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In the framework of an abstract statistical model, we discuss how to use the solution of one estimation
problem (Problem A) in order to construct an estimator in another, completely different, Problem B. As
a solution of Problem A we understand a data-driven selection from a given family of estimators A(H) =
{Âh,h ∈ H} and establishing for the selected estimator so-called oracle inequality. If ĥ ∈ H is the selected
parameter and B(H) = {B̂h,h ∈ H} is an estimator’s collection built in Problem B, we suggest to use the

estimator B̂
ĥ

. We present very general selection rule led to selector ĥ and find conditions under which the

estimator B̂
ĥ

is reasonable. Our approach is illustrated by several examples related to adaptive estimation.

Keywords: adaptive estimation; density model; generalized deconvolution model; oracle approach; upper
function

1. Introduction

Let (X (n),T(n),P
(n)
f , f ∈ F) be the statistical experiment generated by the observation X(n).

Let A : F → S1 and B : F → S2 be two mappings to be estimated and S1,S2 be sets en-
dowed with semi-metrics � and ρ, respectively.

For any X(n)-measurable Sj -valued map Q̃j , j = 1,2, and any q ≥ 1 introduce

Rq
A[Q̃1, f ] = E

(n)
f

[
�
(
Q̃1,A(f )

)]q; Rq
B [Q̃2, f ] = E

(n)
f

[
ρ
(
Q̃2,B(f )

)]q
, f ∈ F.

Here and later E(n)
f denotes the mathematical expectation w.r.t to the P

(n)
f and the number q is

supposed to be fixed.
The main objective of the present paper can be described as follows. Assume that the problem

of estimation of A(·), called furthermore Problem A, is much easier than the estimation of B(·)
(Problem B). We will not precise here the exact meaning of “easier”, which may be the theoretical
difficulty or computational complexity or something else. One can imagine, for instance, that
Problem A has been already solved while Problem B is still not. It is also important to realize
that Problems A and B may have completely different natures. For example, A(f ) is f , where
f : Rd → R is the multivariate probability density and � = ‖ · ‖p is Lp-norm on R

d , while B(f )

is functional, i.e. S2 = R. It can be the value of f or its derivatives at a given point, some norm
of this function, the entropy functional or Fisher information and so on. Even if both problems
have the same nature, for instance, A(f ) = B(f ) = f , the loss functions (semi-metrics � and ρ)
can be different. In particular, one can consider �(·) = ‖ · ‖p and ρ(·) = ‖ · ‖s , p �= s.

The problem which we address consists in finding hypotheses under which some elements
of the solution of Problem A could be used in the construction of an estimation procedure for
solving Problem B. Let us discuss this approach more in detail.
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The variety of statistical procedures developed last quarter of century deal with the data-driven
selection from the particular family of estimators, Barron et al. [3], Baraud et al. [2], Birgé and
Massart [4], Bunea et al. [5], Cai [6], Cavalier and Tsybakov [8], Cavalier and Golubev [7],
Dalalyan and Tsybakov [11], Devroye and Lugosi [12], Goldenshluger [16], Goldenshluger and
Lepski [18,20,22], Kerkyacharian et al. [25], Lepski and Levit [34], Nemirovski [37], Rigollet
and Tsybakov [41], Tsybakov [43], Wegkamp [47] among many others. A very detailed overview
on this topic can be found in the recent paper Lepski [32].

Suppose that we are given by the collection of estimators A(H) = {Âh,h ∈ H}, used for the
estimation of the map A(·), parameterized by some parameter set H (Âh depend usually on n

but we will omit this dependence in the notations). The quality of estimation is measured by
the family of risks {RA[Âh, f ],h ∈ H, f ∈ F}. Let us say that Problem A is solved if one can
find X(n)-measurable element ĥ ∈ H (data-driven selector) such that the selected estimator Â

ĥ

satisfies so-called oracle-type inequality:

RA[Â
ĥ
, f ] ≤ inf

h∈HA(n)
� (f,h) + crn, ∀f ∈ F,∀n ≥ 1. (1.1)

Here c > 0 is a numerical constant independent on n and f and rn → 0, n → ∞ is given se-
quence. As to the quantity A(n)

� (·, ·) it is explicitly expressed and for some particular problems
one can prove the inequality (1.1) with

A(n)
� (f,h) = CRA[Âh, f ],

where C is as previously a universal constant.
Let B(H) = {B̂h,h ∈H} be a given collection of statistical procedures related to the estimation

of B(·). It is extremely important for us that both collections A(H) and B(H) are parameterized
by one and the same set H. As it was mentioned above Problem A and Problem B may have
different nature and often only the set H relates both problems.

The questions which we want to answer are: under which conditions the selector ĥ provides
a reasonable choice from the collection B(H)? Is it possible to establish an oracle inequality
similar to (1.1) for the selected estimator B̂

ĥ
?

We do not think that the answers on aforementioned questions can be obtained when an arbi-
trary selection rule led to ĥ is considered. So, in the next section in the framework of an abstract
statistical model we propose a quite general selection scheme and establish for it the oracle in-
equality (1.1). This part of the paper has an independent interest since all results will be obtained
under few very general assumptions which can be verified for many statistical models and prob-
lems. The proposed approach can be viewed as a generalization of several estimation procedures
developed by the author and his collaborators during last twenty years, see Lepski and Levit [34],
Kerkyacharian et al. [25], Juditsky et al. [24], Goldenshluger and Lepski [17,18,20–22], Lepski
[28,32].

Coming back to the study of the behavior of the “plug-in” estimator B̂
ĥ

we would like to
emphasize that it will be done under the following assumption imposed on the statistical ex-
periment. We will assume that X(n) = (X

(n)
1 ,X

(n)
2 ), where X

(n)
1 ,X

(n)
2 are independent random

elements. Our selection rule (led in particular to the solution of Problem A) is based on the ob-
servation X

(n)
1 while the estimator’s collection B(H) is built from the observation X

(n)
2 . This
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fundamental assumption may correspond to splitting data on two independent samples or to the
situation when a statistician disposes an independent copy of the considered statistical model.

The following notations will be used in the sequel: P(n)
1,f and P

(n)
2,f denote marginal laws of

X
(n)
1 and X

(n)
2 , respectively and E

(n)
i,f , i = 1,2, will be used for the mathematical expectation

w.r.t. P(n)
i,f .

We finish this introduction presenting several examples in which the discussed above strategy
can be applied. These considerations will be continued in Sections 4 and 5.

Estimation in the deconvolution density model under Lp-loss. Consider the following obser-
vation scheme:

Zi = Xi + Yi, i = 1, . . . , n, (1.2)

where Xi, i = 1, . . . , n, are i.i.d. d-dimensional random vectors with common density f to be
estimated. The noise variables Yi, i = 1, . . . , n, are i.i.d. d-dimensional random vectors with
known common density g. The sequences {Xi, i = 1, . . . , n} and {Yi, i = 1, . . . , n} are supposed
to be mutually independent.

Let X(n) = (Z1, . . . ,Zn) and let B(f ) = f and ρ(·) = �(·) = ‖ · ‖p that means that we are
interested in estimation of the underlying density f under Lp-loss.

Let K : Rd → R be the function belonging to L1(R
d) and

∫
R

K = 1. Let Hd be the diadic grid
of (0,1]d and define for any 
h = (h1, . . . , hd) ∈ Hd

K
h(t) = V −1

h K(t1/h1, . . . , td/hd), t ∈R

d,V
h =
d∏

j=1

hj . (1.3)

For any 
h ∈Hd let M(·, 
h) : Rd → R satisfy the operator equation

K
h(y) =
∫
Rd

g(t − y)M(t, 
h)dt, y ∈R
d . (1.4)

Introduce the following estimator’s collection

B
(
Hd

)=
{

B̂
h(·) = n−1
n∑

i=1

M(Zi − ·, 
h), 
h ∈Hd

}
. (1.5)

In Comte and Lacour [10] and in Rebelles [39], the data-driven selection rules from B(Hd), based
on the methodology developed in Goldenshluger and Lepski [22], were proposed. The authors
established oracle inequalities of type (1.1) and deduced from them several results related to
adaptive estimation.

Our idea is quite different and consists in the following. Consider first the estimation of
A(f ) = g � f , where here and later “�” denotes the convolution operator. Note that g � f is the
density of Z1 and, therefore, can be easily estimated from the observation X(n) using standard
kernel estimator. Consider the collection

A
(
Hd

)=
{

Â
h(·) =
n∑

i=1

K
h(Zi − ·), 
h ∈Hd

}
. (1.6)
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The problem of bandwidth selection from A(Hd) was studied in Goldenshluger and Lepski [20,
21] where several oracle inequalities were proved. Let 
hn be a selected bandwidth. We propose
then to use B̂
hn

(·) as the final estimator.
We remark that similar strategy in the linear regression model (selection from the family of

spectral cut-off estimators, d = 1) was adopted in Chernousova and Golubev [9]. In the sequence
space Gaussian white noise model the approach discussed above was applied in Knapik and
Solomond [27] in order to find the posterior contraction rate in inverse problems in the context
of the Bayesian nonparametrics.

Estimation of derivatives in the density model under Lp-loss. Let X(n) = (X1, . . . ,Xn) be
i.i.d. random variables with unknown common density f (the multidimensional version of the
problem will be presented in Section 5). We are interested in estimating of f (m),m ∈ N

∗, where
f (m) denotes mth derivative of f .

Thus, Bm(f ) = f (m) and let ρ(·) = �(·) = ‖ · ‖p . Set A(f ) = f and consider the family of
kernel estimators

A
(
H1)=

{
Âh(·) =

n∑
i=1

Kh(Xi − ·), h ∈H1

}
.

It is worth noting that for any m ∈ N
∗ the estimator B̂h,m(·) = Â

(m)
h (·) is usually used for esti-

mating Bm(f ). Hence, one of the possibilities consists in the selection from the collection

Bm

(
H1)= {

B̂h,m(·), h ∈H1}
in order to construct an estimator for f (m). Note, however that in this case the corresponding
selector as well as the selected estimator will depend on m. In particular, the selection schemes
are different for different values of m.

Our approach to considered problem consists in selecting from the family A(H1) that provides
us with the selector hn. Then for any m ∈ N∗, we suggest to use B̂hn,m(·) as an estimator for
Bm(f ). In other words the problem we address can be formulated as follows. Is it possible to
differentiate the kernel estimator with data-driven bandwidth in order to get the estimator for any
derivative of the underlying density simultaneously?

In the framework of Gaussian white noise model, this problem was studied in
Efromovich [13]. It was shown that the answer is positive when p = 2 and the adaptation is
considered over the collection of Sobolev classes. More precisely, it was shown that the differ-
entiation of the Efromovich–Pinsker estimator leads to the efficient adaptive estimator of any
derivative. In Abramovich et al. [1], the same answer was obtained when the collection of Besov
classes is considered. It was shown (p = 2, d = 1) that the differentiation of special wavelet
based adaptive estimator leads to the adaptive estimation of the corresponding derivative.

