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Inference for the parametric distribution of a response given covariates is considered under informative se-
lection of a sample from a finite population. Under this selection, the conditional distribution of a response
in the sample, given the covariates and given that it was selected for observation, is not the same as the
conditional distribution of the response in the finite population, given only the covariates. It is instead a
weighted version of the conditional distribution of interest. Inference must be modified to account for this
informative selection. An established approach in this context is maximum “sample likelihood”, developing
a weight function that reflects the informative sampling design, then treating the observations as if they were
independently distributed according to the weighted distribution. While the sample likelihood methodology
has been widely applied, its theoretical foundation has been less developed. A precise asymptotic descrip-
tion of a wide range of informative selection mechanisms is proposed. Under this framework, consistency
and asymptotic normality of the maximum sample likelihood estimators are established. The theory allows
for the possibility of nuisance parameters that describe the selection mechanism. The proposed regularity
conditions are verifiable for various sample schemes, motivated by real problems in surveys. Simulation re-
sults for these examples illustrate the quality of the asymptotic approximations, and demonstrate a practical
approach to variance estimation that combines aspects of model-based information theory and design-based
variance estimation.

Keywords: complex survey; pseudo-likelihood; stratified sampling; weighted distribution

1. Introduction

Consider a finite population U = {1, . . . ,N} and a joint probability density function (p.d.f.)
f(x, y, z), called a superpopulation model, generating independent and identically distributed
(i.i.d.) random vectors (Xk,Yk,Zk) for each k ∈ U . Here, Xk is a vector of covariates, Yk

is a response (possibly vector-valued), and Zk is a vector of design variables. Suppose that
f(x, y, z) = fξ (z|x, y)fθ (y|x)g(x) where ξ and θ are vectors of unknown parameters. The factor
fξ describes the selection mechanism, and contains only nuisance parameters ξ . The factor g

describes the marginal distribution of X and is not of interest. It is of interest to conduct infer-
ence for θ based on observations of (Xk,Yk,Zk) for a sample selected from U . In the absence of
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sampling, the conditional distribution of the Yk’s given the Xk’s for the entire finite population is∏
k∈U fθ (yk|xk), and Zk’s are irrelevant for inference on θ .
In general, however, the sample selection depends on (Z1, . . . ,ZN). For positive Zk’s,

a common design would be to include element k in the sample of size n with probability
nZk/

∑
k∈U Zk . As another example, the population could be sorted on an index Zk and then

grouped into disjoint strata of elements with similar Zk values, with independent sample selec-
tions from each such stratum.

Since Yk and Zk are dependent in general, the conditional distribution of the Yk’s given the
Xk’s in the sample is typically not equal to the product of the conditionals: the distribution
of Yk given Xk for selected k is not fθ (yk|xk) and the informative selection mechanism may
induce dependence among the selected observations. Ignoring the informative selection results
in inconsistent estimation of θ .

One approach to estimation in this context of informative selection is pseudo-likelihood, con-
sisting of maximizing the Horvitz and Thompson [13] estimator of

∑
k∈U ln fθ (yk|xk), the pop-

ulation level log-likelihood. This method is straightforward and is a standard feature of software
designed for the analysis of survey data. The resulting estimators are consistent for θ under mild
conditions, but may be inefficient compared to other likelihood-based methods.

Another approach is based on the sample likelihood, consisting of ignoring the dependence
among the observations and treating them as if they were independently distributed according
to the sample p.d.f., ρ(x, y; θ, ξ)fθ (y|x), which is a weighted version of the population p.d.f.
The weight function ρ(·) requires the specification of the model fξ for the selection mechanism.
The sample p.d.f. is the basis for an estimation approach under length-biased sampling (Patil and
Rao [17]). It has been developed for more general informative selection schemes in the complex
survey context (Krieger and Pfeffermann [15], Section 3, Pfeffermann, Krieger and Rinott [19],
Pfeffermann and Sverchkov [24]). The weight ρ(x, y; θ, ξ) is the expected inclusion probabil-
ity of an element given its covariate is x and response is y, divided by the expected inclusion
probability given its covariate is x. (This definition can be extended for random sample sizes
and with-replacement sampling, replacing expected inclusion probability by expected number
of selections (Bonnéry, Breidt and Coquet [2]). As shown by Landsman and Graubard [16], the
Breslow and Cain [3] approach is a special case of sample likelihood estimation.

The sample likelihood methodology has been extended in a number of directions (Pfeffermann
and Sverchkov [22,25], Pfeffermann and Sikov [21], Pfeffermann [18]), including longitudinal
surveys (Eideh and Nathan [7–9]), small area estimation (Ghosh and Maiti [11], Pfeffermann and
Sverchkov [23], Eideh and Nathan [6]), and multi-level modeling (Pfeffermann, Moura and Silva
[20], Cai [4]). A review of these and other approaches to inference under informative selection
is given by Pfeffermann and Sverchkov [24]. See also Chambers et al. [5], Section 3.3, for an
overview and simulation-based comparisons of pseudo-likelihood, sample likelihood and full
maximum likelihood.

Under a strong set of assumptions, including that sample size remains fixed as population
size goes to infinity, Pfeffermann, Krieger and Rinott [19] have established the pointwise con-
vergence of the joint distribution of the responses to the product of the sample p.d.f.’s. This
is taken as partial justification of the sample likelihood approach; see, for example, Landsman
and Graubard [16], Section 3. In this paper, we develop a more complete theoretical foundation
for the sample likelihood methodology: a central limit theorem for model parameters that also
accounts for estimation of nuisance parameters in the selection mechanism.
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In Bonnéry, Breidt and Coquet [2], a precise asymptotic framework for informative selection
is given and weak conditions on the informative selection mechanism are stated under which the
(unweighted) empirical cumulative distribution function (c.d.f.) converges uniformly to the c.d.f.
associated with the limiting sample p.d.f. That is, the classical Glivenko–Cantelli theorem holds
in the case of a weak dependence among the draws, perhaps suggestive of good behavior for the
sample likelihood approach.

In this paper, we use the same asymptotic framework and further conditions on the selection
mechanism and on the regularity of the sample p.d.f. to show consistency and asymptotic nor-
mality of sample likelihood estimators of θ . Our theory assumes the existence of a

√
n-consistent

and asymptotically normal estimator ξ̂ of the selection mechanism parameters ξ , which can often
be obtained via Horvitz–Thompson estimation. These parameters are not of independent interest
but do appear in ρ(x, y; θ, ξ) and hence in the sample likelihood. Our criterion function is then
the log sample likelihood with ξ̂ replacing ξ . We study the properties of the estimator of θ that
maximizes this criterion. Adapting Gong and Samaniego [12], we establish existence, consis-
tency and central limit theory for such an estimator of θ .

Pfeffermann and Sverchkov [25], Section 12.4 and Eideh and Nathan [8], Section 4.3, have
considered the use of inverse information for estimating the variance of the maximum sample
likelihood estimators, but they treat the informativeness parameter estimates ξ̂ as fixed. Lands-
man and Graubard [16], Section 5.1, observe that under independence, Yuan and Jennrich [28]
could be used to correct the variance estimator for the variation in ξ̂ , but these results do not
allow for the dependence due to selection that we consider here. Our results lead immediately to
appropriate variance estimators.

As in Bonnéry, Breidt and Coquet [2], the conditions we propose are verifiable for various
sample schemes, commonly encountered in real problems in surveys, and involve computing
conditional versions of first and second-order inclusion probabilities. We derive the asymptotic
distribution in detail for the aforementioned scheme in which the population is stratified on or-
dered values of Z. Given sufficient information on the sample design and the covariates, the
maximum sample likelihood estimators are feasible and are more efficient than the maximum
pseudo-likelihood estimators. We illustrate this final result by simulations applied in some basic
sample schemes. We also show how to obtain useful variance estimators, combining information
computations as in standard likelihood theory with design-based covariance matrix estimation.

2. Notation and definitions

2.1. General framework

Let {Nγ }γ∈N denote an increasing sequence of positive integers and consider a sequence of finite
populations {Uγ }γ∈N with Uγ = {1, . . . ,Nγ }.

All random variables are defined on a common measured space (�,A ,P). We assume that P
belongs to a parametric family (Pθ,ξ )(θ,ξ)∈�×� where � and � are subsets of real vector spaces;
that P is dominated by some measure; and that there exists a unique (θ0, ξ0) ∈ � × � such that
P = Pθ0,ξ0 .
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Densities are generically denoted by f and are given without specification of the measure.
Equalities of conditional distributions or densities are almost sure equalities. Writing a density
implies that it is defined:, fY |X=x means there exists a conditional distribution PY |X=x satisfying
standard conditions, and fY |X=x is the density of PY |X=x with respect to some σ -finite measure.
We write fY |X=x;θ,ξ , for example, when the explicit parameterization is important.

We define a sequence of real random vectors {(Xk,Yk,Zk)}k∈N, independently and identi-
cally distributed, where Xk is a vector of finite dimension of real covariates, Yk corresponds
to the response (possibly vector-valued) of interest and Zk are the design characteristics of the
element k.

