2.1 and stationarity of π . �

Remark 2.1. For some special cases one also has an estimate of the form (2.2) in the other
direction. To this end, consider the trivial metric d(x, y) = 2 · 1x �=y with indicator function

1x �=y =
{

1, x �= y,

0, q x = y.

Further, let

‖q‖tv := sup
‖f ‖∞≤1

∣∣∣∣∫
G

f (y)dq(y)

∣∣∣∣ = 2 sup
A∈B(G)

∣∣q(A)
∣∣

be the total variation norm of a signed measure q on G. In this setting W(μ,ν) = ‖μ− ν‖tv. For
x, y ∈ G with x �= y, we have ‖δx − δy‖tv = d(x, y) = 2 so that

τ1(P ) = 1

2
sup

x,y∈G,x �=y

‖δxP − δyP‖tv. (2.3)
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The “1” in the subscript of τ1(P ) indicates that we use the trivial metric. By applying the triangle
inequality of the total variation norm we obtain τ1(P ) ≤ supx∈G ‖δxP − π‖tv. If additionally π

is atom-free, that is, π({y}) = 0 for all y ∈ G, we have ‖δy − π‖tv = 2. Then, the previous
consideration and (2.2) lead to

1

2
sup
x∈G

‖δxP − π‖tv ≤ τ1(P ) ≤ sup
x∈G

‖δxP − π‖tv.

For the moment, let us assume that P is uniformly ergodic, that is, there exist numbers ρ ∈ [0,1)

and C ∈ (0,∞) such that

sup
x∈G

∥∥δxP
n − π

∥∥
tv ≤ Cρn, n ∈ N.

An immediate consequence of the uniform ergodicity is that τ1(P
n) ≤ Cρn.

Also note that if there is an n0 ∈ N for which τ(P n0) < 1 we have by the submultiplicativity,
see Proposition 2.1, that τ(P n) converges exponentially to zero. This motivates to impose the
following assumption which contains the idea to measure convergence of δxP

n to π in terms of
τ(P n).

Assumption 2.1 (Wasserstein ergodicity). For the transition kernel P there exist numbers ρ ∈
[0,1) and C ∈ (0,∞) such that

τ
(
P n

) = sup
x,y∈G,x �=y

W(P n(x, ·),P n(y, ·))
d(x, y)

≤ Cρn, n ∈N. (2.4)

For any probability measure p0 ∈ P , a transition kernel P with stationary distribution π and
pn = p0P

n we have under the Wasserstein ergodicity condition that

W(pn,π) ≤ CρnW(p0,π).

3. Perturbation bounds

By N0 = {0,1,2, . . . }, we denote the non-negative integers and assume that all random variables
are defined on a common probability space (	,F,P) mapping to a Polish space G equipped
with a lower semi-continuous metric d . Let the sequence of random variables (Xn)n∈N0 be a
Markov chain with transition kernel P and initial distribution p0, that is, we have almost surely

P(Xn ∈ A | X0, . . . ,Xn−1) = P(Xn ∈ A | Xn−1) = P(Xn−1,A), n ∈N

and p0(A) = P(X0 ∈ A) for any measurable set A ⊆ G. Assume that (X̃n)n∈N0 is another
Markov chain with transition kernel P̃ and initial distribution p̃0. We denote by pn the distribu-
tion of Xn and by p̃n the distribution of X̃n. Throughout the paper, (Xn)n∈N is considered to be
the ideal, unperturbed Markov chain we would like to simulate while (X̃n)n∈N0 is the perturbed
Markov chain that we actually implement.
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3.1. Wasserstein perturbation bound

Similar as in [33], Theorem 3.1, we show quantitative bounds on the difference of pn and p̃n,
but use the Wasserstein distance instead of total variation. Besides Assumption 2.1, the bounds
depend on the difference of the initial distributions and on a suitably weighted one-step difference
between P and P̃ .

Theorem 3.1 (Wasserstein perturbation bound). Let Assumption 2.1 be satisfied with the num-
bers C ∈ (0,∞) and ρ ∈ [0,1), that is, τ(P n) ≤ Cρn. Assume that there are numbers δ ∈ (0,1)

and L ∈ (0,∞) and a measurable Lyapunov function Ṽ : G → [1,∞) of P̃ such that

(P̃ Ṽ )(x) ≤ δṼ (x) + L. (3.1)

Let

γ = sup
x∈G

W(δxP, δxP̃ )

Ṽ (x)
and κ = max

{
p̃0(Ṽ ),

L

1 − δ

}
with p̃0(Ṽ ) = ∫

G
Ṽ (x)dp̃0(x). Then

W(pn, p̃n) ≤ C

(
ρnW(p0, p̃0) + (

1 − ρn
) γ κ

1 − ρ

)
. (3.2)

Proof. By induction one can show that

p̃n − pn = (p̃0 − p0)P
n +

n−1∑
i=0

p̃i(P̃ − P)P n−i−1, n ∈ N. (3.3)

We have

W(p̃iP, p̃i P̃ ) ≤
∫

G

W(δxP, δxP̃ )dp̃i(x) ≤ γ

∫
G

Ṽ (x)dp̃i(x).

Moreover, for i ≥ 0 we have∫
G

Ṽ (x)dp̃i(x) =
∫

G

P̃ iṼ (x)dp̃0(x)

≤ δi p̃0(Ṽ ) + L(1 − δi)

(1 − δ)
≤ max

{
p̃0(Ṽ ),

L

1 − δ

}
so that we obtain W(p̃iP, p̃i P̃ ) ≤ γ κ . By this fact, we have

W
(
p̃i P̃ P n−i−1, p̃iPP n−i−1) ≤ γ κ · τ(

P n−i−1). (3.4)
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Then, by (3.3), (3.4) and the triangle inequality of the Wasserstein distance we have

W(pn, p̃n) ≤ W
(
p0P

n, p̃0P
n
) +

n−1∑
i=0

W
(
p̃i P̃ P n−i−1, p̃iPP n−i−1)

≤ W(p0, p̃0)τ
(
P n

) + γ κ

n−1∑
i=0

τ
(
P i

)
.

Finally, by (2.4) we obtain
∑n−1

i=0 τ(P i) ≤ C(1−ρn)
1−ρ

, which allows us to complete the proof. �

Remark 3.1. The parameter κ is an upper bound on p̃i(Ṽ ). It can be interpreted as a measure for
the stability of the perturbed Markov chain. The parameter γ quantifies with a weighted supre-
mum norm the one-step difference between P and P̃ . The use of the Lyapunov function increases
the flexibility of the resulting estimate, since larger values of Ṽ compensate larger values of the
Wasserstein distance between the kernels. Notice that the existence of a Lyapunov function sat-
isfying (3.1) is weaker than assuming Ṽ -uniform ergodicity of P̃ since it is not associated with
a small set condition. In particular, the condition is satisfied for any P̃ with the trivial choice
Ṽ (x) = 1 for all x ∈ G, see Corollary 3.2. As we will see in Section 4, allowing for non-trivial
choices of Ṽ considerably increases the applicability of our results.

If P̃ has a stationary distribution, say π̃ ∈ P , as a consequence of the previous theorem, we
obtain bounds on the difference between π and π̃ .

Corollary 3.1. Let the assumptions of Theorem 3.2 be satisfied. Assume that P̃ has a stationary
distribution π̃ ∈ P and let W(π, π̃) be finite. Then

W(π, π̃) ≤ γC

1 − ρ
· L

1 − δ
. (3.5)

Proof. By Theorem 3.2, we obtain with p0 = π , p̃0 = π̃ , the stationarity of the distributions π ,
π̃ and by letting n → ∞ that

W(π, π̃) ≤ Cγκ

1 − ρ
.