In Section 5, we prove that the answer on aforementioned question is positive when the adap-
tive estimation of partial derivatives of a function belonging to an anisotropic Nikol’skii class in
Lp(Rd) is considered under an arbitrary Lp-loss and in an arbitrary dimension d ≥ 1.
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2. Selection scheme for solving of Problem A

Let Hn, n ∈ N
∗, be a sequence of countable subsets of H. Let {Âh,h ∈ H} and {Âh,η,h, η ∈ H}

be the families of X
(n)
1 -measurable S1-valued mappings possessing the properties formulated

below. Both Âh and Âh,η depend usually on n but we will omit this dependence for the sake of
simplicity of notations. Let εn → 0, n → ∞ be a given sequence.

Suppose there exist collections of S1-valued functionals {�h(f ),h ∈ H}, {�h,η(f ),h, η ∈H}
and a collection of positive X

(n)
1 -measurable random variables �n = {�n(h),h ∈ H} for which

the following conditions hold. (The functionals �h and �h,η may depend on n (not necessarily)
but we will omit this dependence in the notations.)

Apermute. Âh,η ≡ Âη,h, for any h, η ∈ Hn.
Aupper. For any n ≥ 1

(i) sup
f ∈F

E
(n)
1,f

(
sup
h∈Hn

[
�
(
Âh,�h(f )

)− �n(h)
]q
+
)

≤ ε
q
n;

(ii) sup
f ∈F

E
(n)
1,f

(
sup

h,η∈Hn

[
�
(
Âh,η,�h,η(f )

)− {
�n(h) ∧ �n(η)

}]q
+
)

≤ ε
q
n.

Remark 1. Often the collection {�n(h),h ∈ H} satisfying the hypothesis Aupper is not random.
This is typically the case when a statistical problem is studied in the framework of white gaussian
noise or regression model. See also Lemma 1 below, case p ≤ 2.

2.1. Discussion

For many statistical models and problems �h(f ) = E
(n)
1,f (Âh) and �h,η(f ) = E

(n)
1,f (Âh,η). In

this case �(Âh,�h(f )) and �(Âh,η,�h,η(f )) can be viewed as stochastic errors related to the
estimators Âh and Âh,η respectively. Hence, following the terminology used in Lepski [33] we
can say that {�n(h),h ∈H} and {�n(h)∧�n(η),h, η ∈ H} are upper functions of level εn for the
collection of corresponding stochastic errors.

The development of the probabilistic tools allowing to control the behavior of stochastic errors
related to statistical procedures is the subject of vast literature, see, for instance, the books van
der Vaart and Wellner [45], van de Geer [44], Massart [36]. The inequalities similar to those
appeared in the hypothesis Aupper can be found in Egishyants and Ostrovskii [14] and Lepski
[29–31]. The upper functions for Lp-norm of “kernel-type” empirical and Gaussian processes
were obtained in Goldenshluger and Lepski [19] and Lepski [33].

We conclude that from the one hand the verification of the hypothesis Aupper is in some sense
necessary task when the oracle approach or adaptive estimation is considered. On the other hand
the very developed probabilistic machinery is in our disposal.

Let us also remark that if the analogues of hypotheses Aupper and Apermute can be checked in
Problem B, then the selection rule from the estimator’s collection {B̂h,h ∈ H} presented below
will provide the solution of Problem B. However in some cases the verification of these hypothe-
ses is much more difficult in Problem B than in Problem A and it is one of the reasons why we
propose to proceed differently.
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Let us now discuss some examples of estimator’s collections for which the hypothesis Apermute

is fulfilled.

Example 1. Let A(Hd) and B(Hd) be the families defined in (1.5) and (1.6). For any 
h, 
h′ ∈Hd

set 
h ∨ 
h′ = (h1 ∨ h′
1, . . . , hd ∨ h′

d) and introduce

Â
h,
h′(·) = Â
h∨
h′(·), B̂
h,
h′(·) = B̂
h∨
h′(·).

It is obvious that the hypothesis Apermute is verified for these estimators. The selection rules based
on this construction of families of auxiliary estimators can be found in Kerkyacharian et al. [25,
26], Rebelles [39].

Example 2. Consider either the density model generated by the observation X(n) = (X1, . . . ,

Xn), where Xi ∈ R
d, i = 1, . . . , n, are i.i.d. random vectors or the observation model (1.2).

Let K
h(·) and M(·, 
h), 
h ∈ Hd , be defined in (1.3) and (1.4), respectively. For any 
h, 
h′ ∈ Hd

set

K
h,
h′(·) =
∫
Rd

K
h(· − t)K
h′(t) dt, M
(·, 
h, 
h′)=

∫
Rd

M(· − t, 
h)M
(
t, 
h′)dt

and define

Â
h,
h′(·) =
n∑

i=1

K
h,
h′(Xi − ·) or Â
h,
h′(·) =
n∑

i=1

K
h,
h′(Zi − ·),

B̂
h,
h′(·) =
n∑

i=1

M
(
Zi − ·, 
h, 
h′).

Since, K
h,
h′ ≡ K
h′,
h and M(
h, 
h′) ≡ M(
h′, 
h) the hypothesis Apermute holds. The selection
rules based on this construction of auxiliary estimators were proposed in Lepski and Levit
[34], Goldenshluger and Lepski [17,18,20,21], Comte and Lacour [10], Reynaud-Bouret et
al. [40].

Example 3. Let D be a set endowed with the Borel measure μ and let {ψk,k ∈ N
d} be an

orthogonal basis in L2(D,μ) possessing the following properties.

ψ0 ≡ c �= 0,

∫
D

ψk(t)μ(dt) = 0, ∀k �= 0 = (0, . . . ,0).

Let T = {τ = (τk,k ∈ N
d)} be a given subset of l2 such that τ0c2μ(D) = 1 for all τ ∈ T. Intro-

duce

Kτ (t, x) =
∑
k∈Nd

τkψk(t)ψk(x), τ ∈ T,
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and define for any τ, τ ′ ∈ T

Kτ,τ ′(t, x) =
∫
D

Kτ (t, y)Kτ (y, x)μ(dy).

Consider the statistical experiment generated by the observation X(n) = (X1, . . . ,Xn), where
Xi, i = 1, . . . , n, are i.i.d. D-valued random variables having unknown density f with respect to
the measure μ. Introduce the following collection of estimators

Âτ,τ ′(·) =
n∑

i=1

Kτ,τ ′(Xi, ·), τ, τ ′ ∈ T.

As it was shown in Goldenshluger and Lepski [22], Kτ,τ ′ ≡ Kτ ′,τ for any τ, τ ′ ∈ T and, therefore,
the hypothesis Apermute is fulfilled.

We remark that all estimator’s construction discussed above can be applied in other statistical
models where kernel-type estimators are used, for example, white Gaussian noise model and the
regression model.

2.2. (�n, �)-selection rule and corresponding oracle inequality

Our objective is to propose the selection rule from an arbitrary collection A(Hn) = {Âh,h ∈ Hn}
satisfying hypotheses Apermute and Aupper, and establish for it the oracle-type inequality (1.1).

Define for any h ∈Hn

R̂n(h) = sup
η∈Hn

[
�(Âh,η, Âη) − 2�n(η)

]
+.

Let ĥ(n) ∈ Hn be an arbitrary X
(n)
1 -measurable random element satisfying

R̂n

(
ĥ(n)

)+ 2�n

(
ĥ(n)

)≤ inf
h∈Hn

{
R̂n(h) + 2�n(h)

}+ ε′
n,

where ε′
n is an arbitrary sequence and we will assume that ε′

n ≤ εn.
Introduce the following notation: for any f ∈ F, h ∈ Hn and n ≥ 1

B(n)
A (f,h) = �

(
�h(f ),A(f )

)+ 2 sup
η∈Hn

�
(
�h,η(f ),�η(f )

)
, ψn(f,h) = [

E
(n)
1,f

{
�

q
n (h)

}] 1
q .

Theorem 1. Let Apermute and Aupper be fulfilled. Then, for any f ∈ F and n ≥ 1

RA[Â
ĥ(n) , f ] ≤ inf

h∈Hn

{
B(n)

A (f,h) + 5ψn(f,h)
}+ 6εn.

Note that the proposed (�n, �) selection rule is built using only observation part X
(n)
1 . This

means that the application of the result presented in Theorem 1 does not require any splitting of
data since one can formally suppose that X

(n)
1 is the original data set.
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2.3. Proof of Theorem 1

For the simplicity of notations throughout the proof, we will write ĥ instead of ĥ(n).
Fix h ∈ Hn. We have obviously in view of the definition of R̂n(·)

�(Â
ĥ
, Â

h,ĥ
) ≤ 2�n(ĥ) + [

�(Â
ĥ
, Â

h,ĥ
) − 2�n(ĥ)

]
+

(2.1)
≤ 2�n(ĥ) + R̂n(h).

Here we have also used that ĥ ∈Hn by its definition. Taking into account Apermute we get

�(Âh, Â
h,ĥ

) = �(Âh, Â
ĥ,h

) ≤ 2�n(h) + [
�(Âh, Â

ĥ,h
) − 2�n(h)

]
+

(2.2)
≤ 2�n(h) + R̂n(ĥ).

We get from (2.1), (2.2) and the definition of ĥ

�(Â
ĥ
, Â

h,ĥ
) + �(Âh, Â

h,ĥ
) ≤ R̂n(ĥ) + 2�n(ĥ) + R̂n(h) + 2�n(h)

(2.3)
≤ 2

{
R̂n(h) + 2�n(h)

}+ ε′
n.

We have in view of the triangle inequality for any h ∈ Hn

R̂n(h) ≤ sup
η∈Hn

�
(
�h,η(f ),�η(f )

)+ ξ1 + ξ2, (2.4)

where we have put

ξ1 = sup
η∈Hn

[
�(Âη,�η) − �n(η)

]
+,

(2.5)
ξ2 = sup

h,η∈Hn

[
�(Âh,η,�h,η) − {

�n(h) ∧ �n(η)
}]

+.

Thus, we obtain from (2.3) and (2.4) for any h ∈ Hn

�(Â
ĥ
, Â

h,ĥ
) + �(Âh, Â

h,ĥ
) ≤ 2 sup

η∈Hn

�
(
�h,η(f ),�η(f )

)+ 4�n(h) + 2ξ1 + 2ξ2 + ε′
n. (2.6)

Obviously for any h ∈ Hn

�
(
Âh,A(f )

)≤ �
(
�h(f ),A(f )

)+ �n(h) + ξ1.

It yields together with (2.6) by the triangle inequality

�
(
Â

ĥ
,A(f )

)≤ B(n)
A (f,h) + 5�n(h) + 3ξ1 + 2ξ2 + ε′

n, ∀h ∈Hn,∀f ∈ F. (2.7)

Taking into account the hypothesis Aupper we get for any h ∈ Hn and any f ∈ F{
E

(n)
1,f

[
�
(
Â
ĥ
,A(f )

)]q} 1
q ≤ B(n)

A (f,h) + 5ψn(f,h) + 6εn.
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Here we have used that ε′
n ≤ εn. Noting that the left-hand side of the obtained inequality is

independent of h we come to the assertion of the theorem.