The finite population matrices of covariate, response and design vectors are denoted respec-
tively by Xγ = (Xk)k∈Uγ , Yγ = (Yk)k∈Uγ and Zγ = (Zk)k∈Uγ . We assume that for all x and y,
fZ|X=x,Y=y;θ,ξ = fZ|X=x,Y=y;ξ , and that for all x, fY |X=x;θ,ξ = fY |X=x,;θ . We shall sometimes
write fY |X=x,;θ = fθ (·|x). We are interested in inference for the distribution of Y given X, pa-
rameterized by θ . The parameter ξ is a nuisance parameter controlling the distribution of Z given
X and Y . Let j = (jk)k∈Uγ ∈ {0,1}Nγ denote a realized sample from Uγ where jk = 1 if element
k is selected and jk = 0 otherwise. Let p denote a probability measure on {0,1}Nγ , which we will
refer to as a design measure. Assume that there exists a sequence of functions {Dγ }γ∈N, which
we will call design measure functions, such that Dγ (z) is a design measure for all z ∈ Zγ (�).
Then 
γ = Dγ (Zγ ) is a random design measure on Uγ . Assume that the index of the element k

of the population plays no role in the way elements are selected. Specifically, for all z ∈ Zγ (�),
r a permutation of Uγ , and A ⊂ {0,1}Nγ ,(

Dγ (z)
)
(A) = (

Dγ (r.z)
)
(r.A),

where r.z = (zr(1) · · · zr(N)) and r.A = {(ar(1) · · ·ar(N))|a ∈ A}. A sample from Uγ selected ac-
cording to the random design measure 
γ is a random vector Jγ = (Jγ,k)k∈Uγ that takes values
in {0,1}Nγ and that satisfies ⎧⎨⎩

fJγ |
γ ,Xγ ,Yγ ,Zγ ;θ,ξ = fJγ |
γ
, (1a)

P

γ

θ,ξ -a.s. (p), P
Jγ |
γ =p
θ,ξ = p (1b)

for all (θ, ξ) ∈ � × �.

For γ ∈N, define the sample size as the random variable nγ =∑Nγ

k=1 Jγ,k . Define the inclusion
probability of element k ∈ Uγ as the random variable πγ,k = 
γ ({j ∈ {0,1}Nγ |jk = 1}), and the
second order inclusion probability of elements k and � as the random variable πγ,k,� = 
γ ({j ∈
{0,1}Nγ |jk = 1, j� = 1}).

To illustrate, consider stratified simple random sampling without replacement where H strata
are formed by sorting the values of a scalar index Zk . Designs such as this are common in estab-
lishment surveys and in retrospective studies of existing records, such as the National Maternal
and Infant Health Survey described in Section 4.4. Let (Nγh)γ∈N,h∈{1,...,H } be an array of strictly
positive integers such that for all γ ∈ N, Nγh denotes the size of the hth stratum of the γ th
population and Nγ =∑H

h=1 Nγh. Define (νγ (1), . . . , νγ (Nγ )) as the permutation of (1, . . . ,Nγ )

such that Zνγ (1) < · · · < Zνγ (Nγ ). The permutation is a random vector which is a function of Zγ .
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The hth stratum of the γ th population is Uγh = (νγ (Tγh−1 + 1), . . . , νγ (Tγh)), with Tγ 0 = 0,
Tγh =∑

1≤h′≤h Nγh′ .
Let nγh ∈ {1, . . . ,Nγh} denote the non-random number of elements selected from the hth

stratum of the γ th population via simple random sampling without replacement. The probability
of the atomic event j ∈ {0,1}Nγ is then


γ

({j})=

⎧⎪⎨⎪⎩
H∏

h=1

(
Nγh

nγh

)−1

, if ∀h ∈ {1, . . . ,H },
∑

k∈Uγh

jk = nγh,

0, otherwise,

and the probability of any event A ⊂ {0,1}Nγ is obtained by summing the above probabilities
over distinct vectors j ∈ A. The first-order inclusion probabilities are πγ,k = nγhN

−1
γ h for k ∈

Uγh and the second-order inclusion probabilities are πγ,k,� = nγh(nγh − 1){Nγh(Nγh − 1)}−1

for k, � ∈ Uγh, k �= �; and πγ,k,� = nγhN
−1
γ h nγh′N−1

γ h′ for k ∈ Uγh, � ∈ Uγh′ , h �= h′.
In the following, by convention 0/0 = 0. For γ ∈N, let xγ = (x1, . . . , xNγ ) ∈ X(�)Nγ denote

a matrix of fixed covariate vectors for the entire finite population.

Remark 1 (Bounded in probability and convergence in probability). Let Wγ be a sequence of
random variables in a real vector space of finite dimension and let ‖·‖ denote the Euclidean norm.
Write Wγ = o

P
·|Xγ =xγ
θ,ξ

(1) if ∀ε > 0, limγ Pθ,ξ (‖Wγ ‖ > ε|Xγ = xγ ) = 0, and Wγ = O
P

·|Xγ =xγ
θ,ξ

(1)

if ∀ε > 0, ∃M > 0 such that supγ∈N Pθ0,ξ0 (‖Wγ ‖ > M|Xγ = xγ ) < ε.

2.2. The limit sample p.d.f.

We now define the limit conditional sample p.d.f. of Yk given Xk = xk . In general, the conditional
sample p.d.f. depends not only on Xk but also on numerical summaries hγ (Xγ ) of all the finite
population X-values, and the limit conditional sample p.d.f. will depend on a limit h∞ of those
summaries.

Assumption A0. There exists d ∈ N such that ∀(θ, ξ) ∈ � × �, there exists a sequence of func-
tions hγ : Xγ (�) → R

d , a vector h∞ ∈ R
d , a sequence of functions mγ,θ,ξ : X(�) × R

d ×
Y(�) → R and a function m∞,θ,ξ : X(�) × Y(�) → R, with

lim
γ→∞hγ (xγ ) = h∞, (A0.a)

∀γ ∈N,xγ ∈Xγ (�), y ∈ Y(�),
(A0.b)

Eθ,ξ [Jγ,1|Xγ = xγ , Y1 = y] = mγ

(
x1, hγ (xγ ), y; θ, ξ

)
,

∀x, y ∈ X(�) × Y(�),
(A0.c)

lim
γ→∞mγ

(
x,hγ (xγ ), y; θ, ξ

)= m∞(x,h∞, y; θ, ξ).
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Definition 1 (The limit conditional sample p.d.f.). Under A0, the limit sample p.d.f. of response
Y given covariate X = x is

ρ∞(x, ·; θ, ξ)fθ (·|x),

where ρ∞(x, y; θ, ξ) = (
∫

m∞(x,h∞, y; θ, ξ)d PY |X=x)−1m∞(x,h∞, y; θ, ξ).

We also define the weight function for the variable X: assume that N−1
γ

∑Nγ

k=1 δxk
converges

weakly to PX , then for x ∈ X(�), ρ̄∞(x; θ, ξ) is defined as

ρ̄∞(x; θ, ξ) =
(∫

m∞(x,h∞, y; θ, ξ)d PX,Y
θ,ξ (x, y)

)−1 ∫
m∞(x,h∞, y; θ, ξ)d P

Y |X=x
θ,ξ (y),

and under the assumption that limγ→∞ N−1
γ Eθ,ξ [nγ ] = τ ∈ (0,1),

ρ̄∞(x; θ, ξ) = τ−1
∫

m∞(x,h∞, y; θ, ξ)d P
Y |X=x
θ,ξ (y).

2.3. Results for stratified sampling

In this section, we prove a result of independent interest, showing that suitably normalized sums
over the sample under this informative selection scheme are asymptotically normal. This result
will be used in deriving the asymptotic distribution of the maximum sample likelihood estimator
in an example of Section 4.

For h ∈ {0, . . . ,H }, define tγ h = TγhN
−1
γ and assume that t∞,h = limγ→∞ tγ h is defined. Fur-

ther, for h ∈ {1, . . . ,H }, assume that τh = limγ→∞ nγhN
−1
γ h is well-defined and strictly positive.

Then τ = limγ→∞ nγ N−1
γ =∑H

h=1 τh(t∞,h − t∞,h−1), which we assume to be strictly positive.

Theorem 1. Let g be a measurable function from (Y (�) × Z(�) × [0,1]) to some finite-
dimensional real vector space. Assume that there exists G : Y(�) × Z(�) → [0,∞) such that
E[G(Y,Z)2] < ∞, and ‖g(y, z,π)‖ ≤ G(y, z) for all y, z,π ∈ Y(�) × Z(�) × [min{τ∞,h|h ∈
{1, . . . ,H }},1]. Assume that ∀y ∈ Y(�), g(y, ·, ·) : Z(�) × (0,1] → R is continuous. Define
Sγh =∑

k∈Uγh
g(Yk,Zk,πγ,k)Jγ,k and Sγ =∑H

h=1 Sγh.
Let ζ(t) = inf{x|P(Z ≤ x) ≥ t} be the quantile function of Z (see Serfling [26], page 74),

which implicitly depends on θ and ξ . Assume that for all θ and ξ , ζ(·) is a continuous function.
For h ∈ {1, . . . ,H }, define ζh = ζ(t∞,h) and

E∞,h = E
[
g(Yk,Zk, τ∞,h)|Zk ∈ (ζh−1, ζh]

]
, E∞ =

H∑
h=1

τ∞,hE∞,h,

V∞,h = Var
[
g(Yk,Zk, τ∞,h)|Zk ∈ (ζh−1, ζh]

]
, V∞ = τ−1

H∑
h=1

(t∞,h − t∞,h−1)τ∞,hV∞,h.