By the Lyapunov condition and [16], Proposition 4.24, it holds that

π̃ (Ṽ ) =
∫

G

Ṽ (x)dπ̃ (x) ≤ L

1 − δ

which leads to κ ≤ L/(1 − δ) and finishes the proof. �

Remark 3.2. It may seem artificial to assume W(π, π̃) < ∞ but this is needed for the limit
argument in the proof. This condition is often satisfied a priori. For example, it holds if the
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metric is bounded, that is, supx,y∈G d(x, y) is finite, or, more generally, if the distributions π and
π̃ possess a first moment in the sense that there exist x0, x̃0 ∈ G such that∫

G

d(x0, x)dπ(x) < ∞,

∫
G

d(̃x0, x)dπ̃ (x) < ∞.

As pointed out in Remark 3.1, we do not need to impose condition (3.1) to obtain a non-trivial
perturbation bound.

Corollary 3.2. Assume that Assumption 2.1 holds with the numbers C ∈ (0,∞) and ρ ∈ [0,1),
that is, τ(P n) ≤ Cρn, and let

γ := sup
x∈G

W(δxP, δxP̃ ).

Then

W(pn, p̃n) ≤ C

(
ρnW(p0, p̃0) + (

1 − ρn
) γ

1 − ρ

)
. (3.6)

Proof. The statement follows by Theorem 3.1 with Ṽ (x) = 1 and L = 1 − δ. �

Remark 3.3. For the trivial metric d(x, y) = 2 · 1x �=y the last corollary states essentially the
result of [33], Theorem 3.1, where instead of the general Wasserstein distance the total variation
distance is used. There, the bound’s dependence on C and ρ can be further improved by using
the a priori bound τ1(P

n) ≤ 1 in addition to uniform ergodicity. For another metric d such an a
priori bound is in general not available.

Remark 3.4. Table 1 provides a detailed comparison between our Theorem 3.1 and the related
Wasserstein perturbation result of Pillai and Smith, [35], Lemma 3.3. An important ingredient
in their estimate is a set Ĝ ⊆ G which can be interpreted as the part of G where both Markov
chains remain with high probability. When a good uniform upper bound on W(δxP, δxP̃ ) for all
x ∈ G is available, we can choose Ĝ = G in [35], Lemma 3.3, and Ṽ (x) = 1 in Theorem 3.1. In
that case, both results essentially simplify to Corollary 3.2. The results become entirely different
when such a bound is not available or too rough. In our estimate, one then needs a non-trivial
Lyapunov function for P̃ and a uniform upper bound on W(δxP, δxP̃ )/Ṽ (x). To apply their
estimate, one needs a uniform bound on W(δxP, δxP̃ ) for all x ∈ Ĝ. In addition, a bound on
π(G \ Ĝ), Lyapunov functions and estimates of the exit probabilities from Ĝ of both Markov
chains need to be available. Finally, while [35], Lemma 3.3, requires slightly more regularity on
the Lyapunov function, contractivity of the unperturbed transition kernel P (with C = 1) is not
needed on the whole state space but only on Ĝ.

3.2. Perturbation bounds for geometrically ergodic Markov chains

In this section, we derive general perturbation bounds for geometrically ergodic Markov chains.
First, we recall some results from [17], [26] and [36] which are helpful to apply our Wasserstein
perturbation bounds in the geometrically ergodic case. Then we present the new estimates:
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Table 1. Comparison of the Wasserstein perturbation bound of [35], Lemma 3.3, and Theorem 3.1. Here
ρ, δ ∈ [0,1), L,cp,C,D ∈ (0,∞), V : G → [0,∞), Ṽ : G → [1,∞) and E(x) = ∫

G d(x, y)dπ(y).

Assumptions of
[35], Lemma 3.3

Assumptions of
Theorem 3.1

Convergence
property

∃Ĝ ⊆ G s.t. sup
x,y∈Ĝ

W(δxP,δyP )

d(x,y)
≤ ρ τ(P n) ≤ Cρn

Lyapunov function
PV (x) ≤ δV (x) + L

P̃V (x) ≤ δV (x) + L
P̃ Ṽ (x) ≤ δṼ (x) + L

Drift regularity
E[V (Xn+1 | Xn = x,Xn+1 �∈ Ĝ)] ≤ C

E[V (X̃n+1 | X̃n = x, X̃n+1 �∈ Ĝ)] ≤ C

∃p ∈ Ĝ s.t. d(x,p) ≤ V (x) + cp

—

Perturbation error γ̂ := sup
x∈Ĝ

W(δxP, δxP̃ ) γ := sup
x∈G

W(δxP,δx P̃ )

Ṽ (x)

Regularity of π

∫
G\Ĝ V (x)dπ(x) ≤ D

π(G \ Ĝ) small
—

Conclusion:
Upper bound of
W(δxP̃ n,π)

ρnE(x) + γ̂
1−ρ

+
( 2L

1−δ
+ δn(V (x) + D) + cp)π(G \ Ĝ) +

2(1 − P[{Xj }n−1
j=1 ∪ {X̃j }n−1

j=1 ⊆ Ĝ])(C + L
1−δ

+ cp)

CρnE(x) +
Cγ
1−ρ

max{Ṽ (x), L
1−δ

}

• Corollary 3.3 is an application of Theorem 3.1 with Wasserstein distances replaced by V -
norms of differences between measures.

• In Corollary 3.4, we show that having a Lyapunov function V for P is sufficient for our
bounds if the transition kernels P and P̃ are sufficiently close (in a suitable sense).

• In Theorem 3.2, we provide a quantitative perturbation bound which still applies if we
can only control the total variation distance between P(x, ·) and P̃ (x, ·). To measure the
perturbation in such a weak sense is new for geometrically ergodic Markov chains.

A transition kernel P with stationary distribution π is called geometrically ergodic if there is
a constant ρ ∈ [0,1) and a measurable function C : G → (0,∞) such that for π -a.e. x ∈ G we
have ∥∥P n(x, ·) − π

∥∥
tv ≤ C(x)ρn.
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For φ-irreducible and aperiodic Markov chains, it is well known that geometric ergodicity is
equivalent to V -uniform ergodicity, see [36], Proposition 2.1. Namely, if P is geometrically
ergodic, then there exists a π -a.e. finite measurable function V : G → [1,∞] with finite moments
with respect to π and there are constants ρ ∈ [0,1) and C ∈ (0,∞) such that

∥∥P n(x, ·) − π
∥∥

V
:= sup

|f |≤V

∣∣∣∣∫
G

f (y)
(
P n(x,dy) − π(dy)

)∣∣∣∣ ≤ CV (x)ρn, x ∈ G,n ∈ N.

Thus,

sup
x∈G

‖P n(x, ·) − π‖V

V (x)
≤ Cρn. (3.7)

The following result establishes the connection between V -norms and certain Wasserstein dis-
tances. It is basically due to Hairer and Mattingly [17], see also [26].

Lemma 3.1. Assume that V is lower semi-continuous on G. For x, y ∈ G, let us define the metric

dV (x, y) = (
V (x) + V (y)

)
1x �=y =

{
V (x) + V (y), x �= y,

0, x = y.

Then, for any μ,ν ∈ P we have

‖μ − ν‖V = WdV
(μ, ν), (3.8)

where WdV
denotes the Wasserstein distance based on the metric dV .

Lower semi-continuity of V implies lower semi-continuity of dV , which leads to the duality
formula (2.1) by [45], Theorem 1.14. We thus impose the standing assumption of lower semi-
continuity of V whenever we speak of V -uniform ergodicity in the following. In principle, this
requirement can be removed and (3.8) remains true, but we do not go into further detail in that
direction. In applications, this is typically not restrictive since V is continuous anyway.