3. “Plug-in” estimator for solving of Problem B and its
properties

Let B(H) = {B̂h,h ∈H} be the family of X
(n)
2 -measurable S2-valued mappings. The goal of this

section is to bound from above the risk of “plug-in” estimator B̂
ĥ(n) , where ĥ(n) is obtained by

(�n, �)-selection rule.
We add the following assumption to the hypothesis Aupper.
Aupper. There exist the constant C� ≥ 1 such that for any n ≥ 1

sup
f ∈F

E
(n)
1,f

(
sup
h∈Hn

[
�n(h) − C�ψn(f,h)

]q
+
)

≤ ε
q
n,

sup
f ∈F

E
(n)
1,f

(
sup
h∈Hn

[
ψn(f,h) − C��n(h)

]q
+
)

≤ ε
q
n.

We note that the hypothesis Aupper is fulfilled with C� = 1 if �n(h) is non-random and in this
case ψn(·, ·) is independent of f . Actually the hypothesis Aupper guarantees that the random
function �n(·) is well-concentrated around some non-random mapping. We would like to stress
that for all known to the author problems in order to check Aupper one first verifies that the
required inequalities hold for the “non-random” mapping ψn(f,h). However, it may depend on
unknown f and, therefore, cannot be used in the estimation construction. In this case this quantity
is replaced by its empirical counterpart �n(h) satisfying the hypothesis Aupper.

Let {ϒh,h ∈H} be a collection of S2-valued functionals. Set for any h ∈H, f ∈ F and n ≥ 1

En(f,h) = (
E

(n)
2,f

{
ρq
(
B̂h,ϒh(f )

)}) 1
q . (3.1)

Introduce the following sets of parameters.

Vn(f ) =
{
h ∈ Hn : ψn(f,h) < 2C2

� inf
η∈Hn

[
B(n)

A (f, η) + 2ψn(f,η)
]};

Un(f ) =
{
h ∈ Hn : �(�h,A(f )

)
< 4C� inf

η∈Hn

[
B(n)

A (f, η) + 2ψn(f,η)
]}

.

Set δn = inff ∈F infh∈Hn
ψ(f,h) and define for any f ∈ F and n ≥ 1

τn(f ) = sup
h∈Vn(f )

En(f,h) + (5εn/δn) sup
h∈Hn

En(f,h);

νn(f ) = sup
h∈Un(f )

ρ
(
ϒh,B(f )

)+ (30εn/δn) sup
h∈Hn

ρ
(
ϒh,B(f )

)
.

Let ĥ(n) is obtained by (�n, �)-selection rule with ε′
n ≤ δn/4.
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Theorem 2. Let Apermute, Aupper and Aupper hold. Then, for any f ∈ F and n ≥ 1

RB [B̂
ĥ(n) , f ] ≤ νn(f ) + τn(f ).

We will see that in particular examples the sequence εn decreases to zero very rapidly. It allows
often to assert that

κn := (5εn/δn) sup
f ∈F

(
sup
h∈Hn

En(f,h) + 6 sup
h∈Hn

ρ
(
ϒh,B(f )

))→ 0, n → ∞

very fast and the statement of the theorem is reduced to

RB [B̂
ĥ(n) , f ] ≤ sup

h∈Un(f )

ρ
(
ϒh,B(f )

)+ sup
h∈Vn(f )

En(f,h) +κn. (3.2)

Remark 2. Note that the sets Vn(f ) and Un(f ) are completely determined by the quantities
appeared in the solution of Problem A while En(f,h) and ρ(ϒh,B(f )) represent respectively
the standard deviation of stochastic error and approximation error of the estimator B̂h used in
Problem B. The functionals τn(f ) and νn(f ) explain how all these quantities are related.

Although, (3.2) is simpler to analyze than the assertion of the theorem, even this oracle in-
equality is less natural than those proved in Theorem 1. The next result allows to understand
better the properties of the estimator B̂

ĥ(n) .

Proposition 1. Let Apermute and Aupper hold. Suppose additionally that there exists a constant
C� > 0 such that for any f ∈ F, n ≥ 1 and h ∈ Hn

ρ
(
ϒh(f ),B(f )

)≤ C��
(
�h(f ),A(f )

)
. (3.3)

Assume also that there exists a constant CE > 0 such that for any n ≥ 1 and h ∈ Hn

sup
f ∈F

En(f,h) ≤ CE�n(h). (3.4)

Then, for any f ∈ F and n ≥ 1

RB [B̂
ĥ(n) , f ] ≤ inf

h∈Hn

{
(2C� + CE )B(n)

A (f,h) + (7C� + 2CE )ψn(f,h)
}

+ (10C� + 3CE )εn.

We remark that the assertions of Theorem 1 and of Proposition 1 differ only by the numerical
constant. We would like to emphasize that although Proposition 1 holds under quite restrictive
assumption (3.3) it is useful for some problems studied in Section 4. Moreover, it does not require
the hypothesis Aupper.
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What does make possible the assertion of Theorem 2? The goal of this paragraph is to discuss
on informal way which properties of (�n, �)-selection rule lead to the assertion of Theorem 2.
Introduce the “oracle nuisance parameter” horacle

n which is a minimizer of the right-hand side of
oracle-type inequality proved in Theorem 1, that is

horacle
n = arg inf

h∈Hn

{
B(n)

A (f,h) + ψn(f,h)
}
. (3.5)

Without loss of generality, we will assume that horacle
n ∈ Hn.

The first property that we are going to discuss is the following: with “high probability”

ψn

(
f, ĥ(n)

)≤ C1
{
B(n)

A

(
f,horacle

n

)+ ψn

(
f,horacle

n

)}
, ∀f ∈ F,

where C1 is a numerical constant independent of f and n. In many particular problems, one can
find a constant C2 such that

B(n)
A

(
f,horacle

n

)+ ψn

(
f,horacle

n

)≤ C2ψn

(
f,horacle

n

)
, ∀f ∈ F,

and, therefore, with “high probability”

ψn

(
f, ĥ(n)

)≤ C3ψn

(
f,horacle

n

)
.

The latter is well-known in the bandwidth selection problem as overshooting effect. In the most
simple case Hn ⊂ R+ this means that ĥ(n) ≥ horacle

n with probability tending to 1, n → ∞. It is
worth noting that this property is inherent in many adaptive procedures and, therefore, an analog
of Theorem 2 for other selection rules seems to be possible.

The second property, which is heavily related to (�n, �)-selection rule, is the following: with
“high probability”

�
(
�

ĥ(n) ,A(f )
)≤ C4

{
B(n)

A

(
f,horacle

n

)+ ψn

(
f,horacle

n

)}
.

In particular if the condition (3.3) of Proposition 1 is fulfilled then

�
(
ϒ
ĥ(n) ,B(f )

)≤ C5
{
B(n)

A

(
f,horacle

n

)+ ψn

(
f,horacle

n

)}
, (3.6)

and after simple manipulations the assertion of this proposition follows from (3.5) and (3.6).

3.1. Proof of Theorem 2

For the simplicity of notations throughout the proof, we will write ĥ instead of ĥ(n) and we break
the proof on several steps.

10. Let us prove that for any f ∈ F and n ≥ 1

P
(n)
1,f

{
ĥ /∈ Un(f )

}≤ (30εn/δn)
q . (3.7)
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First note that in view of the triangle inequality

�
(
�

ĥ
,A(f )

) ≤ �
(
Â
ĥ
,A(f )

)+ �(Â
ĥ
,�

ĥ
)

≤ �
(
Â
ĥ
,A(f )

)+ �n(ĥ) + sup
η∈Hn

[
�(Âη,�η) − �n(η)

]
(3.8)

= �
(
Â
ĥ
,A(f )

)+ �n(ĥ) + ξ1.

To get the last inequality, we have used that ĥ ∈Hn. Next, we get from the definition of ĥ and (2.4)

�n(ĥ) ≤ R̂n(ĥ) + 2�n(ĥ) ≤ R̂n(h) + 2�n(h) + εn

≤ sup
η∈Hn

�
(
�h,η(f ),�η(f )

)+ 2�n(h) + ξ1 + ξ2 + ε′
n (3.9)

≤ B(n)
A (f,h) + 2�n(h) + ξ1 + ξ2 + ε′

n, ∀h ∈ Hn.

Set ξ3 = suph∈Hn
[�n(h) − C�ψ(f,h)]+. We deduce from (2.7), (3.8) and (3.9) that

�
(
�

ĥ
,A(f )

) ≤ inf
h∈H

[
2B(n)

A (f,h) + 7�n(h)
]+ 5ξ1 + 3ξ2 + 2ε′

n

(3.10)
≤ inf

h∈H
[
2B(n)

A (f,h) + 7C�ψ(f,h)
]+ 5ξ1 + 3ξ2 + 7ξ3 + 2ε′

n.

Hence, for any f ∈ F and n ≥ 1{
ĥ /∈ Un(f )

}⊆ {
5ξ1 + 3ξ2 + 7ξ3 + 2ε′

n ≥ δn

}⊆ {10ξ1 + 6ξ2 + 14ξ3 ≥ δn}.

To get the last inclusion, we have used that ε′
n ≤ δn/4. The statement (3.7) follows now from the

Markov inequality and the hypotheses Aupper and Aupper.
20. For any f ∈ F and n ≥ 1 the following is true:

P
(n)
1,f

{
ĥ /∈ Vn(f )

}≤ (5εn/δn)
q . (3.11)

Indeed, in view of (3.9)

�n(ĥ) ≤ 2 inf
h∈H

[
B(n)

A (f,h) + C�ψ(f,h)
]+ ξ1 + ξ2 + 2ξ3 + ε′

n.

Hence, putting ξ4 = suph∈Hn
[ψ(f,h) − C��n(h)]+ we obviously have

ψ(f, ĥ) ≤ C��n(ĥ) + ξ4

≤ 2C� inf
h∈H

[
B(n)

A (f,h) + C�ψ(f,h)
]

+ C�

[
ξ1 + ξ2 + 2ξ3 + ε′

n

]+ ξ4.
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Taking into account that C� ≥ 1 and ε′
n ≤ δn/4 we have{

ĥ /∈Vn(f )
} =

{
ψ(f, ĥ) ≥ 2C2

� inf
η∈Hn

[
B(n)

A (f, η) + 2ψn(f,η)
]}

⊆ {
ξ1 + ξ2 + 2ξ3 + ξ4 + ε′

n ≥ 2δn

}⊆ {ξ1 + ξ2 + 2ξ3 + ξ4 ≥ δn}.
The statement (3.11) follows now from the Markov inequality hypotheses Aupper and Aupper.

30. Since ĥ is X
(n)
1 -measurable, {B̂h,h ∈ H} is X

(n)
2 -measurable and X

(n)
1 ,X

(n)
2 are indepen-

dent we get (
E

(n)
f

{
ρq
(
B̂
ĥ
,ϒ

ĥ
(f )

)}) 1
q = (

E
(n)
1,f

{
Eq

n (f, ĥ)
}) 1

q . (3.12)

Next, we obviously have

En(f, ĥ) = En(f, ĥ)1
ĥ∈Vn(f )

+ En(f, ĥ)1
ĥ/∈Vn(f )

≤ sup
h∈Vn(f )

En(f,h) + sup
h∈Hn

En(f,h)1
ĥ/∈Vn(f )

.