Maximum sample likelihood under informative selection 935

Assume that ∀z0 ∈ R, ∃O an open subset of R, ∃M : R → R a positive and measurable
function such that

∫
M(y)dλ < ∞,

∫
supz∈O{G(y, z)}M(y)dλ(y) < ∞,

∫
supz∈O{G2(y, z)} ×

M(y)dλ(y) < ∞ and ∀z ∈ K,y ∈ Y(�), fY |Z=z < M(y). Then

√
nγ

(
n−1

γ Sγ − E∞
) L−→

γ→∞N (0,V∞).

Proof. See Appendix A. �

3. Maximum sample likelihood estimation

The following series of results follows the development in Gong and Samaniego [12], adapted to
the context of informative selection which we have described above.

3.1. Plug-in maximum sample likelihood estimation

Definition 2. Under A0, define

�(x,y; θ, ξ) = ln
(
ρ∞(x, y; θ, ξ)fθ (y|x)

)
and for γ ∈N, define the mean log sample likelihood as

L̄γ (θ, ξ) = n−1
γ

Nγ∑
k=1

Jγ,k�(xk,Yk, θ, ξ).

Assume that ξ̂γ is a sequence of estimators of ξ and define the maximum sample likelihood
estimator of θ adapted to ξ̂γ as

θ̂γ = arg max
θ∈�

{
L̄γ (θ, ξ̂γ )

}
.

Assume that the following information matrices are defined:

Iγ,1,1 = −N−1
γ

Nγ∑
k=1

∫ (
∂2�

∂θ ∂θT (xk, y, θ0, ξ0)

)
ρ∞(xk, y; θ0, ξ0)ρ̄∞(xk; θ, ξ)d P

Y |X=xk

θ0,ξ0
(y)

and

Iγ,1,2 = −N−1
γ

Nγ∑
k=1

∫ (
∂2�

∂ξ ∂θT (xk, y, θ0, ξ0)

)
ρ∞(xk, y; θ0, ξ0)ρ̄∞(xk; θ, ξ)d P

Y |X=xk

θ0,ξ0
(y).
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Assumption A1 (Asymptotic normality conditions). Assume A0 and assume that:

for u ∈
{(

∂2�
∂θ ∂θT (·, θ0, ξ0)

)
,

(
∂2�

∂θ ∂ξT (·, θ0, ξ0)

)}

N−1
γ

Nγ∑
k=1

Eθ,ξ

[
u(xk,Yk)ρ∞(xk, Yk; θ, ξ)|Xk = xk

]
ρ̄∞(xk; θ, ξ)

− n−1
γ

Nγ∑
k=1

u(xk,Yk)Jγ,k = o
P

·|Xγ =xγ
θ0,ξ0

(1), (A1.a)

√
nγ (̂ξγ − ξ0) = OP θ0,ξ0

·|Xγ =xγ (1), (A1.b)

Iγ,1,1 and Iγ,1,2 are finite and Iγ,1,1 is positive-definite, (A1.c)

Iγ,1,1 converges to a finite and positive-definite matrix, (A1.d)

−√
nγ

∂L̄

∂θ
(θ0, ξ̂γ ) = √

nγ

(
∂2L̄

∂θ ∂θT (θ0, ξ̂γ )

)
(θ̂γ − θ0) + o

P
·|Xγ =xγ
θ0,ξ0

(1), (A1.e)

√
nγ

∂L̄

∂θ
(θ0, ξ̂γ ) = √

nγ

∂L̄

∂θ
(θ0, ξ0)

(A1.f)

+ √
nγ

(
∂

∂ξ

(
∂

∂θ
L̄

)
(θ0, ξ0)

)
(̂ξγ − ξ0) + o

P
·|Xγ =xγ
θ0,ξ0

(1).

There exists a sequence of positive-definite matrices
{
�γ = [�γ,1,1

�γ,1,2

�T
γ,1,2

�γ,2,2

]}
γ∈N such that �γ,1,1

is a dim(θ) × dim(θ) matrix and given Xγ = xγ ,

√
nγ �−1/2

γ

⎡⎣
(

∂

∂θ
L̄

)
(θ0, ξ0)

ξ̂γ − ξ0

⎤⎦ L−→
γ→∞N (0, I ). (A1.g)

Theorem 2. Under A1, the maximum sample likelihood estimator adapted to ξ̂γ is asymptoti-
cally normal, that is

√
nγ V −1/2

γ (θ̂γ − θ0)
L−→

γ→∞N (0, I ),

where the square root of a positive-definite matrix is its only positive square root by convention
and Vγ = I −1

γ,1,1(�γ,1,1 + Iγ,1,2�γ,2,2I
T
γ,1,2 − Iγ,1,2�

T
γ,1,2 − �γ,1,2I

T
γ,1,2)I

−1
γ,1,1.
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Proof. See Appendix B. �

3.2. Variance estimation

Depending on what is known about the covariates, various estimators of the information matrix
and of � can be proposed. If PX is known, then Iγ,1,1 can be estimated by∫ (∫ (

∂2�

∂θ ∂θT (x, y, θ̂ , ξ̂ )

)
ρ∞(x, y; θ̂ , ξ̂ )ρ̄∞(x; θ̂ , ξ̂ )d P

Y |X=x

θ̂
(y)

)
d PX

θ̂
(x).

If the population vector xγ is known, then Iγ,1,1 can be estimated by

−Nγ
−1

Nγ∑
k=1

∫ (
∂2�

∂θ ∂θT (xk, Y, θ̂ , ξ̂ )

)
ρ∞(xk, Y ; θ̂ , ξ̂ )ρ̄∞(xk; θ̂ , ξ̂ )d P

Y |X=xk

θ̂
.

If x is known on the sample, then Iγ,1,1 can be estimated by its Horvitz–Thompson estimator:

−1

Nγ

Nγ∑
k=1

Jγ,k

πγ,k

∫ (
∂2�

∂θ ∂θT (xk, Y, θ̂ , ξ̂ )

)
ρ∞(xk, Y ; θ̂ , ξ̂ )ρ̄∞(xk; θ̂ , ξ̂ )d P

Y |X=xk

θ̂
.

The matrix Iγ,1,2 can also be estimated using the same methods.
Since ξ̂ will often be obtained via pseudo-likelihood methods, it is convenient to estimate �γ

in (A1.g) using design-based methods from standard software. To do so requires expressing the
score vector ( ∂

∂θ
L̄ )(θ0, ξ0) as a design-weighted sum over the sample, then plugging in (θ̂ , ξ̂ )

for (θ0, ξ0). Design-based variance estimation might also require linearization of ξ̂ . We illustrate
these ideas in Section 4.4. Alternatively, the matrix �γ could be estimated by analytically com-

puting Varθ,ξ

[[ ( ∂
∂θ

L̄ )(θ0,ξ0)

ξ̂γ −ξ0

]|Xγ = xγ

]
and plugging in the estimates of θ and ξ , or it could be

computed by Monte Carlo methods.

4. Examples and simulations

4.1. Pareto distribution and Bernoulli sampling

We begin with a simple example with no covariate. Let Y1, . . . , YNγ be i.i.d. Pareto with p.d.f.
fθ (y) = θy−(θ+1)1[1,∞)(y).

Assume that PYk -a.s. (y), PZk |Yk=y = B(y−ξ ), the Bernoulli distribution with success proba-
bility y−ξ , and � = (0,∞). The sample scheme is stratified Bernoulli sampling with two strata
determined by the realized Zk’s, and with sampling rates τ0 = 0.02 in stratum 0 and τ1 = 0.1 in
stratum 1. Then ∀j ∈ {0,1}Nγ , z ∈ {0,1}Nγ ,

Dγ (z)
({j})=

Nγ∏
k=1

(
τ

jk

1 (1 − τ1)
1−jk

)zγ,k
(
τ

jk

0 (1 − τ0)
1−jk

)1−zγ,k .
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Ignoring the informative selection mechanism and maximizing the log-likelihood leads to the
naive estimator

θ̄γ =
( Nγ∑

k=1

ln(Yk)Jγ,k

)−1( Nγ∑
k=1

Jγ,k

)
,

which is biased and inconsistent. The maximum pseudo-likelihood estimator is obtained by max-
imizing the weighted log-likelihood, yielding

θ̃γ =
( Nγ∑

k=1

ln(Yk)Jγ,k

/
πγ,k

)−1( Nγ∑
k=1

Jγ,k

/
πγ,k

)
;

this estimator is asymptotically unbiased and consistent. To obtain the maximum sample likeli-
hood estimator, first compute

ργ (y; θ, ξ) = ρ∞(y; θ, ξ) = (
τ0 + (τ1 − τ0)θ(ξ + θ)−1)−1(

τ0 + (τ1 − τ0)y
−ξ
)

for all γ ∈ N and y ∈ [1,∞). Let

θ∗
γ =

( Nγ∑
k=1

(Yk − 1)Jγ,k

/
πγ,k

)−1( Nγ∑
k=1

YkJγ,k

/
πγ,k

)

denote the Horvitz–Thompson plug-in estimator of θ = (Eθ [Y ] − 1)−1(Eθ [Y ]). A Horvitz–
Thompson plug-in estimator of ξ is then obtained as

ξ̂γ = 1 + θ∗
γ

( Nγ∑
k=1

(YkZk)Jγ,k

/
πγ,k

)−1( Nγ∑
k=1

(1 − YkZk)Jγ,k

/
πγ,k

)
.