By similar arguments as in the proof of [26], Theorem 1.1, we observe that (3.7) implies a
suitable upper bound on

τV (P ) = sup
x,y∈G,x �=y

WdV
(δxP, δyP )

dV (x, y)
= sup

x,y∈G,x �=y

‖P(x, ·) − P(y, ·)‖V

V (x) + V (y)
.

Lemma 3.2. If (3.7) is satisfied for the transition kernel P , then τV (P n) ≤ Cρn.

Proof. For any positive real numbers a1, a2, b1, b2 we have the following elementary inequality

a1 + a2

b1 + b2
≤ max

{
a1

b1
,
a2

b2

}
. (3.9)
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By (3.9), we obtain

τV

(
P n

) = sup
x,y∈G,x �=y

WdV
(δxP

n, δyP
n)

dV (x, y)
≤ sup

x,y∈G,x �=y

‖P n(x, ·) − π‖V + ‖P n(y, ·) − π‖V

V (x) + V (y)

≤ sup
x,y∈G

max

{‖P n(x, ·) − π‖V

V (x)
,
‖P n(y, ·) − π‖V

V (y)

}
= sup

x∈G

‖P n(x, ·) − π‖V

V (x)
.

Now, by using (3.7) we obtain the assertion. �

The lemmas above and Theorem 3.1 lead to the following new perturbation bound for geomet-
rically ergodic Markov chains.

Corollary 3.3. Let P be V -uniformly ergodic, that is, there are constants ρ ∈ [0,1) and C ∈
(0,∞) such that ∥∥P n(x, ·) − π

∥∥
V

≤ CV (x)ρn, x ∈ G,n ∈N.

We also assume that there are numbers δ ∈ (0,1) and L ∈ (0,∞) and a measurable Lyapunov
function Ṽ : G → [1,∞) of P̃ such that

(P̃ Ṽ )(x) ≤ δṼ (x) + L. (3.10)

Let

γ = sup
x∈G

‖P(x, ·) − P̃ (x, ·)‖V

Ṽ (x)
and κ = max

{
p̃0(Ṽ ),

L

1 − δ

}
with p̃0(Ṽ ) = ∫

G
Ṽ (x)dp̃0(x). Then

‖pn − p̃n‖V ≤ C

(
ρn‖p0 − p̃0‖V + (

1 − ρn
) γ κ

1 − ρ

)
. (3.11)

Remark 3.5. In [41], Theorem 3.1, a related perturbation bound is proven. The convergence
property of the unperturbed transition kernel is slightly weaker than our V -uniform ergodicity,
but also based on a kind of Lyapunov function. More restrictively, there it is assumed that the
difference of P n and P̃ n for all n > 0 can be controlled. In addition, the perturbation error is
measured with a weight given by the same Lyapunov function as in the convergence property of
P , but by taking a supremum over a subset of test functions. With our approach, we can take the
supremum over all test functions and obtain similar estimates by setting p0 = π .

The next corollary demonstrates how the Lyapunov function of P̃ can be replaced by a Lya-
punov function of P , provided that the distance between the transition kernels is sufficiently
small. Notice that assuming the existence of a Lyapunov function of P in addition to the V -
uniform ergodicity is a definition of constants rather than an additional requirement, see, for
example, [5].
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Corollary 3.4. Let P be V -uniformly ergodic, that is, there are constants ρ ∈ [0,1) and C ∈
(0,∞) such that ∥∥P n(x, ·) − π

∥∥
V

≤ CV (x)ρn, x ∈ G,n ∈N.

Moreover, V : G → [1,∞) is a measurable Lyapunov function of P , such that

(PV )(x) ≤ δV (x) + L (3.12)

with constants δ ∈ (0,1) and L ∈ (0,∞). Let

γ = sup
x∈G

‖P(x, ·) − P̃ (x, ·)‖V

V (x)
and κ = max

{
p̃0(V ),

L

1 − δ − γ

}
with p̃0(V ) = ∫

G
V (x)dp̃0(x). If γ + δ < 1, then

‖pn − p̃n‖V ≤ C

(
ρn‖p0 − p̃0‖V + (

1 − ρn
) γ κ

1 − ρ

)
. (3.13)

Proof. It suffices to show that

(P̃ V )(x) ≤ (δ + γ )V (x) + L (3.14)

and then to apply Corollary 3.3. We have(
(P̃ − P)V

)
(x) ≤ ∣∣((P̃ − P)V

)
(x)

∣∣ ≤ ∥∥P̃ (x, ·) − P(x, ·)∥∥
V

≤ γV (x)

which implies (3.14). The assertion follows by the assumption that δ + γ < 1 and an application
of Corollary 3.3. �

Remark 3.6. For discrete state spaces and under the requirement p0 = p̃0, a result similar to the
previous corollary is obtained in [21], Theorem 3, Corollary 3. The authors of [21] replace our
constant κ by max0≤i≤n p̃i(V ). This we could do as well, see the proof of Theorem 3.1.

In the perturbation bound of Corollary 3.3, the function V plays two roles. In its first role, V

appears in the V -uniform ergodicity condition and thus is used to quantify convergence of P . In
its second role, V appears in the constant γ , with which we compare P and P̃ , as well as in the
definition of the distance between pn and p̃n. We can interpret γ of Corollary 3.3 as an operator
norm of P − P̃ . To this end, let BV be the set of all measurable functions f : G → R with finite

|f |V := sup
x∈G

|f (x)|
V (x)

, (3.15)

which means

BV = {
f : G →R

∣∣ |f |V < ∞}
.
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It is easily seen that (BV , | · |V ) is a normed linear space. In the setting of Corollary 3.3, we have

|||P − P̃ |||BV →BṼ
:= sup

|f |V ≤1

∣∣(P − P̃ )f
∣∣
Ṽ

= γ. (3.16)

In Corollary 3.4, the more restrictive case V = Ṽ is considered. The corresponding operator norm
|||P − P̃ |||BV →BV

appears in classical perturbation theory for Markov chains, see [20,21]. But as
discussed in [41], page 1126, and [13] it might be too restrictive to measure the perturbation with
this operator norm for V = Ṽ .

By relying, for example, on [28], Proposition 2, we have some flexibility in the choice of V .
There it is shown that, for r ∈ (0,1), V -uniform ergodicity implies V r -uniform ergodicity. This
leads to less favorable constants in the V r -uniform ergodicity of P , but can relax the require-
ments on the similarity of P and P̃ . Namely, with a Lyapunov function Ṽ of P̃ we can apply
Corollary 3.3 with a V r -uniformly ergodic P and γ = |||P − P̃ |||BV r →BṼ

.
Unfortunately, this approach breaks down for r = 0. To see this, notice that V r -uniform ergod-

icity with r = 0 is just uniform ergodicity which is not implied by geometric ergodicity. The next
theorem overcomes this limitation by separating the two roles of the function V in the previous
perturbation bounds. Roughly, we set V = 1 in the sense that we measure the distances between
P and P̃ as well as between pn and p̃n in the total variation distance. At the same time, we set
V = Ṽ in the sense that we assume P is Ṽ -uniformly ergodic with Lyapunov function Ṽ .

Theorem 3.2. Let P be Ṽ -uniformly ergodic, that is, there are constants ρ ∈ [0,1) and C ∈
(0,∞) such that ∥∥P n(x, ·) − π

∥∥
Ṽ

≤ CṼ (x)ρn, x ∈ G,n ∈N.