Hence, we get from (3.11)(
E

(n)
1,f

{
Eq

n (f, ĥ)
}) 1

q ≤ sup
h∈Vn(f )

En(f,h) + sup
h∈Hn

En(f,h)(5εn/δn) = τn(f ). (3.13)

40. We have

ρ
(
ϒ
ĥ
(f ),B(f )

) = ρ
(
ϒ
ĥ
(f ),B(f )

)
1
ĥ∈U(f )

+ ρ
(
ϒ
ĥ
(f ),B(f )

)
1
ĥ/∈U(f )

≤ sup
h∈U(f )

ρ
(
ϒh(f ),B(f )

)+ sup
h∈Hn

ρ
(
ϒh(f ),B(f )

)
1
ĥ/∈U(f )

.

Hence, in view of (3.7) we obtain(
E

(n)
f

{
ρq
(
ϒ
ĥ
(f ),B(f )

)}) 1
q ≤ νn(f ). (3.14)

It remains to note that in view of triangle inequality

RB [B̂
ĥ(n) , f ] ≤ (

E
(n)
f

{
ρq
(
ϒ
ĥ
(f ),B(f )

)}) 1
q + (

E
(n)
f

{
ρq
(
B̂
ĥ
,ϒ

ĥ
(f )

)}) 1
q

and the assertion of the theorem follows from (3.13) and (3.14).

3.2. Proof of Proposition 1

We have in view of the assumption (3.3) for any f ∈ F

ρ
(
B̂
ĥ
,B(f )

) ≤ ρ
(
ϒ
ĥ
(f ),B(f )

)+ ρ
(
B̂
ĥ
,ϒ

ĥ
(f )

)
(3.15)

≤ C��
(
�

ĥ
(f ),A(f )

)+ ρ
(
B̂
ĥ
,ϒ

ĥ
(f )

)
.
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Since by construction ĥ is X
(n)
1 -measurable and X

(n)
1 and X

(n)
2 are independent

(
E

(n)
f

{
�q
(
�

ĥ
(f ),A(f )

)}) 1
q = (

E
(n)
1,f

{
�q
(
�

ĥ
(f ),A(f )

)}) 1
q .

We deduce from (3.10) and the hypothesis Aupper for any f ∈ F(
E

(n)
f

{
�q
(
�

ĥ
(f ),A(f )

)}) 1
q ≤ inf

h∈Hn

{
2B(n)

A (f,h) + 7ψn(f,h)
}+ 10εn. (3.16)

For any h ∈ Hn and f ∈ F we have in view of (3.9) and the assumption (3.4),

En(f, ĥ) ≤ CE�n(ĥ) ≤ CE
[
B(n)

A (f,h) + 2�n(h) + ξ1 + ξ2 + εn

]
,

and, therefore, we deduce from the hypothesis Aupper and (3.12)(
E

(n)
f

{
�q
(
B̂
ĥ
,ϒ

ĥ
(f )

)}) 1
q ≤ CE

[
B(n)

A (f,h) + 2ψn(f,h)
]+ 3CEεn.

Since the left-hand side of the obtained inequality is independent of h we get(
E

(n)
f

{
�q
(
B̂
ĥ
,ϒ

ĥ
(f )

)}) 1
q ≤ CE inf

h∈Hn

{
B(n)

A (f,h) + 2ψn(f,h)
}+ 3CEεn. (3.17)

The assertion of the theorem follows now from (3.15), (3.16), (3.17) and the triangle inequality.

3.3. From oracle approach to adaptive estimation

In this section, we discuss how to use the oracle approach in adaptive estimation over the given
scale of functional classes. We present several results concerning adaptation which will be di-
rectly deduced from Theorems 1, 2 and Proposition 1.

Let {Fa,a ∈ A} be a given collection of subsets of F and suppose that an abstract oracle
inequality (1.1) is established. Define

Rn(Fa) = sup
f ∈Fa

inf
h∈H

A(n)
� (f,h) + crn, a ∈A.

We immediately deduce from (1.1) that for any a ∈ A

lim sup
n→∞

R−1
n (Fa) sup

f ∈Fa
RA[Â

ĥ
, f ] ≤ 1.

Using modern statistical language we can state that the estimator Â
ĥ

is Rn-adaptive, where Rn =
{Rn(Fa),a ∈A} is the family of normalizations. If additionally one can prove that for any a ∈ A

lim inf
n→∞ R−1

n (Fa) inf
Q̃

sup
f ∈Fa

RA[Q̃, f ] > 0,



2790 O.V. Lepski

where infimum is taken over all X(n)-measurable S1-valued random mappings we can assert
that the estimator Â

ĥ
is optimally adaptive over the scale {Fa,a ∈ A}. The latter means that this

estimator is simultaneously asymptotically minimax on each Fa.
Consequences of Theorem 1 and Proposition 1. Set Sn = {sn(Fa),a ∈ A}, where

sn(Fa) = sup
f ∈Fa

inf
h∈Hn

{
B(n)

A (f,h) + ψn(f,h)
}

and let ĥ(n) is obtained by (�n, �)-selection rule.
The results below follow immediately from Theorem 1 and Proposition 1.

Theorem 3. Let Apermute and Aupper hold and assume that εn = o(infa∈A sn(Fa)), n → ∞.

(1) Then, for any a ∈A

lim sup
n→∞

s−1
n (Fa) sup

f ∈Fa
RA[Â

ĥ(n) , f ] ≤ 5.

(2) If additionally (3.3) and (3.4) are fulfilled, then for any a ∈ A

lim sup
n→∞

s−1
n (Fa) sup

f ∈Fa
RB [B̂

ĥ(n) , f ] ≤ 7C� + 2CE .

Thus, the estimators Â
ĥ(n) and B̂

ĥ(n) are simultaneously Sn-adaptive. Hence, if Â
ĥ(n) is opti-

mally adaptive in Problem A one can expect that B̂
ĥ(n) is optimally adaptive in Problem B.

Adaptive analogue of Theorem 2. Define for any a ∈ A

ψn(Fa,h) = inf
f ∈Fa

ψn(f,h) (3.18)

and introduce the following sets of parameters

Vn(a) = {
h ∈Hn : ψn(Fa,h) < 4C2

�sn(Fa)
}
,

Un(a, f ) = {
h ∈Hn : �(�h,A(f )

)
< 8C�sn(Fa)

}
.

It is obvious that Vn(f ) ⊆ Vn(a) and Un(f ) ⊆ Un(a, f ) for any f ∈ Fa. Set finally

ϕn(Fa) = sup
f ∈Fa

sup
h∈Vn(a)

En(f,h) + sup
f ∈Fa

sup
h∈Un(a,f )

ρ
(
ϒh,B(f )

)
,

κn(Fa) = (5εn/δn) sup
f ∈Fa

[
sup
h∈Hn

En(f,h) + 6 sup
h∈Hn

ρ
(
ϒh,B(f )

)]
and let ĥ(n) is obtained by (�n, �)-selection rule.

The following statement is the direct consequence of Theorem 2.
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Theorem 4. Let Apermute, Aupper and Aupper hold.
Assume that κn(Fa) = o(ϕn(Fa)), n → ∞, for any a ∈ A. Then, for any a ∈ A

lim sup
n→∞

sup
f ∈Fa

ϕ−1
n (Fa)RB [B̂

ĥ
(n) , f ] ≤ 1.

3.4. Some computations in the density model

Our objective now is to give an example of statistical model and problem in which we are able to
check the hypotheses Apermute, Aupper and Aupper. We also gives some bounds for the quantities
B(n)

A (f,h) and ψn(f,h) involved in the (�n, �)-oracle inequality. It allows us, in particular, to
compute the rate

sn(Fa) = sup
f ∈Fa

inf
h∈Hn

{
B(n)

A (f,h) + ψn(f,h)
}

appeared in all adaptive results in the case when Fa =Np,d( 
β,L), a= ( 
β,L), where Np,d( 
β,L)

anisotropic Nikol’skii class. The results presented in this section form basic tools for the solution
of problem studied in Sections 4 and 5.

Let T (m) = (T1, . . . , Tm),m ∈ N
∗, be i.i.d. random vectors taking values in R

d and having
density p with respect to Lebesgue measure. As before P

(m)
p and E

(m)
p denote the probability law

and mathematical expectation of T (m). The goal is to estimate A(p) = p and the quality of an
estimator procedures is measured by Lp-risk, 1 ≤ p < ∞, that is

RA[Ãm,p] = (
E

(m)
p

[‖Ãm − p‖p
p

])1/p
, p ∈P,

where P is the set of all probability densities and �p(g) = ‖g‖p
p = ∫

Rd |g(x)|p dx.
Remind that Hd = {((2−k1 , . . . ,2−k1)), (k1, . . . , kd) ∈ N

d} is the diadic grid in (0,1]d and
K
h(·), 
h ∈Hd be defined in (1.3). Introduce the collection of standard kernel estimators

A
(
Hd

m

)=
{

Â
h(·) = m−1
m∑

i=1

K
h(Ti − ·), 
h ∈Hd
m

}
, (3.19)

where Hd
m = {
h ∈ Hd : ln(m)/m ≤ V
h ≤ e−√

ln(m)} and V
h =∏d
j=1 hj .

From now on we will assume that the kernel K involved in the definition of K
h is continuous,
bounded, symmetric function belonging to L1(R

d) and
∫

K = 1.

3.4.1. Verification of the hypotheses Apermute, Aupper and Aupper

Recall that “�” denotes the convolution operator and introduce for any 
h, 
η ∈Hd

Â
h,
η(·) = m−1
m∑

i=1

[K
h � K
η](Ti − ·). (3.20)
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Set also for any 
h ∈ Hd and m ∈ N
∗

�m(
h) =
{

128‖K‖1‖K‖p(mV
h)
1/p−1, 1 ≤ p < 2;

9‖K‖1‖K‖2(mV
h)
−1/2, p = 2;

and if p > 2

�m(
h) = 480p‖K‖1

ln(p)

{
1√
m

(∫
Rd

[
1

m

m∑
i=1

K2

h(Zi − t)

]p/2

dt

)1/p

+ 2‖K‖p(mV
h)
−1/2

}
.

We remark that �m(·) is not random if p ≤ 2. It is obvious that the hypothesis Apermute is fulfilled.
Define the empirical process

ξm(x, 
h) = 1

m

m∑
i=1

[
K
h(Ti − x) −E

(m)
p K
h(Ti − x)

]
, x ∈R

d .

Auxiliary results. The following statements are the consequences of the results established in
Lemmas 1 and 2 in Goldenshluger and Lepski [20] and Theorem 3 in Goldenshluger and Lepski
[19]. Set P(D) = {p ∈P : ‖p‖∞ ≤ D}, D > 0.