Finally, the maximum sample likelihood estimator of θ is obtained by numerical maximization:
θ̂γ = arg maxθ∈�{L̄γ (θ, ξ̂γ )}. Straightforward calculations then yield the asymptotic variance of
Theorem 2. For comparison, we also consider the full likelihood with Nγ considered as unknown.
(The naive, pseudo-likelihood and sample likelihood estimators do not require Nγ known.) We
maximize

ln

(
Nγ

nγ

)
+ (Nγ − nγ ) ln

[
1 −

{
τ0 + (τ1 − τ0)

θ

θ + ξ

}]

+
Nγ∑
k=1

Jγ,kln
(
fθ (Yk)

(
Zk Y

−ξ
k + (1 − Zk)

(
1 − Y

−ξ
k

))(
τ0 + (τ1 − τ0)Zk

))
with respect to (Nγ ∈N, θ ∈ �,ξ ∈ �) to obtain the “Full” estimators in the following tables.

Our first simulation results are presented in Table 1. We generated 1000 independent repli-
cates of (Yγ ,Zγ ,Jγ ) under the Pareto model with Nγ = 10 000 elements each. For each repli-
cate, we computed the naive, pseudo-likelihood, sample likelihood, and full likelihood esti-
mators. Even in this simple example, the full likelihood estimator is much more complicated
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Table 1. Simulation results based on 1000 replications for Pareto example of Section 4.1 with θ = 4,
τ0 = 0.01, τ1 = 0.1, and Nγ = 10 000

% Relative RMSE Empirical Asymptotic
Estimator Mean bias ratio variance variance

ξ = 0.1 Naive 4.09 2.22 1.17 0.017
Pseudo 4.01 0.24 1.04 0.020
Sample 4.01 0.26 1.00 0.018 0.018
Full 4.01 0.74 0.98 0.018

ξ = 1 Naive 4.73 18.19 4.08 0.026
Pseudo 4.02 0.46 1.16 0.045
Sample 4.01 0.31 1.00 0.033 0.033
Full 4.02 0.40 0.86 0.030

ξ = 2 Naive 5.30 32.38 6.12 0.043
Pseudo 4.02 0.47 1.11 0.056
Sample 4.02 0.38 1.00 0.046 0.044
Full 4.01 0.27 0.76 0.033

to implement than the sample likelihood estimator. Empirical means, percent relative biases
((mean − θ)/θ) × 100%, root mean squared error (RMSE) ratios relative to the maximum sam-
ple likelihood estimator, and empirical variances across these 1000 replicates are summarized in
Table 1 for θ = 4 and different values of ξ , with larger ξ corresponding to greater informative-
ness. Also tabled is the asymptotic variance computed from Theorem 2 of the maximum sample
likelihood estimator.

As expected, the naive estimator θ̄γ that ignores informative selection is badly biased except in
the case closest to noninformative selection. (All four estimators are identical when ξ = 0.) The
maximum pseudo-likelihood estimator θ̃γ is essentially unbiased, but is somewhat less efficient
than the maximum sample likelihood estimator θ̂γ . In all but the most informative case, the
maximum sample likelihood estimator has performance comparable to that of the estimator that
maximizes the full likelihood. The asymptotic variance of θ̂γ computed from Theorem 2 is an
excellent approximation to the empirical variance in all cases.

We extended the comparisons of Table 1 to other population sizes and sampling rates within
strata. Additional results for Nγ ∈ {100,1000,10 000} and τ ∈ {(0.01,0.1), (0.04,0.5), (0.09,

0.95)} are not shown but are qualitatively similar. In each case, the full likelihood estimator
performs best with respect to mean squared error. Of the remaining estimators, the maximum
sample likelihood estimator outperforms the maximum pseudo-likelihood estimator, and often
approaches the efficiency of the maximum likelihood estimator. This same ordering of efficiency,
with sample likelihood dominating pseudo-likelihood, is found in our other simulation studies
below, and elsewhere in the literature (e.g., Krieger and Pfeffermann [15]; Chambers et al. [5],
Section 3.3).
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4.2. Normal distribution and stratified sampling: Without covariate

We next consider the stratified design described in Section 2.3, with normal distributions for the
stratification variable Zk and the response variable Yk . First, we derive analytic results in detail
for the case of no covariates. Similar results hold for the case with covariates, but the notation
is considerably more complicated. We therefore omit such derivations and instead report on
simulation results for the case with a covariate in Section 4.3.

Assume that Yk ∼ N (θ,1) and PZk |Yk = N (ξYk, σ
2
η ), where ση is known; that is, Zk = ξYk +

ηk and ηk ∼ N (0, σ 2
η ). Further, assume that ηk are mutually independent and independent of Yγ .

Result 1. Under this asymptotic framework, A0 holds and

ρ∞(y; θ, ξ) =
(

τH +
H−1∑
h=1

t∞,h(τh − τh+1)

)−1(
τH +

H−1∑
h=1

(τh − τh+1)�

(
ζh − ξy

ση

))
,

where ζh =
√

ξ2 + σ 2
η �−1(t∞,h) + ξθ and � is the c.d.f. of N (0,1).

Proof. See Appendix C.1. �

The sample likelihood is then defined. Consider ξ̂γ = (
∑Nγ

k=1 Y 2
k Jγ,k/πγ,k)

−1(
∑Nγ

k=1 Zk ×
YkJγ,k/πγ,k); this is a standard Horvitz–Thompson plug-in estimator, but its asymptotic behavior
is not immediate due to the dependence of πγ,k on the ordering of the Zk’s. Under the asymptotic
framework described above, we can establish the following result:

Result 2. The statistic ξ̂γ is a consistent estimator of ξ .

Proof. See Appendix C.2. �

We then define θ̂γ to be the maximum sample likelihood estimator of θ adapted to ξ̂γ , that is,

θ̂γ = arg max
θ∈�

{
L̄ (θ, ξ̂γ )

}
.

Result 3. Under the above asymptotic framework, assumption A1 (the conditions of Theorem 2)
is satisfied, and

� =
H∑

h=1

(t∞,h − t∞,h−1)
τ∞,h

τ

[1 0 0

0
1

θ2
0 + 1

−ξ0

θ2
0 + 1

]

× Varθ0,ξ0

⎡⎢⎣
∂�(Y, θ0, ξ0)

∂θ
YZ/τ∞,h

Y 2/τ∞,h

∣∣∣∣∣Z ∈ (ζh−1, ζh]
⎤⎥⎦
⎡⎢⎢⎢⎢⎣

1 0

0
1

θ2
0 + 1

0
−ξ0

θ2
0 + 1

⎤⎥⎥⎥⎥⎦ ,
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(
∂

∂θ
�

)
(y, θ0, ξ0) = (y − θ) +

∑H−1
h=1 (τh − τh+1)

ξ
ση

f0(
ζh−ξy

ση
)

τH +∑H−1
h=1 (τh − τh+1)�(

ζh−ξy
ση

)

and

(
∂

∂ξ
�

)
(y, θ0, ξ0) =

∑H−1
h=1 (τh − τh+1)(

ξ√
ξ2+σ2

η

�−1(t∞,h)+(θ−y)

ση
)f0(

ζh−ξy
ση

)

τH +∑H−1
h=1 (τh − τh+1)�(

ζh−ξy
ση

)
.

Proof. See Appendix C.3. �

4.3. Normal distribution and stratified sampling: Covariate case

We now extend the previous model with a continuous covariate, denoted X. Assume Y = β0 +
β1X + ε, where ε ∼ N (0, σ 2

ε ), and β0, β1, σε are unknown real numbers. We are interested in
the estimation of θ = (β0, β1, σε)

T. Assume that the empirical population c.d.f. of xγ converges
uniformly to a normal c.d.f. with known parameters μX and σ 2

X .

Result 4. Under this setting, the assumptions of Theorem 2 hold, and

ρ∞(x, y; θ, ξ) =
(

τH +
H−1∑
h=1

(τh − τh+1)�

(
ζh − ξβ0 − ξβ1xk√

ξ2σ 2
ε + σ 2

η

))−1

×
(

τH +
H−1∑
h=1

(τh − τh+1)�

(
ζh − ξy√

σ 2
η

))
,

where ζh = (

√
ξ2β2

1σ 2
X + ξ2σ 2

ε + σ 2
η )�−1(t∞,h) + ξ(β0 + β1μX), and �(·) is the c.d.f. of

N (0,1).

Proof. The proof is similar to that of Result 3 and is omitted. �

As in the previous example, the Horvitz–Thompson plug-in estimator of ξ is

ξ̂γ =
( Nγ∑

k=1

Y 2
k Jγ,k

/
πγ,k

)−1( Nγ∑
k=1

ZkYkJγ,k

/
πγ,k

)
.

The maximum sample likelihood estimators are then obtained as θ̂γ = arg max{∑Nγ

k=1 ln(ρ∞(Xk,

Yk; θ, ξ̂γ )fθ,ξ (Yk|Xk)Jγ,k)}.
Ignoring the informative selection mechanism and maximizing the log-likelihood leads to the

ordinary least squares estimators θ̄γ of the parameters θ . These are biased and inconsistent under
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informative selection. The maximum pseudo-likelihood estimators are obtained by maximizing
the weighted log-likelihood, yielding weighted least squares estimators θ̃γ , with weights given
by inverse inclusion probabilities. These estimators are asymptotically unbiased and consistent.