Moreover, Ṽ : G → [1,∞) is a measurable Lyapunov function of P̃ and P , such that

(P̃ Ṽ )(x) ≤ δṼ (x) + L and (P Ṽ )(x) ≤ Ṽ (x) + L,

with constants δ ∈ (0,1) and L ∈ (0,∞). Let

γ = sup
x∈G

‖P(x, ·) − P̃ (x, ·)‖tv

Ṽ (x)
and κ = max

{
p̃0(Ṽ ),

L

1 − δ

}
(3.17)

with p̃0(Ṽ ) = ∫
G

Ṽ (x)dp̃0(x). Then, for γ ∈ (0, exp(−1)) we have

‖pn − p̃n‖tv ≤ Cρn‖p0 − p̃0‖Ṽ + κ exp(1)

1 − ρ

(
2C(L + 1)

)log(γ −1)−1
γ log

(
γ −1). (3.18)

Proof. From the proof of Theorem 3.2, we know that

‖p̃n − pn‖tv ≤ ∥∥(p̃0 − p0)P
n
∥∥

tv +
n−1∑
i=0

∥∥p̃i(P̃ − P)P n−i−1
∥∥

tv, n ∈ N.
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By Lemma 3.2, we have∥∥(p̃0 − p0)P
n
∥∥

tv ≤ ∥∥(p̃0 − p0)P
n
∥∥

Ṽ
≤ Cρn‖p̃0 − p0‖Ṽ .

Fix a real number r ∈ (0,1) and let s = 1 − r . By considering (2.3) one can see that τ1(P ) ≤ 1.
This leads to∥∥p̃i(P̃ − P)P n−i−1

∥∥
tv ≤ ∥∥p̃i(P̃ − P)P n−i−1

∥∥r

tv

∥∥p̃i(P̃ − P)P n−i−1
∥∥s

Ṽ

≤ ∥∥p̃i(P̃ − P)
∥∥r

tv

∥∥p̃i(P̃ − P)
∥∥s

Ṽ
τṼ

(
P n−i−1)s

.

We also have∥∥p̃i(P̃ − P)
∥∥

tv ≤
∫

G

‖δxP − δxP̃‖tv dp̃i(x) ≤ γ

∫
G

Ṽ (x)dp̃i(x),

∥∥p̃i(P̃ − P)
∥∥

Ṽ
≤

∫
G

WdṼ
(δxP, δxP̃ )dp̃i(x) ≤ sup

x∈G

WdṼ
(δxP, δxP̃ )

Ṽ (x)

∫
G

Ṽ (x)dp̃i(x).

Moreover, for i ≥ 0 we obtain∫
G

Ṽ (x)dp̃i(x) =
∫

G

P̃ iṼ (x)dp̃0(x) ≤ δi p̃0(Ṽ ) + L(1 − δi)

(1 − δ)
≤ κ,

and, by

WdṼ
(δxP, δxP̃ ) = inf

ξ∈M(δxP,δx P̃ )

∫
G

∫
G

(
Ṽ (z) + Ṽ (y)

)
1z �=y dξ(y, z)

≤ P Ṽ (x) + P̃ Ṽ (x) ≤ (1 + δ)Ṽ (x) + 2L,

we have

sup
x∈G

WdṼ
(δxP, δxP̃ )

Ṽ (x)
≤ 2(L + 1).

Then

‖p̃n − pn‖tv ≤ Cρn‖p̃0 − p0‖Ṽ + 2s(L + 1)sγ rκ

n−1∑
i=0

τṼ

(
P i

)s
.

Finally, by Lemma 3.2, we obtain

n−1∑
i=0

τṼ

(
P i

)s ≤ Cs(1 − ρns)

1 − ρs
≤ Cs

1 − ρs
≤ Cs

s(1 − ρ)
.

For γ ∈ (0, exp(−1)), we can choose the numbers r = 1 + log(γ )−1 and s = log(γ −1)−1. This
yields γ r = exp(1)γ and the proof is complete. �
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Remark 3.7. Let π̃ ∈ P be a stationary distribution of P̃ . Notice that by the assumption that Ṽ

is Lyapunov function of P̃ and [16], Proposition 4.24, it follows that π̃ (Ṽ ) ≤ L/(1 − δ). Further,
by the Ṽ -uniform ergodicity of P we also know that π(Ṽ ) is finite. Thus,

‖π − π̃‖Ṽ ≤ π(Ṽ ) + π̃(Ṽ ) < ∞.

Now, by Theorem 3.2, we can bound ‖π − π̃‖tv with p0 = π , p̃0 = π̃ and by letting n → ∞.
We obtain

‖π − π̃‖tv ≤ L(2C(L + 1))log(γ −1)−1

(1 − δ)(1 − ρ)
exp(1)γ log

(
γ −1). (3.19)

Remark 3.8. Let us comment on the dependence of γ . In Section 4.3, we apply Theo-
rem 3.2 combined with (3.19) in a setting where we have γ ≤ K · log(N)/N for a constant
K ≥ 1 and some parameter N ∈ N of the perturbed transition kernel. For ε ∈ (0,1) and any
N > (K/ε)1/(1−ε) we have γ < exp(−1). Then, with some simple calculations, we obtain for
p0 = p̃0 and N > 6K3/2 the bound

max
{‖pn − p̃n‖tv,‖π − π̃‖tv

} ≤ 3κ(2C(L + 1))2/ log(N)

1 − ρ
· K log(N)2

N
.

Remark 3.9. In the setting of Theorem 3.2, we can also interpret γ as an operator norm. Namely,

|||P − P̃ |||B1→BṼ
= sup

|f |1≤1

∣∣(P − P̃ )f
∣∣
Ṽ

= γ. (3.20)

Here the subscript “1” in |f |1 indicates V (x) = 1 for all x ∈ G, see (3.15). For ε0 > 0 and a
family of perturbations (P̃ε)|ε|≤ε0 let γ = |||P − P̃ε|||B1→BṼ

→ 0 for ε → 0. This condition ap-
pears in [13], Theorem 1, condition (2), and is an assumption introduced by Keller and Liverani,
see [22].

4. Applications

We illustrate our perturbation bounds in three different settings. We begin with studying an au-
toregressive process also considered in [13]. After this, we show quantitative perturbation bounds
for approximate versions of two prominent MCMC algorithms, namely the Metropolis–Hastings
and stochastic Langevin algorithms.

4.1. Autoregressive process

Let G =R and assume that (Xn)n∈N0 is the autoregressive model defined by

Xn = αXn−1 + Zn, n ∈ N. (4.1)
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Here X0 is an R-valued random variable, α ∈ (−1,1) and (Zn)n∈N is an i.i.d. sequence of random
variables, independent of X0. We also assume that the distribution of Z1, say μ, admits a first
moment. It is easily seen that (Xn)n∈N0 is a Markov chain with transition kernel

Pα(x,A) =
∫
R

1A(αx + y)dμ(y),

and it is well known that there exists a stationary distribution, say πα , of Pα .
Now, let the transition kernel Pα̃ with α̃ ∈ (−1,1) be an approximation of Pα . For x, y ∈ G,

let us consider the metric which is given by the absolute difference, that is, d(x, y) = |x −y|. We
assume that |α − α̃| is small and study the Wasserstein distance, based on d , of p0P

n
α and p̃0P

n
α̃

with two probability measures p0 and p̃0 on (R,B(R)).
We intend to apply Theorem 3.1. Notice that for Ṽ : R→ [1,∞) with Ṽ (x) = 1+|x| we have

Pα̃Ṽ (x) ≤ |̃α|Ṽ (x) + 1 − |̃α| +E|Z1|
which guarantees that condition (3.1) is satisfied with δ = |̃α| and L = 1 − |̃α| +E|Z1|. Further-
more

W(δxPα, δyPα) ≤
∫
R

|αx − z − αy + z|dμ(z) ≤ |α||x − y| = |α|d(x, y),

leads to τ(P n
α ) ≤ |α|n. Similarly, one obtains

W(δxPα, δxPα̃) ≤
∫
R

|αx − z − α̃x + z|dμ(z) ≤ |x||α − α̃|

which implies that

sup
x∈R

W(δxPα, δxPα̃)

Ṽ (x)
≤ |α − α̃|.