Lemma 1. For any 1 ≤ p < ∞ and for all m ∈N
∗

sup
p∈P

E
(m)
p

(
sup


h∈Hd
m

[∥∥ξm(·, 
h)
∥∥

p
− ‖K‖−1

1 �m(
h)
]q
+
)

≤ ε
q
m(p), p ∈ [1,2); (3.21)

sup
p∈P(D)

E
(m)
p

(
sup


h∈Hd
m

[∥∥ξm(·, 
h)
∥∥

p
− ‖K‖−1

1 �m(
h)
]q
+
)

≤ ε
q
m(p), p ∈ [2,∞), (3.22)

where for any p ≥ 1 and D > 0

lim sup
m→∞

maεm(p) = 0, ∀a > 0. (3.23)

Moreover for any p > 2, there exists D> 0 completely determined by K,p,D and d such that

sup
p∈P(D)

E
(m)
p

(
sup


h∈Hd
m

[
�m(
h) −D(mV
h)

−1/2]q
+
)

≤ ε
q
m(p). (3.24)

Let us remark the following simple consequence of (3.23) and (3.24).

sup
p∈P(D)

(
E

(m)
p �

q
m(
h)

)1/q ≤ D(mV
h)
−1/2, ∀
h ∈Hd

m,∀m ∈ N
∗. (3.25)

In order to get this inequality it suffices to note that (mV
h)−1/2 ≥ m−1/2 for all 
h ∈ (0,1]d .
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Verification of the hypothesis Aupper. Set �
h(p, ·) = E
(m)
p {Â
h(·)}, 
h ∈Hd

m and note that

�
h(p, ·) = E
(m)
p K
h(T1 − ·) =

∫
Rd

K
h(z − ·)p(z) dz. (3.26)

In view of the assertions (3.21) and(3.22) of Lemma 1 we can conclude that the hypothesis
Aupper(i) is fulfilled for any p ≥ 1. In order to verify Aupper(ii) note first the following obvious
identities.

Â
h,
η ≡ K
h � Â
η ≡ K
η � Â
h, ∀
h, 
η ∈Hd . (3.27)

Hence, putting �
h,
η(p, ·) = E
(m)
p {Â
h,
η(·)}, ζ

(m)


h,
η (·) = Â
h,
η(·) − �
h,
η(p, ·) and ζ
(m)


h (·) = Â
h(·) −
�
h(p, ·) we deduce from the Young inequality, Folland [15], Theorem 6.18,∥∥ζ (m)


h,
η
∥∥

p
≤ ‖K‖1

∥∥ζ (m)


η
∥∥

p
,∥∥ζ (m)


h,
η
∥∥

p
≤ ‖K‖1

∥∥ζ (m)


h
∥∥

p
⇒ ∥∥ζ (m)


h,
η
∥∥

p
≤ ‖K‖1

(∥∥ζ (m)


η
∥∥

p
∧ ∥∥ζ (m)


h
∥∥

p

)
.

It yields for all 
h, 
η ∈Hd
m in view of the obvious inequality a ∧ c ≤ b ∧ d + (a − b)+ ∨ (c − d)+(∥∥ζ (m)


h,
η
∥∥

p
− �m(
h) ∧ �m(
η)

)
+ ≤ ‖K‖1 sup


h∈Hd
m

(∥∥ζ (m)


h
∥∥

p
− ‖K‖−1

1 �m(
h)
)
+.

In view of the assertions (3.21) and (3.22) of Lemma (1) we can conclude that the hypothesis
Aupper(ii) is fulfilled for any p ≥ 1.

Verification of the hypothesis Aupper. First, we note that �m is not random if p ∈ [1,2] and,
therefore, in this case Aupper is checked with C� = 1.

Next, if p > 2 we have in view of the definition of �m and (3.25) for any p ∈P(D)

960p‖K‖1‖K‖p

ln(p)
(mV
h)

−1/2 ≤ (
E

(m)
p �

q
m(
h)

)1/q ≤D(mV
h)
−1/2, ∀
h ∈ Hd

m. (3.28)

Moreover, �m ≥ 960p‖K‖1‖K‖p

ln(p)
(mV
h)−1/2 and, therefore, Aupper is fulfilled in view of the asser-

tion (3.22) of Lemma (1) with C� =D∨ 960p‖K‖1‖K‖p

ln(p)
.

3.4.2. Some bounds for the quantities B(n)
A (f,h) and ψn(f,h)

Let us find upper estimate for B(n)
A (f,h) and lower and upper estimates for ψn(f,h), which both

appear in (�n, �)-oracle inequality. In the considered case f = p, n = m, h= 
h, A(f ) = A(p) =
p, �(·) = ‖ · ‖p and �n = �m.

Note first that (3.27) implies that for any x ∈Rd

�
h,
η(p, x) − �
η(p, x) = K
η � �
h(p, x) − �
η(p, x)

=
∫
Rd

K
η(x − y)

(∫
Rd

K
h(z − y)p(z) dz − p(y)

)
dy.
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Applying the Young inequality we obtain for all p ≥ 1

B(m)
A (p, 
h) ≤ (

1 + 2‖K‖1
)‖K
h � p− p‖p, ∀
h ∈ Hd . (3.29)

In view of assertion (3.25) of Lemma 1 and the definition of �m we get

C(nV
h)
1

p∧2 −1 ≤ ψn(p, 
h) := [
E

(m)
p

{
�

p
m(h)

}] 1
p ≤ C(nV
h)

1
p∧2 −1

, ∀p ∈ Pp, (3.30)

where Pp = P if p < 2, Pp = {p ∈ P : p ∈ P(D)} if p ≥ 2 and C = C = 128‖K‖1‖K‖p if

p ∈ [1,2), C = C = 9‖K‖1‖K‖2 if p = 2 and C = 960p‖K‖1‖K‖p

ln(p)
, C = D if p > 2. We remark

that the obtained lower and upper estimates are independent of p.

3.4.3. Computation of the rate on anisotropic Nikol’skii class

In view of (3.29) and (3.30), we should bound from above

sup
p∈Fa

inf

h∈Hd

m

{‖K
h � p− p‖p + (mV
h)
1

p∧2 −1}
.

This quantity with Fa =Np,d( 
β,L),a = ( 
β,L), where Np,d( 
β,L) is anisotropic Nikol’skii class
was evaluated in Goldenshluger and Lepski [20].

Let (e1, . . . , ed) denote the canonical basis of Rd . For function G :Rd →R
1 and real number

u ∈R define the first order difference operator with step size u in direction of the variable xj by

�u,jG(x) = G(x + uej ) − G(x), j = 1, . . . , d.

By induction, the kth order difference operator with step size u in direction of the variable xj is
defined as

�k
u,jG(x) = �u,j�

k−1
u,j G(x) =

k∑
l=1

(−1)l+k

(
k

l

)
�ul,jG(x).

Definition 1. For given 
β = (β1, . . . , βd) ∈ (0,∞)d ,L > 0 and p ≥ 1 we say that function G :
R

d → R
1 belongs to the anisotropic Nikol’skii class Np,d( 
β,L) if ‖G‖p ≤ L and for every

j = 1, . . . , d there exists natural number kj > βj such that∥∥�kj

u,jG
∥∥

p
≤ L|u|βj , ∀u ∈R,∀j = 1, . . . , d.

We will use the following specific kernel K in the definition of the family A(Hd
m) [see, e.g.,

Kerkyacharian et al. [25] or Goldenshluger and Lepski [20]].
Let s ∈N∗ be fixed and let w : R1 →R1 satisfy

∫
w(y)dy = 1, and w ∈ C(s)(R1). Put

Ks(y) =
s∑

i=1

(
s

i

)
(−1)i+1 1

i
w

(
y

i

)
, K(x) =

d∏
j=1

Ks(xj ), x = (x1, . . . , xd). (3.31)
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Let s > 0 be an arbitrary but a priory chosen number and let the kernel K is constructed in
accordance with (3.31). Next result can be found for instance, in Goldenshluger and Lepski [20].

For any 
β ∈ (0, s]d , L > 0 and p ≥ 1 there exists υ > 0 independent of L such that

sup
p∈Np,d ( 
β,L)∩Pp

inf

h∈Hd

m

{‖K
h � p− p‖p + (mV
h)
1

p∧2 −1} ≤ υsm
(
Np,d( 
β,L) ∩Pp

)
(3.32)

=: υL
1−1/(p∧2)

β+1−1/(p∧2) m
− 1−1/(p∧2)

1+(1/β)(1−1/(p∧2)) .

It is well known that sm(Np,d( 
β,L) ∩Pp) is the minimax rate of convergence on Np,d( 
β,L) ∩
Pp .

Concluding remarks. (�n, �)-selection rule with �n = �m,n = m, and �(·) = ‖·‖p is a partic-
ular case of the selection scheme proposed in Goldenshluger and Lepski [20]. Selected in accor-
dance with this rule estimator from the collection (3.19) is, in view of (3.29), (3.30), (3.32) and
the first assertion of Theorem 3, optimally-adaptive over the collection of anisotropic Nikol’skii
classes. For the first time, it was proved in Goldenshluger and Lepski [20], Theorem 4.

4. Adaptive estimation in the generalized deconvolution model

Consider the following observation scheme introduced in Lepski and Willer [35]:

Zi = Xi + εiYi, i = 1, . . . , n, (4.1)

where Xi, i = 1, . . . , n, are i.i.d. d-dimensional random vectors with common density f to be
estimated. The noise variables Yi, i = 1, . . . , n, are i.i.d. d-dimensional random vectors with
known common density g. At last εi ∈ {0,1}, i = 1, . . . , n, are i.i.d. Bernoulli random variables
with P(ε1 = 1) = α, where α ∈ [0,1) is supposed to be known. The sequences {Xi, i = 1, . . . , n},
{Yi, i = 1, . . . , n} and {εi, i = 1, . . . , n} are supposed to be mutually independent.

Let us note that the case α = 1 corresponds to the pure deconvolution model Zi = Xi +Yi, i =
1, . . . , n discussed in Introduction, whereas the case α = 0 corresponds to the direct observation
scheme Zi = Xi, i = 1, . . . , n. The “intermediate” case α ∈ (0,1), considered for the first time
in Hesse [23], can be treated as the mathematical modeling of the following situation. One part
of the data, namely (1 − α)n, is observed without noise. If the indexes corresponding to these
observations were known, the density f could be estimated using only this part of the data,
with the accuracy corresponding to the direct case. The main question we will address in this
intermediate case is whether the same accuracy would be achievable if the latter information is
not available?

Thus, ρp(g) = ‖g‖p
p = ∫

Rd |g(x)|p dx, F=P is the set of all probability densities, B(f ) = f

and the quality of an estimator procedures is measured by Lp-risk

RB [B̃n, f ] = (
E

(n)
f

[‖B̃n − f ‖p
p

])1/p
, f ∈ P.

At last, let X
(n)
1 = (X1, . . . ,X[n/2]) and X

(n)
2 = (X[n/2]+1, . . . ,Xn), where [a] denotes the integer

part of a ∈R.
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All results presented in this section will be a established under the following condition imposed
on the distribution of the noise variable Y1. In what follows for any Q ∈ L1(R

d) its Fourier
transform will be denoted by Q̌.