We simulated a realization of Nγ = 5000 i.i.d. values xγ from a normal distribution with
parameters μX = 1 and σ 2

X = 1. Keeping xγ fixed and choosing ση ∈ {0.1,1,10}, we then
generated 1000 independent replicates of (Yγ ,Zγ ,Jγ ), using H = 2 strata with Nγ 1 = 3500,
Nγ 2 = 1500, nγ 1 = 50, nγ 2 = 200, β0 = 1/2, β1 = 1, σε = 2 and ξ = 2. For each replicate,
we computed θ̄γ , θ̃γ and θ̂γ . For the latter, we computed ρ∞ by approximating the limits τh

and t∞,h: setting τ1 = N−1
γ 1 nγ 1 = 1/70, τ2 = N−1

γ 2 nγ 2 = 2/15, t∞,1 = N−1
γ Nγ 1 = 7/10 and

t∞,2 = N−1
γ Nγ 2 = 3/10. Empirical means, percent relative biases, root mean squared error

(RMSE) ratios relative to the maximum sample likelihood estimator, and empirical variances
across these 1000 replicates are summarized in Table 2, with larger ση corresponding to greater
informativeness. Also tabled is the asymptotic variance of the maximum sample likelihood esti-
mators.

The ordinary least squares estimators θ̄γ , which ignore informative selection, are badly bi-
ased except for the slope and noise variance under the least informative selection. The weighted
least squares estimators θ̃γ obtained by maximum pseudo-likelihood estimation are essentially
unbiased in every case, but are substantially less efficient than the maximum sample likelihood
estimators θ̂γ . The asymptotic variance of θ̂γ computed from Theorem 2 approximates the cor-
responding empirical variances very well in all cases.

4.4. Gestational age example

Our final example illustrates the use of the sample likelihood estimation and our asymptotic the-
ory, along with variance estimation, when ρ∞ is obtained empirically by the analyst, via regres-
sion of the design weights on the response variable as in Krieger and Pfeffermann [15]. Our simu-
lation is motivated by a textbook example of at-risk infants from the 1988 National Maternal and
Infant Health Survey (NMIHS), described in Korn and Graubard [14], Example 4.3-1. The design
used birth certificates to oversample low birthweight infants. Fuller [10], Example 6.3.1, simu-
lated a five-per-stratum design with 18 strata (90 observations) to mimic properties of NMIHS,
and we used those data to generate parameter values for our simulation. Assume that only stra-
tum and weight information is available to the analyst, and the goal is to model gestational age
Yk ∼ N (μ,σ 2), with no covariates. Since gestational age is highly correlated with birthweight,
the design is informative. For this problem, an empirical model with considerable predictive
power is PlnWk |Yk = N (ξ0 + ξYk, τ

2); that is, the design weights Wk = π−1
k are log-normally

distributed. It is then easy to show that ρ∞(y; θ, ξ)fθ (y) = N (μ − ξσ 2, σ 2), independent of
ξ0 and τ 2. Estimating ξ via pseudo-likelihood is equivalent to regressing lnWk on Yk using the
design weights Wk , yielding

ξ̂ =
∑Nγ

k=1 Wk ln(Wk)YkJγ,k − (
∑Nγ

k=1 Wk ln(Wk)Jγ,k)(
∑Nγ

k=1 WkYkJγ,k)/
∑Nγ

k=1 WkJγ,k∑Nγ

k=1 WkY
2
k Jγ,k − (

∑Nγ

k=1 WkYkJγ,k)2/
∑Nγ

k=1 WkJγ,k

.
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Table 2. Simulation results for normal example of Section 4.3, with θT = (β0, β1, σε) = (1/2,1,2)

% Relative RMSE Empirical Asymptotic
Estimator Mean bias ratio variance variance

ση = 10 Naive

⎡⎣ 1.14

0.966

1.96

⎤⎦ ⎡⎣ 128

−3.42

−1.93

⎤⎦ ⎡⎣ 2.95

0.999

1.03

⎤⎦ ⎡⎣ 0.037

0.0161

7.47 10−3

⎤⎦
Pseudo

⎡⎣0.499

1.00

1.97

⎤⎦ ⎡⎣−0.21

0.43

−1.4

⎤⎦ ⎡⎣1.27

1.50

1.52

⎤⎦ ⎡⎣0.0829

0.0388

0.0186

⎤⎦
Sample

⎡⎣0.496

1.00

1.99

⎤⎦ ⎡⎣−0.85

0.02

−0.6

⎤⎦ 1

⎡⎣ 0.0511

0.0173

8.24 10−3

⎤⎦ ⎡⎣ 0.0507

0.0167

9.50 10−3

⎤⎦

ση = 1 Naive

⎡⎣ 2.21

0.804

1.79

⎤⎦ ⎡⎣ 342

−19.6

−10.7

⎤⎦ ⎡⎣8.07

1.73

2.23

⎤⎦ ⎡⎣ 0.0359

0.0141

7.75 10−3

⎤⎦
Pseudo

⎡⎣0.499

1.01

1.98

⎤⎦ ⎡⎣−0.27

0.68

−1.17

⎤⎦ ⎡⎣1.29

1.43

1.25

⎤⎦ ⎡⎣0.0758

0.036

0.0163

⎤⎦
Sample

⎡⎣0.506

1.00

1.99

⎤⎦ ⎡⎣ 1.14

0.3

−0.53

⎤⎦ 1

⎡⎣0.0454

0.0176

0.0107

⎤⎦ ⎡⎣0.0413

0.0182

0.0102

⎤⎦

ση = 0.1 Naive

⎡⎣ 2.28

0.782

1.78

⎤⎦ ⎡⎣ 356

−21.8

−11.1

⎤⎦ ⎡⎣9.88

1.85

2.5

⎤⎦ ⎡⎣ 0.0348

0.0145

7.91 10−3

⎤⎦
Pseudo

⎡⎣0.506

0.998

1.98

⎤⎦ ⎡⎣ 1.17

−0.16

−0.84

⎤⎦ ⎡⎣1.47

1.41

1.34

⎤⎦ ⎡⎣0.0712

0.0362

0.0162

⎤⎦
Sample

⎡⎣0.516

0.988

2.00

⎤⎦ ⎡⎣ 3.16

−1.16

−0.08

⎤⎦ 1

⎡⎣ 0.0326

0.0180

9.17 10−3

⎤⎦ ⎡⎣ 0.0350

0.0188

8.48 10−3

⎤⎦

With nγ =∑Nγ

k=1 Jγ,k , the plug-in sample maximum likelihood estimators are then

σ̂ 2 =
∑Nγ

k=1 Y 2
k Jγ,k − (

∑Nγ

k=1 YkJγ,k)
2/nγ

nγ

, μ̂ =
∑Nγ

k=1 YkJγ,k

nγ

+ ξ̂ σ̂ 2.

These estimates can then be plugged into the information matrices, given by

Iγ,1,1 =
[

σ−2 −ξσ−2

−ξσ−2 (1/2)σ−4 + ξ2σ−2

]
, Iγ,1,2 =

[−1

ξ

]
.
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The score vector in (A1.g) has elements

(
∂

∂μ
L̄

)
=

Nγ∑
k=1

1

Wknγ

{
1

σ 2

(
Yk − μ + ξσ 2)}WkJγ,k,

(
∂

∂σ 2
L̄

)
=

Nγ∑
k=1

1

Wknγ

{ −1

2σ 2
− ξ

σ 2

(
Yk − μ + ξσ 2)+ 1

2σ 4

(
Yk − μ + ξσ 2)2

}
WkJγ,k.

Plugging in (μ,σ 2, ξ) = (μ̂, σ̂ 2, ξ̂ ) yields two estimated totals,
∑Nγ

k=1 S1kWkJγ,k and∑Nγ

k=1 S2kWkJγ,k . The linearization of ξ̂ used in design-based variance estimation is also an

estimated total,
∑Nγ

k=1 LkWkJγ,k . Thus, by creating a data set with design information and the
variables S1k , S2k , Lk , we can use standard survey software to obtain �̂γ , the design-based
covariance matrix estimate for the three estimated totals.

We chose Nγ = 15 000 and generated 1000 independent replicates of {Yk}Nγ

k=1 i.i.d. N (μ,σ 2)

and lnWk = exp(ξ0 + ξYk + εk) with {εk}Nγ

k=1 i.i.d. N (0, τ 2) independent of {Yk}Nγ

k=1. We set
μ = 39.853, σ 2 = 16.723, ξ = 0.175, τ 2 = 0.087, n = 90 and

ξ0 = − ln

(
n

Nγ

)
+ τ 2

2
− ξμ + ξ2σ 2

2
so that N−1

γ

Nγ∑
k=1

πk � N−1
γ n.

For each simulated replicate, we used the {πk} = {W−1
k } to draw two different without-

replacement samples: an unstratified sample of size n = 90 and a stratified five-per-stratum sam-
ple with 18 strata. The strata were formed by sorting the population on Yk , cumulating the πk’s,
and forming a new stratum each time the cumulative πk’s exceeded an integer multiple of five.

For each sample, we computed the naive estimator μ̄ = nγ
−1 ∑Nγ

k=1 YkJγ,k that ignores informa-

tive selection, the maximum pseudo-likelihood estimator μ̃ = (
∑Nγ

k=1 WkJγ,k)
−1 ∑Nγ

k=1 WkYk ×
Jγ,k , and the maximum sample likelihood estimator μ̂. We also computed the standard design-
based variance estimator for μ̃, and the new variance estimator as described above for μ̂.