We set

κ = 1 + max

{∫
R

|x|dp̃0(x),
E|Z1|
1 − |̃α|

}
and pα,n = p0P

n
α , p̃α̃,n = p̃0P

n
α̃ . Then, inequality (3.2) of Theorem 3.1 gives

W(pα,n, p̃α̃,n) ≤ |α|nW(p0, p̃0) + |α − α̃| (1 − |α|n)κ
1 − |α| , (4.2)

and for p0 = p̃0 we have

W(pα,n, p̃α̃,n) ≤ |α − α̃| (1 − |α|n)κ
1 − |α| . (4.3)

From the previous two inequalities one can see that if α̃ is sufficiently close to α, then the distance
of the distribution pα,n and p̃α̃,n is small. Let us emphasize here that we provide an explicit
estimate rather than an asymptotic statement.
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Note that by [16], Proposition 4.24, and the fact that Pβg(x) ≤ |β|g(x) + E|Z1| with g(x) =
|x| and β ∈ {α, α̃} we obtain

∫
R

|x|dπβ(x) < ∞, which leads to a finite W(πα,πα̃). As a conse-
quence we obtain for the stationary distributions of Pα and Pα̃ by estimate (3.5) that

W(πα,πα̃) ≤ |α − α̃| 1 − |̃α| +E|Z1|
(1 − |α|)(1 − |̃α|) . (4.4)

The dependence on |α − α̃| in the previous inequality cannot be improved in general. To see
this, let us assume that X0,α and X0,̃α are real-valued random variables with distribution πα

and πα̃ , respectively. Then, because of the stationarity we have that X1,α = αX0,α + Z1 and
X1,̃α = α̃X0,̃α + Z1 are also distributed according to πα and πα̃ , respectively. Thus,

EX0,α = EZ1

1 − α
, EX0,̃α = EZ1

1 − α̃
.

Now, for g : R→R with g(x) = x, we have ‖g‖Lip ≤ 1 and thus

W(πα,πα̃) = sup
‖f ‖Lip≤1

∣∣∣∣∫
G

f (x)
(
dπα(x) − dπα̃(x)

)∣∣∣∣
≥

∣∣∣∣∫
G

x
(
dπα(x) − dπα̃(x)

)∣∣∣∣ = |EX0,α −EX0,̃α|

= |α − α̃| |EZ1|
|1 − α||1 − α̃| .

Hence, whenever EZ1 �= 0 we have a non-trivial lower bound with the same dependence on
|α − α̃| as in the upper bound of (4.4). This fact shows that we cannot improve the upper bound.

Let us now discuss the application of Corollary 3.4 and Theorem 3.2. Under the additional
assumption that μ, the distribution of Z1, has a Lebesgue density h, it is shown in [15], Section 4,
that the autoregressive model (4.1) is also Ṽ -uniformly ergodic. Precisely, there is a constant
C ≥ 1 such that ∥∥P n

α (x, ·) − πα

∥∥
tv ≤ C|α|nṼ (x).

Moreover, from [13], Example 1, we know that

sup
x∈R

‖Pα(x, ·) − Pα̃(x, ·)‖Ṽ

Ṽ (x)

does not go to 0 when α̃ ↓ α. Hence, Corollary 3.4 cannot quantify for small |̃α −α| whether the
nth step distributions are close to each other. However, also in [13], Example 1, it is proven that

sup
x∈R

‖Pα(x, ·) − Pα̃(x, ·)‖tv

Ṽ (x)
→ 0 if α̃ → α.
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This indicates that Theorem 3.2 is applicable. By assuming in addition that h is weakly unimodal1

and bounded from above by hmax, we can quantify the result. Namely,

sup
x∈R

‖Pα(x, ·) − Pα̃(x, ·)‖tv

Ṽ (x)
= sup

x∈R
‖μ(· − αx) − μ(· − α̃x)‖tv

1 + |x|

= sup
x∈R

∫
R

|h(z − αx) − h(z − α̃x)|dz

1 + |x| ≤ 2|α − α̃|hmax.

To see the final estimate, define F(a) = ∫
R

|h(z) − h(z − a)|dz for a ∈ R. By unimodality, there
exists for any fixed a ≥ 0 a constant c such that∫

R

|h(z) − h(z − a)|dz =
∫ c

−∞
h(z) − h(z − a)dz +

∫ ∞

c

h(z − a) − h(z)dz.

The first summand on the right-hand side we can bound by∫ c

−∞
h(z)dz −

∫ c

−∞
h(z − a)dz =

∫ c

c−a

h(z)dz ≤ ahmax

and similarly for the second summand. Using that F(a) = F(−a), we obtain F(a) ≤ 2|a|hmax.
Finally, by substitution we can write

sup
x∈R

∫
R

|h(z − αx) − h(z − α̃x)|dz

1 + |x| = |α − α̃| sup
a≥0

F(a)

a + |α − α̃| ≤ 2|α − α̃|hmax.

For simplicity set p0 = p̃0 and assume that hmax ≤ 1 as well as |α − α̃| ∈ (0, exp(−1)/2). Then,
Theorem 3.2 implies

max
{‖pα,n − p̃α̃,n‖tv,‖πα − πα̃‖tv

} ≤ κ exp(1)

1 − |α|
(
2C

(
E|Z1| + 2

))|α − α̃| log
(|α − α̃|−1)

which seems to be new.

4.2. Approximate Metropolis–Hastings algorithms

We apply our perturbation results to the approximate (or noisy) Metropolis–Hastings algo-
rithms analyzed in [2–4,23,29,35]. We assume either that the unperturbed transition kernel of
the Metropolis–Hastings algorithm satisfies the Wasserstein ergodicity condition stated in As-
sumption 2.1 or is geometrically ergodic. In particular, we do not assume that the transition
kernel is uniformly ergodic. Let π be a probability distribution on (G,B(G)) and assume that
we are interested in sampling realizations from this distribution. Let Q be a transition kernel

1The function h : R → [0,∞) is called weakly unimodal if there exists s ∈ R such that h(x) is nondecreasing for x ∈
(−∞, s) and nonincreasing for x ∈ (s,∞).
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which serves as the proposal for the Metropolis–Hastings algorithm. From [44], Proposition 1,
we know that there exists a set S ⊂ G × G such that we can define the “acceptance ratio” for
(x, y) ∈ G × G as

r(x, y) :=
⎧⎨⎩

π(dy)Q(y,dx)

π(dx)Q(x,dy)
, (x, y) ∈ S,

0 otherwise.
(4.5)

Then, let the acceptance probability be α(x, y) = min{1, r(x, y)}. With this notation the
Metropolis–Hastings algorithm defines a transition kernel

Pα(x,dy) = Q(x,dy)α(x, y) + δx(dy)sα(x), (4.6)

with

sα(x) = 1 −
∫

G

α(x, y)Q(x,dy).

We provide a step of a Markov chain (Xn)n∈N0 with transition kernel Pα in algorithmic form.

Algorithm 4.1. A single transition from Xn to Xn+1 of the Metropolis–Hastings algorithm
works as follows:

1. Draw a sample Y ∼ Q(Xn, ·) and U ∼ Unif[0,1] independently, call the result y and u.
2. Set r := r(Xn, y), with the ratio r(·, ·) defined in (4.5).
3. If u < r , then accept the proposal, and set Xn+1 := y, else reject the proposal and set

Xn+1 := Xn.

Now, suppose we are unable to evaluate r(x, y), so that we are forced to work with an ap-
proximation of α(x, y). The key idea behind approximate Metropolis–Hastings algorithms is to
replace r(x, y) by a non-negative random variable R with distribution, say μx,y,u, depending on
x, y ∈ G and u ∈ [0,1]. For concrete choices of the random variable R, we refer to [2–4,23]. We
present a step of the corresponding Markov chain (X̃n)n∈N in algorithmic form.