Assumption 1. (1) if α ∈ (0,1) then there exists � > 0 such that∣∣1 − α + αǧ(t)
∣∣≥ �, ∀t ∈R

d ;

(2) if α = 1 then there exists 
μ = (μ1, . . . ,μd) ∈ (0,∞)d and G1,G2 > 0 such that

G1

d∏
j=1

(
1 + t2

j

)− μj
2 ≤ ∣∣ǧ(t)

∣∣≤ G2

d∏
j=1

(
1 + t2

j

)− μj
2 , ∀t ∈ R

d .

We remark that Assumption 1 is very weak when α ∈ (0,1). It is verified for many distribu-
tions, including centered multivariate Laplace and Gaussian ones. Note also that Assumption 1
always holds with � = 1 − 2α if α < 1/2. Additionally, it holds with � = 1 − α if ǧ is a
real positive function. The latter is true, in particular, for any probability law obtained by the
even number of convolutions of a symmetric distribution with itself. As to the case α = 1 As-
sumption 1 is s well-known in the literature condition referred to moderately ill-posed statistical
problem. In particular, it is checked for multivariate Laplace and Gamma laws.

Below we introduce families of estimators whose construction involved kernel K . Through-
out this section without further mentioning we will additionally assume that Ǩ is compactly
supported and Ǩ(t) = 1 for all t ∈ [−1,1]d .

From now on c1, c2, . . . , denote the constants that may depends only on K,p,D,D, d and
α,�,G1,G2, 
μ appeared in Assumption 1. In particular they are independent of f and n.

4.1. Idea of estimator construction

Let K
h(·), 
h ∈ (0,1]d , be defined in (1.3) and let M(·, 
h) :Rd → R satisfy the operator equation

K
h(y) = (1 − α)M(y, 
h) + α

∫
Rd

g(t − y)M(t, 
h)dt, y ∈R
d . (4.2)

Recall that V
h = ∏d
j=1 hj , Hd

m = {
h ∈ Hd : ln(m)/m ≤ V
h ≤ e−√
ln(m)},m ≥ 1, and introduce

the following estimator’s collection built from X
(n)
2

B
(
Hd

[n/2]
)=

{
B̂
h(·) = (

n − [n/2])−1
n∑

i=[n/2]+1

M(Zi − ·, 
h), 
h ∈Hd
[n/2]

}
. (4.3)

Our goal is to select an estimator from this collection and to study its properties. Following our
general receipt, we suggest to proceed as follows.
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• Consider first the estimation of Ag(f ) = (1−α)f +α[g�f ], where, remind “�” denotes the
convolution operator. Note that Ag(f ) is the density of Z1 and, therefore, can be estimated

from the observation X
(n)
1 using standard kernel estimator. Introduce the collection

A
(
Hd

[n/2]
)=

{
Â
h(·) = [n/2]−1

[n/2]∑
i=1

K
h(Zi − ·), 
h ∈ Hd
[n/2]

}
. (4.4)

• To each estimator from this collection associate, its Lp-risk (�(·) = ‖ · ‖p)

RA[Â
h, f ] = (
E

(n)
f

[∥∥Â
h − Ag(f )
∥∥p

p

])1/p
, f ∈P.

• Select an estimator from the collection A(Hd
[n/2]) in accordance with (�n, �)-selection rule

based on the collection of auxiliary estimators (3.20), where T (m) = (X1, . . . ,X[n/2]),m =
[n/2] and �n = �[n/2], �(·) = ‖ · ‖p . Thus, the selection rule is

R̂n(
h) := sup

η∈Hd[n/2]

[‖Â
h,
η − Â
η‖p − 2�[n/2](
η)
]
+; (4.5)


hn := inf

h∈Hd[n/2]

[
R̂n(
h) + 2�[n/2](
h)

]
. (4.6)

• Choose the estimator B̂
hn
(·).

The theoretical properties of the estimator B̂
hn
(·) will be then deduced with help of Proposition 1,

Theorem 3(2) and Theorem 4.

4.2. Some bounds for the quantity En(·, ·)
Introduce the following notations. Set for any x ∈R

d

χ
(n)


h (x) = B̂
h − ϒ
h(f, x), ϒ
h(f, x) = E
(n)
2,f

{
B̂
h(x)

}=
∫
Rd

M(z − x, 
h)Ag(f, z) dz.

Put for brevity p = Ag(f ). Applying Bahr–Esseen and Rosenthal inequalities, von Bahr and

Esseen [46], Rosenthal [42], to the sum of i.i.d. random variables χ
(n)


h (x), we have for any

x ∈R
d

c−1
4 E

(n)
2,f

∣∣χ(n)


h (x)
∣∣p ≤ np−1

∫
Rd

∣∣M(z − x, 
h)
∣∣pp(z) dz, p ≤ 2;

c−1
4 E

(n)
2,f

∣∣χ(n)


h (x)
∣∣p ≤

(
n−1

∫
Rd

M2(z − x, 
h)p(z) dz

)p/2

+ np−1
∫
Rd

∣∣M(z − x, 
h)
∣∣pp(z) dz, p > 2.
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Noting that in view of the Fubini theorem E
(n)
2,f ‖χ(n)


h ‖p
p = ‖E(n)

2,f |χ(n)


h (·)|p‖1 one has

(
E

(n)
2,f

∥∥χ(n)


h
∥∥p

p

)1/p ≤ c4n
1/p−1

∥∥M(·, 
h)
∥∥

p
, p ≤ 2;

(
E

(n)
2,f

∥∥χ(n)


h
∥∥p

p

)1/p ≤ c4n
− 1

2

{∫
Rd

(∫
Rd

M2(z − x, 
h)p(z) dz

)p/2

dx

}1/p

+ c4n
1−p
p
∥∥M(·, 
h)

∥∥
p

≤ c4
(‖p‖1/2−1/p∞ n− 1

2
∥∥M(·, 
h)

∥∥
2 + n

1−p
p
∥∥M(·, 
h)

∥∥
p

)
, p > 2.

To get the last estimate, we have used again the Young inequality. Thus, for any 
h ∈ Hd we have
the following bound for the quantity E(·, ·) defined in (3.1)

E(f, 
h) := (
E

(n)
2,f

∥∥χ(n)


h
∥∥p

p

)1/p

(4.7)
≤ c5

(
n−1/2

∥∥M(·, 
h)
∥∥

2 + n1/p−1
∥∥M(·, 
h)

∥∥
p

)
, ∀f ∈ Pp.

We would like to stress that if α = 1 and ‖g‖∞ < ∞ then Pp =P for all p ≥ 1.
Let M̌(t, 
h), t ∈ R

d , denote the Fourier transform of M(·, 
h). Then, we obtain in view of the
definition of M(·, 
h)

M̌(t, 
h) = Ǩ(t 
h)
[
(1 − α) + αǧ(−t)

]−1
, t ∈ R

d . (4.8)

The conditions imposed on K guarantee that M̌(·, 
h) ∈ L1(R
d) ∩ L2(R

d) for any 
h ∈ Hd and,
hence, ∥∥M(·, 
h)

∥∥∞ ≤ (2π)−d
∥∥M̌(·, 
h)

∥∥
1,

∥∥M(·, 
h)
∥∥

2 = (2π)−d
∥∥M̌(·, 
h)

∥∥
2.

Set 
μ(α) = 
μ, α = 1, 
μ(α) = (0, . . . ,0), α ∈ [0,1). We have in view of Assumption 1 for any

h ∈Hd

∥∥M(·, 
h)
∥∥∞ ≤ c6

d∏
j=1

h
−1−μj (α)

j ,
∥∥M(·, 
h)

∥∥
2 ≤ c6

d∏
j=1

h
− 1

2 −μj (α)

j . (4.9)

Additionally we deduce from (4.9) for any p > 2

∥∥M(·, 
h)
∥∥

p
≤ ∥∥M(·, 
h)

∥∥1− 2
p∞
∥∥M(·, 
h)

∥∥ 2
p

2 ≤ c6

d∏
j=1

h
−1+1/p−μj (α)

j , ∀
h ∈Hd . (4.10)

If p < 2, we will study only the case α < 1/2. Then we have in view of the definition of M(·, 
h),
applying the Young and triangle inequalities

‖K
h‖p ≥ (1 − α)
∥∥M(·, 
h)

∥∥
p

− α
∥∥M(·, 
h)

∥∥
p

= (1 − 2α)
∥∥M(·, 
h)

∥∥
p
.
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It yields, for any p < 2 and α < 1/2

∥∥M(·, 
h)
∥∥

p
≤ (1 − 2α)−1‖K‖p

d∏
j=1

h
−1+1/p
j , ∀
h ∈Hd . (4.11)

Thus, we obtain from (4.7), (4.9), (4.10) and (4.11) for any 
h ∈Hd
[n/2]

sup
f ∈Pp

E(f, 
h) ≤ c7

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n− 1

2

d∏
j=1

h
− 1

2 −μj (α)

j , p ≥ 2, α ∈ [0,1];

n
1
p

−1
d∏

j=1

h
−1+1/p−μj (α)

j , p < 2, α ∈ [0,1/2).

(4.12)

To get the bound for p ≥ 2 we have taken into account that nV
h ≥ ln(n) if 
h ∈Hd
[n/2].

In fact (4.7) is true for all α ∈ [0,1] but it requires to impose several additional assumption
on g and we do not treat the case p < 2, α > 1/2 in the present paper. The interested reader can
look the paper Rebelles [39], where the corresponding norm is computed when α = 1.

4.3. Consequences of Proposition 1 and Theorem 3(2). Case α ∈ (0,1)

Let us compute the approximation error related to the estimator B̂
h. Note that for any 
h ∈Hd

ϒ
h(f, x) :=
∫
Rd

M(z − x, 
h)Ag(z) dz

= (1 − α)

∫
Rd

M(z − x, 
h)f (z) dz + α

∫
Rd

M(z − x, 
h)[f � g](z) dz

=
∫
Rd

f (t)

[
(1 − α)M(t − x, 
h) + α

∫
Rd

M(u, 
h)g
(
u − [t − x])du

]
dt

=
∫
Rd

K
h(t − x)f (t) dt.

Thus, we have for any 
h ∈ Hd and any p ≥ 1∥∥ϒ
h(f ) − f
∥∥

p
= ‖K
h � f − f ‖p. (4.13)

4.3.1. Verification of the condition (3.3) and (3.4) of Proposition 1

We will study two different cases: either p �= 2, α < 1/2 or p = 2, α ∈ (0,1).
Set �
h(f, ·) = E

(n)
1,f {Â
h(·)}, 
h ∈ (0,1]d and note that

�
h(f, ·) =
∫
Rd

K
h(z − ·)Ag(f, z) dz = (1 − α)[K
h � f ](·) + α[K
h � g � f ](·). (4.14)
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We have in view of (4.14) and the Young inequality (recall that g is a density)∥∥�
h(f ) − Ag(f )
∥∥

p
= ∥∥(1 − α){K
h � f − f } + αg � {K
h � f − f }∥∥

p

≥ (1 − 2α)‖K
h � f − f ‖p.