Empirical means, percent relative biases, root mean squared error (RMSE) ratios relative to
the maximum sample likelihood estimator, and empirical variances across the 1000 replicates
and both designs are summarized in Table 3. Also tabled are the average estimated variances and
the ratio of average estimated variance to empirical variance. The naive estimators that ignore
informative selection are badly biased under both designs. The weighted sample mean (Hájek
estimator) obtained by maximum pseudo-likelihood estimation is essentially unbiased under each
design, but is also less efficient under each design than the maximum sample likelihood estimator.
The estimated variance for μ̂ shows some tendency to underestimate, but its downward bias is
comparable to that seen with standard variance estimation for μ̃.
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Table 3. Simulation results based on 1000 replications for gestational age example of Section 4.4 with
μ = 39.853, σ 2 = 16.723, ξ = 0.175, τ2 = 0.087, n = 90 and Nγ = 15 000

Average
% Relative RMSE Empirical estimated Variance

Estimator Mean bias ratio variance variance ratio

Unstratified Naive 36.949 −7.286 20.995
Pseudo 39.805 −0.122 1.106 0.452 0.419 0.927
Sample 39.827 −0.065 1.000 0.410 0.388 0.946

Stratified Naive 36.932 −7.328 113.911
Pseudo 39.858 0.013 2.448 0.184 0.169 0.918
Sample 39.848 −0.012 1.000 0.075 0.066 0.880

5. Conclusion

In this paper, we have developed a precise asymptotic description of the behavior of the maxi-
mum sample likelihood estimator under informative selection from a finite population. We have
shown that maximizing the sample likelihood, which treats the observations as if they were in-
dependently distributed according to a weighted distribution induced by the sample selection
mechanism, is valid in the sense that the resulting estimators are consistent and asymptotically
normal. This continues to hold even if nuisance parameters, which describe the selection mech-
anism but are not of scientific interest otherwise, must be estimated. We verified the conditions
of our theory for the important special case of stratified sampling on an ordered index; many
real designs incorporate this or similar methods. The asymptotic theory leads to excellent vari-
ance approximations in our simulations. The variance estimation method suggested by our theory
combines analytic information computations, familiar from standard likelihood estimation, with
design covariance matrix estimation, readily obtained from survey software.

Appendix A: Proof of Theorem 1

The continuity of ζ ensures the strong consistency of the sample quantiles (see Serfling [26],
page 75), and further: P(

⋂H−1
h=1 {ω ∈ �| limγ→∞ Zνγ (Tγ,h)(ω) = ζ(t∞,h)}) = 1. Let t∗γ,h be a

sequence defined for all γ ∈ N, h ∈ {1, . . . ,H }, such that h < h′ ⇒ 0 < t∗γ,h ≤ t∗
γ,h′ ≤ 1,

and such that ∀h ∈ {1, . . . ,H }, limγ→∞ t∗γ,h = t∞,h. Then conditionally on Zνγ (Tγ,h−1) =
ζ(t∗γ,h−1),Zνγ (Tγ,h) = ζ(t∗γ,h), we have independence within the same stratum: ∀h ∈ {1, . . . ,H −
1},

P
(Zk,Yk)k∈rγ h◦νγ (Uγ,h)|Zνγ (Tγ,h−1)=ζ(t∗γ,h−1),Zνγ (Tγ,h)=ζ(t∗γ,h)

(1)
= (

P(Z,Y )|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)])⊗Nγ,h−1 ⊗ P(Z,Y )|Z=ζ(t∗γ,h)
,
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where ⊗ denotes product measure and P ⊗k denotes the product measure of k independent and
identically distributed random variables, and

P(Zk,Yk)k∈rγH ◦νγ (Uγ,H )|Zνγ (Tγ,H−1)=ζ(t∗γ,H−1) = (
P(Z,Y )|Z∈(ζ(t∗γ,H−1),ζ(t∗γ,h)])⊗Nγ,H , (2)

where for h ∈ {1, . . . ,H − 1}, rγh is a random permutation of the ordered set νγ (Uγ,h) such
that rγh ◦ νγ (Tγ,h) = Tγ,h, and rγH is a random permutation of the ordered set νγ (Uγ,H ). If we
consider the distribution of the sample responses on hth stratum, we have: ∀h ∈ {1, . . . ,H − 1},

P(Zk,Yk)k∈rγ h◦νγ (Uγ,h),Jγ,k=1|Zνγ (Tγ,h−1)=ζ(t∗γ,h−1),Zνγ (Tγ,h)=ζ(t∗γ,h)

= (
P(Z,Y )|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)])⊗nγ,h−1 (3)

⊗ (
τγhP(Z,Y )|Z=ζ(t∗γ,h) + (1 − τγh)

(
P(Z,Y )|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)]))

and

P
(Zk,Yk)k∈rγH ◦νγ (Uγ,H ),Jγ,k=1|Zνγ (Tγ,H−1)=ζ(t∗γ,H−1) = (

P(Z,Y )|Z∈(ζ(t∗γ,H−1),∞])⊗nγ,H . (4)

Equation (3) implies that ∀h ∈ {1, . . . ,H − 1},

P(g(Y,Z,πγH ))k∈νγ (Uγ,h),Jγ,k=1|Zνγ (Tγ,h−1)=ζ(t∗γ,h−1),Zνγ (Tγ,h)=ζ(t∗γ,h)

= τγhPg(Y,Z,πγh)|Zνγ (Tγ,h)=ζ(t∗γ,h) ⊗ (
Pg(Y,Z,πγh)|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)])⊗nγ,h−1 (5)

+ (1 − τγh)
(
Pg(Y,Z,τγh)|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)])⊗nγ,h ,

and equation (4) implies that

P(g(Y,Z,τγH ))k∈νγ (Uγ,H ),Jγ,k=1|Zνγ (Tγ,H−1)=ζ(t∗γ,H−1) = (
Pg(Y,Z,τγH )|Z∈(ζ(t∗γ,h−1),∞])⊗nγ,H . (6)

We will show that ∀h ∈ {0, . . . ,H },

P
√

nγh(n−1
γ hSγ,h−Eγh)|Zνγ (Tγ,h−1)=ζ(t∗γ,h−1),Zνγ (Tγ,h)=ζ(t∗γ,h) L−→

γ→∞N (0,V∞,h). (7)

Using (5) we calculate, for h ∈ {0, . . . ,H − 1}:
Var

[
Sγh|Zνγ (Tγ,h−1) = ζ

(
t∗γ,h−1

)
,Zνγ (Tγ,h) = ζ

(
t∗γ,h

)]
= (

n∗
γ − 1

)
Var

[
g(Y,Z, τγh)|Z ∈(ζ (t∗γ,h−1

)
, ζ
(
t∗γ,h

)]]
+ τγh E

[(
ggT)(Y,Z, τγh)|Z = ζ

(
t∗γ,h

)]
+ (1 − τγh)E

[(
ggT)(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]]
(8)

− (
τγh E

[
g(Y,Z, τγh)|Z = ζ

(
t∗γ,h

)]
+ (1 − τγh)E

[
g(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]])
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× (
τγh E

[
g(Y,Z, τγh)|Z = ζ

(
t∗γ,h

)]
+ (1 − τγh)E

[
g(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]])T

and

Var
[
SγH |Zνγ (Tγ,H−1) = ζ

(
t∗γ,H−1

)]= n∗
γ Var

[
g(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
,∞]]

. (9)

In addition,

E
[
g(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]]=
∫

g(y, z, τγh)1(ζ(t∗γ,h−1),ζ(t∗γ,h)](z)d PY,Z(y, z)

P(Z ∈ (ζ(t∗γ,h−1), ζ(t∗γ,h)])
and

E
[(

ggT)(Y,Z, τγh)|Z ∈ (
ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]]
=

∫
(ggT)(y, z, τγh)1(ζ(t∗γ,h−1),ζ(t∗γ,h)](z)d PY,Z(y, z)

P(Z ∈ (ζ(t∗γ,h−1), ζ(t∗γ,h)])
.

Because ∀(y, z) ∈ Y(�) × Z(�),

lim
γ→∞g(y, z, τγh)1(ζ(t∗γ,h−1),ζ(t∗γ,h)](z) = g(y, z, τ∞,h)1(ζ(t∞,h−1),ζ(t∞,h)](z),

and ‖g(y, z, τγh)1(ζ(t∗γ,h−1),ζ(t∗γ,h)](z)‖ ≤ G(y, z), we conclude by the Lebesgue dominated con-
vergence theorem that

lim
γ→∞ E

[
g(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]]
= E

[
g(Y,Z, τ∞,h)|Z ∈ (

ζ(t∞,h−1), ζ(t∞,h)
]]

,

lim
γ→∞ Var

[
g(Y,Z, τγh)|Z ∈ (

ζ
(
t∗γ,h−1

)
, ζ
(
t∗γ,h

)]]
= Var

[
g(Y,Z, τ∞,h)|Z ∈ (

ζ(t∞,h−1), ζ(t∞,h)
]]

.