Algorithm 4.2. A single transition from X̃n to X̃n+1 works as follows:

1. Draw a sample Y ∼ Q(X̃n, ·) and U ∼ Unif[0,1] independently, call the result y and u.
2. Draw a sample R ∼ μX̃n,y,u, call the result r̃ .

3. If u < r̃ , then accept the proposal, and set X̃n+1 := y, else reject the proposal and set
X̃n+1 := X̃n.

The algorithm has acceptance probability

α̃(x, y) = E1[0,min{1,R}](U) =
∫ 1

0

∫ ∞

0
1[0,min{1,̃r}](u)dμx,y,u(̃r)du

and the transition kernel of such a Markov chain is still of the form (4.6) with α(x, y) substituted
by α̃(x, y), that is, it is given by Pα̃ . The following results hold in the slightly more general case
where α̃(x, y) is any approximation of the acceptance probability α(x, y).
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The next lemma provides an estimate for the Wasserstein distance between transition kernels
of the form (4.6) in terms of the acceptance probabilities.

Lemma 4.1. Let Q be a transition kernel on (G,B(G)) and let α : G × G → [0,1] and α̃ : G ×
G → [0,1] be measurable functions. By Pα and Pα̃ we denote the transition kernels of the form
(4.6) with acceptance probabilities α and α̃. Then, for all x ∈ G, we have

W(δxPα, δxPα̃) ≤
∫

G

d(x, y)E(x, y)Q(x,dy)

with E(x, y) = |α(x, y) − α̃(x, y)|.

Proof. By the use of the dual representation of the Wasserstein distance it follows that

W(δxPα, δxPα̃) = sup
‖f ‖Lip≤1

∣∣∣∣∫
G

f (y)
(
Pα(x,dy) − Pα̃(x,dy)

)∣∣∣∣
= sup

‖f ‖Lip≤1

∣∣∣∣∫
G

(
f (y) − f (x)

)(
α(x, y) − α̃(x, y)

)
Q(x,dy)

∣∣∣∣
≤

∫
G

d(x, y)E(x, y)Q(x,dy). �

By the previous lemma and Theorem 3.1, we obtain the following Wasserstein perturbation
bound for the approximate Metropolis–Hastings algorithm.

Corollary 4.1. Let Q be a transition kernel on (G,B(G)) and let α : G × G → [0,1] and
α̃ : G × G → [0,1] be measurable functions. By Pα and Pα̃ we denote the transition kernels
of the form (4.6) with acceptance probabilities α and α̃. Let the following conditions be satisfied:

• Assumption 2.1 holds for the transition kernel Pα , that is, τ(P n
α ) ≤ Cρn for ρ ∈ [0,1) and

C ∈ (0,∞).
• There are numbers δ ∈ (0,1), L ∈ (0,∞) and a measurable Lyapunov function Ṽ : G →

[1,∞) of Pα̃ , that is,

(Pα̃Ṽ )(x) ≤ δṼ (x) + L. (4.7)

• Let E(x, y) = |α(x, y) − α̃(x, y)| and assume that

γ = sup
x∈G

∫
G

d(x, y)E(x, y)Q(x,dy)

Ṽ (x)
< ∞. (4.8)

Then, for any p0 ∈P and finite p0(Ṽ ) = ∫
G

Ṽ (x)dp0(x) we have

W
(
p0P

n
α ,p0P

n
α̃

) ≤ γ κC(1 − ρn)

1 − ρ
,

where κ = max{p0(Ṽ ), L
1−δ

}.
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Let us point out several aspects of condition (4.7). Recall that (4.7) is always satisfied with
Ṽ (x) = 1 for all x ∈ G. However, in this case it seems more difficult to control γ . If some
additional knowledge in form of a Lyapunov function V : G → [1,∞) of Pα , that is, PαV (x) ≤
δV (x) + L for some δ ∈ (0,1) and L ∈ (0,∞), is available, then a non-trivial candidate for Ṽ

is V . For sufficiently small

δV = sup
z∈G

∫
G

(
V (y)

V (z)
+ 1

)
E(z, y)Q(z,dy)

this is indeed true. Namely, we have∣∣(Pα − Pα̃)V (x)
∣∣ ≤

∫
G

V (y)E(x, y)Q(x,dy) + V (x)

∫
G

E(x, y)Q(x,dy) ≤ V (x)δV .

Then, Pα̃V (x) ≤ (δ + δV )V (x) + L and whenever δ + δV < 1 it is clear that condition (4.7) is
verified.

To highlight the usefulness of a non-trivial Lyapunov function, we consider the following sce-
nario which is related to a local perturbation of an independent Metropolis–Hastings algorithm.

Example 4.1. Let us assume that for Pα Assumption 2.1, as formulated in Corollary 4.1, is
satisfied. For some probability measure μ on (G,B(G)) define Q(x, ·) = μ and p0 = p̃0 = μ.
For G̃ ⊆ G let

α̃(x, y) = min
{
1, α(x, y) + 1G̃(x)

}
.

Hence, for x ∈ G̃ the transition kernel Pα̃(x, ·) accepts any proposed state and for x /∈ G̃ we have
Pα̃(x, ·) = Pα(x, ·). It is easily seen that E(x, y) ≤ 1G̃(x). For arbitrary R > 0 and r ∈ (0,1) set
Ṽ (x) = 1 + R1G̃(x) and note that

Pα̃Ṽ (x) ≤ rṼ (x) + 1 − r + RPα̃(x, G̃) ≤ rṼ (x) + 1 − r + Rμ(G̃).

The last inequality of the previous formula follows by distinguishing the cases x ∈ G̃ and x /∈ G̃.
Define D(G̃) = supx∈G̃

∫
G

d(x, y)μ(dy) and observe

κ = 1 + Rμ(G̃)

1 − r
and γ ≤ D(G̃)

1 + R
.

Then, Corollary 4.1 leads to

W
(
p0P

n
α ,p0P

n
α̃

) ≤ C

1 − ρ

(
1 + Rμ(G̃)

1 − r

)
D(G̃)

1 + R

for arbitrary R ∈ (0,∞) and r ∈ (0,1). Under the assumption that D(G̃) is finite and letting
R → ∞ as well as r ↓ 0 we obtain

W
(
p0P

n
α ,p0P

n
α̃

) ≤ Cμ(G̃)D(G̃)

1 − ρ
,
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which tells us that basically μ(G̃) measures the difference of the distributions. A small pertur-
bation set G̃ with respect to μ, thus implies a small bias. In contrast, with the trivial Lyapunov
function Ṽ = 1, and if there is (x, y) ∈ G̃ × G such that α(x, y) = 0, we only obtain

γ κ = D(G̃) ≥ inf
x∈G

∫
G

d(x, y)μ(dy).

The resulting upper bound on W(p0P
n
α ,p0P

n
α̃ ) will typically be bounded away from zero re-

gardless of the set G̃.

Remark 4.1. The constant γ essentially depends on the distance d(x, y) and the difference of
the acceptance probabilities E(x, y). By applying the Cauchy–Schwarz inequality to the numer-
ator of γ , we can separate the two parts, that is,∫

G

d(x, y)E(x, y)Q(x,dy) ≤
(∫

G

d(x, y)2Q(x,dy) ·
∫

G

E(x, y)2Q(x,dy)

)1/2

.

If both integrals remain finite, we see that an appropriate control of E(x, y) suffices for making
the constant γ small.