Thus, if α < 1/2 one has for any p ≥ 1 in view of (4.13)∥∥ϒ
h(f ) − f
∥∥

p
≤ (1 − 2α)−1

∥∥�
h(f ) − Ag(f )
∥∥

p

and, therefore, the condition (3.3) of Proposition 1 is fulfilled with C� = (1 − 2α)−1.
If p = 2 we have in view of (4.14), (4.13), Assumption 1 and the Parseval identity∥∥�
h(f ) − Ag(f )

∥∥
2 = ∥∥(1 − α)

[
Ǩ(
h·) − 1

]
f̌ (·) + α

[
Ǩ(
h·) − 1

]
ǧ(·)f̌ (·)∥∥2

= ∥∥{(1 + α) + αǧ(·)}[Ǩ(
h·) − 1
]
f̌ (·)∥∥2 ≥ �

∥∥[Ǩ(
h·) − 1
]
f̌ (·)∥∥2

= �
∥∥ϒ
h(f ) − f

∥∥
2.

We conclude that the condition (3.3) of Proposition 1 is fulfilled with C� = �−1 if p = 2.
Let us now check (3.4) of Proposition 1. Note that the definition of �[n/2] implies

�[n/2](
h) ≥ c9

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n− 1

2

d∏
j=1

h
− 1

2
j , p ≥ 2;

n
1
p

−1
d∏

j=1

h
−1+1/p
j , p < 2

(4.15)

and therefore, (3.4) is fulfilled with CE = c9/c7 in view of (4.12), since recall 
μ(α) = 0, α �= 1.

4.3.2. Main results

We deduce from Proposition 1 and Lemma 1 the following assertion.

Theorem 5. Let either p �= 2, α < 1/2 or p = 2, α ∈ (0,1). Then for all n ≥ 2

RB [B̂
hn
, f ] ≤ c10 inf


h∈Hn

{‖K
h � f − f ‖p + (nV
h)
1

p∧2 −1}+ ε[n/2], ∀f ∈ Pp.

We also have the following adaptive result.

Theorem 6. Let either p �= 2, α < 1/2 or p = 2, α ∈ (0,1). Then the estimator B̂
hn
is optimally-

adaptive over the scale of anisotropic classes {Np,d( 
β,L) ∩Pp, 
β ∈ (0, s]d ,L > 0}.

The fact that B̂
hn
is Sn-adaptive with Sn = {s[n/2](Np,d( 
β,L) ∩ Pp), 
β ∈ (0, s]d ,L > 0} fol-

lows from (3.32) with p = f and m = [n/2], the assertion (3.23) of Lemma 1 and the second
assertion of Theorem 3.
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The lower bound for minimax risk showing that Sn is the family of minimax rates in this
problem can be found in Lepski and Willer [35], Theorem 1.

Remark 3. The results presented in Theorems 5 and 6 are new.

4.4. Consequences of Theorem 4. Case α = 1,p = 2, d = 1

In this section, we will study the adaptive estimation over the collection of univariate Sobolev
classes.

Definition 2. Let β1 ∈ (0,∞)d and L > 0 be given. We say that Q ∈ L1(R
1) belongs to Sobolev

class W(β1,L) if ∫
R1

(
1 + t2)β1

∣∣Q̌(t)
∣∣2 dt ≤ L2.

The adaptive estimation over the collection of anisotropic Sobolev classes when α = 1 was
studied in Comte and Lacour [10].

Auxiliary inequalities. The results below follow from the Parseval identity, the properties of
the kernel K and Assumption 1. First note, that for any f ∈W(β1,L) and any h1 ∈ (0,1)∥∥Kh1 � Ag(f ) − Ag(f )

∥∥
2 ≤ G2Lh

β1+μ1
1 ,

since obviously Ag(f ) ∈W(β1 + μ1,G2L).
It yields in view of (3.29) and (3.30) with p= Ag(f ) and p = 2,

sn(Fa) = sup
f ∈Fa

inf
h∈Hn

{
B(n)

A (f,h) + ψn(f,h)
}

=: sup
f ∈W(β1,L)

inf
h1∈H 1

n

{(
1 + 2‖K‖1

)∥∥Kh1 � Ag(f ) − Ag(f )
∥∥

2 + c11(nh1)
− 1

2
}

(4.16)

≤ c12L
1

2β1+2μ1+1 n
− β1+μ1

2β1+2μ1+1 =: c12sn
(
W(β1,L)

)
.

We also have in view of Assumption 1 for any f ∈ W(β1,L), y > 0 and h1 ∈ (0,1]

‖Kh1 � f − f ‖2
2

≤
∫ y

−y

∣∣Ǩ(h1t) − 1
∣∣2∣∣f̌ (t)

∣∣2 dt + (
1 + ‖K‖1

)2
∫
R

1R\[−y,y](t)
∣∣f̌ (t)

∣∣2 dt

≤ c13

[(
1 + y2μ1

)∫ y

−y

∣∣g(t)
∣∣2∣∣Ǩ(h1t) − 1

∣∣2∣∣f̌ (t)
∣∣2 dt + L2y−2β1

]
≤ c13

[(
1 + y2μ1

)∥∥Kh1 � Ag(f ) − Ag(f )
∥∥2

2 + L2y−2β1
]
.
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Minimizing the r.h.s. of the latter inequality in y we get for any f ∈ W(β1,L) and h1 ∈ (0,1]

‖Kh1 � f − f ‖2 ≤ c13
[∥∥Kh1 � Ag(f ) − Ag(f )

∥∥
2

(4.17)

+ L
μ1

μ1+β1
∥∥Kh1 � Ag(f ) − Ag(f )

∥∥ β1
β1+μ1
2

]
.

Application of Theorem 4. First, we note that all assumptions of Theorem 4 are fulfilled. In-
deed, in Section 3.4.1 we have already checked the hypotheses Apermute, Aupper and Aupper.
Moreover, defined in (3.18) quantity in our case is given by

ψn

(
W(β1,L),h1

)= c14(nh1)
− 1

2 .

It yields together with (4.16) that

Vn(a) = {
h1 ∈ H1

n : h1 ≥ c15L
− 2

2β1+2μ1+1 n
− 1

2β1+2μ1+1
}
, a= (β1,L),

and we have that in view of (4.12)

sup
f ∈Fa

sup
h∈Vn(a)

En(f,h1) ≤ c16L
1+2μ1

2β1+2μ1+1 n
− β1

2β1+2μ1+1 . (4.18)

Since Un(a, f ) = {h1 ∈H1
n : ‖Kh1 � Ag(f ) − Ag(f )‖2 < 8sn(W(β1,L))} we obtain from (4.17)

sup
f ∈Fa

sup
h∈Un(a,f )

‖Kh1 � f − f ‖2 ≤ c17L
μ1

μ1+β1
[
sn
(
W(β1,L)

)] β1
β1+μ1 = c17L

1+2μ1
2β1+2μ1+1 n

− β1
2β1+2μ1+1 .

It yields together with (4.18)

ϕn

(
W(β1,L)

)= c18L
1+2μ1

2β1+2μ1+1 n
− β1

2β1+2μ1+1 , (4.19)

where c18 independent of L. Putting μ∗ = maxj=1,...,d μj we note that

δn ≥ c19n
− 1

2 , sup
f ∈P

sup
h1∈H1

n

En(f,h1) ≤ c20n
μ∗

,

sup
f ∈W(β1,L)

sup
h1∈(0,1]

‖Kh1 � f − f ‖2 ≤ 2‖K‖1L.

Hence, in view of the assertion (3.23) of Lemma 1 we can state that

lim sup
n→∞

na
κn

(
W(β1,L)

)= 0, ∀a > 0. (4.20)

Thus, we deduce from (4.17), (4.19), (4.20) and Theorem 4 the following result.
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Assertion 1. Let hn comes from (4.5)–(4.6). Then for any μ1 > 0, β1 > 0 and L > 0

lim sup
n→∞

ϕ−1
n

(
W(β1,L)

)
sup

f ∈W(β1,L)

{
E

(n)
f ‖B̂
hn

− f ‖2
2

} 1
2 < c21,

where c21 is independent of L.
The estimator B̂
hn

is optimally-adaptive over the scale {W(β1,L),β1 > 0,L > 0}.

Assertion 1 is the particular case of the results obtained in Comte and Lacour [10], which were
established by the use of completely different selection scheme.

5. Simultaneous adaptive estimation of partial derivatives in the
density model

Let as previously Xi, i = 1, . . . , n, be i.i.d. d-dimensional random vectors with unknown density
f . This is the particular case of the model considered above corresponding to α = 0.

For any multi-index m= (m1, . . . ,md) ∈Nd let f (m) = ∂m1+···+md f

∂x
m1
1 ···∂x

md
d

be the partial derivative of

f of order m. The goal is to estimate B(f ) = f (m) under Lp-loss, that is

RB [B̃n, f ] = (
E

(n)
f

[∥∥B̃n − f (m)
∥∥p

p

])1/p
, f ∈ P.

Remark 4. We will keep all previous notations with only one change related to the following
simple observation. All oracle results established in the present paper remain valid if one replace
in all formulas the set Hn (abstract model) or Hd

m (density model) by its arbitrary subset. In
particular we will use below the selection rule (4.5)–(4.6) from the collection A(·), which is
parameterized by either Hd

[n/2] as it was before or by its subset Hisotrop
n := {
h ∈ Hd

[n/2] : h1 =
· · · = hd}. The latter set will be used when the adaptation over the scale of isotropic, (β1 = · · · =
βd ) Nikol’skii classes is studied.

Thus, let Hn denote either Hd
[n/2] or Hisotrop

n and let the collection A(Hn) be given by (4.4)

(where Hd
[n/2] is replaced by Hn) and Zi = Xi, i = 1, . . . , [n/2]. Introduce the family of estima-

tors

B(Hn) =
{

B̂
h(·) = (
n − [n/2])−1

n∑
i=[n/2]+1

d∏
j=1

(−1)mj h
−mj

j K
(m)


h (Xi − ·), 
h ∈ Hn

}
,

where K(m) denotes the partial derivative of K of the order m.
It is important to note that the estimator B̂
hn

would coincide with Â
(m)


hn
if we would construct

it using observations Xi, i = 1, . . . , [n/2] instead of Xi, i = [n/2]+ 1, . . . , n. The interest to this
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collection is dictated by the following minimax result. For any 
β ∈ (0,∞)d and m ∈N
d put

1

β
=

d∑
j=1

1

βj

,
1

ω
=

d∑
j=1

mj

βj

.

Proposition 2. For any p > 1,L > 0, any 
β ∈ (0,∞)d and m ∈ N
d provided ω > 1 one can

find a kernel K and 
hn ∈ (0,1]d such that the estimator Â
(m)


hn
is rate-minimax for f (m) on

Np,d( 
β,L) ∩Pp .
The minimax rate of convergence is given by

ϕ(m)
n

(
Np,d( 
β,L) ∩Pp

)= L
(1/β)(1−1/p∧2)+1/ω

1+(1/β)(1−1/p∧2) n
− (1−1/ω)(1−1/p∧2)

1+(1/β)(1−1/p∧2) .

The conditions ω > 1 and p > 1 are necessary for the existence of uniformly consistent on
Np,d( 
β,L) estimators.

The assertions of the proposition seems to be new.
Now, let us formulate the main result of this section. As previously let s ∈ N

∗ be an arbitrary
but a priory chosen number. Let the kernel K , involved to the description of estimators from the
collections A(Hn) and B(Hn), be constructed in accordance with (3.31).