Also, as ∀y ∈ Y(�) × Z(�),

lim
γ→∞g

(
y, ζ

(
t∗γ,h

)
, τγ h

)d P
Y |Z=ζ(t∗γ,h)

dλ
(y) = g

(
y, ζ

(
t∗∞,h

)
, τγ h

)d PY |Z=ζ(t∗∞,h)

dλ
(y)

and for γ large enough, ‖g(y, ζ(t∗γ,h), τγh)
d P

Y |Z=ζ(t∗
γ,h

)

dλ
(y)‖ ≤ G(y, z)M(y), we conclude by the

Lebesgue dominated convergence theorem that:

lim
γ→∞ E

[
g(Y,Z, τγh)|Z = ζ

(
t∗γ,h

)]= E
[
g(Y,Z, τ∞,h)|Z = ζ(t∞,h)

]
< ∞, (10)

lim
γ→∞ Var

[
g(Y,Z, τγh)|Z = ζ

(
t∗γ,h

)]= Var
[
g(Y,Z, τ∞,h)|Z = ζ(t∞,h)

]
< ∞. (11)
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Equations (8), (9) and the preceding imply that

lim
γ→∞(nγh)

−1 Var
[
Sγh|Zνγ (Tγ,h−1) = ζ

(
t∗γ,h−1

)
,Zνγ (Tγ,h) = ζ

(
t∗γ,h

)]
= Var

[
g(Y,Z, τ∞,h)|Z ∈ (

ζ(t∞,h−1), ζ(t∞,h)
]]

and

lim
γ→∞(nγH )−1 Var

[
SγH |Zνγ (Tγ,H−1) = ζ

(
t∗γ,h−1

)]
= Var

[
g(Y,Z, τ∞,h)|Z ∈ (

ζ(t∞,H−1),∞
]]

.

For γ ∈N, h ∈ {1, . . . ,H − 1} introduce the random variables X∗
γ,h,1 · · ·X∗

γ,h,nγh
that satisfy

P
X∗

γ,h,1···X∗
γ,h,nγ h = (

Pg(Z,Y,τγh)|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)])⊗nγ,h−1

⊗ (
τγhPg(Z,Y,τγh)|Z=ζ(t∗γ,h)

+ (1 − τγh)
(
Pg(Z,Y,τγh)|Z∈(ζ(t∗γ,h−1),ζ(t∗γ,h)]))

,

and the random variables X∗
γ,H,1 · · ·X∗

γ,H,nγH
that satisfy

P
X∗

γ,H,1···X∗
γ,H,nγH = (

Pg(Z,Y,τγH )|Z>ζ(t∗γ,H−1)
)⊗nγH .

For α ∈ Y(�), h ∈ {1, . . . ,H }, PαTSγh = P
∑nγh

k=1 αTX∗
γ,h,k . For α ∈ Y(�) \ {0}, γ ∈ N, ε ∈ (0,∞],

we define

Aγ,h,ε,α = (
αT Var[Sγh]α

)−1
nγh∑
k=1

E
[∣∣αT(X∗

γ,h,k − E
[
X∗

γ,h,k

])∣∣2
× 1

(ε
√

αT Var[Sγ ]α,∞]
(∣∣αT(X∗

γ,h,k − E
[
X∗

γ,h,k

])∣∣)].
Let α ∈ Y(�)\{0}. To prove the asymptotic normality of αTSγh, we will show that the Lindeberg
condition

∀ε ∈ (0,∞), lim
γ→∞Aγ,h,ε,α = 0 (12)

is satisfied. Let ε ∈ (0,∞), h ∈ {1, . . . ,H }. Then as γ → ∞,

Aγ,h,ε,α ∼ (nγh − 1)

nγhαTV∞,hα
E
[∣∣αT(g(Y,Z, τγh) − E

[
X∗

γ,h,k

])∣∣2
(13)

× 1
(ε
√

αT Var[Sγ ]α,∞]
(
αT(g(Y,Z, τγh) − E

[
X∗

γ hk

]))]
.
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In addition,∫ ∣∣αT(g(Y,Z, τγh) − E
[
X∗

γ h1

])∣∣21
(ε
√

αT Var[Sγ ]α,∞]
(
αT(g(Y,Z, τγh) − E

[
X∗

γ h1

]))
d PY,Z

≤
∫

‖α‖2(∥∥G(Y,Z)
∥∥+ ∥∥E

[
X∗

γ h1

]∥∥)2

× 1
(ε
√

αT Var[Sγ ]α,∞]
(‖α‖2(∥∥G(Y,Z)

∥∥+ ∥∥E
[
X∗

γ h1

]∥∥))d PY,Z

≤
∫

‖α‖2
(∥∥G(Y,Z)

∥∥+ E[G(Y,Z)]
min{t∗γ h − t∗γ,h−1|γ ∈ N}

)2

× 1
(ε
√

αT Var[Sγ ]α,∞]

(
‖α‖

(∥∥G(Y,Z)
∥∥+ E[G(Y,Z)]

min{t∗γ h − t∗γ,h−1|γ ∈ N}
))

d PY,Z

because, for h ∈ {1, . . . ,H }, with the convention t∗γH = 1,

∥∥E
[
X∗

γ h1

]∥∥ ≤
∫

G(Y,Z)d PY,Z

P(Z ∈ (ζ(t∗γ,h−1), ζ(t∗γ,h)])
≤
∫

G(Y,Z)d PY,Z

t∗γ h − t∗γ,h−1

≤
∫

G(Y,Z)d PY,Z

min{t∗γ h − t∗γ,h−1|γ ∈N} ,

because P
(T ∗

γ h,T ∗
γ,h−1)γ∈N -a.s. ((t∗γ h − t∗γ,h−1)γ∈N), limγ→∞ t∗γ h − t∗γ,h−1 = t∗∞,h − t∗∞,h−1 and be-

cause min{t∗γ h − t∗γ,h−1|γ ∈N} > 0. As limγ→∞ ε
√

αT Var[Sγ ]α = ∞, and E[G(Y,Z)2] < ∞,
we conclude that

lim
γ→∞

∫ ∣∣αT(g(Y,Z, τγh) − E
[
X∗

γ,h,1

])∣∣21
(ε
√

αT Var[Sγ ]α,∞]
(
αT(g(Y,Z, τγh) − E

[
X∗

γ,h,1

]))
= 0,

which implies via (13) that the Lindeberg condition (12) is satisfied. We apply the Lindeberg–
Feller theorem (see Serfling [26], Theorem page 31), and conclude by the asymptotic normality
of αTSγh conditionally on (Tγh) ∀α ∈ Y(�) (which terminates the proof of (7)). Then, we remark
that conditionally on Zνγ (Tγ,h−1) = ζ(t∗γ,h−1),Zνγ (Tγ,h) = ζ(t∗γ,h), we have independence between
strata:

h �= h′ ⇒ P
(
Sγ,h
S
γ h′)

∣∣∣∣
⎧⎨⎩Zνγ (Tγ,h−1) = ζ(t∗γ,h−1),Zνγ (Tγ,h) = ζ(t∗γ,h),

Zνγ (Tγh′−1)
= ζ(t∗

γ h′−1),Zνγ (Tγh′ ) = ζ(t∗
γ h′)

= P
(Sγ,h)|Zνγ (Tγ,h−1)=ζ(t∗γ,h−1),Zνγ (Tγ,h)=ζ(t∗γ,h) ⊗P

(Sγh′ )|Zνγ (T
γ h′−1)=ζ(t∗

γ h′−1
),Zνγ (T

γ h′ )=ζ(t∗
γ h′ )

⇒ Sγ,h and Sγh′ are independent conditionally on Tγ,h, Tγ,h−1, Tγ,h′Tγ,h′−1.
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Together with equation (7), this implies that

P(Tγh)γ∈N,h∈{1,...,H−1} -a.s.
((

t∗γ h

)
γ∈N,h∈{1,...,H−1}

)
,

(14)

P
√

nγ (n−1
γ Sγ −E∞)|Tγ,1=t∗γ,1,...,Tγ,H−1=t∗γ,H−1

L−→
γ→∞N (0,V∞).

The almost sure asymptotic normality implies the global asymptotic normality. For γ ∈N, x ∈R,
α ∈ Y(�) we define:

hγ,α,x : t∗ �→ E

[
exp

(
ix

αT(Sγ − E∞)
√

nγ

√
αTV∞α

)
|Tγ,1 = t∗γ,1, . . . , Tγ,H−1 = t∗γ,H−1

]
.

Then equation (14) implies that P(Tγh)γ∈N,h∈{1,...,H−1} -a.s. (t∗), limγ→∞ hγ,α,x,(t
∗) = exp(ix −

t2/2). Besides, P(Tγh)γ∈N,h∈{1,...,H−1} -a.s (t∗), ∀γ ∈ N |hγ,α,x(t
∗)| ≤ 1. We apply the Lebesgue

dominated convergence theorem:

lim
γ→∞ E

[
exp

(
ix
(√

nγ αTV∞α
)−1

αT(Sγ − E∞)
)]

= lim
γ→∞ E

[
E
[
exp

(
ix
(√

nγ αTV∞α
)−1

αT(Sγ − E∞)
)|Tγ,1, . . . , Tγ,H−1

]]
= E

[
lim

γ→∞ E
[
exp

(
ix
(√

nγ αTV∞α
)−1

αT(Sγ − E∞)
)|Tγ,1, . . . , Tγ,H−1

]]
=
∫

exp
(
ix − x2/2

)
d P(Tγh)γ∈N,h∈{1,...,H−1} = exp

(
ix − x2/2

)
.