Remark 4.2. By using a Hoeffding-type bound, in Bardenet et al. [3], Lemma 3.1, it is shown
that for their version of the approximate Metropolis–Hastings algorithm with adaptive subsam-
pling the approximation error E(x, y) is bounded uniformly in x and y by a constant s > 0.
Moreover, s can be chosen arbitrarily small for the implementation of the algorithm.

Now we consider the case where the unperturbed transition kernel Pα is geometrically ergodic.
Motivated by Remark 4.2, we also assume that E(x, y) ≤ s for a sufficiently small number s > 0.
The following corollary generalizes a main result of Bardenet et al. [3], Proposition 3.2, to the
geometrically ergodic case.

Corollary 4.2. Let Q be a transition kernel on (G,B(G)) and let α : G × G → [0,1] and
α̃ : G × G → [0,1] be measurable functions. By Pα and Pα̃ we denote the transition kernels
of the form (4.6) with acceptance probabilities α and α̃. Let the following conditions be satisfied:

• The unperturbed transition kernel Pα is V -uniformly ergodic, that is,∥∥P n
α (x, ·) − π

∥∥
V

≤ CV (x)ρn, x ∈ G,n ∈N

for numbers ρ ∈ [0,1), C ∈ (0,∞) and a measurable function V : G → [1,∞). Moreover,
V is a Lyapunov function of Pα , that is,

(PαV )(x) ≤ δV (x) + L (4.9)

for numbers δ ∈ (0,1) and L ∈ (0,∞).
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• A uniform bound s > 0 on the difference of the acceptance probabilities is given, that is, for
all x, y ∈ G, we have

E(x, y) = |α(x, y) − α̃(x, y)| ≤ s.

• The constant λ satisfies

λ = 1 + sup
x∈G

∫
G

V (y)

V (x)
Q(x,dy) < ∞.

If s < (1 − δ)/λ, then, for any p0 ∈ P with finite κ = max{p0(V ), L
1−δ−λs

} we have

∥∥p0P
n
α − p0P

n
α̃

∥∥
V

≤ λsκC(1 − ρn)

1 − ρ
.

Proof. We consider the metric dV , defined in Lemma 3.1, set V = Ṽ and use E(x, y) ≤ s so
that it is easily seen that the constant γ from Corollary 4.1 satisfies γ ≤ sλ. From the proof of
Corollary 3.4, we know that V is a Lyapunov function of Pα̃ provided that γ + δ < 1. Thus, we
have

Pα̃V (x) ≤ (δ + λs)V (x) + L. (4.10)

Now if s < (1 − δ)/λ, then δ + λs < 1 and the assertion follows from Corollary 4.1 by writing
the Wasserstein distances in terms of V -norms as in Section 3.2. �

Remark 4.3. Without V (x) in the denominator, that is, if we had relied on Corollary 3.2 instead
of Theorem 3.1, the constant λ would often be infinite. Consider the following toy example: Let π

be the exponential distribution with density exp(−x) on G = [0,∞) and assume that Q(x,dy)

is a uniform proposal with support [x − 1, x + 1]. With V (x) = exp(x) it is well known that
the Metropolis–Hastings algorithm is V -uniformly ergodic, see [30] or [37], Example 4. In this
example,

λ ≤ 1 + sup
x∈[0,∞)

∫ x+1

x−1
exp(y − x)dy ≤ 1 + exp(1)

whereas
∫ x+1
x−1 exp(y)dy is unbounded in x. Notice that λ only depends on the unperturbed

Markov chain so that a bound on λ can be combined with any approximation.

Remark 4.4. Let Pα̃ and Pα be φ-irreducible and aperiodic. Then, one can prove under the
assumptions of Corollary 4.2 that Pα̃ is V -uniformly ergodic if s is sufficiently small. To see
this, note that by [31], Theorem 16.0.1, the V -uniform ergodicity of Pα implies that Pα satisfies
their drift condition (V4). By the arguments stated in the proof of Corollary 3.4, one obtains that
Pα̃ also satisfies (V4) for sufficiently small s and this implies V -uniform ergodicity. In this case,
clearly Pα̃ possesses a stationary distribution, say π̃ , and

‖π − π̃‖V ≤ λsC

1 − ρ
· L

1 − δ − λs
.
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The previous inequality follows by (3.5) and the fact that

‖π − π̃‖V ≤ π(V ) + π̃ (V ) < ∞.

Here the finiteness of π(V ) follows by the V -uniform ergodicity of P and π̃ (V ) ≤ L/(1−δ−λs)

follows by (4.10) and [16], Proposition 4.24.

4.3. Noisy Langevin algorithm for Gibbs random fields

An alternative to the Metropolis–Hastings algorithm is the Langevin algorithm, see [39]. Unfor-
tunately, in its implementation one needs the gradient of the density of the target distribution.
To overcome this problem, different approximate Langevin algorithms have been proposed and
studied, see [1,2,43,47].

This section is mainly based on Alquier et al. [2], Section 3.4, where a noisy Langevin al-
gorithm for Gibbs random fields is considered. We provide a quantitative version of [2], Theo-
rem 3.2. The setting is as follows. Let Y be a finite set and with M ∈ N let y = {y1, . . . , yM} ∈ YM

be an observed data set on nodes {1, . . . ,M} of a certain graph. The likelihood of y with param-
eter θ ∈ R is defined by

�(y | θ) = exp(θs(y))∑
y∈YM exp(θs(y))

,

where s : YM → R is a given statistic. The density of the posterior distribution with respect to
the Lebesgue measure on (R,B(R)) given the data y ∈ YM is determined by

πy(θ) := π(θ | y) ∝ �(y | θ)p(θ),

where the prior density p(θ) is the Lebesgue density of the normal distribution N (0, σ 2
p) with

σp > 0.
We consider the Langevin algorithm, a first order Euler discretization of the SDE of the

Langevin diffusion, see [39]. It is given by (Xn)n∈N0 with

Xn = Xn−1 + σ 2

2
∇ logπy(Xn−1) + Zn, n ∈ N. (4.11)

Here X0 is a real-valued random variable and (Zn)n∈N is an i.i.d. sequence of random variables,
independent of X0, with Zn ∼ N (0, σ 2) for a parameter σ > 0 which can be interpreted as the
step size in the discretization of the diffusion. It is easily seen that (Xn)n∈N0 is a Markov chain
with transition kernel

Pσ (θ,A) =
∫
R

1A

(
θ + σ 2

2
∇ logπy(θ) + z

)
N

(
0, σ 2)(dz), A ∈ B(R).

In general πy is not a stationary distribution of Pσ , but there exists a stationary distribu-
tion (see Proposition 4.1 below), say πσ , which is close to πy depending on σ . Let z(θ) =
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y∈YM exp(θs(y)) then, by the definition of πy we have

logπy(θ) = θs(y) − log z(θ) + logp(θ) − log

(∫
R

�(y | z)p(z)dz

)
,

∇ logπy(θ) = s(y) − z′(θ)

z(θ)
+ ∇ logp(θ) = s(y) −

∑
z∈YM s(z) exp(θs(z))∑

z∈YM exp(θs(z))
− θ

σ 2
p

= s(y) −E�(·|θ)s(Y ) − θ

σ 2
p

,

where Y is a random variable on YM distributed according the likelihood distribution determined
by �(· | θ). We do not have access to the exact value of the mean E�(·|θ)s(Y ) since in general we
do not know the normalizing constant of the likelihood. We assume that we can use a Monte Carlo
estimate. For N ∈ N let (Yi)1≤i≤N be an i.i.d. sequence of random variables with Yi ∼ �(· | θ)

independent of (Zn)n∈N from (4.11). Then, 1
N

∑N
i=1 s(Yi) is an approximation of E�(·|θ)s(Y )

which leads to an estimate of ∇ logπy(θ) given by

∇̂N logπy(θ) := s(y) − 1

N

N∑
i=1

s(Yi) − θ

σ 2
p

.