Set at last �s = {( 
β,m) ∈ (0, s]d ×N
d : ω > 1}.

Theorem 7. Let 
hn be the issue of (4.5)–(4.6) with Hn = Hd
[n/2] if m1 = · · · = md or with Hn =

Hisotrop
n if β1 = · · · = βd . Then for any p ≥ 1, L > 0, and ( 
β,m) ∈ �s

lim sup
n→∞

[
ϕ(m)

n

(
Np,d( 
β,L) ∩Pp

)]−1 sup
f ∈Np,d ( 
β,L)∩Pp

{
E

(n)
f

∥∥B̂
hn
− f (m)

∥∥p

p

} 1
p < c21,

where c21 is independent of L.

Theorem 7 together with second statement of Proposition 2 allows us to assert that the
estimator B̂
hn

is optimally-adaptive over the scale of either anisotropic Nikol’skii classes (if
m1 = · · · = md ) or isotropic ones (without any restriction on the order of the considered partial
derivative). Note that the problem is completely solved in the dimension 1. Also we conclude that
the differentiation of an optimally-adaptive estimator leads to the optimally-adaptive estimator
of the corresponding partial derivative.

5.1. Proof of Proposition 2

Lemma 2. For any p ≥ 1, any 
β and m, provided ω > 1, and any f ∈Np,d( 
β,L) one has∥∥f (m)
∥∥

p
≤ c23L

1/ω‖f ‖1−1/ω
p , (5.1)

where c23 is independent of L.
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The author is sure that this Kolmogorov-type inequality should be known but he was unable to
find the exact reference.

Proof of Lemma 2. The following inequality was proved in Goldenshluger and Lepski [21]. For
any p ≥ 1 and s ∈ N

d there exists c22 is independent of L such that

sup
F∈Np,d ( 
β,L)

‖K
h � F − F‖p ≤ c22L

d∑
j=1

h
βj

j , ∀
h ∈ (0,1]d ,∀ 
β ∈ (0, s]d . (5.2)

The following statement can be found in Nikol’skii [38], Chapter 5, Theorem 5.6.3.
If ω > 1 and f ∈ Np,d( 
β,L), then f (m) exists and

f (m) ∈ Np,d( 
γ , cL), γj = βj (1 − 1/ω), j = 1, . . . , d, (5.3)

and c > 0 is independent of L.
Since 
β is fixed we can always choose s ∈ N

d in order to have 
β ∈ (0, s]d and, then, (5.2) will
be fulfilled. We obviously have by the triangle inequality∥∥f (m)

∥∥
p

≤ ∥∥(K
h)
(m) � f − f (m)

∥∥
p

+ ∥∥(K
h)
(m) � f

∥∥
p
.

It is easy to see that (K
h)(m) =∏d
j=1(−1)mj h

−mj

j K
(m)


hn
for any 
h ∈ (0,1]d and we have first by

integrating by parts

(K
h)
(m) � f − f (m) = K
h � f (m) − f (m). (5.4)

Hence, applying (5.2) with F = f (m) and 
β replaced by 
γ we obtain in view of (5.3)

∥∥(K
h)
(m) � f − f (m)

∥∥
p

≤ c24L

d∑
j=1

h
γj

j , ∀
h ∈ (0,1]d . (5.5)

Moreover, we obtain applying the Young inequality

∥∥(K
h)
(m) � f

∥∥
p

≤ ∥∥(K
h)
(m)

∥∥
1‖f ‖p = ‖f ‖p

∥∥K(m)
∥∥

1

d∏
j=1

h
−mj

j ,

that yields together with (5.5) for any f ∈Np,d( 
β,L)

∥∥f (m)
∥∥

p
≤ c25

{
L

d∑
j=1

h
βj (1−1/ω)

j + ‖f ‖p

d∏
j=1

h
−mj

j

}
, ∀
h ∈ (0,1]d .

Choosing hj = (‖f ‖p/L)1/βj (that is possible since ‖f ‖p ≤ L in view of the definition of the
Nikol’skii class) we come to the assertion of the lemma. �
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Proof of the proposition. Since

Â
(m)


hn
(·) = [n/2]−1

[n/2]∑
i=1

d∏
j=1

(−1)mj h
−mj

j K
(m)


hn
(Xi − ·)

we have in view of (5.5) for any p ≥ 1, f ∈ Np,d( 
β,L) and 
h ∈ (0,1]d

∥∥E(n)
1,f

(
Â

(m)


h
)− f (m)

∥∥
p

= ∥∥(K
h)
(m) � f − f (m)

∥∥
p

≤ c24L

d∑
j=1

h
βj (1−1/ω)

j . (5.6)

Next, repeating the computations led to (4.12) (remind that our considerations here correspond
to the case α = 0) we get for any p ≥ 1, f ∈P and 
h ∈ (0,1]d

[
E

(n)
1,f

∥∥Â(m)


h −E
(n)
1,f

(
Â

(m)


h
)∥∥p

p

] 1
p ≤ c26

d∏
j=1

h
−mj

j

(
n

d∏
j=1

hj

) 1
p∧2 −1

. (5.7)

We deduce from (5.6) and (5.7) that for any p ≥ 1, f ∈ Np,d( 
β,L) ∩Pp and 
h ∈ (0,1]d

RA

[
Â
h, f

(m)
] := [

E
(n)
1,f

∥∥Â(m) − f (m)
∥∥p

p

] 1
p

≤ c27

{
L

d∑
j=1

h
βj (1−1/ω)

j +
d∏

j=1

h
−mj

j

(
n

d∏
j=1

hj

) 1
p∧2 −1}

.

Noting that the right-hand side of the obtained inequality is independent of f and minimizing it
with respect to 
h we come to the following bound.

sup
f ∈Np,d ( 
β,L)

RA

[
Â
hn

, f (m)
]≤ c28ϕ

(m)
n

(
Np,d( 
β,L) ∩Pp

)
,

where 
hn is the minimizer of the right-hand side of penultimate inequality.
Thus, we have proved that the maximal risk is upper-bounded by ϕ

(m)
n (Np,d( 
β,L)∩Pp). The

proof of the corresponding lower bound estimate (including the third assertion of the proposition)
follows immediately from general lower bound construction established in Goldenshluger and
Lepski [21], Theorem 3 (tail and dense zones) and it can be omitted. �

5.2. Proof of Theorem 7

The proof consists in the application of Theorem 4. Since in Section 3.4.1 we have already
checked the hypothesis Apermute, Aupper and Aupper, it remains to compute the quantities

ϕn(Fa) = sup
f ∈Fa

sup
h∈Vn(a)

En(f,h) + sup
f ∈Fa

sup
h∈Un(a,f )

ρ
(
ϒh,B(f )

)
,
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κn(Fa) = (5εn/δn) sup
f ∈Fa

[
sup
h∈Hn

En(f,h) + 6 sup
h∈Hn

ρ
(
ϒh,B(f )

)]
,

where Un(a, f ) = {h : �(�h,A(f )) < 8C�sn(Fa)} and Vn(a) = {h : ψn(Fa,h) < 4C2
�sn(Fa)}.

In the considered problem Fa =Np,d( 
β,L) ∩Pp,a= ( 
β,L), h = 
h ∈ Hn and

�
(
�h,A(f )

) = ‖K
h � f − f ‖p,
(5.8)

ρ
(
ϒh,B(f )

) = ∥∥(K
h)
(m) � f − f (m)

∥∥
p
.

We also have from (3.30) and (5.7) that for any f ∈Pp and independently of 
β and L

ψn(Fa,h) = C(nV
h)
1

p∧2 −1
, En(f, 
h) ≤ c26

d∏
j=1

h
−mj

j

(
n

d∏
j=1

hj

) 1
p∧2 −1

. (5.9)

To get the second inequality we have taken into account that the estimators B̂
h and Â
(m)


h have
the same distribution. Moreover,

s[n/2]
(
Np,d( 
β,L) ∩Pp

)= c29L
1−1/(p∧2)

β+1−1/(p∧2) n
− 1−1/(p∧2)

1+(1/β)(1−1/(p∧2)

as it was found in (3.32). It remains to note that δn ≥ c30n
− 1

2 in view of (3.30) and the definition
of Hd

[n/2] and moreover in view of (5.8), (5.9) and (5.3) and (5.4)

sup

h∈Hd[n/2]

sup
f ∈Pp

En(f,h) ≤ nm∗
, sup

f ∈Np,d ( 
β,L)

∥∥(K
h)
(m) � f − f (m)

∥∥
p

≤ c31L,

where m∗ = maxj=1,...,d mj . To get the last bound, we have also used the Young inequality.
Since the hypotheses Aupper and Aupper are checked with ε[n/2](p) verifying the assertion

(3.23) of Lemma 1 we can first assert that

lim sup
n→∞

na
κn(Fa) = 0, ∀a > 0. (5.10)

Next, in view of (5.4) we have for any 
h ∈ (0,1]d

(K
h)
(m) � f − f (m) = K
h � f (m) − f (m) = (K
h � f − f )(m)

and, applying Lemma 2, we obtain for any f ∈ Np,d( 
β,L)

ρ
(
ϒh,B(f )

) := ∥∥(K
h)
(m) � f − f (m)

∥∥
p

≤ c23L
1/ω‖K
h � f − f ‖1−1/ω

p

=: c23L
1/ω�1−1/ω

(
�h,A(f )

)
.
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It yields for any ( 
β,m) ∈ �s and any p ≥ 1

sup
f ∈Fa

sup
h∈Un(a,f )

ρ
(
ϒh,B(f )

) ≤ c32L
1/ω

[
sn
(
Np,d( 
β,L) ∩Pp

)]1−1/ω

= c33L
(1/β)(1−1/p∧2)+1/ω

1+(1/β)(1−1/p∧2) n
− (1−1/ω)(1−1/(p∧2))

1+(1/β)(1−1/(p∧2)) (5.11)

= c33ϕ
(m)
n

(
Np,d( 
β,L) ∩Pp

)
.

Put for brevity sn = sn(Np,d( 
β,L) ∩Pp), r = p ∧ 2 and remark that

Vn(a) = {
h ∈ Hn : V 1− 1
r


h > n
1
r
−1(c33sn)

−1}= {
h ∈ Hn : V
h > c34
(
Ln1−1/r

)− 1
β+1−1/r

}
.

We obtain in view of (5.9)

En(f, 
h) ≤ c26

⎧⎨⎩n1/r−1V
1/r−1−m1

h , m1 = · · · = md ;

n1/r−1h
d(1/r−1−d−1 ∑d

j=1 mj )

1 , 
h ∈Hisotrop
n .

Note that both bounds coincide since V
h = hd
1 if 
h ∈Hisotrop

n and m1 = d−1∑d
j=1 mj in the first

case. Simple algebra shows that

sup
f ∈Np,d ( 
β,L)∩Pp

sup

h∈Vn(a)

En(f,h) ≤ c35ϕ
(m)
n

(
Np,d( 
β,L) ∩Pp

)
. (5.12)

The assertion of the theorem follows now from (5.10), (5.11), (5.12) and Theorem 4.
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