The convergence of the characteristic function then implies the convergence to the normal distri-
bution, which ends the demonstration of the theorem. �

Appendix B: Proof of Theorem 2

By assumption (A1.a),

∂2

∂θ ∂ξ
L̄ (θ0, ξ0) + Iγ,1,2 = o

P
·|Xγ =xγ
θ0,ξ0

(1),

and combining with (A1.b),

√
nγ

(
∂2

∂θ ∂ξ
L̄ (θ0, ξ0)

)
(̂ξγ − ξ0) = −√

nγ Iγ,1,2(̂ξγ − ξ0) + o
P

·|Xγ =xγ
θ0,ξ0

(1). (15)

By assumption (A1.a),

∂2

∂θ2
L̄ (θ0, ξ̂γ ) + Iγ,1,1 = o

P
·|Xγ =xγ
θ0,ξ0

(1). (16)
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Combining with (A1.e), we have

−√
nγ

∂

∂θ
L̄ (θ0, ξ̂γ ) = √

nγ

(−Iγ,1,1 + o
P

·|Xγ =xγ
θ0,ξ0

(1)
)
(θ̂γ − θ0) + o

P
·|Xγ =xγ
θ0,ξ0

(1). (17)

Combining (A1.f) and (15), we have

√
nγ

∂

∂θ
L̄ (θ0, ξ̂γ ) = √

nγ

∂

∂θ
L̄ (θ0, ξ0) − √

nγ Iγ,1,2(̂ξγ − ξ0) + o
P

·|Xγ =xγ
θ0,ξ0

(1). (18)

Applying what precedes ((17) and (18)) and (A1.d), we see that
√

nγ (θ̂γ − θ0) is asymptot-

ically equivalent to I −1
γ,1,1(

√
nγ L̄ (θ0, ξ0) − √

nγ Iγ,1,2(̂ξγ − ξ0)). Thus
√

nγ V
−1/2
γ (θ̂γ − θ0)

converges in distribution to N (0, I ) conditionally on Xγ = xγ , with Vγ = I −1
γ,1,1(�γ,1,1 +

Iγ,1,2�γ,2,2Iγ,1,2 − Iγ,1,2�
T
γ,1,2 − �γ,1,2I

T
γ,1,2)I

−1
γ,1,1, establishing Theorem 2.

Appendix C: Proofs for stratified sampling

C.1. Proof of Result 1

Proof. We first show that A0 is satisfied. As there are no covariates, we can choose d = 1,
hγ as any constant function, and mγ,θ,ξ defined by mγ,θ,ξ (y, x1, hγ (xγ )) = fJγ,a |Y1=y(1), and
assumption (A0.b) holds.

To show that A0, is satisfied, we compute:

lim
γ→∞ Pθ,ξ (Jγ,k = 1|Yk = y,Zk = z)

= lim
γ→∞ Pθ,ξ (Jγ,k = 1|Zk = z)

=
H∑

h=1

τ∞,h1[�−1(t∞,h−1),�
−1(t∞,h)]

(
Zk − θξ√
ξ2 + σ 2

η

)
.

We deduce from the preceding that m∞(y; θ, ξ) is defined:

m∞,θ,ξ (y) =
H∑

h=1

τ∞,h Pθ,ξ

(
�−1(t∞,h) <

ξ(y − θ) + ε√
ξ2 + σ 2

η

< �−1(t∞,h−1)

)

= τH +
H−1∑
h=1

(τ∞,h − τ∞,h+1)�

(√
ξ

ση

2

+ 1
(
�−1(t∞,h)

)+ ξ

ση

(θ − y)

)
.
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By assumption,
∫

m∞,θ,ξ fθ dλ = limγ→∞ Nγ
−1nγ > 0, so ρ∞;θ,ξ is defined:

ρ∞(y; θ, ξ)

=
τH +∑H−1

h=1 (τ∞,h − τ∞,h+1)�(

√
ξ
ση

2 + 1(�−1(t∞,h)) + ξ
ση

(θ − y))

τH +∑H−1
h=1 (τ∞,h − τ∞,h+1)t∞,h

.
�

C.2. Proof of Result 2

The quantile function ζ(t) of Z is continuous on (0,1) and fY |Z=z(y) is continuous in z ∀y ∈R.

The function ζ(·) depends on ση, θ , and ξ via ζ(t) =
√

ξ2 + σ 2
η �−1(t) + ξθ . Applying Theo-

rem 1 with g(y, z, τ ) = [y × z/τ, y2/τ ]T, we obtain the asymptotic normality of the vector√
nγ Sγ :

√
nγ

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
n−1

γ

Nγ∑
k=1

YkZk/τγ,kJγ,k

n−1
γ

Nγ∑
k=1

Y 2
k /τγ,kJγ,k

⎤⎥⎥⎥⎥⎥⎦− E∞

⎞⎟⎟⎟⎟⎟⎠
L−→

γ→∞N (0,V∞),

with E∞ = [ τ−1ξ0(θ
2
0 + 1) τ−1(θ2

0 + 1) ]T, and

V∞ =
H∑

h=1

(t∞,h − t∞,h−1)τ∞,h

× Varθ0,ξ0

[[
YZ/τ∞,h

Y 2/τ∞,h

] ∣∣∣Z ∈ (
ζ(t∞,h−1), ζ(t∞,h)

]]
.

Applying the Delta method (see van der Vaart [27], Theorem 3.1 page 26),

√
nγ (̂ξγ − ξ0)

L−→
γ→∞N

⎛⎝0,

[
τ
(
θ2

0 + 1
)−1

−τξ0
(
θ2

0 + 1
)−1

]T

V∞

[
τ
(
θ2

0 + 1
)−1

−τξ0
(
θ2

0 + 1
)−1

]⎞⎠ .

C.3. Proof of Result 3

Assumption (A1.a), (A1.e), (A1.f) are satisfied (see Bonnéry [1], page 115 for details). Assump-
tion (A1.b) is a consequence of Result 2. We now show (A1.c) and (A1.d). First,

Iγ,1,1 < τ−1 H
max
h=1

{τ∞,h}
∫

Y(�)

(
∂�

∂θ
(y, θ0, ξ0)

)2

d PY (y) < ∞,
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because(
∂

∂θ
�

)
(Y, θ0, ξ0)

= (y − θ) +
∑H−1

h=1 (τ∞,h − τ∞,h+1)
ξ
ση

f0(
√

(
ξ
ση

)2 + 1�−1(t∞,h) + ξ
ση

(θ − y))

τH +∑H−1
h=1 (τ∞,h − τ∞,h+1)�(

√
(

ξ
ση

)2 + 1�−1(t∞,h) + ξ
ση

(θ − y))

≤ (y − θ) +
∑H−1

h=1 (τ∞,h − τ∞,h+1)
ξ
ση

1√
2π

min{τ∞,h} .

We have(
∂

∂ξ
�

)
(Y, θ0, ξ0)

=
(

τH +
H−1∑
h=1

(τ∞,h − τ∞,h+1)�

(√(
ξ

ση

)2

+ 1�−1(t∞,h) + ξ

ση

(θ − y)

))−1

×
H−1∑
h=1

(
(τ∞,h − τ∞,h+1)

(
ξ/σ 2

η√
ξ2

σ 2
η

+ 1
�−1(t∞,h) + (θ − y)

ση

)

× f0

(√(
ξ

ση

)2

+ 1�−1(t∞,h) + ξ

ση

(θ − y)

))

≤

∑H−1
h=1 (τ∞,h − τ∞,h+1)(

ξ/σ 2
η√

ξ2

σ2
η

+1
+ (θ−y)

ση
) 1√

2π

min{τ∞,h} .

Finally, | ∂�
∂θ

∂�
∂ξ

(y, θ0, ξ0)|ρ∞,θ0,ξ0 can be bounded above by a function of the form |ay2 +by +c|
so Eθ0,ξ0[|( ∂

∂θ
�)( ∂

∂ψ
�)|] < ∞ and Iγ,1,2 is defined.

To show that (A1.g) is satisfied, we apply Theorem 1 with

g(y, z,π) = [
(∂�/∂θ)(y, θ0, ξ0) y × z/π y2/π

]T
.

Then we obtain the asymptotic normality of the vector
√

nγ (n−1
γ Sγ − E∞):

√
nγ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−1
γ

Nγ∑
k=1

(∂�/∂θ)(Yk, θ0, ξ0)Jγ,k

n−1
γ

Nγ∑
k=1

YkZk/πγ,kJγ,k

n−1
γ

Nγ∑
k=1

Y 2
k /πγ,kJγ,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L−→

γ→∞N (E∞,V∞),
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with E∞ = [0 π−1ξ(θ2 + 1) π−1(θ2 + 1) ]T. By applying the Delta method (see van der
Vaart [27], Theorem 3.1 page 26), we obtain that

√
nγ

⎡⎣
(

∂

∂θ
L̄

)
(θ0, ξ0)

ξ̂γ − ξ0

⎤⎦
L−→

γ→∞N

⎛⎜⎝0,

⎡⎣1 0

0 π
(
θ2

0 + 1
)−1

0 −πξ0
(
θ2

0 + 1
)−1

⎤⎦T

V∞

⎡⎣1 0

0 π
(
θ2

0 + 1
)−1

0 −πξ0
(
θ2

0 + 1
)−1

⎤⎦
⎞⎟⎠ .

Hence, assumptions (A1.a)–(A1.g) are satisfied, and so Result 3 follows from Theorem 2.
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