We substitute ∇ logπy(θ) by ∇̂N logπy(θ) in (4.11) and obtain a sequence of random variables
(X̃n)n∈N0 defined by

X̃n = X̃n−1 + σ 2

2
∇̂N logπy(X̃n−1) + Zn

=
(

1 − σ 2

2σ 2
p

)
X̃n−1 + σ 2

2

(
s(y) − 1

N

N∑
i=1

s(Yi)

)
+ Zn.

The sequence (X̃n)n∈N0 is again a Markov chain with transition kernel

Pσ,N(θ,A) =
∫
R

∑
(y′

1,...,y
′
N )∈YMN

1A

((
1 − σ 2

2σ 2
p

)
θ + σ 2

2

(
s(y) − 1

N

N∑
i=1

s
(
y′
i

)) + z

)

×
N∏

i=1

�
(
θ | y′

i

)
N

(
0, σ 2)(dz)

for θ ∈R and A ∈ B(R). Let us state a transition of this noisy Langevin Markov chain according
to Pσ,N in algorithmic form.

Algorithm 4.3. A single transition from X̃n to X̃n+1 works as follows:

1. Draw an i.i.d. sequence (Yi)1≤i≤N with Yi ∼ �(· | X̃n), call the result (y′
1, . . . , y

′
N).



Perturbation theory for Markov chains via Wasserstein distance 2635

2. Calculate

∇̂N logπy(X̃n) := s(y) − 1

N

N∑
i=1

s
(
y′
i

) − X̃n

σ 2
p

.

3. Draw Zn ∼N (0, σ 2), independent from step 1., call the result zn. Set

X̃n+1 = X̃n + σ 2

2
∇̂N logπy(X̃n) + zn.

From [2], Lemma 3, and by applying arguments of [39], we obtain the following facts about
the noisy Langevin algorithm.

Proposition 4.1. Let ‖s‖∞ = supz∈YM |s(z)| be finite with ‖s‖∞ > 0, let V : R → [1,∞) be
given by V (θ) = 1 + |θ | and assume that σ 2 < 4σ 2

p . Then

1. the function V is a Lyapunov function for Pσ and Pσ,N . We have

Pσ V (θ) ≤ δV (θ) + L1I (θ), Pσ,NV (θ) ≤ δV (θ) + L1I (θ) (4.12)

with δ = 1 − σ 2

4σ 2
p

, L = σ + σ 2‖s‖∞ + σ 2

2σ 2
p

and the interval

I =
{
θ ∈R

∣∣∣ |θ | ≤ 1 + 4σ 2
p‖s‖∞ + 4σ 2

p

σ

}
;

2. there are distributions πσ and πσ,N on (R,B(R)) which are stationary with respect to Pσ

and Pσ,N , respectively;
3. the transition kernels Pσ and Pσ,N are V -uniformly ergodic;
4. for N > 4 max{‖s‖2∞σ 4,‖s‖−3∞ σ−6} we have

sup
θ∈R

∥∥Pσ (θ, ·) − Pσ,N(θ, ·)∥∥tv ≤ 6 max
{‖s‖∞σ 2,‖s‖−2∞ σ−4} log(N)

N
. (4.13)

Proof. We use the same arguments as in [39], Section 3.1. One can easily see that the Markov
chains (Xn)n∈N0 and (X̃n)n∈N0 are irreducible with respect to the Lebesgue measure and weak
Feller. Thus, all compact sets are petite, see [31], Proposition 6.2.8. Hence, for the existence
of stationary distributions, say πσ and πσ,N , [31], Theorem 12.3.3, as well as for the V -uniform
ergodicity [31], Theorem 16.0.1, it is enough to show that V satisfies (4.12). With Z ∼N (0, σ 2),
we have

Pσ V (θ) ≤
(

1 − σ 2

2σ 2
p

)
V (θ) + σ 2

2σ 2
p

+ σ 2

2

∣∣s(y) −E�(·|θ)s(Y )
∣∣ +E|Z|

≤
(

1 − σ 2

2σ 2
p

)
V (θ) + σ 2

2σ 2
p

+ σ 2‖s‖∞ + σ
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≤
(

1 − σ 2

2σ 2
p

)
V (θ) + max

{
σ 2

4σ 2
p

V (θ),
σ 2

2σ 2
p

+ σ 2‖s‖∞ + σ

}

≤
(

1 − σ 2

4σ 2
p

)
V (θ) +

(
σ 2

2σ 2
p

+ σ 2‖s‖∞ + σ

)
· 1I (θ).

By the fact that

E

[∣∣∣∣∣s(y) − 1

N

N∑
i=1

s(Yi)

∣∣∣∣∣ | X̃n = θ

]
≤ 2‖s‖∞

we obtain with the same arguments that

Pσ,NV (θ) ≤ δV (θ) + L · 1I (θ).

Thus, the assertions from 1. to 3. are proven. The statement of 4. is a consequence of [2],
Lemma 3. There it is shown that for N > 4‖s‖2∞σ 4 it holds that

sup
θ∈R

∥∥Pσ (θ, ·) − Pσ,N(θ, ·)∥∥tv ≤ exp

(
log(N)

4N‖s‖2∞σ 4

)
− 1 + 4

√
π‖s‖∞σ 2

N
.

By using exp(θ) − 1 ≤ θ exp(θ) and N > 4, we further estimate the right-hand side by(
KN,s,σ

4‖s‖2∞σ 4
+ 4

√
π‖s‖∞σ 2

log(5)

)
· log (N)

N
with KN,s,σ = exp

(
log(N)

4N‖s‖2∞σ 4

)
.

Since log(N) ·N−1/3 < 2, we have the bound KN,s,σ ≤ exp(1) provided that 4N2/3‖s‖2∞σ 4 ≥ 2
which follows from N ≥ ‖s‖−3∞ σ−6. The assertion of (4.13) follows now by a simple calcula-
tion. �

By using the facts collected in the previous proposition, we can apply the perturbation bound
of Theorem 3.2 and obtain a quantitative perturbation bound for the noisy Langevin algorithm.

Corollary 4.3. Let p0 be a probability measure on (R,B(R)) and set pn = p0P
n
σ as well as

p̃n,N = p0P
n
σ,N . Suppose that σ 2 < 4σ 2

p . Then, there are numbers ρ ∈ [0,1) and C ∈ (0,∞),
independent of n,N , determining

R := 18 max{‖s‖∞σ 2,‖s‖−2∞ σ−4}
1 − ρ

· (2 + max
{
Ep0 |X|,4σ 2

p

(‖s‖∞ + σ−1)})
with Ep0 |X| = ∫

R
|θ |dp0(θ), so that for N > 90 max{‖s‖2∞σ 4,‖s‖−3∞ σ−6} we have

max
{‖pn − p̃n,N‖tv,‖πσ − πσ,N‖tv

} ≤ R · (2C
(
σ + σ 2‖s‖∞ + 3

))2/ log(N) log(N)2

N
.
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Proof. We have by Proposition 4.1 that Pσ is V -uniformly ergodic with V (θ) = 1 + |θ |, that is,
there are numbers ρ ∈ [0,1) and C ∈ (0,∞) such that

sup
θ∈R

‖P n
σ (θ, ·) − πσ ‖V

V (θ)
≤ Cρn.

Now, by combining Theorem 3.2 and Remark 3.8 with the results from Proposition 4.1 we obtain
the result. �

Remark 4.5. We want to point out that the assumptions imposed are the same as in [2], The-
orem 3.2, but instead of the asymptotic result we provide an explicit estimate. The numbers
ρ ∈ [0,1) and C ∈ (0,∞) are not stated in terms of the model parameters. In principle, these
values can be derived from the drift condition (4.12) through [5], Theorem 1.1.
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